A RELATIVISTIC VERSION OF THE GAUSS-BONNET FORMULA

GARRY HELZER

Introduction

The Gauss-Bonnet formula relates the sum of the exterior angles of a geodesic polygon on a surface to the total Gaussian curvature which the polygon encloses. Thus one obtains such statements as: the sum of the interior angles of a geodesic triangle is π if and only if the total curvature enclosed by the triangle is zero.

To develop a version of the formula which applies to surfaces with an indefinite metric requires only a careful definition of a quantity to replace "angle" and a check that the arguments of the definite case remain valid. This is done in $\S \S 1$ and 2.

In § 3 an example is given to indicate the kind of physical quantity which the total Gaussian curvature might measure.

1. The flat case

In this section the "pseudo-angle" or "proper velocity" between two vectors in a plane with indefinite metric is defined and some elementary properties listed.

Let \boldsymbol{M}^{2} denote the space of pairs of real numbers with inner product

$$
\begin{equation*}
\left\langle\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right\rangle=-a_{1} a_{2}+b_{1} b_{2} . \tag{1}
\end{equation*}
$$

Take the positive orientation of \boldsymbol{M}^{2} to be that given by the vector space basis $\left\{e_{1}=(1,0), e_{2}=(0,1)\right\}$.

Let $\alpha: I \rightarrow \boldsymbol{M}^{2}$ be a continuously differentiable curve parametrized with respect to proper time, i.e.,

$$
\begin{equation*}
\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle=-1,1,0 . \tag{2}
\end{equation*}
$$

The curve α is called timelike, spacelike or null respectively.
Next define a moving frame $\{T(s), N(s)\}$ on α as follows. Let $\left\{u_{1}, u_{2}\right\}$ be an orthonormal frame at $\alpha(s)$, and set

$$
T(s)=\alpha^{\prime}(s)=x_{1} u_{1}+x_{2} u_{2}
$$

(3) $N(s)= \begin{cases}x_{2} u_{1}+x_{1} u_{2} & \text { if }\left\{u_{1}, u_{2}\right\} \text { has positive orientation }, \\ -\left(x_{2} u_{1}+x_{1} u_{2}\right) & \text { if }\left\{u_{1}, u_{2}\right\} \text { has negative orientation } .\end{cases}$

The definition of N is independent of the choice of $\left\{u_{1}, u_{2}\right\}$ since N is simply T reflected in one piece of the light cone.

Lastly define a real valued function ϕ with domain I by

$$
\phi(s)= \begin{cases}\ln |a+b| & \text { if } a+b \neq 0 \tag{4}\\ -\ln |a-b| & \text { if } a+b=0\end{cases}
$$

where $T(s)=a e_{1}+b e_{2}$. Since $|a+b||a-b|=1$ or 0 , the two functions on the right hand side of (4) are equal where they are both defined.

Theorem 1. There is a unique function g defined on I for which

$$
T^{\prime}(s)=g(s) N(s), \quad N^{\prime}(s)=g(s) T(s)
$$

In fact $g=\phi^{\prime}(s)$.
Proof. Since α is parameterized with respect to proper time, using the logarithmic forms of the inverse hyperbolic functions one sees that T may be written in one of the forms:

$$
\pm\left(e_{1} \cosh \phi+e_{2} \sinh \phi\right), \quad \pm\left(e_{1} \sinh \phi+e_{2} \cosh \phi\right), \quad \pm a\left(e_{1} \pm e_{2}\right)
$$

Direct calculation now gives the theorem. q.e.d.
The Euclidean version of Theorem 1 is the starting point of the theory of plane curves. There s is the arc length and ϕ is the angle which T makes with the x-axis. Here ϕ is the "pseudo-angle" which T makes with e_{1}, i.e., with the time axis. The functions T, N, g are invariants in the sense that their definition does not depend on the choice of basis $\left\{e_{1}, e_{2}\right\}$. On the other hand if one changes, the basis ϕ will change by an additive constant and its sign depends on the orientation of the basis. As in the Euclidean theory, it may be shown that g determines α up to a Lorentz transformation (translations included).

Suppose a particle is constrained to move in one spatial dimension, say the e_{2} axis where $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is an orthonormal basis of the Minkowski space of special relativity $(c=1)$. Then by suppressing the irrelevant directions e_{3}, e_{4} we may consider the space time trace of the particle to be the curve α above. In this case $g(s)$ is the acceleration at time s as measured by an observer at rest with respect to the particle and since $\phi^{\prime}=g$, one might call ϕ a "proper velocity."

