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A COMPLEX ANALOGUE OF HARTMAN-NIRENBERG
CYLINDER THEOREM

KINETSU ABE

1. Introduction

Hartman and Nirenberg [3] proved, in 1959,
Theorem (Hartman-Nirenberg). Let Mn be a connected complete

Riemannian hypersurface in an (n + \)-dimensional Euclidean space Rn+ι. If
the rank of the Gauss map is < 1 everywhere, then Mn is cylindrical.

This theorem is the first global determination of a flat hypersurface M in
Euclidean space. Indeed the condition about the rank of Gauss map is
equivalent to the flatness of M. Classically, we had only the local classification
of flat surfaces. In this paper, we shall show the complex version of the above
theorem.

Let Mn be a complex ^-dimensional complete connected Kahlerian hyper-
surface isometrically and holomorphically immersed by / into an (n + 1)-
complex space Cn+1.

Let φ: Mn -^ CPn be a mapping from Mn to the complex projective /t-space
CPn which assigns to a point x in Mn the normal plane of f{Mn) at f(x) in Cn+1,
which we can identify with a point in CPn by the parallel displacement in C w + 1 .
We call this mapping the Gauss map for the complex hypersurface Mn in Cn+1.

Let ξ be any unit normal vector field around x, and denote by A the tensor
field of type (1,1) given by

pzξ = -AξX + Vxξ ,

where V is the canonical connection of Cn+1 and V is the normal connection
induced by V. Then we have:
(1.1) φ*QO = 0 if and only if AX = 0, where φ* is the Jacobian of φ
(1.2) the rank of φ^ is equal to that of A
(1.3) the Gauss map φ is anti-holomorphic.

For the proof of (1.1), (1.2) and (1.3), see K. Nomizu and B. Smyth [5].
Now our main theorem is stated as follows.

Received January 23, 1971. The result in this paper consists of a portion of the
author's doctoral dissertation at Brown University, 1970 under the direction of Pro-
fessor K. Nomizu. The author was supported by the National Science Foundation, and
would like to thank Professor K. Nomizu for his encouragement during the preparation
of this paper.



454 KINETSU ABE

Theorem. Let Mn be an n-dίmensional Kdhlerian hypersurface of Cn+1

immersed into Cn+1 holomorphically and isometrically. Then the following con-
ditions are equivalent:
(1.4) The rank of φ^ is <2 everywhere, where φ^ is the Jacobian of φ;
(1.5) φ maps Mn into some complex projective line, say CP1, in CPn

(1.6) The manifold Mn is cylindrical, i.e., there exist an (n — ^-dimen-
sional Kdhlerian manifold Ml~λ and a Kdhlerian curve M\ such that
there exists a holomorphic isometry g: Mf"1 x Ml—>Mn whose com-
position with f, i.e., fogy restricted to M%~1 x {y} in Mf"1 X M\, for
each y, i.e., fog\Mn~ι x {/}, maps Ml'1 X {y} holomorphically and
isometrically onto an (n — l)-dίmensional complex plane which is
parallel to each other in Cn+1, and fog restricted to {x} X M\ in
Ml'1 x M\, i.e., f o g I {x} x Ml, maps {x} X Ml into a 2-dimensional
complex subspace of Cn+1 which is perpendicular tofo g(Mn~ι X {y})
at fo g(χ, y)) for each x e Ml'1 and y e Ml.

This theorem is the answer to the problem proposed in [5].

2. Preparations

Let a(X, Y), for X and Y e TM, be the second fundamental form of an
isometric immersion /: Mn^MN(c), where Mn is a Riemannian manifold, TM
is the tangent space of Mn, and MN(c) is the space form of constant curvature
c. For any x in M, the subspace RN(x) of the tangent space TX(x) of Mn at
x defined by RN(x) = {X e TM(x): a(X, Y) = 0, for all Y) is called the relative
nullity space of / at x, and the dimension v(x) of RN(x) is called the relative
nullity of / at x. Following Chern and Kuiper [2], we also call v — min v{x)
for x € M the index of relative nullity of /. It is well known that the subset G
of M defined by G = {x € Mn: v(x) = v) is open, and we can define on G the
relative nullity distribution which assigns to x in G the relative nullity space
RN(x). It is also well known that the distribution is diίϊerentiable, involutive
and totally geodesic; for more details of this see [1] in which we have shown
that the maximal integral submanifolds of the distribution, i.e., the leaves, are
complete if Mn is complete. It was also shown that if Mn is a complete
Kahlerian manifold of complex dimension n, and MN(c) is the complex space
form of holomorphic sectional curvature c and of complex dimension N, then
the leaves are totally geodesic Kahlerian submanifolds in both Mn and MN.

