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RIEMANNIAN SUBMERSIONS WITH TOTALLY
GEODESIC FIBERS

RICHARD H. ESCOBALES, JR.

Let M and B be C°° Riemannian manifolds. By a Rίemannίan submersion we
mean a C°° mapping π: M~^B fromM onto B such that π is of maximal rank
and π^ preserves the lengths of horizontal vectors, i.e., vectors orthogonal to
the fiber π~\x) for some x e B.

§ 1 is primarily devoted to a summary of known results which will be used
in the remaining portion of the paper. § 2 gives a sufficient condition for an
isometry / of M to preserve bundle structure where the bundles in question
are determined by Riemannian submersions nt\ M —> B where M and B are
Riemannian manifolds. In this result (Theorem 2.2) we assume M is connected
and complete and the fibers are connected and totally geodesic. Now a large
class of Riemannian submersions satisfy precisely these conditions. Thus our
theorem should have many applications. Some of them (Lemmas 2.4, 2.5 and
2.6) show that many Riemannian submersions from spheres are essentially eq-
uivalent to the standard ones (see O'Neill [15], Gray [8]).

In § 3 we classify those B for which there is a Riemannian submersion
π:Sm^>B where Sm is a sphere and the fibers are connected and totally geodesic.
A similar problem for homogeneous sphere bundles was discussed by Nagano
in [14]. Since we make no assumption about homogeneity, our proof depends
on the properties of submersion metrics.

In differential geometry there has been extensive study of isometric immer-
sions into space forms. Part of Proposition 3.1 together with Theorem 3.4 may
be viewed as providing information on the dual question namely, given a space
form what Riemannian submersions are admissible if the fibers are totally ge-
odesic?

The content of this paper is a portion of my doctoral dissertation at the Uni-
versity of Notre Dame under the direction of Professor Tadashi Nagano. My
years as a doctoral student were enriched by his continued personal and pro-
fessional interest. I am particularly grateful for an observation of his which led
to Proposition 2.1.

1. In this section we summarize known results on Riemannian submersions
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which will be used in the sequel. Generally, we will use the terminology of
Barrett O'Neill whose article [15] constitutes a basic paper on the subject of
submersions.

For a Riemannian submersion π: M —• B, the implicit function theorem tells
us that π~\x) is a closed submanifold of M where dim π~\x) = dim M — dim B.
Given a Riemannian submersion π from M to B we denote by "Γ the vector
subbundle of TM defined by the foliation of M by the fibers of π. & will de-
note the complementary distribution of i^ in TM determined by the metric on
M.

We make one notational remark. If q e M where M is any manifold, TqM
denotes the tangent space of M at q. Following O'Neill [15] we define the
tensor T for arbitrary vector fields E and F by TEF = ^VrETF + i^V rE^F
where ΨΈ, 2t?E, etc. denote the vertical and horizontal projections of the
vector field E. Recall O'Neill has described the following three properties of
the tensor T:

(1) TE is a skew-symmetric operator on the tangent space of M reversing
horizontal and vertical subspaces.

(2) TE = T^E.
(3) For vertical vector fields V and W, T is symmetric, i.e., TVW = TWV.

In fact, along a fiber T is the second fundamental form of the fiber provided
we restrict ourselves to vertical vector fields.

Next we define the ίntegrabilίty tensor A associated with the submersion.
For arbitrary vector fields E and F,

AEF = jev^rF + rv^E^F .

(I7) At each point AE is a skew-symmetric operator on TM reversing the
horizontal and vertical subspaces.

(2) AE = A#E.
(30 For X, Y horizontal A is alternating, i.e., AXY = AYX.

Proofs of (I7), (20 and (30 are found in [15].
Definition. A basic vector field is a horizontal vector field X which is π re-

lated to a vector field X^ on B, i.e., π^Xu = X*π(u) for all u e M.
Lemma 1.1. Suppose X and Y are basic vector fields on M which are re-

lated to X^ and Y^onB. Then
(a) g(X, Y) = g*(X*, Y%) o π where g* is the metric on M, and g the metric

on B,
(b) Jί?[X, Y] is basic and is π related to [X#9 Y J ,
(c) JfFxY is basic and is π related to V*x* Y^ where V* is the Riemannian

connection B.
The proofs of these results are found in O'Neill [15].
As before, we assume g is the metric on M and g* the metric on B.

Lemma 1.2. Let Zt be a basic vector field on M corresponding to Z ί # on B.
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Suppose for a horizontal vector field X, gp(X, Zt) = gp>(X, Z4) for all such Zt

and for any p, pr € π~\b) where b e B. Then π^X is a well defined vector field
on B. In particular, X is basic.

Proof. Since π is a Riemannian submersion, we have gf m(π^Xp, Z ί ; j i) =
gp(X,Zi) = gpf{X,Zt) = gπ*(p)(π*Xp,,Zί:¥), using the assumptions that π(j/)
= π(p) and the fact that π^Zip = Zi:^. = π^Zip,. Choosing Zt to be a basis of
J f we have from the above equalities π^Xp, = π*Xp, so (π^X)π(p) is well de-
fined.

Lemma 1*3. Let X and Y be horizontal vector fields, V and W be vertical
vector fields. Then each of the following holds:

CD Axγ = \r\x,Y).
(2) VγW = TγW + PγW where V denotes the Riemannian connection

along a fiber with respect to the induced metric.
(3) (a) VVX = J^FyX + TVX.

(b) // X is basic JfVvX = ΛXV.
(c) Suppose the fibers are connected and totally geodesic {i.e. ,T = O).

Then X is basic if FVX = AXV for any vertical V.
(4) VXV = AXV + rVxV.
(5) FXY = J?FXY + AXY.
Proof. The proof of (1) is given in O'Neill [15]. The results of (2), (3) (a),

(4) and (5) are direct consequences of the definitions of T and A.
We proceed now to (3) (b). It is known that if X is basic, [X, V] is vertical.

Hence

0 = 3f[X, V] = 34?VXV - tfVyX = AXV - jf VVX .

It follows AXV = JFVyX. Now we proceed to (3) (c).
If X is basic, then AXV = JPVyX as follows from (3) (b). Suppose AXV =

and let Y be any basic vector field. It follows

Vg(X, Y) = g{VvX, Y) + g(X, JTFyY) = g(AxV, Y) + g{X, AYV)

= g(V,AxY)-g(AYX,V) = O,

since A is skew-symmetric and alternating. Since by assumption the fibers are
connected, we may join any two points p and // of π~λ (b) by a path which lies
in the fiber. It follows from the fact that Vg(X, Y) = 0 that gp(X, Y) =
gp,(X, Y). Applying Lemma 1.2 the result follows.

Lemma 1.4. Let X be a horizontal vector field and W a vertical vector
field. Then

(a) (FXA)W = -AAχW,

(b) (FWT)X= -TTwX.