For an observer at rest with respect to the frame $\left\{e_{1}, e_{2}\right\}$ the expression

$$
\alpha(t)=t e_{1}+x(t) e_{2}
$$

describes the motion of the particle. Taking $\left\{e_{1}, e_{2}\right\}$ oriented so that $T=$ $e_{1} \cosh \phi+e_{2} \sinh \phi$ we see that $t^{\prime}(s)=\cosh \phi$ and hence the speed of the particle measured by this observer is

$$
v=\frac{d x}{d t}=\frac{d s}{d t} \frac{d x}{d s}=\tanh \phi
$$

and so $\phi=\tanh ^{-1} v=v+\frac{1}{3} v^{3}+\cdots$. Thus for $v \ll 1, \phi$ is indistinguishable from v. The sum formula for the hyperbolic tangent shows that composing velocities corresponds to adding ϕ 's.

For a particle moving with the speed of light, ϕ is the logarithm of twice the energy ($=e_{1}$ component of T). This reduces to

$$
\begin{equation*}
\phi=\log v+\text { const } \tag{5}
\end{equation*}
$$

where ν is the frequency and hence $g=\phi^{\prime}=\nu^{\prime} / \nu$. If α is spacelike, ϕ gives the relative velocity of the orthonormal frame $\{N, T\}$ with respect to $\left\{e_{1}, e_{2}\right\}$.

To define an "angle" between any two unit or null vectors proceed as follows. If $\mathcal{O}=\left\{u_{1}, u_{2}\right\}$ is an orthonormal basis, and $u=a u_{1}+b u_{2}$ is a unit or null vector, then define $\phi_{0}(u)$ by (4). If $\mathcal{O}^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}$, it is not difficult to verify the formulas

$$
\begin{array}{ll}
\phi_{0^{\prime}}(u)=\phi_{0}(u)+\phi_{0^{\prime}}\left(u_{1}\right) & \text { if } \mathcal{O} \text { and } \mathcal{O}^{\prime} \text { similarly oriented } \tag{6}\\
-\phi_{o^{\prime}}(u)=\phi_{0}(u)-\phi_{0^{\prime}}\left(u_{1}\right) & \text { if } \mathcal{O} \text { and } \mathcal{O}^{\prime} \text { oppositely oriented } .
\end{array}
$$

If u, v are unit or null vectors, and \mathcal{O} is an orthonormal set, define $\phi_{0}(u, v)$ $=\phi_{0}(u)-\phi_{0}(v)$. It follows from (6) that $\phi_{0}(u, v)$ depends only on the orientation of \mathcal{O}. Thus define $\phi(u, v)=\phi_{0}(u, v)$ where \mathcal{O} is any positively oriented orthonormal basis of \boldsymbol{M}^{2}. If u_{1}, \cdots, u_{n} are unit or null vectors we have the following formulas

$$
\begin{gather*}
\phi\left(u_{1}, u_{2}\right)=-\phi\left(u_{2}, u_{1}\right), \tag{7}\\
\phi\left(u_{1}, u_{2}\right)+\phi\left(u_{2}, u_{3}\right)=\phi\left(u_{1}, u_{3}\right) \tag{8}\\
\phi\left(u_{1}, u_{2}\right)+\cdots+\phi\left(u_{n-1}, u_{n}\right)+\phi\left(u_{n}, u_{1}\right)=0 \tag{9}
\end{gather*}
$$

Formula (9) is the simplest case of the Gauss-Bonnet theorem. The corresponding statement in the Euclidean plane is that the exterior angles of a polygon sum to 2π.

2. General case

Throughout this section M will denote a Minkowski surface, i.e., an abstract surface with each tangent plane a Minkowski plane. Attention will be
restricted to a region of M oriented by a frame field $\left\{E_{1}, E_{2}\right\}$. The following notation will be used. A general reference for the Euclidean case is [2, Chapter 7].