In particular, in our case here, each leaf is a complex (n — l)-dimensional
plane, since G = {x e Mn: the rank of φ*(x) = 2} by (1.1), (1.2). Now we
shall introduce the notion of conullity operater which was defined by Rosenthal
[6].

Let x be a point in a leaf in G. For any ηx in the relative nullity space RN(x)
at x define a linear operator, say AVχ of the orthogonal complement RNix)1 of
RN(x) in TMX, by
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(2.1) A,,X = PWzη)x9

where V is the connection in Mn, η is an extension of ηx in a neighborhood of
x, and P1 is the projection of TMX onto RNix)1. The following Propositions
2.1 and 2.2 are due to Rosenthal [7].

Proposition 2.1. ΆVχ depends only on the vector ηx and not on the exten-
sions.

Proof. Let g be a C°° function on Mn, and η an extension of ηx on a neigh-
borhood of x. It suffices to show that A(gη)xX = gix)-AVxX. By the definition
of the operator, for X mRNix)1, Ά{gη)xX = P HFrS?)* = Pχ(Xg'V + sFx?)*

Proposition 2.2. Lei a be the second fundamental form of Mn in Cn+ί.
Then a(X, AηY) = a(Y, AVχX) for any X, Y in RNix)1.

Proof. For X and Y in RNix)1 and η in RNix), we have R(X, Y)η =
R(X, Y)η + a(X, Vγη) — a(Y, Fxη), where R and A are the curvature tensor
fields of Mn and Cn+\ respectively. Since R — 0, a(X, Vγη) — a(Y, Vxη) holds.
From this last equality and the definition of A, we obtain the equality in Prop-
osition 2.2.

Proposition 2.3. For any x in G and any ηx in RN(x), AVχ is a complex
linear function of RNix)-1.

Proof. This proposition is slightly more general than the one in [7]. Let /
be the complex structure of Mn. Then as is seen in [1, Proposition 2.3.1],
RN(x) and RNix)-1 are invariant subspaces of /. First of all, we have aiX,
AVχJY) = aiJY, AVχX) = JaiY, AVχX) by Proposition 2.2. and the fact
that Mn is a Kahlerian submanifold. On the other hand, aiX,JAηY) =
JaiX, AηY). So we have

aiX,AVχJY) - aiX,JAVχY) = aiX, iAVχJ - JAVχ)Y) = 0 .

Suppose that AVχJ — JAVχ Φ 0. Then there exists Yf in RNix)L such that
(AVχJ - JAηχ)Yf Φ 0. However, (AVχJ - JAη)Yf is in RNix)1, so there must
exist X' in RNix)1 such that a((AVχJ - JAηχ)Y',Xf) Φ 0. This is a contradic-
tion. Hence A and / commute, q.e.d.

Notice that by Proposition 2.3 we have the following expression of Aηx with
respect to a unitary frame:

(2 1) A - \a{x) ~ ^ W

( 2 ' 2 ) A" ~ Iβix) aix)

3. Lemmas

Lemma 3.1. Under the assumptions m § 1, AVχ — 0 for all x in G and all

Vx in RNix).
Proof. We claim that all eigenvalues of AVχ are zero. As is mentioned in
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§ 1, we have shown that the leaves of the relative nullity distribution are com-
plete; see [1, Theorem 1.8.1]. Therefore the argument in the proof of [6,
Theorem 3.1] is applicable to our Lemma 3.1, and consequently the real
eigenvalues of AVχ are zero. In order to show that the complex eigenvalues, if
any, are also zero, let a + bi be a complex eigenvalue. Then there exists a
vector X in RN(x)L such that ΆVχX = aX + bJX. Consider a new vector ξx

in RN(x) given by ξx = aηx — bJηx, so that ΆξχX = (a2 + b2)X. Again by the
same argument as mentioned above, a2 + b2 = 0, i.e., a = b = 0, so that
a + bi = 0. Now by (2.2), a ± βi are the only possible eigenvalues of AVχ.
Thus a ± βi = 0 implies that a = β = 0, i.e., AVχ = 0.