Proof. We will only prove (a) since the proof for (b) is similar. Let E be
an arbitrary vector field on M. Then
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(FXA)WE = ΓZ(AWE) - AFχWE - AW(FXE) = -AΓχWE ,

Since Aw = 0 by (2'). But — A^FχWE = — AAχWE. The next result gives a
geometric characterization of the parallelism of the fundamental tensors T and
A. This kind of result seems to have originated with Mutό [21].

Corollary 1.5. (a) If A is parallel, then A is identically zero, i.e., (VEA)
= o implies A = 0.

(b) // T is parallel, then T is identically zero, i.e., (VET) = 0 implies T
= 0.

Thus Rίemannίan submersions with parallel intergrability tensors A are
characterized as those whose horizontal distributions are ίntegrable, and Rie-
mannian submersions with parallel tensors T as those whose fibers are totally
geodesic.

Proof, (a) (FXA)WX = —AAχWX = AXAXW for horizontal X and ver-
tical W. These equalities are immediate from the preceding lemma, the fact
AXW is horizontal and the fact that AXY = — AYX for horizontal X and Y.
Thus g((PxA)wX, W) = g(AxAxW, W) = -g{AxW,AxW). If VXA = 0, then
g(AxW,AxW) = 0; so Ax annihilates the vertical distribution. Since Ax is a
skew-symmetric operator on TM which reverses the horizontal and vertical
subspaces, Ax also annihilates the horizontal distribution. The result follows
since X was an arbitrary horizontal vector and AE = A^E.

Part (b) is proven in a similar fashion. g((FwT)xW, X) = —g(TTwXW, X) =
—g(TwTwX, X) = g(TwX, TWX) since T is skew-symmetric and ΊΌV = TVU
when U and V are vertical. If VWT = 0, it follows g(TwX, TWX) = 0. Thus
Tw annihilates the horizontal distribution. Since Tw is a skew-symmetric ope-
rator on TM which reverses the horizontal and vertical subspaces, Tw annihi-
lates the vertical distribution as well. The result follows since W was an arbi-
trary vertical vector.

Let R denote the curvature tensor of M, and Λ* the curvature tensor of B.
Since there is no danger of ambiguity, we denote the horizontal lift of JR* by
R* as well. Following O'Neill [15] we set g(R*ΛlΛ,Λ3, AJ = g*(R*hl.hJι*,h»)
where ht are horizontal vectors and π^h = ht*.

For £ and F, linearly independent vectors, we denote the tangent plane
spanned by these two vectors by PEF. In general, if X is a horizontal vector,
then π*X is denoted by X^. K, K^. and K will denote the sectional curvature
of M,B and the fiber, respectively. We state now several results of O'Neill
[15] which will be of future use.

Proposition 1.6. Let π: M —> B be a Riemannian submersion.
(a) Then for horizontal vectors X, Y, Z and H

g(R*xγZ,H) = g(RxγZ,H) + 2g(AxY,AzH)

- g(AγZ,AxH) - g(AzX,AγH) .

(b) // X and Y are horizontal, and V and W are vertical vectors, then
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g{RxvY, W) = g((FxT)vW, Y) + g((FvA)xY, W)

- g(TvX, TWY) + g(AxV, AYW) .

Proposition 1.7. Let π: M —> B be a Riemannian submersion. Then for
orthonormal horizontal vectors X and Y and orthonormal vectical vectors V
and W we obtain the following relations:

(a) K{PyW) = K{PyW) - g(JyV, TWW) + g(TyW, ΊyW),
(b) K(PXV) = g((FxT)vV, X) + g(AxV, AXV) - g(TvX, TVX),
(c) K(PXY) = K^(PXYJ - 3g(AxY,AxY).
If we denote g(E, E) by | | £ | | 2 , we have the following corollary crucial to our

future work.
Corollary 1.7.1. Let π: M —> B be a Riemannian submersion with totally

geodesic fibers. Then for orthonormal horizontal vectors X and Y and a ver-
tical vector V of unit length

(a) K(PXV) - || AXV||2,
(b) K(PXY) = K*(PXYJ - 3\\AXY\\>.
Proof. Immediate from Proposition 1.7.
Assume π: M —> B has the structure of a flbered space as usual assume π is

a Riemannian submersion and, in addition, M is complete. Let γ be a smooth
curve in B with f(0) = p and f(t0) = q. Then the family of unique horizontal
lifts of γ to M denoted by {f x} with fx(0) = x e π~\p) gives rise to a mapping
Fγ: π~\p) —• π~\q) denned as follows. For x e π~\p), we have Fγ(x) = fx(t0)
and therefore the following result:

Proposition 1.8. Under the above hypotheses, the mapping Fγ are diffeo-
morphisms between the fibers. Moreover, a necessary and sufficient condition
for the mapping Fγ to be isometrίes is that the fibers be totally geodesic.

Corollary 1.9. Under the hypotheses of (1.8) a necessary and sufficient
condition for the flow of a basic vector field to give rise to an isometry between
fibers is that the fibers be totally geodesic.

Proof. See Nagano [13] and also Hermann [9].
Proposition 1.10. Let π.M^B be a Riemannian submersion. Assume

M is complete and the fibers are totally geodesic. If X and Y are basic vector
fields, then AXY when restricted to a fiber is a Killing vector field of that fiber.

Proof. See Bishop [4].
We now recount several other results on submersions which will be useful

in our future work.
Theorem 1.11. Let π: M —» B be a Riemannian submersion with M con-

nected. If M is complete so is B, and π is a locally trivial fiber space. If, in
addition, the fibers are totally geodesic, then π is a fiber bundle with structure
group the Lie group of isometries of the fiber.

Proof. See Hermann [9] or Nagano [13].
A partial converse to the above theorem is provided by an elegant result of

Vilms.
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Theorem 1.12. Let π: M —> B be a fiber bundle with standard fiber F and
Lie structure group G. Assume the bundle admits a connection in the sense of
Ehresemann. Endow B and F with Riemannian metrics, and assume F is G
invariant. Then there exists a natural metric on M such that π is a Riemannian
submersion with totally geodesic fibers.

Proof. See Vilms [19].
The following result is originally due to Hermann [9]. O'Neill [16] has given

an elegant infinitesimal proof.
Proposition 1.12. Let π: M —> B be a Riemannian submersion. If γ is a

geodesic of M which is horizontal at one point, then it is always horizontal,
and hence π o γ is a geodesic of B.

Proof. See O'Neill [16].
2. In this section we consider Riemannian submersions from a complete M

onto B. In addition, we assume throughout this section that the fibers of a sub-
mersion are connected and totally geodesic.

Let 7r and ft be two Riemannian submersions from M to B which satisfy
these conditions, π and ft are said to be equivalent provided there exists an i-
sometry / of M which induces an isometry fotB so that the following dia-
gram is commutative:

i , i"
B

In this case, the pair (/, /) is called a bundle isometry between π and ft. We
should note that the term "bundle isometry" is appropriate by the theorem of
Hermann [9]. If π = ft, the pair (/,/) is called a bundle automorphism of π.
Finally, we say that a Riemannian submersion π is homogeneous provided for
every p,qeM, there exists a bundle automorphism (/, /) of π with f(p) = q.