The dual 1-forms θ_{1}, θ_{2} are defined by $\theta_{i}\left(E_{j}\right)=\left\langle E_{i}, E_{j}\right\rangle$. The connection forms $\omega_{i j}$ are defined by the equations

$$
d \theta_{1}=\omega_{12} \wedge \theta_{2}, \quad d \theta_{2}=\omega_{21} \wedge \theta_{1}, \quad \omega_{12}=\omega_{21}
$$

where d denotes the exterior derivative, and \wedge the wedge or exterior product. The "area form" is " $d M$ " $=\theta_{1} \wedge \theta_{2}$; this form depends only on the orientation of $\left\{E_{1}, E_{2}\right\}$. The Gaussian curvature K is defined by the formula

$$
d \omega_{12}=-K \theta_{1} \wedge \theta_{2}
$$

The covariant derivative in the direction of the tangent vector v is denoted by ∇_{v}. Recall that its action on a vector field $Y=y_{1} E_{1}+y_{2} E_{2}$ is given by

$$
\begin{equation*}
\nabla_{v} Y=\left(v\left[y_{1}\right]+y_{2} \omega_{21}(v)\right) E_{1}+\left(v\left[y_{2}\right]+y_{1} \omega_{12}(v)\right) E_{2} \tag{10}
\end{equation*}
$$

where $v[f]$ denotes the directional derivative of the function f in the direction v.

Let $\alpha: I \rightarrow M$ be a continuously differentiable curve parameterized with respect to proper time. Let $T(s)=\alpha^{\prime}(s)$. Then T is a unit or null vector field along α. If $T(s)=a(s) E_{1}(\alpha(s))+b(s) E_{2}(\alpha(s))$, set $N(s)=b E_{2}+a E_{1}$ along α, and define $g(s)$ by

$$
\nabla_{\alpha^{\prime}} T=g N
$$

At each point of $\alpha(s)$ define $\phi(s)$ by

$$
\phi(s)=\phi_{\left\{E_{1}, E_{2}\right\}}(T(s)) .
$$

Using (10) we immediately generalize Theorem 1 to
Theorem 2. Let $\alpha: I \rightarrow M$ be a differentiable curve parameterized with respect to proper time and having image contained in a region oriented by the frame field $\left\{E_{1}, E_{2}\right\}$. Then

$$
g(s)=d \phi / d s+\omega_{12}\left(\alpha^{\prime}(s)\right)
$$

Thus the acceleration measured by an observer riding with α breaks into two parts. The term $\phi^{\prime}(s)$ is due to motion relative to the frame field $\left\{E_{1}, E_{2}\right\}$, and the term $\omega_{12}\left(\alpha^{\prime}\right)$ is due to the acceleration in the frame field itself. Notice that α is a geodesic of M if and only if $g \equiv 0$. If M is a submanifold of a higher dimensional space, then g gives that component of acceleration in the larger space which is tangent to M. The corresponding Euclidean concept is that of geodesic curvature.

Theorem 3 (Gauss-Bonnet formula). Let R be a region in the plane, and $X: R \rightarrow M$ a restriction of a coordinate patch mapping. Let $X[R]$ lie in a region oriented by the frame field $\left\{E_{1}, E_{2}\right\}$, and the boundary of $X[R]$ be given by $\partial X=\sum_{1}^{n} \alpha_{i}$ where $\alpha_{i}:\left[a_{i}, b_{i}\right] \rightarrow M$ is a continuously differentiable curve parameterized with respect to proper time. Assume $\alpha_{i+1}\left(a_{i+1}\right)=\alpha_{i}\left(b_{i}\right)$ for $i \leq n-1$, and $\alpha_{1}\left(a_{1}\right)=\alpha_{n}\left(b_{n}\right)$. Set $\phi_{i, i+1}=\phi\left(\alpha_{i+1}^{\prime}\left(a_{i+1}\right), \alpha_{i}^{\prime}\left(b_{i}\right)\right)$ for $i \leq n-1$, and $\phi_{n, 1}=\phi\left(\alpha_{1}^{\prime}\left(a_{1}\right), \alpha_{n}^{\prime}\left(b_{n}\right)\right)$. Then

$$
\iint_{X} K d M+\int_{\partial X} g+\phi_{12}+\cdots+\phi_{n-1, n}+\phi_{n, 1}=0
$$

Proof. By Stokes theorem

$$
\iint_{X} d \omega_{12}=\int_{\partial X} \omega_{12}
$$

Since $d \omega_{12}=-K \theta_{1} \wedge \theta_{2}=-K d M$ it is sufficient to evaluate

$$
\int_{\partial X} \omega_{12}=\sum_{1}^{n} \int_{\alpha_{i}} \omega_{12} .
$$

To evaluate a typical term of this integral, apply Theorem 2 to get

$$
\begin{aligned}
\int_{\alpha_{i}} \omega_{12} & =\int_{a_{i}}^{b_{i}} \omega_{12}\left(\alpha_{i}^{\prime}(s) d s=\int_{a_{i}}^{b_{i}} g(s) d s-\int_{a_{i}}^{b_{i}} \frac{d \phi}{d s} d s\right. \\
& =\int_{\alpha_{i}} g+\phi\left(a_{i}\right)-\phi\left(b_{i}\right)
\end{aligned}
$$

