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SOME METRIC PROPERTIES OF ARITHMETIC
QUOTIENTS OF SYMMETRIC SPACES

AND AN EXTENSION THEOREM

ARMAND BOREL

This paper has two main objectives. One is to prove:
Theorem A. Let D be the open unit disc \z\ < 1 in C, and D* = D — {0}.

Let X be a bounded symmetric domain, and Γ an arithmetically defined torsion-
jree group of automorphisms of X. Let V* be the complex analytic compactifi-
cation of V = X/Γ constructed in [3], a and b positive integers, and
f:D*aχDb-^Va holomorphic map. Then f extends to a holomorphic map
of Da+b into V*.

In fact, a slightly more general result will be obtained (see Thm. 3.7).
Together with some known facts, this implies that if S is an algebraic variety,
h: S —> V is a holomorphic map, and V is endowed with its natural structure
of quasi-projective variety denned in [3, Thm. 3,10], then h is a morphism of
algebraic varieties.

The proof of Theorem A makes use of an extension theorem of M. H. Kwack
[12], or rather of a slight variant of it [9], and the main point is to check that
its assumptions are satisfied in our case. Let d0 be the Kobayashi invariant
pseudo-distance [10] on X; since X is a bounded symmetric domain, it is a
distance (cf. § 3.3). Let d'o be the associated distance on V denned by

( 1 ) d'0(π(x), π(y)) = inf do(x, y - γ) , (x, y e X) ,
rer

where π: X —• V is the canonical projection. In view of some distance decreas-
ing properties of /, we have essentially to prove the following result (where Γ
may have torsion):

Theorem B. Let p,qεV* — V, and let pn, qn (n = 1, 2, ) be sequences
of points in V converging to p and q respectively. If d^{pn, qn)-^0, then p — q.

Theorem B will be derived in §3.5 from properties of Siegel sets and
arithmetic groups, whose discussion is the other purpose of this paper. Since
they have some independent interest, they will be proved in greater generality
and in a stronger form than is needed in § 3.5. Let then Γ be an arithmetic
subgroup of a connected semi-simple Q-group <$ ,X the symmetric space of
maximal compact subgroups of the group G of real points of ^ , and dx the
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distance function associated to a G-invariant Riemannian metric on X. Our
main result. Theorem 2.3, is:

Theorem C. Let &bea Siegel set in X, and C a finite subset of &Q. Then
there exists a constant δ such that dx{x c, xf d γ) > dx(x, xΓ) + δ for all
x, xf e ©, c,cf $C and γeΓ.

If TΓ: X —• X/Γ is the canonical projection, and d' the associated distance
function on X/Γ, defined as in (1) above, Theorem C asserts in particular that
the difference dx(x, xf) — d'(π(x), π(x')) is bounded when x and xf vary
through ©.

In the case where G = SL(n, R), Γ = SL(n, Z), C = {e}, and x is fixed,
Theorem C reduces to [16, Thm. 4]. The fact that x is also allowed to vary
gives a positive answer in general to a question raised in that case at the end of
[16, §4].

Theorems A and 2.5 were proved in 1968, and Theorem A is stated in P.
Griffiths' report [7, Thm. 6.6]. Since then, results closely related to Theorems
A and B have been proved by P. Kiernan [9] and S. Kobayashi-S. Ochiai
[11]. They have influenced the presentation given here, in particular by focus-
sing attention on Theorem B, which had been essentially proved, but not made
explicit, originally. The relations between these results are discussed in § 3.9.

Notation. In general, we use that of [5], [6], with one main exception:
algebraic groups, which are always defined over R in this paper, are denoted
by script letters &,&, , while the corresponding Roman capitals G,H, •
stand for the group of real points of ^ , jf, .

Let Z b e a differentiable manifold. The tangent space to X at x is denoted
TX(X). Let Y be a differentiable manifold, μ: X —> Y an isomorphism, and g
a Riemannian metric on Y. Then μ*(g) denotes the induced Riemannian metric
on X, i.e.,

μ*(g)(A, B) = g(dμx(A), dμx(B)) , (A, Be TX(X) xeX) .