For the main theorem of this section we need the following result. As before,
A will denote the integrability tensor of π.

Proposition 2.1. Let π: M —> B be a Riemannian submersion from a con-
nected complete Riemannian manifold M onto a Riemannian manifold B. As-
sume the fibers are connected and totally geodesic, and let F = π'^b) for a
fixed b € B. Suppose a tensor A is defined on F satisfying the following proper-
ties at every r 6 F':

(1) For E € TrM, AE is a skew-symmetric operator on TrM reversing the
horizontal and vertical subs paces.

(2) AE = AXE for E 6 TrM.
(3) For X, Y horizontal, A is alternating, i.e., AXY = — AYX.
(4) For X, Y horizontal and V, W vertical, we have

g(RxrY, W) = g((FrΆ)xY, W) + g(AxV, AYW) .
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If A — A at one point p e F, then A coincides with A on F.
Proof. We will drop the bar notation in the calculations for simplicity. By

properties (4) and (1) of the hypotheses,

g(RxvY, W) = g((FvA)xY, W) - g(AγAxV, W) .

Since W is an arbitrary vertical vector field we have

(a) AYAXV + rκxvγ = r(yvA)xγ ,

where T denotes the vertical projection operator. Now

(FVA)XY = VV{AXY) - AVvXY - AXVVY .

Since T = 0 when the fibers are totally geodesic, VVAXY is vertical and M"FVY
— VVY. These facts together with properties (1) and (2) imply AVvXY and
AXVVY are vertical. It follows i^(FvA)xY = (FVA)XY. Thus our expression
(a) becomes

(b) AYAXV + AVvXY + AXVVY + rRxvY = PV(AXY) .

Let us take [X^ to be horizontal vector fields defined along the fiber F, and
choose them so that at each point they span the horizontal distribution and
are orthonormal. For any two points p and q of F, there exists a geodesic γ
lying in F with f(0) — p, γ{\) = q since F is totally geodesic, connected and
complete. Let us choose vertical vector fields {Pa} which form an orthonormal
basis for the vertical distribution and which are parallel along γ. See Milnor
[12].

We then have

(c) TRzifXj + ΛxAXiγ + AF.XiXj + AxVfXj = Ff(AZtXj) .

Now set FfXk = Σ Sι

kXu ^Rz^j = Σ Ri'rjP* and Axj = Σ T\Xk. This

may be done since γ is vertical and the tensor defined in the proposition re-
verses horizontal and vertical subspaces.

Let

ΛXiXj = Σ <Pβ a n d γ = Σ fβ(t)Pβ .
β β

Then

f,Xk) = -g(γ,AXiXk) = -g(Σ fβ(t)Pβ, Σ al*
\ β a

It follows that
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AXjAXiγ = AJΣ τ«xλ = Σ TΊAXjxk = Σ (-Σ nt)aάAXjxk
\ k / k k \ β /

= Σ (-Σfβ(t)aL)(Σ *?Λ) - Σ f - Σ f ( « A
k \ β J\u J k \ k,β J

We may write (c) as follows:

(d) Λ?WP. - 4

since the Pa are parallel along γ. Thus we have a system of ordinary differential
equations

(e) Rfo - Σ fβ(t)a^jk - Σ Slafj - Σ S)a°u = A-a\s .
k,β I I dt

Now we know that f(0) = p and that α^(0) are given at that point by hypothesis.
In fact, one solution exists since the components of the integrability tensor A
of π certainly satisfy properties (1) through (3) of the proposition and since we
also obtain (4) by Proposition 1.6(b) and the assumption on the fibers.

Since everything is assumed to be C°°, the Lipschitz condition for (e) is sat-
isfied. It follows from the uniqueness theorem for ordinary differential equations
that A = A at q if they coincide at p. But q was an arbitrary point of F. Thus
A = A on all of F.

Theorem 2.2. Let πS = 1,2) be Rίemannian submersions from a con-
nected complete Riemannian manifold onto a Riemannian manifold B. Assume
the fibers of these submersions are connected and totally geodesic. Suppose f is
an isometry of M which satisfies the following two properties at a given point
p € M :

(1) f^p : TpM —> TfmM maps tflp onto £?1S{V) where ^ t denotes the hor-
izontal distribution of nt.

(2) For E,F e TP(M), f*AιEF = A2UEf^F where At are the integrability
tensors associated with TΓ̂ .

Then f induces an isometry f of B so that the pair (/, /) is a bundle isometry
between πλ and π2. In particular, πx and π2 are equivalent.

Proof. We begin by proving a lemma which will be needed in the sequel.
(Compare [11, p. 235, Lemma 2].)

Lemma. Let M be a connected and complete Riemannian manifold. Sup-
pose N and N' are two closed, connected, totally geodesic submersions. If
x e N Π N' and TXN = TXM, then N = N'.

Proof. Suppose y e N. Then there exists a geodesic τ in N joining x to y.
Since N is totally geodesic, τ is a geodesic in M. Now the initial tangent vector
in TXN' lies in M, since M is totally geodesic and complete. It follows τ(t) e N'
for all values of t. Thus y <= N' so N C N'. Similarly N' C N. Hence N = N\
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Let Sπiip) denote the fiber through p with respect to ττ15 and Sπ2fip) the fiber
through f(p) with respect to π2. Now f(Sπiip)) is totally geodesic in M since Sπi(p)

is totally geodesic in M and / is an isometry. Indeed, f(Sπi(p)) is connected and
complete, by the assumption on the fibers f(p) eKSxl{p)) Π Sπ2f(p). In fact,
τfu»fts*np)) = TfiP)S«*fίv) s i n c e /*(^ip) = ^2/(P) and since the above dis-
tributions are complementary distributions with respect to the metric on M. It
follows f(Sπiip)) = Sπ2Ϊ{p) by the lemma which was proven above. From this we
see that for any q e Sπi(p), f*Tq(Sπim) = Tfiq)S,tf(p). Thus f#q: jf?lq -> J^2fiq)

is an isometry onto, since these latter are the complementary spaces to the re-
spective fibers and / is an isometry of M.

Let γ be a geodesic in B starting at πλ(p) which we lift horizontally to γ
starting at qeSπi(p). Then /of is a geodesic starting at f(q) and, moreover,
f*?(fy i s horizontal. From Proposition 1.12 it follows / o f is always horizontal.
Let Sΐ(t) denote the fiber over γ(t) with respect to πλ. Notice S~(0) = Sπχ{p). Then
the mapping Fΐ{t): Sπi{p) = SΐiQ) -> Snt) defined by mapping the point q e SπiiP)

to the endpoint (at time t) of the unique horizontal lift of γ starting at q gives
ries to an isometry of the fibers 5 r ( 0 ) and Sΐ(t) as we let q vary over Sm. See
Corollary 1.9.

To complete the proof of the theorem we need the following result which we
will demonstrate at the end of the proof of the theorem.