Lemma 3.2. The distributions RN and RN1 (the distribution defined by
the orthogonal complement of RN) are parallel. In particular, RN1 is involu-
tive.

Proof. Let η and ζ be in RN, and X and Y in RN1. Since RN is totally
geodesic, g(Vζη,X) = 0. Also g(Pγη,X) = g(Av00,X) = 0 by Lemma 3.1.
Therefore RN is parallel, and so is RN1 automatically.

Lemma 3.3. Let Mn be given as in the introduction of this paper. Then the
set G = {x e Mn v(x) — 2(n — 1)} = {x € Mn the rank of the Gauss map — 2}
is open and dense in Mn.

Proof. By upper semi-continuity of v, G is open. Suppose that M — G
contains an interior point, say x. Then we have a minimal geodesic γ(t) in M
which joins x to a point y in G, i.e., f(0) = y and γ(t0) = x.

Let eί and Je1 at y be such that g(R(ely JeJJe^ ex) Φ 0. By the parallel dis-
placement along γ, we have real analytic vector fields eλ(t) and Je^t) along γ(t).

Define a function K: [0, t0] —» R by

(3.1) X(ί) - g(A(t)(ei(t)), eλ(t))2 + g(JA(t)(ei(t)), ex(t))2 ,

where 4̂ is a (1, l)-tensor field defined by Vzξ = —AX + Vxξ. Then clearly
K is a real analytic function and — K(t) is the holomorphic sectional curvature
of the plane spanned by eλ and Jeλ at t, 0 < t < t0.

Since y is in G, K(0) Φ 0. Therefore on [0, ί0], K is not identically zero so
that it must have at most finite zeros. This contradicts the assumption that x
is an interior point of M — G.

Lemma 3.4. Let x be any point in M — G. Γ/zβn ί/zere e x t o cw ε-ftα/Z
around x such that in the ball any geodesic starting at x is either entirely in
M — G or intersects with M — G at finitely many points.

Proof. Let e19 , e2n be a unitary frame at x such that eί+n — Jet, 1 <
/ < n. Then for small ε > 0, we can take an ε-ball where we can define a real
analytic frame by the parallel displacement of e19 , e2n along each geodesic
starting at x. For convenience, we will denote the frame field on the ball by
the same letters.

Let γ be any geodesic segment such that f(0) =̂ x and the whole segment is
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in the ball. If γ is not in M — G entirely, then there is a point y on γ such that
y =z γ(t0) is in G. Thus we can find a pair of vectors, say et and Jet, among
e\-> ' * * j Cm such that the function K(t) in (3.1) with eί replaced by et is non-
zero at y. Since K(t) is a real analytic function, there exist at most finitely many
zeros on γ(t).

Lemma 3.5. Let x be any point in M. Then there exists a complex (n — 1)-
dimensional plane, say p(f(x)), in Cn+1 such that:
(3.2) p(f(x)) is tangent to /(M), i.e., there exists a complex (n — \)-dimen-

sional plane p(x) in TMX such that f*(p(x)) = p(f(x)),
(3.3) p(f(x)) is parallel to a fixed complex (n — l)-dimensional plane, say

Cn-\ in Cn+1 for all x in M.
Proof. To define the above fixed plane Cn~ι in Cn+1, take a fixed point x0

in G, and consider the image of the leaf passing through x0 by /, which is a
complex (n - 1)- plane in Cn+1 by [1, Theorem 2.3.1]. So we may define Cn~ι

to be the (n — l)-dimensional plane passing through the origin of Cn+1 and
parallel to the image plane of the leaf containing x0.

If x is in G, then define p{f{x)) to be the image plane of the leaf passing
through x. Since / is an isometric immersion, (3.2) is satisfied.

If x is in M — G, by Lemmas 3.3 and 3.4 we can find a connected compo-
nent of G, say G', such that there exists a geodesic segment of γ'(t), 0<t<ε',
which, except f(0) = x, belongs to G'. By Lemma 3.2 the image planes p(f(x))
where x is in Gf are parallel in Cn+1. Thus define p(f(x)) to be the point set
limit of the planes p(f(f(t))), 0 < t < ε', as t approaches 0. Notice here that
such a limit plane as above is also parallel to the planes in /(GO.