If u, v are complex valued functions on a set 5 and \u — v\ is bounded on
S, we write u « v. Assume u and v to have real positive values. We write
u > v if there exists a constant c > 0 such that u(s) > c-v(s) for all s <ε S, and
u < v (resp. u x v) if v > u (resp. u < v and v < u).

If α, b are elements of a group H, then ab stands for a>b-a~l. The value of
a rational character a of an algebraic group ^ on an element x € ^ is denoted
a(x) or xa.

Throughout this paper, & is a connected semi-simple R-group, X the sym-
metric space of maximal compact subgroups of G, and K a maximal compact
subgroup of G.
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1. Right invariant metrics

1.1. Let B be the Killing form on the Lie algebra L(G) of G, θ be the
Cartan involution of L(G) with respect to L(K), and

( 1) go(X, Y) = - £ ( * , Θ{Y)) , (X, Y € L(G)) .

Then g0 is a positive nondegenerate scalar product on L(G), invariant under
Ad K. Let dg2 be the right invariant metric on G which is equal to gQ on L(G).
Let d or dG be the associated distance function on G, and

( 2 ) \x\ = d(e,x), (*€G).

Since d is symmetric, right invariant under G, left invariant under K, and
satisfies the triangular inequality, we have

( 3 ) d(x,y) = \y χ-ι\,

( 4 ) I*l = l*-Ί> \*-y\<\χ\ + \y\, fcjeG),

and also, since λ = JC j y"1,

( 5 ) l * l < l * :v! + \y\, fcjeG),

from which it follows immediately that if C is a compact subset of G, then

( 6 ) d(u-x,v-y) « d(^,y) , |M Λ-V| « |Λ| ,

as JC, y vary in G and u, v in C
1.2. Let p be the orthogonal complement to L(K) with respect to the Killing

form (or to g0). We have then

Θ(A+B) = A-B (AeL(K),Bzp) .

Let σ: G —> Z = K\G be the canonical projection, and o = σ(K). For C € L(G)
we write o C for dσe(C). The map C H O C induces an isomorphism of p onto
T0(X), whence a scalar product on T0(X), defined by the restriction of g0 to p,
to be denoted also by g0. For Z € L(G), we have

( 1) Z = Zk + Zp (Zk = (Z + θ(Z))/2 e L{K) ;ZP = (Z- θ(Z))/2 e p) ,

( 2 ) gQ(o.Z,o Z) = go(Zp, Zp) - B(ZP9 Zp) = B(Z, Zp) .

Let dx2 be the G-invariant Riemannian metric on X which is equal to gQ on
T0(X), and dx the associated distance function. It is elementary that dx(x, y) =
daiσ-Xx), a-\y))(x,y e X), whence

( 3 ) dG{x,y) > dx(o-x,o>y) ,
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( 4 ) dz(o x, O'y) « dG(x, y) (x, yεG) .

1.3. By definition, a parabolic subgroup P of G is the group of real points
of a parabolic Λ-subgroup 0> of ^ . Let L be a subfield of I?, and assume ^
and 9 to be defined over L. Let ^ be a maximal L-split torus of the radical
of ^ , and 4̂ the connected component of e in S, in the ordinary topology.
After conjugation of K by some element of G we may (and shall) assume that
L(A) c p.

The exponential map exp: L(A) —+ A is an isomorphism of Lie groups,
which carries onto one another the invariant metrics defined by g0 onto L(A)
and A. In particular, if Q is a set of rational characters of Sf which form a
basis of X(£f) ® Q, then the invariant metric on A may be written

( 1 ) da2 = ΣajeQ caβa~ιβ-ιdadβ ,

where the caβ are constants such that

( 2 ) go= Σ caβdadβ .