Lemma 2.3. The family of geodesies {f o f} obtained from the family of ge-
odesies {f} as the initial point of q — γ(0) varies over Sπi(p) are the unique
horizontal lifts with respect to π2 of some geodesic v in B starting at π2f(p).

If we admit this lemma it follows that we have a map Fvit): Sπ2(p) = Sv(0) -*
SHt) where Sv(t) is the fiber with respect to π2 over v{t) and where Fv(t)(x) = / o f (t)
for foγ(0) = x, where x e Sv(0) = Sπ2f(p). Again, by the result of Hermann and
Nagano (Corollary 1.9), Fv(t) is an isometry from Sv(0) onto Svω. Since f(Sπήp))
= Sπ2fip) = Sv(0), it follows

(a) FHt)(f(Sπi(p))) = Sv(t) .

But we also have

(b) Kf,(A.cr>) = KFτit)Sm)

Finally

(c) F.W(KS.ί(r))) = KFmSπι(p))

by the definition of these maps.

Using (c) followed by (b) and (a) it follows f(Sΐ{t)) = Sυ(t). From this we may
conclude that / maps fibers onto fibers since the completeness of M implies the
completeness of B by Theorem 1.11 and so for any r e B, there exists a geodesic
γ from π^p) to r in B and hence a family {f} of horizontal lifts between the
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fibers Sπiip) = Sm and Sm.
Since / is fiber-preserving, we have the result that / induces a map f:B-+B

defined by fiπ^q)) = π2f(q). This definition of / is easily seen to be well defined.
Since / is an isometry which is fiber-preserving, it follows f#q : J^lQ —> ^2f{q)

isometrically for all q e M. Since πt maps 2tf t (for / = 1,2) isometrically onto
TB and since / is itself an isometry, we see easily that / is an isometry.

Proof of the lemma. If X is a basic vector field, it is known that for any
vertical V, PVX = AXV. In our case we set X = f where γ is the unique hori-
zontal lift of γ. Now X is defined along 5 r ( 0 ) and, in fact, is projectible, i.e.,
π*qX = π*q,X for all q, qf e Sΐ(0). Now we may extend f in B to a vector field
which we denote by X^. Take the horizontal lift of X^. and call it X'. Then Xr

coincides with X along 5 r ( 0 ). It follows that VvX
f = FVX on Sr(0). But FFX' =

^ X , F = AXV. Thus F F Z = ΛXV on 5 r ( 0 ).

Now / preserves the horizontal and vertical subspaces along the fiber Sπi(p)

since we showed f(Sπi(p)) = Sπ2f{p). Since / is an isometry, it also preserves V.
Consider {f*Xi} for the horizontal distribution along Sπ2(p) where the Xt are

horizontal on Sπi(p). Similarly, consider a local basis {f*Vi} for the vertical
distribution on Sπ2fm where the {Vi} form a local basis for the vertical distri-
bution on Sπί(p).

Define the tensor A on Sβ2fip) as follows:

Then A is skew symmetric and reverses horizontal and vertical subspaces on
Sπ2f(p) as may be checked easily.

Recall A satisfies property 4 of Proposition 2.1 on Sπi{py

Since / is an isometry which along Sπiip) preserves the horizontal and vertical
distributions, it follows that A as defined above satisfies property 4 of Proposi-
tion 2.1 on Sπ2f(p). By assumption, Afip) = A2f(p). It follows A coincides with
A2 onSπ2fipy

Now let Z b e a basic vector field on 5 ^ ^ , and V a vertical vector field. On
the one hand we have f*FvX = Vuvf^X. But since A = A2 on Sπ2f(p), we have
f*AιXV — Άf^xf^V = A2fieXf^V. Now, since X is basic on Sπi(p), we have F F Z
= AXXV so Ff̂ xf̂ V = A2f^zf%V by what we showed in the beginning of the
proof of the lemma. Recall / is an isometry, so any W e TSπ2f{p) may be writ-
ten f^V for some appropriate choice of V e TSπi(p). Thus, for all π2 basic vec-
tor fields Z,

= g(Ffmvf*X, Z) + g(UX, VUVZ)

= g(A2UXUV,Z) + g(UX,A2zUV)

by the preceding argument and the fact that Z is π2 basic. Using the last ex-
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pression we see

Wg(f*X,Z) = -g(UV,A2f*χZ) - g(A2Zf*X,f*V) = 0 ,

since A2YlY2 = —A2YίlYι for horizontal Y19 Y2. Thus Wg(f#X,Z) = 0, and so
ί^X projects to a well defined vector field at π2f(p) since Sπif(p) is connected and
Z is basic (see Lemma 1.2).

The geodesic v starting at π2f(q) with π2J*X as initial tangent vector is
uniquely determined by the well known theorem for ordinary differential equa-
tions.

The π2 horizontal geodesic lift of v is likewise uniquely determined. Since the
horizontal lift of v has f^X as its initial tangent vector, it follows this lift must
coincide with fof. Thus the proof is complete.

The next few results provide information on the rigidity of Riemannian sub-
mersions π from the unit sphere Sn onto a Riemannian manifold B under the
assumption that the fibers are totally geodesic.

Consider the sphere S2n+1 as a subspace of R2n+2 = C n + 1 . Let N denote the
outward unit normal to S2n+\ and / the natural almost complex structure on
£n+i Then JNP is tangent to S2n+1 at p. In fact, JN gives rise to a foliation of
£2rc+1 γjftfa standard fiber S1. If we identify the leaves of this foliation as points,
we obtain CP{ή). Indeed, this procedure gives rise to a mapping πλ: S2n+1 —•
CP(ή) which can in an obvious way be made into a Riemannian submersion
with totally geodisic fibers. We call πλ the standard or natural submersion of
S2n+1 onto CP(ή), and denote the integrability tensor of this submersion by θ.
(See O'Neill [16], Gray [8].)

Lemma 2.4. Let πt: S2n+1 —> CP(ή) be Riemannian submersions with total-
ly geodesic fibers, and assume n = 2. πt will denote the standard submersion.
Then there exists an isometry f of S2n+1 which induces an isometry f of CP(n)
so that

C2n + l ' y C2n + l

i
CP(n) -i-> CP(ή)

is commutative. In fact f — iάCP{n).
Proof. Let p e CP(ri), q e πϊ\p), qf e π^Xp). Denote the horizontal distri-

butions of πλ and π2 by J f 1 and J f 2 respectively. Let X be a unit horizontal
vector with X e Jf7^. Then the π2 horizontal lift to q' of πx*X will be denoted
by X. This procedure gives rise to a mapping L: J^lq-^J^2qf which is a linear
isometry. This fact follows from the fact that the πι are submersions and pre-
serve the metrics of the respective horizontal distributions and the fact that the
horizontal lifts of vectors are unique.
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By means of L we may define an almost complex structure / on tffw as
follows: for X € tfιq set JL(X) = L(JX). Then JJL(X) = JL(JX) = L(PX)
= -L(X) so J2L(X) = -L(X). Since L is onto tfw, this gives a well defined
almost complex structure on the vector space 2^w.