Since by definition we have $\phi_{i, i+1}=\phi\left(a_{i+1}\right)-\phi\left(b_{i}\right)$ for $i \leq n-1$ and $\phi_{n, 1}=$ $\phi\left(a_{1}\right)-\phi\left(b_{n}\right)$, summing the last formula gives the desired result.

Remark. In the notation of $\S 1, \phi_{0}(u)=\phi_{0}(-u)$ for any unit or null vector u. This means that the direction in which each boundary curve is traced affects only the integral of g in Theorem 3. If the boundary curves are geodesics of M, then $g \equiv 0$ and this integral drops out.

3. Example-a Doppler formula

Suppose that a photon is emitted at a point A in the space-time of general relativity and observed at a point B. Let α_{1} be the space-time trace of the photon from A to B, which is assumed to be a geodesic. Let α_{2} be the spacetime geodesic which the source would follow if unaccelerated. Let β be the space-time trace of the observer. Let α_{3} be a spacelike geodesic which
i) cuts β orthogonally at B and ii) intersects α_{2} at some point C.

The curve α_{3} will exist if the region under consideration lies in a sufficiently small geodesic neighborhood of A. It is the intersection of two geodesic sub-
manifolds, the first of which is the Euclidean 3-manifold of all geodesics through B orthogonal to β, i.e., that portion of space-time which the observer calls space at the instant when he observes the photon. The second submanifold is Minkowski surface of all geodesics emanating from A and tangent to the plane of tangent vectors spanned by α_{1}^{\prime} and α_{2}^{\prime} at A. Let Δ denote the section of this latter manifold bounded by the curves α_{i}. Then Theorem 3 gives the formula

$$
\begin{equation*}
\iint_{\Delta} K d M+\phi_{12}+\phi_{23}+\phi_{31}=0 \tag{11}
\end{equation*}
$$

By (7), $\phi_{12}=-\phi_{21}$ and so $\phi_{12}=-\left(\ln \nu_{e}+a\right)$ by the remarks following Theorem 1 where ν_{e} is the frequency of the emitted photon. By (8), we have

$$
\phi_{31}=\phi\left(\alpha_{3}^{\prime}, \alpha_{1}^{\prime}\right)=\phi\left(\alpha_{3}^{\prime}, \beta^{\prime}\right)+\phi\left(\beta^{\prime}, \alpha_{1}^{\prime}\right)=\phi\left(\beta^{\prime}, \alpha^{\prime}\right)=\ln \nu_{a}+a,
$$

where ν_{a} is the frequency of the photon observed at B. (Since α_{3} is orthogonal to β one finds $\phi\left(\beta^{\prime}, \alpha_{3}^{\prime}\right)=\ln 1=0$.)

The pair $\beta^{\prime}, \alpha_{3}^{\prime}$ is a frame at B. Parallelly translate this frame along α_{3} to C. Since α_{3} is a geodesic, the resulting frame is of the form $\left\{u, \alpha_{3}^{\prime}\right\}$ and it is the frame at C which is "at rest" with respect to the observer at the event B. Thus by (7) and (8)

$$
\phi_{23}=\phi\left(\alpha_{2}^{\prime}, \alpha_{3}^{\prime}\right)=-\phi\left(u, \alpha_{2}^{\prime}\right)+\phi\left(u, \alpha_{3}^{\prime}\right)=-\tanh ^{-1} v=\frac{1}{2} \ln \left\{\frac{1-v}{1+v}\right\}
$$

where v is the velocity of the unaccelerated source with respect to the observer at the moment when the photon is observed.

Substituting these values for the ϕ_{i} into (11) gives

$$
\nu_{e}=\nu_{a} \sqrt{\frac{1-v}{1+v}} \exp \left\{\iint_{\Delta} K d M\right\}
$$

In the case where Δ is flat ($K \equiv 0$), this reduces to the usual formula from special relativity.

References

[1] S. S. Chern, Differentiable manifolds, Lecture notes, University of Chicago, 1959.
[2] B. O'Niell, Elementary differential geometry, Academic Press, New York, 1966.