Let d^ be the distance function on A associated to da2. In view of (1) there
exists a constant c > 0 such that

( 3 ) c-i-dM b) < (Σ«€Q In2 (a(a)/a(b))1/2 < cdA(a, b) , (a, b eA) .

Moreover, 4̂ is a totally geodesic submanifold of G, hence

( 4 ) dA(a,b) = dG(a,b) (a, be A) .

The group ^ is semi-direct product of its unipotent radical % by the
centralizer 3f («$0 of ^ . Let Jί be the intersections of the characters χ2, where
χ runs through X(β{Sf)). Then ^ ( ^ ) = Jί-¥, the intersection ^ Π Sf is
finite, and Z(S) is the direct product of M and ^4.

1.4. Lemma, (i) 77ze L/e algebra L(M) of M is stable under θ and orthogo-
nal to L(A) with respect to B and g0. (ii) We have

( 1 ) go(C, O = (1 /2)g0(o C,o.C) , (C e L(E/)) .

Let Φ be the set of roots of & with respect to Sf. There exists an ordering
on X{Sf) such that the weights of Sf in L(°U) are the positive elements of Φ
[6, § 3]. The restrictions to L(A) of the differentials of the roots are the roots
of L(G) with respect to L(A), in the sense of the theory of Lie algebras. For
a e Φ, let

( 2 ) qa = {CeL(G)\[X,C] = da(X) C,X€L(A)} .

We have the decompositions
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( 3 ) UG) = L(Z(S)) φ@Qa, L(U) = Σ 8.
a€Φ α>0

Let us put g0 = L(Z{S)). We have then

( 4 ) B(Qa,qβ) = O , (a,βeΦ U {0};a + β Φ 0) ,

which implies that the restriction of B to gα + g_α(α € Φ U {0}) is nondegener-
ate. Let C 6 L(M). By definition of M, the trace of ad C in gα(α € Φ) is zero,
whence B(L(M), L(A)) = 0. Since the restrictions of B to L(A) and L(&(S))
are nondegenerate, it follows that L(M) is the orthogonal complement of L(A)
in g0, hence L(M) is stable under θ.

The automorphism 0 is — Id. on LG4), hence

( 5 ) 0(ββ) = β -

and consequently, using (4),

+ g_α, ĝ  + g_ )̂ = go(gα + g_α, ĝ  + g_ )̂ = 0

(a,β>0;aΦβ)9

( 7 ) 5(g0,L(C/)) = g0(g0,L(C/)) = 0 .

Let now C = Σ Cα (C e gα, α > 0) be an element of L(C7). The Cα are mutually
orthogonal, and so are the Cα j P = (l/2)(C e — ί(Cβ)) e fle + g_α by (6). To
prove (ii), it suffices therefore to consider the case where C = Ca for some
a > 0. We have then, by (3) and § 1.2 (2):

g0(o.C,o.Q = go(C,Cp) = (l/2)go(C,C - Θ(Q) ,

, o . Q - (l/2)go(C,C) + (1/2)B(C,O = (1/2)

which proves (ii).

1.5. We already noticed that P = M-A U. More precisely, the map
A x M x [/ -> P defined by the product is an isomorphism of analytic mani-
folds. For /? € P, we shall denote by α(p), m(p), n(p) the elements of A,M,U
such that p — a(p) m(p) u{p).

It is known that G = K-P = K MA U. If

x = k-a m-u , (xeG,keK,aeA,meM,ueU),

then 0 and w are uniquely determined by x, and are analytic functions of x.
They will often be denoted a{x) and u(x). The elements k and m are determined
up to the product by an element of K Π M. The group K Π M is maximal
compact in M or P. Let Z = (K Π M)\M = (K Π Af°)\M°, and let τ : M -+ Z
be the canonical projection. It is known that the map (a,m,u) \-+ o a>m u
(aeA,meM9ueU) induces an isomorphism of analytic manifolds
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( 1 ) μ: Y = A x Z x U^