Recall from O'Neill [16] that the integrability tensor of π19 which we denote
by θ, has the following form. For orthonormal vectors X, Y in J4?ιq, ΘXY =
—g(JX, Y)JN. Actually this formula is valid for any horizontal X and Y but
in the steps which follow X and Y are assumed to be orthonormal. A will de-
note the integrability tensor of π2.

Step A. As before, # * denotes the curvature tensor of the base or its hor-
izontal lift. By Corollary 1.71 (a) we have

X, Y) = g(RxγX, Y) + 3 \\ΘΣY||2 .

But since the total space is S2n+1, we have

g(R*γX,Y)= 1 + 3 | | ^ y | | 2 .

In particular, if Y = JX, then

(a) g(R*JZX,JX) = 1 + 3 | | ^ / Z | | 2 - 4

by our formula for θ. Consider now the situation for X = L(X), JX = L(JX).
By the way L was defined we know

g(R%JX, X, JX) = g(R* JJX, JX) ,

and so by Corollary 1.71 (a) and (a) above, we have

(b) 4 = g{R*jxX, JX) = g(R*jχX, J~X) + 3 \\AΣjTf = 1 + 3 \\AΣJ~Xf ,

it follows \\AΣJX\\ = 1.
Step B. Suppose Y <= {X, JX}1- where {X, JX} denotes the horizontal sub-

space of j^lq spanned by X and JX, and {X, JX}L denotes the complement of
that subspace in Jf ιq. We have on the one hand

(c) g(R*γX,Y)=l + 3\\ΘXY\\2= 1 ,

since ΘXY = 0 under this assumption on Y as may be easily verified. But we
also have a corresponding formula for X, Y keeping in mind that g(RxγX, Y)

X, Ϋ) by the definition of L. Thus

(d) 1 = g(R^X, Ϋ) = 1 + 3

and so
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= O for Ϋe{X,JX}±, i.e.,

Step C. If we appeal to Proposition 1.6 (a) and replace X, Y, Z and H in
that proposition by X, JX, Y and JY for Y e {X, JX}, we get the following
formula at q:

giRίjxY, JY) = g(RzjzY, JY) + 2g(θxJX, ΘYJY)
(e)

- 8(βJZY, ΘXJY) - g(θγX, ΘJXJY) .

Now the first term on the right is zero since this is the curvature tensor of the

sphere. By direct calculation we see easily that ΘXJX = ΘYJY and ΘJXY =

ΘXJY = ΘYX = ΘJXJY = 0, so g(RXJXY, JY) = 2. If we consider the analogue

of (e) at q' for L{X) = X, L(JX) = JX, L(Y) = Ϋ and L(JY) = JΫ we get,

observing that gCRl^Y, /Y) = g(RΣ7xΫ, JY), the following formula:

2 = g(Λ$j ϊF, JF) = g(RΣlχΫ, JY)

- giAjxΫ, AΣJY) - g(AFX, AJX

Since the first term on the right hand side is the curvature tensor of the
sphere and ATX = AJJ^JY = A^jY = AΣJY = 0, by step B formula (f) be-
comes

2 = 2g(AΣJX,AτjΎ) .

By step (a) \\AXJX\\ = \\A7JΫ\\ = 1, so we may conclude AΣJX = AYJ7.

Now for any unit X' € {X, JX} we have AX,JX' = ATJΎ. We also have ATJΫ

= AΣ7X. It follows for any unit Z in ^ 2 r , that ^4^/Z = AΣJX.
Step D. For ςr e TΓΓ1^) and <? € πi"1^) we will construct bases for TqS

2n+1

and TQ,52 n + 1 as follows: the basis for TqS
2n+1 is given by

where the Xt are horizontal of unit length and for i Φ j , Xt $ {Xj, JXj}.

If Xt — L(Xt) and JXt = L{JXt), then we have the following basis for

We will define a linear isometry from TqS
2n+1 —* Tq,S

2n+1 which extends
L: J f l g —> ^2<z' We will denote this new map also by L. On the basis elements,
L behaves as follows:

T ~V ^V

L:JXi^JXi,
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L:θZlJX1->AΣιJX1.

Since L : TqS
2n+ί^Tq,S

2n+1 is the extension of the linear isometry from jPlq

onto Jf2q, and since both θZιJX1 and AΣlJXx have unit length, this new L is a

linear isometry.

Now L preserves the tensors θ and A. To see this, note

θXiJXk = AXiΪXk = 0 , θxXk = AΣlk = 0 , for i φ k

by step B. Thus

0 = (^JXk) = Λ τ </Γ t = AL{Xi)WXk) ,

0 - L ( ^ Z , ) = ^ Γ f c - ΛL ( X ί )L(X f c) for i Φ k .

If / = k, then 0X JX* = ΘXJX1 and ^ j i l ^ = ^ j ^ , so

A(θXiJXd = WxJXλ) = AΣJXλ = AΣJXi = AL{

Using the skew symmetry of θ and A we see L preserves # and A since
{Z ί ? / X J ^ ^ are a basis for the respective horizontal distributions.

Now we know from a well known Theorem [20, 2.3.12] that there exists an
isometry / of S2n+1 with f(q) = q' and f#q = L. Since the fibers of πx and π2 are
closed, they are complete. A simple homotopy argument shows the fiber of π2

is connected. Now it is known that the only complete, connected, totally
geodesic submanifolds of spheres are spheres, so it follows the fibers of πx and
τr2 are isometric to S1. Our theorem applies since S is connected, and we have
already shown that L and hence f^q preserves the integrability tensors θ and
A. Thus / is fiber-preserving and induces an isometry / of CP(n) so that

C-271 + 1 ^ y C2n + 1

πi f b
CP(n) - ^ > CP(n)

commutes.
This diagram implies f{p) = p. Now f^pπuXi = π2j*Xi = π2Xt — πuXt by

the way L was defined in the beginning. Also j^pπuJXi = πλJXi. Thus f^q =
identity. It follows / = idC P ( W ).

Our procedure in the next result is akin to that of Lemma 2.4. Consider 5 4 w + 3

as a unit sphere in R4n+\ and let N denote the outward unit normal to S4n+\
Let /, / and K be the natural almost complex structures on R4n+4 with // = K,
JK = L, KI = J. Then IN, JN, KN give rise to a distribution on Sin+3 which
is integrable. To check this, let V denote the covariant derivative on Rin+i.



RIEMANNIAN SUBMERSIONS 267

Now [IN, JN] = FINJN - FJNIN = JFINN - IFJNN = JIN - UN = -2KN,
since the structures /, /, K are parallel and the sphere is umbilical. The other
identities for integrability are similarly verified. Identifying the leaves of the
distribution on 5 4 n + 3 as points we obtain QP(ri). This procedure gives rise to a
mapping πγ: Sin+3 —» QP(n) which can be made into a Riemannian submersion
by taking as the horizontal distribution the distribution complementary to IN,
JN, KN in TS*n+3. Direct calculation shows that the tensor T of πλ is zero. As
before, we call πx the standard or natural fibration of Sin+2 over QP(n).