Next we show that the definition of p{f(x)), x € M — G, does not depend on
the choice of the connected component of G. Let G" be another connected
component of G such that there exists a geodesic segment γ"(t), 0 < t < ε",
starting at x and belonging to G" except at f"(0) — x. Let p" be the plane defined
as p(J(x)) by G". Note that these planes are tangent to M in the sense of (3.2),
because M is complete and / is an isometric immersion.

Let (JC1, , x2n) be a local coordinate system around x in M, and for con-
venience let f(x) be the origin of Cn+1. Then we can regard f^.(TMx) as a 2n-
dimensional subspace passing through the origin in R2n+2 = Cn+1.

Let e19 , e2n, e2n+1, e2n+2 be a basis of R2n+2 such that eγ = f^id/dx1),

e2n = f*(d/dx2n), and e2n+ι and e2n+2 are orthogonal to f^T^M). Define

p #2W+2 _^ f^(TMx) to be the natural projection. Then the Jacobian of p o /: M
—> TMX at x is nothing but the identity matrix with respect to the basis intro-
duced above. Thus pof is a diffeomorphism on a small neighborhood U of x
where / is an isometry. Therefore p is a diffeomorphism on /(£/).

Since the projection p preserves parallelism for afϊine subspaces in R2n+2

y

P(p(Kx))) is parallel to β(p(f(f(t)))) in f*(TMx) for all fit), 0 < t < ε', in U
as 2(n — l)-dimensional subspaces. Note that β is a local diffeomorphism on
f(U), and p(f(x)) C f(M), p(f(f(f))) c /(M), so the ^-images of these planes
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have the same dimension as that of p(f(x)) and p(f(γ'(t))) for fit) in U.

Suppose p" Φ p(f(x)) as complex (n — l)-dimensional subspace of f*(TMx).
This assumption makes sense because p" and p(f(x)) are actually in f^(TMx).
Then we have a complex line H in p" such that H Π f(p(x)) = {0}, and H and
f(p(x)) span f^(TMx). Under the above condition, we know that any complex
(n — l)-dimensional affine subspace of f^(T^Mx) which is parallel to p(f(x))
must intersect H. So for sufficiently small tQ > 0, p(p(f(f(t0))) must intersect H
in p o /(£/). Therefore // Γ) p(ί(f(t0))) Φ 0 in /(£/). Since this is impossible, we
have shown p " = p(f(x)).

To show each /?(/(*)) is parallel to Cn~\ take a minimal geodesic segment
f(0 between x and x0 such that γ(0) = xQ and γ(t#) = JC. Then by the same
argument as in the proofs of Lemmas 3.3 and 3.4, we find finitely many points,
say 0 < tλ < 9 , < tk < t*, which are in M — G. By the above argument,
we know that p(f(γ(O))) = p(i(xj), PUWM , P(Kήh))) and p(f(r(t*))) are
parallel to each other, hence p(f(x)) is parallel to Cn~ι in Cn+1.

4. Proof of the theorem

Proposition 4.1. (1.4) in the theorem implies (1.5).
Proof. For convenience, let (Z°, , Zw) be the natural coordinate system in

Cn+1 such that Cn~ι in Lemma 3.5 is given as the set {(Z°, , Zn~\ 0, 0) <=

By the definition of Gauss map and by Lemma 3.5 the point φ(x) for x e M
must be identified with a complex line given by the parallel transformation in
Cn+ί from a complex line orthogonal to p(f(x)). Thus φ(M) must be in the com-
plex projective line CPι in CPn which corresponds to the linear subspace
{(0, ., 0, Zn~\ Zn)} in Cn+1. q.e.d.

It is almost obvious that (1.6) implies (1.4). To show that (1.5) implies (1.6),
we start with the following lemma.

Lemma 4.1. Under the conditions (1.5) in the theorem, we can find C°°-
distributions on M, say D and D x , whose complex dimensions are n — 1 and
1, respectively, and which satisfy the following:

(4.1) D and DL are of C°° and invariant by /,
(4.2) D and DL are parallel,
(4.3) DL(x) is orthogonal to D(x) at each x in M.

Proof. For convenience, let CP1 C CPn be given as in the above Proposi-
tion 4.1, and let φ{M) c CP1 C CPn.

Since / is an isometric immersion, for any x in M, TMX contains a complex
(n — l)-dimensional plane whose image by /* is parallel to Cn~ι in Cn+1.