The group P operates on Y by

( 2 ) (a,z,u) p = (

and we have

( 3 )

Let us identify L(M)p = L{M) Π p with the tangent space to Z at the origin,
and let dz2 be the M-invariant Riemannian metric defined at the origin by g0.
Let further du2 be the right-invariant Riemannian metric on U which is equal
to the restriction of g0 on L(U). If φ is an automorphism of U, then g' =
φ*(du2) is also right-invariant and we have

( 4 ) S'(C, CO = go(dφe(C.u-ι))dφe(C' u-1)) , (II e U C, C 6 TU(U)) .

1.6. Proposition. WK̂  keep the previous notation. Let dy2 = μ*(dx2).
(i) For any z€Z,ueU, the metric induced by dy2 on A x {z} X {u} is da2.
(ii) Let y = (a, z,u)eY and m 6 τ~\z). The tangent spaces at y to the

submanifolds A x {z} X {w}, {a} x Z x {u} and {a} X {z} X U are orthogonal,
and we have

( 1) (dy% = (da2)a + {dz2)z + (1/2) ((Int am)*(du2))u .

It is well-known that the map C •-* o exp C induces an isomorphism of L(A)
onto a closed and flat totally geodesic submanifold of X, whence (i).

For part (ii), let C e TV(Y). Write it in the form

( 2 ) C ^ Q tf + C2 m + C3 u (C1

It is clear that we have

( 3 ) dμ(C) = o - ( d + C2 + Ad am(C3))

Let <C, C) denote the value of dy2 on C, and let D be the projection of Cλ +
C2 + Ad am(C3) in p. By (3) and § 1.2 (2), we have

( 4 ) (C,C} = go(D,D) .

Since A and M normalize £/, we have Ad am(C3) ζL(U). The elements Cλ and
C2 are in p. By Lemma 1.4 and § 1.4 (7), they are orthogonal to each other
and to L(U), which implies the first assertion of (ii). Moreover, by § 1.4 (1),
we have

, C> = &(Q, Cx) + go(C2, C2) + igo(Ad αwίCs), Ad am(Cz)) ,



SYMMETRIC SPACES 549

which, in view of § 1.5 (4), is just another way to write (1).
1.7. Corollary. Let dA,dz, dx, dγ be the distance junctions associated to

the Rίemannian metrics da2, dz2, dx2 and dy2, and y = (a, z, u),y/ = (a', z\ u')
be two points of Y. Then

( 1 ) dz(μ(y), μ(y')) > max (dA(a, a% dz(z, zf)) ,

( 2) do(g, h) > dA(a(g), a(h)) = dβ(a(g), a(h)) , (g, h e G) .

(1) follows from 1.6 by an obvious computation. (2) is a consequence of (1)

and §1.2 (3), §1.3(4).
1.8. The space Z is the Riemannian direct product of the symmetric spaces

of maximal compact subgroups of the simple noncompact factors of M by a flat
space (which has strictly positive dimension if and only if the center of M is
not compact). Let F be a direct factor of Z in this decomposition, and Ff the
remaining factor. Then dz majorizes its restrictions dF, dF, to F and F',
which are distance functions associated to invariant Riemannian metrics. Let
v: X —> F be the composition of μ'1: X -> Y by the projections Y —> Z —> F.
It follows from Proposition 1.6 that we have

( 1 ) dF(v(o x), v(o y)) < dx{p .χ,o. y)) (x, yeG) .

2. Siegel sets and invariant distances

2.1. From now on, ^ is defined over Q, and ̂  is a minimal parabolic
(J-subgroup of &. We keep the notation of § 1.5 (with L = Q). Moreover, Φ
is the set of roots of ^ with respect to ̂ , and Δ the set of simple roots for the
ordering associated to ̂  [5, § 11].