Lemma 2.5. For i — 1,2 let TΓ* : S4n+2^QP(ή) be Riemannian submersions
with totally geodesic fibers. Assume n = 2, and πγ is the natural fibration. Then
there exist an isometry f of Sin+* and an isometry f of QP(n) so that

QP(n) - ^ QPin)

is commutative. In fact, f = idρP ( 7 l ).
Proof. The proof foflows the same pattern as that of Lemma 2.4 but is

more complicated.
Let p e QP(ri), q e πϊ\p), q' e π^ip). Denote the horizontal distributions of

πλ and π2 by 3%'ι and $?2 respectively. If X is a unit horizontal vector with
X e 3^ιq, then the unique π2 horizontal lift to q' of πxX will be denoted by X.
This procedure gives use to a linear isometry L: J^lq —> 3tfw, since the sub-
mersions 7Γi preserve the metrics of the respective horizontal distributions, and
the horizontal lifts are unique as we just mentioned.

By means of L we may define three almost complex structures 7, / and K on
&tPw as follows: For X e 3^ιq, set

IL(X) = L(IX) , JL(X) = L(JX) , KL(X) = L(KX) .

Then I2 — J2 — K2 — —1 as was shown in the proof of Lemma 2.4. In fact,

we have the usual relations // = K,JK — Ί, KI = /. For example, 1JL{X) =

ΊL{JX) = L{IJX) = L(KX) = KL(X). But L is onto J?2q, so it follows 77 =

K.

Recall from Gray [8] that the integrability tensor θ of πx has the following
form for any horizontal X and Y:

ΘXY = -g(IX, Y)IN - g(JX, Y)JN - g{KX, Y)KN .

In what follows X and Y will be assumed to be orthonormal. A will denote the

integrability tensor of π2.
Step A. By Corollary 1.71 (a) we have at q
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8(R$γX, Y) = g(RxγX, Y) + 3 \\ΘXY||2 ,

where R* is the lift of the curvature tensor on QP(ή), and R is the curvature
tensor of the sphere. It follows g(RXYX, Y) = 1 + 3 \\ΘXY\\2. In particular, if
we set Y = IX we get

(a) g(RXIXX,IX) = 1 + 3 \\ΘΣ1X\\2 = 4 ,

since \\ΘXIX\\ = 1 as may be verified from the formula for θ.

Consider now the situation for L(X) = X and L(IX) =TX at q' € TΓ^G?).

First observe sORf7XZ, /Z) = ^ ( Λ * ^ , ΪX), since τr1+Z = τr2#X and π2ΪX =

πλ!X. Then again appealing to Corollary 1.71 (a) and (a) above, we have

(b) 4 = g(RχJ1X97X) = 1 + 3 \\AΣTX\\2 ,

and so ||y4Γ/Z|| = 1. In a similar way we see | |/4Z/Z|| = ||^4ZKY|| = 1. In

fact, if S, S' € {/, / , K) with S Φ S' we have \\ASΣS'X\\= 1. For example,

AΎxΈX = AJXKJX) but WAJJKJΪOW = 1 by the above.

Step B. Suppose Y € {X, /Z , JX, KX}-*-, where {Z, /Z , /Z ,KZ} is the
space spanned by these vectors and {X, IX, JX, KX}L denotes its complement
in 3^lq. Then

(c) g(R*γX,Y)= 1 + 3 | |0 X Y| | 2 = 1 ,

since ΘXY = 0 as may be checked directly. For X — L(X), Y = L(Y) we have
the following formula

(d) 1 = g(R^X, F) = 1 + 3 \\AΣY\f .

This follows from (c) and the fact that g(R^X, Ύ) = g(RXYX, Y). It follows

AΣΫ = 0 for F e {Z, 7Z, Tz; ^Z}-1-. Indeed, for any Z ' e {Z, /Z, 7Z, XZ}

. ^ X , F = 0.

Step C. Assume Y <= {X, IX, JX, KX}1. By Proposition 1.6 (a) we have

g(RhχY,JY)

= 2g{θxJX, ΘYJY) - g(θJXY, ΘXJY) - giθγX, ΘJXJY) = 2 ,

since ΘYX = ΘJXJY = ΘJXY = ΘXJY = ΘXJY = 0 and ΘXJX = ΘYJY as may
be verified from the formula. Thus, by (e) and observations similar to those
made before, it follows

= 2g(AΣJX,AτjΎ) - g(AjχΫ,
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By step B, Aj^Ϋ = ATX = AΣJΫ = Aj^JΫ = 0 and so 2 = 2g(AΣJX, ATJΫ).

By step A, \\AΣJX\\ = \\AγJY\\ = 1 and so AΣlX = Λ r7Ϋ. Now if X' e {Γ,

7Z,7X, XX} and X' has unit length, we have AZJX' = AFJΫ. But ATW =

y4^/Z. It follows for any unit Z e 3^lq,9 AEJZ = ^4Z/X. In a similar way we

may show AΣΪX_ = ATIY, AΣKX = A_TKY for all unit X, Ϋj J?2q,. More

generally, ASΣS'X = ^ S P S T for such Z and Y if 5, S' e {/, /, Z} and S Φ Sf.

For example

by the above

Step D. Let I b e a unit horizontal vector at q\ and set Vx = AΣIX,

V2 — AΣJX, V3 = AΣKX. Then {F1? F 2 ? F3} are orthonormal vertical vectors.

That Vi have unit length is immediate from step A.

19 V2) = g(AΣTX, V2) = -g(TX,AΣV2) .

But

1 = g(AΣ7X, V2) = -g(JX,AΣV2) ,

so AΣV2 = —JX as follows from Corollary 1.71 (a), since 1 = g(AΣV2, AΣV2)
by that corollary. Thus

g(y19 V2) = -g(ΪX,AΣV2) = g(7X,JX) = 0 .

Similarly,

g(y29 F 3 ) = 8(y19 F 3 ) = o .

Step E. Consider the following orthonormal basis for TqS
4n+3. Let Xt be

unit horizontal vectors with Xά €{XUJXUKX^L for i ψ j . The basis for
TqS

in+3 is given by

19IX19 JX19 KX19 , Xn9 IXn, IXm KXn, θχJ.Xl9 θXlJXl9 θXχKX^\ .

Suppose L(Xi) = Xi9 L(IXt) = IXi9 LQX,) = JXi9 L(KZ4) = KXt. We con-
struct a basis for Tq,S

An+z as follows :

{X19IX19 JX19 KX19 ., Xn9 IXn9 JXn9 KXn, AΣJX19 AΣίJX19 AΣχKXx} .

These two bases are both orthonormal.
We define an isometry from TqS

in+3 onto Tq,S
in+3 which extends L: Jflq -*

«̂ f 2«' We denote this extension also by L which is given as follows:
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. Λ. i —^ Λ. i ,

L: SXi -* SXi , where S e {/, /, K) and 5 € {I, / , £} ,

L: θXχSXι —» AΣχSXι , S = I,J,KitS = 7,J,K, respectively.