Define D(x) to be the (n — l)-ρlane in TMX, and DL(x) to be the plane in
TMX orthogonal to D(x) at each x. Then (4.1) and (4.3) are clear by the defi-
nition of D and DL. To show (4.2) for any X e TM and Y in D, we have
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PuMY) = f*(F*Y) + oc{X9 Y) .

By the definition of D, we have FU{Σ)f*(Y) C /*(£>). Thus

VXY = fiKU(FxY)) = i*\VU{X)f*(Y)) c D .

Hence D is parallel.
Since the parallel transformation preserves the Riemannian metric, DL is

parallel, q.e.d.
Now applying the de Rham decomposition theorem [4], we have the local

product structure. To extend it globally, let (M, P) be the universal covering
manifold of M with the projection P. Then we can put the canonical Kahlerian
structure induced from that of M in M.

Define distributions D and DL on M as follows: D(x) is the subspace of
TM% which is mapped isometrically to D(P(x)) in TMP{Z) by P*, and D^ix) is
the orthogonal complement of D(x) in TM~.

Since P is an isometric immersion, P^φ^x)) = DL(x), and therefore
(4.4) β and 2) 1 are of C°° and invariant by the complex structure in M,
(4.5) D and Jδ-1 are parallel,
(4.6) DL(x) is orthogonal to D(x) at jc.
Hence by the de Rham decomposition theorem for Kahlerian manifolds [4, Vol.
II], we have an (n — l)-dimensional Kahlerian manifold Ml~x and a 1-dimen-
sional Kahlerian manifold M\ such that there exists a holomorphic isometry
q: Mΐ~ι x M\-*M mapping each ( M f 1 , x2), for x2 e Ml, to the leaf of D
passing through (xί9 x2), xx e M?" 1 , holomorphically and isometrically.

When we consider M as a submanifold of Cn+1 immersed by fop, we will
easily see that each leaf of the foliation by D is totally geodesic in Cn+1 as well
as in M and M. Completeness of the leaves is also obtained from completeness
of M by the same argument as in [4], once we know that the leaves are total-
ly geodesic. Thus fopoq\ (M?-\ x), i.e., the restriction oifopoqto (Aff-1, x2),
maps (Mf~\ x2) holomorphically and isometrically onto a complex (n — 1)-
dimensional plane which is parallel to Cn~ι in O + 1 .

Since (xl9MD, for xx in Mf"1, is orthogonal to (Jiff"1, jc2) at (xl9x2) in
Ml~x X MJ, we also know that (jc19 MJ) is mapped by fopoq into the complex
2-dimensional plane orthogonal to Cn~ι\ this is the product structure for M.

It is not difficult to derive the product structure of Mn from that of Mn which
is given above, q.e.d.

Remark. In the real case [3], the condition that the rank of the Gauss map
be < 1 is equivalent to that the manifold be flat. However, in the complex case,
our condition (1.4) does not imply that Mn is flat. To be more precise, if Mn

is a flat Kahlerian hypersurface of Cn+ι, then Mn is a Cn in Cn+1.

For higher codimension, the result corresponding to our theorem in this paper
can also be obtained, and the proof is a slight modification of the one given here.



460 KINETSU ABE

Bibliography

[ 1 ] K. Abe, Characterization of totally geodesic submanifolds in SN(c) and CPN{c)
by an inequality, Tόhoku Math. J. 23 (1971) 219-244.

[ 2 ] S. S. Chern & N. H. Kuiper, Some theorems on the isometric imbedding of com-
pact Riemannian manifolds in Euclidean space, Ann. of Math. 56 (1956) 422-
430.

[ 3 ] P. Hartman & L. Nirenberg, On spherical image maps whose Jacobians do not
change sign, Amer. J. Math. 8 (1959) 901-920.

[ 4 ] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vols. I and II,
Wiley-Interscience, New York, 1963 and 1969.

[ 5 ] K. Nomizu & B. Smyth, Differential geometry of complex hyper surf aces. II, J.
Math. Soc. Japan 20 (1968) 498-521.

[ 6 ] A. Rosenthal, Riemannian manifolds of constant nullity, Michigan Math. J. 14
(1967) 469-480.

[ 7 ] , Kdhlerian manifolds of constant nullity, Michigan Math. J. 15 (1968)
433-440.

JOHNS HOPKINS UNIVERSITY