We recall that a Siegel set © or © ί ω (with respect to K, P, S, as will always
be understood) is a set of the form © = KΆrω where ω is a relatively
compact subset of M U and

At = {azA\a(a) < ί, (α 6 J)}

[5, § 12]. For Λ: e ©, the decomposition of § 1.5 will sometimes be written

x = kX'a(x)>mx (kxeK,axeA,mxeω) .

2.2. Lemma. We keep the previous notation. The differences

dG(x u9x'. wθ - dG(a(x) u, a(x') - u') , dG(x, x') - dA(a(x),

are bounded in absolute value as x, xf range through © and u, u' through G.
We have

dQ(x >u,x' u') = dG{kx *ωmx a(x) u, kx,. ^
χ/)mx, a(xT) - u') .
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The elements kx, kx, run through a compact set. By a fundamental property of
Siegel sets [5, Lemma 12.2], so do a{x)mx and a{χf)mx,, hence (§ 1.1 (6),
§1.3(4))

dG{x >u,x'' u') « dG(a(x) u, a(x'). u') , (x, xr e © u, ur eG) ,

dG(x, x') « dA(a(x\ a(x')) (JC, JC7 € ©) .

By definition, a Siegel set in X is the projection <;(©) = 0 © of a Siegel set
© in G. Hence Theorem 2.3 below is Theorem C of the introduction.

2.3. Theorem. Let & be a Siegel set in G (with respect to K, P, S), C a
finite subset of &Q, and Γ an arithmetic subgroup of G. Then there exists a
constant δ such that

( 1 ) dz(p.χ c,o.χ'.c'.r) >dx(x,x') + δ ,

for all x, xr €<&>,c,c' <~C and γ e Γ.
In view of Lemma 2.2, § 1.1 (3) and § 1.2 (4), our assertion is equivalent

to the existence of a constant δ' such that

(2) \a(x') c' r.c-> a(x)-ι\ > I^O^W" 1 ! + δ' ,

for all x,xf e&,c,c'eC,γεΓ.
Using the Bruhat decomposition in GQ, we can write

( 3 ) c' γ c-1 = u-W't'V (u<zUw,V£U,W£j^(S)Q,teS)

(see [5, §11.4; 6, §5]) where Uw is a certain subgroup of U, and w runs
through a set of representatives of J^XS)/^(S) in J^(S)Q, chosen once and for
all. Let

( 4 ) z — a(x') d>γ•• c"1 a(x)~ι , q = w~ι z .

We have |z| « \q\9 (§ 1.1), and \q\ > \a(q)\, (Corollary 1.7). Therefore (2)
will be proved if we show the existence of a constant δ" such that

( 5 ) \a(q)\> \a{xT).a(xYl\ + d" ,

for all JC, xf €(&,c,c' eC and γeΓ.
We note first that q = w~λ-a(x') u-w-1 v a(x)~\ whence

( 6 ) q = w-Ua{χt)u.(w-χa(xf)).t-a(x)-ι ^x)v .

For a€ A, let (πa, Va) be a strongly rational representation of G whose highest
weight λa is orthogonal to Δ — {a} (see [6, § 12]). Fix on VaR a euclidean
norm || || invariant under K, and with respect to which S is represented by
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self-adjoint operators (see e.g. [5, § 9]). Let eQ be a unit vector in the (unique)
line stable under P. We have π(g)e0 = ± e0 for g e M U, whence

( 7 ) \\πβ(x).e0\\ = a(xy (xeG) .

By construction of UW9 the element w'^aix^ u-aix'y^w belongs to the uni-
potent radical U~ of the group P~ opposed to P and containing ££(S). Now, if
geU~, then πa(g)-^ — ^ modulo the sum of the eigenspacesof Scorrespond-
ing to lower weights, i.e., modulo the orthogonal complement of Re0.
Therefore

( 8 ) \\πa(g)'λ'eQ\\>\λ\ QζR gtU-) .