Then L is an extension of a linear isometry and is an isometry of the vertical
subspaces. Hence it preserves the respective horizontal and vertical subspaces
of πλ and π2. In fact L preserves the integrability tensors θ and A. We check
this as follows: If X *\XulXuJXuKXύ and Yε{XjJXj,JXj,KXj\ for
IΦ j , then ΘZY = AΣY = 0 by step B. Thus 0 = L(ΘXY) = ̂ Γ = Λl^Γ

Next we have Lθx.SXi = LΘXlSXλ = AΣlSXλ =
In fact, LeSXiS'Xi = AL{SXi)L{S'Xi) for S,S'e {/,/,£}. For

example,

J^UjXίί\~Λi — L^ϋjXi\ — JLΛ^i) — —l^UjXίJ\lj\i) = —l^UjXίJ\lΛ.i)

r Λ 7v A jy A TΓv A

— Ajg-KXi = AL{IZi)HKX^

by the conclusion to step C.
The other relations follow in a similar manner. By a well known theorem

there exists an isometry / on S4n+3 with f(q) = gr and /s|ίβ = L. In the proof of
Lemma 2.4 the fibers of πt are connected. It follows the fibers of π1 and π2

are isometric with S3. Then, by our theorem, / is fiber-preserving and induces
/ of QP(n) so that

^ QP(ή)

is commutative. From this we have f(p) = p and, as in Lemma 2.4, f%p =
identity.

Lemma 2.6. L^ί TT$ : 53 —> -S2 Z?̂  Riemannian submersions with totally geode-
sic fibers for i — 1,2, αnd assume πλ is the natural fibration. Then there exists
an isometry f of S3 which induces f of S2 so that

is commutative. In fact f = i
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Proof. Omitted. Similar to that of Lemma 2.4 but simpler.
Remarks. Unfortunately we did not find analogues of Lemma 2.6 for the

cases S7 -* S* and S15 -> Ss. The question is unsettled.
Lemma 2.7. The natural submersions

(a) πλ: S2n+ι -> CP(n) , (b) πλ: S'n+3 - * βP(rc)

n > 2 are homogeneous.
Proof. We omit this proof which uses techniques similar to those of

Lemmas 2.5 and 2.6. It is much simpler because we only have to deal with
the integrability tensor θ of πx, and we have a formula for θ in these two cases.

3. In this section we wish to consider Riemannian submersions with totally
geodesic fibers. We refrain from calling them *'totally geodesic Riemannian
submersions" since this term has been used by Vilms [19] in his classification
of Riemannian submersions for which geodesies project to geodesies. His result
implies that the horizontal distribution is integrable whereas in the above situ-
ation no such condition is in general required.

Instead of viewing these submersions from an exclusively bundle-theoretic
viewpoint, we propose to look at them by imposing certain restrictions on the
curvatures of the manifolds in question. It turns out that such restrictions on
the curvature lead to very strong conditions on the mappings themselves.

The case where M is a manifold of nonpositive sectional curvature is the
easiest, so we consider it first.

Proposition 3.1. Let M be a Riemannian manifold with nonpositive sec-
tional curvature, and π a Riemannian submersion from M onto a Riemannian
manifold B. Assume the fibers are totally geodesic.

(1) Then π is integrable in the sense that the horizontal distribution is inte-
grable, and

(2) B has nonpositive sectional curvature.
(3) // M has strictly negative curvature, so must B and moreover π~ι(q) is

discrete for every q e B. If M is complete and connected, π is characterized as
covering projection.

Proof. (1) Suppose there exist orthonormal horizontal vectors X and Y
on M with AXY Φ 0. Then there is a unit vector V on M such that g(AXY, V)
Φ 0. It follows 0 Φ g{AxY, V) = —g(Y,AxV) since A is skew-symmetric.
But, by Corollary 1.71, K(PXV) = g(AxV,AxV) > 0. This contradicts the
curvature assumption on M. Hence A = 0, and the horizontal distribution of
π on M is integrable.

(2) From (1), ^ Ξ O . Hence using Corollary 1.71 (b) we have 0 > K(PXY)
— K*(Pχ*Y*) s o B n a s nonpositive sectional curvature.

(3) We know from (1) that A = 0, and from Corollary 1.7 (b) that B has
negative sectional curvature if M does. The implicit function theorem tells us
π~\q) is a submanifold of M for any q € B. If dim π~ι(q) > 1, then there exists
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a nonzero vertical vector V tangent to π~1(q). Taking a unit horizontal vector
X, we have again from Corollary 1.7 (a) that K(PXV) = \\ΛXV\\2 = 0 which
contradicts the assumption in (3) that M has strictly negative curvature. It fol-
lows the fiber is discrete. Suppose M is connected and complete. Then so is B
by Theorem 1.11. Thus π is an isometric immersion from M onto B. It follows
from a well known theorem [10, p. 176] that π is a covering projectien.

Proposition 3.2. Let π: M —• B be a Rίemannian submersion with totally
geodesic fibers where 1 < dim fiber < dim M, and assume M has strictly
positive sectional curvature.

(1) IfOφXeJfandOφVe'r, then AXV Φ 0. In fact, Λx: <T -> Jf
M an injective but not a subjective mapping from the vertical distribution °Γ
into the horizontal distribution Jf'.

(2) dim B > \ dim M and, in particular, dim B > 1.
(3) 5 has strictly positive sectional curvature.
Proof. We may assume without loss of generality that X has unit length.

Let V be a unit vector of V. Then by Corollary 1.71, 0 < K(PXV) = ||ΛXK||2

and hence ^ is an injective mapping. Λx maps y into Jf since Ax reverses
horizontal and vertical subspaces. Using properties (10 and (30 of § 1, we find
0 = g(AxX, V) = —g(X,AxV) for every V e "Γ. Hence AXΨ* is a proper
subspace of Jf. This proves (1). It follows dim Ψ* < dim ̂ f and hence the di-
mension of a fiber F < dim B. Thus dim B > J dim M > 1 and (2) follows.
(3) is immediate from Corollary 1.71.

It should be remarked that Ferus [6] has obtained related results for the case
of foliations.

Consider the case when M = Sn(ϊ) where Sn(l) denotes the limit n-dimen-
sional sphere. It is natural to ask for what B are there Riemannian submersions
from Sn = Sn(l) to B with totally geodesic fibers? We begin with a preliminary
result.

Proposition 3.3. Let π: M —» B be a Riemannian submersion with dim B
Φ 0. // M is δ-pinched, then B is \-piched.