We have then, using (6) and (7):

There is a matrix realization of ^ over Q in which Γ is represented by integral
matrices [5, Cor. 7.13]. The elements of CΓC U C'Γ C-1 are then
rational matrices whose entries have bounded denominators. This implies that
tXa > 1 (see the proof of Cor. 15.3 in [5]), whence

(10)

w(λa) is a weight of πa, therefore [6, § 12]

wW«) = *a-Σcβ β (cβ e Z, cβ > 0) .

(10) can then be written

(11) a(q)2*

Since cβ > 0 and a(x)β < t, the last factor is >-l, and we have proved the
existence of a constant δλ > 0 such that

(12) α(#>^.φO^ Φ)-S

for all x, xf
 G<3,C,C' εC,γ e Γ and a € J , with q defined by (4).

For an element a e A, let n(ά) be the positive square root of

(13) n(a)2= Σ l n 2 α ' « .

In order to prove (5), it suffices, by § 1.3 (3), to show the existence of a
constant <52 such that

(14) n(a(q)) -
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for all x, xr ζ&,c,c'zC,γε Γ. We have

(15) = Σ (In a(qy* + In {a(x'Y« a(x)->«)
α € J .Qna(qY* - ln(a(x'y« a(x)-λή) .

If n(a(q)) — n(a{xf) > a(x)~ι) = 0, there is nothing to prove. If not, it is clear
that

Qna(qY + In (a(x'y«.a(xy*°)/(n(a(q)) + nίaM aίx)-1)

is < 1 in absolute value. On the other hand, (12) implies that

- ln(a(x'y°.a(x)~λ«) = In λa(a(Φ' ΦT1 - a(x))

is bounded from below. It follows then that n(a(q)) — n(a(x') a(x)~ι) is
bounded from below, which proves (14), and ends the proof of the theorem.

2.4. Let / C Δ. As usual, 0>j denotes the standard parabolic subgroup
generated by U and the centralizer of Sfj, where Sf V is the identity component
of Π aζ j ker a. The group ^d is the semi-direct product over Q of its unipotent
radical % j by &(Sfj). An element gε^j can be written uniquely as g = r u
(r <= ^ ( ^ j ) , u € <%j). The element r will be called the reductive part of g.

A sequence of elements xn € © is said to be of type J if a(xn)
a converges for

all a e Δ and if lim (a(xn)
a Φ 0 if and only if a e J.

2.5. Theorem. Let J,J' c Δ. Let {xn}, {x'n} (n — 1, 2, •) be sequences
of elements in ©, of types J and J' respectively. Assume there exist an element
c€GQ and a sequence of elements γnzΓ such that dG{xn,x

f

n-c>y^ remains
bounded as n —> oo. Then

( 1) a(xn)
a X α « ) α , (α e J , π > 1) ,

m particular J = J\ and there exists n0 > 1 s wc/z ί/zαί c-γnePj for n > n0.
Moreover, the set of reductive parts of the elements c-γn(n > nQ) is finite.

By Theorem 2.3, dG(xnx'J is bounded as π -^ oo. Then so is dA(a(xn), a(x'n))
by Corollary 1.7. In view of § 1.3 (3), this implies that \na(xn)

a>a(x'n)-a is
bounded in absolute value for every a e Δ, whence (1) and the equality J — J'.

We now revert to the proof of Theorem 2.3, let x = xn, xr = x'n, γ — γn and
write zn,qn,wn instead of z,w,q. By assumption and Lemma 2.2, zn is
bounded; hence so are qn and, by Corollary 1.7, a(qn). In view of (1),
§2.3 (11) yields

( 2 ) a{xnY**r> <\ , (n > 1) .

Assume that cβ Φ 0 for some βe Δ. By standard properties of weights [6,
§ 12.14, Prop. 12.16] we have then ca Φ 0. Since a(xn)

β < t for all rc's and
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βeΔ, the relation (2) then forces lima(xn)
a to be Φθ, i.e., aeJ. Otherwise

said, if a$J, then wn(λa) = λa for n big enough. But then we have wn e Pj,
hence cγnePj for those values of n (see § 2.3 (3)), which proves the second
assertion. Let now n > n0. Then we can write

( 3 ) c rn = rn un, (rn€ <?(£,), un e Uj) .