Proof. We will show if K(PEF) < 1, then \\AXY\\ < 1 for X, Y orthonormal
and horizontal. This is obvious if AXY = 0. If not, let V = AXY/\\AXY\\, and
we have

II^YH = g(AxY,AxY/\\AxY\\) = g(AxY,V) = g(Y,AχV)

< g(AxV/\\AxV\\,AxV) = \\AXV\\ < 1 ,

since by Corollary 1.71 and the curvature hypothesis ||^ίjr^l|2 = K(PχV) < l
Thus \\AZY || < 1, so \\AXY ||2 < 1 for any orthonormal horizontal X, Y. But
again by Corollary 1.71, K*(PXY) = K{PXY) + 3 \\AxY\f for any ortho-
normal horizontal unit vectors. We may then conclude for any orthonormal
horizontal unit vectors X, Y that δ < K^(PXY) < 4 since K(PXY) < 1 and
\\AXY ||2 < 1. Normalizing the metric on B we have \δ < K*{PXY) < 1.
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Corollary 3.4. Let π: Sm —> B be a Riemannian submersion with totally
geodesic fibers 1 < dim fiber < m — 1. Then B is ^-pinched.

Proof. Immediate from Proposition 3.3.
With these preliminaries we state the main theorem of this section. We ex-

clude the case where dim B = 0.
Theorem 3.5. Let π: Sm —> B be a Riemannian submersion with connected

totally [geodesic fibers, and assume 1 < dim fiber < m — 1. Then, as a fiber
bundle, π is one of the following types:

(a)

(c)

S 1 -

S1 —

-» S2n+1

1"
CP{ή) for n > 2

\π

(b)

(d)

S 3 -

5 3 -

-> Sin+3

!•
QP(n) for n>2

\*

(e)

In cases (a) and (b), B is isometric to complex and quaternionίc projective
space with sectional curvature K^ with 1 < K^ < 4. In cases (c), (d) and (e),
B is isometric to a sphere of curvature 4.

Moreover if π and π are any two submersions both in class (a), (b) or (c) and
satisfying the above hypothesis, then π is equivalent to π. In fact any sub-
mersion of type (a), (b) or (c) is homogeneous.

Proof. Since M = Sm(l), B is ^-pinched by the above corollary. Now the
fibers are totally geodesic and complete, and hence they are spheres. Now by
a result of Adem [2], m and / (the fiber dimension) are both odd. It follows

dim B is even. Since M — -̂> B is a fiber bundle by Hermann's theorem [9],
we have the homotopy sequence

π,(S0 -> πtf™) -> πλ{B) - 0 ,

and it follows B is simply connected. Thus, by Berger's theorem [3], it follows
B is isometric to one of the projective spaces or is homeomorphic to a sphere.
First we deal with the projective spaces. By Adem's result [2], the only fiber-
ings of spheres by spheres in dimensions other than the standard ones, i.e.,
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ψ ψ ψ V V V

RPn CP(ή) QP(n) S2 S* S8

are those with total space of dimension 2k+1 — 1 and fiber dimension 2k — 1
with k > 3. Now if 5 where CP(r) for some such r, then the homotopy sequence
ίΓaCS2*-""1) -> ττ2(CP(r)) — TΓ^S2*"1) implies ττ2(CP(r)) = 0 since 2fc - 1 > 15.
But τr2(CP(r)) = 2, and so this alternative is inadmissible. Similarly, if B were
QP(r), then TΓ^S2*"1".1"1) -^ ττ4(βP(r)) -> π^"'1) yields τr4(β^(r)) = 0 which is
also a contradiction.

We must dispose of the case where B = C2

a(P), the Cayley projective two-
plane. Now dim C2

a(P) = 16, and so by Adem [2] k = 4, 2k+1 - 1 = 31 and
2k — 1 = 15. Thus our fibration is

S15 > S31

c 2

α ( P ) .

But then using the fiber homotopy sequence ^(S l δ) -> ^(S31) -> πi(C2

a(P)) ->
^ί_i(Slδ) we get πi(C2

a(P)) = 0, 1 <i < 15. The theorem of Hurewicz implies
C\(P) is a homology 16-sphere which it is not. Thus the only fibrations with
one of the projective spaces as base are:

CPn(n) QP(n)

We now must deal with the case where B is homeomorphic to a sphere. Adem
has shown that the only fiber bundles with spheres as total space fiber and base
a r e :

S1 > S3 S3 > S7 S7 > SVύ

S2 SA S8

Our procedure will allow us to treat the three cases simultaneously. We will
show that under the hypotheses of the theorem, S2, S* and S8 are in fact spheres
of constant curvature 4. Let rΓ denote the vertical distribution, and 3tf the
horizontal distribution. Then in the above three cases dim rΓ + 1 = dim Jf.
Let X and Y be any pair of orthonormal horizontal vectors. We wish to show
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K^PXY) = 4.
To see this establish the following result:
Lemma 3.6. Ax: f —> (X)L is a linear isometry onto (X)1 where (Z)-1

denotes the orthogonal complement of X in Jf. Then
(a) Ax(i^) _\_ X by the skew-symmetry of Ax and the fact AXX = 0,
(b) Ax: i^ —• £F is a Hear isometry onto its image since g(AxV, AΣV) =

K(PXV) = 1 for all unit V e -T,
(c) dim (X)± = dim *T = k for k = 1, 3 or 7.
We proceed now to show K^(PXY) = 4 as follows. Since Y J_ X and || Y \\ =

1, there is some unit vertical V such that ^4XF = Y by the lemma. We wish
to obtain some information about H^Yy. From the proof of our pinching
proposition, | | ^ Y | | < 1. On the other hand, by the Schwartz inequality
\\AXY\\ > g(AxY, V) = g(Y,AχV) = \\Y\\2 = 1. Thus \\AXY\\ = 1. Now from
O'Neill's equation (see Corollary 1.71 (b)), K*(PXY) = K(PXY) + 3\\AXY\\2

= 4. Since X and Y are arbitrary orthonormal vectors, it follows K^.(PXY) = 4
for all 2 planes. Hence S2, S4 and S* are spheres of constant curvature 4 or
radius J.

We now outline a proof of the last part of Theorem 3.5. Let π and π: Sm

—» B be submersions both of type (a), (b) or (c). πλ will denote the natural
submersion discussed in § 2. From Lemma 2.7 we know that the natural sub-
mersions are homogeneous. (Compare Steenrod [18, §§ 20.2, 20.3].) Consider
the following diagram:

B J^B J^B -KB

Now (/i, /x) and (/3, /3) are bundle isometries whose existence is guaranteed
by Lemmas~2.3, 2.4, 2~5. Suppose r, s € Sm. Choose /2 so that /2(/(r)) = fr1^).
This may be done since πx\ Sm—>B is homogeneous for classes (a), (b) and (c).
Letting πf — π we see π and TΓ are equivalent. If we set πf = π we see any π
in class (a), (b) or (c) is homogeneous. Of course the desired bundle isometry
(automorphism) is (/,/) when / = /3o/2o/ 1 and / = f3of2of1. This completes
the proof of Theorem 3.5.

Added in proof. The author has obtained some results similar to Theorem
3.5 for submersions from complex projective space. These will be discussed in
a future paper.
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