There exists a matrix realization & C GL(n, C) of ^ over Q such that Γ is
represented by elements of GL(n, Z). Then {c>γn} consists of rational matrices
with bounded denominators. Since the decomposition (3) is over Q, there exists
then also a rational number / such that f>rn e M(n>Z) for n> n0. In particular
the rn's form a discrete set. In order to show that this set is finite, it therefore
remains to show that {rn}n>no is relatively compact.

Let Aj be the identity component of Sj9 in the ordinary topology, and Mj
the analogue of the group M in § 1.3 (for P — Pj). Then

Z(Aj) = Z(Sj) = MjXAj, A = (Mj Π A) x Aj .

Write accordingly

a(xn) = aιn a2n , a(x'n) = a'ln, a'2n , (aιn, a[n β Ma a2n, a'2n eAj) ,

rn = = f"in * ̂ 2n J viTO ^ ^*J? r2w € Aj) .

For n > n0, we have zn = a(xf
n) -rn'Un a(xn)~ι e Pj9 and the reductive part of

zn is

zn is bounded (n > w0) hence so are its reductive part and the components

< rιn -a£ € Mj , o!2n -a2^ r2neAj

of the latter. Since any a e / is trivial on ^4^, we have

α ( ^ ) α = aa

ln , α « ) α = a[a

n (aeJ,n> n0) ,

hence αfn, αjj X 1 for α e /. But / is a set of coordinates o n M Π ^ therefore
aιn and αίn are bounded, and then so is rln. The elements aιn and a[n being
bounded, we have

A,n > nQ) ,

and therefore, by (1),

α2

αn X din (a€J,n> n0) ,

which implies that a2n-a2^ runs through a relatively compact subset of Aj. It
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follows then that r2n is bounded, hence rn is bounded, which ends the proof of
the theorem.

Remark. In view of § 1.2 (4), Theorem 2.5 and its proof remain valid if
dG(Xn>χn'c'ϊn) is replaced by dx(o-xn, θ'Xf

n-c>γn). In the case where G =
SL(n, R), Γ = SL(n, Z), c = e, this theorem, thus formulated, yields [16,
Thm. 1, p. 19].

3. An extension theorem

From now on, and up to § 3.10 inclusive, X is assumed to be a bounded
symmetric domain.

3.1. We recall that a complex analytic space E is hyperbolic if its Kobayashi
pseudo-distance d0 is a distance [10]. The open unit disc D and the punctured
unit disc D* = D - {0} are hyperbolic [10, Chap. IV, § 4].

If E and Ef are hyperbolic, then E x Er is so, and for x, y <= E, xf, y' e Ef

we have

( 1 ) max (do(x, y), do(x', / ) ) < do(x, * ' ) , (y, / ) ) < do(x, y) + do(x', / )

[10, Chap. IV, Prop. 2.6 and §4].
Let E be a complex manifold endowed with a hermitian metric whose

holomorphic curvature is bounded from above by a strictly negative constant,
and d be the associated distance. Then [10, Chap. IV, Thm. 4.11] there
exists a constant c > 0 such that

( 2 ) d(x,y) < c do(x,y) , (x,yeE) .

In particular, E is hyperbolic, and d0 is a complete metric if d is so. We recall
that a holomorphic mapping always decreases dQ.

3.2. Assume now X to be irreducible. We claim that there exist constants
c, d > 0 such that

( 1 ) c dΣ{x,y) < do(x,y) < d dx{x,y) , (x,yeX) .

Any two invariant Riemannian metrics on X are proportional, hence dx2 is
associated to a hermitian metric with holomorphic curvature bounded from
above by a strictly negative constant, and §3.1 (2) yields the first inequality in
(1). X contains a totally geodesic polydisc F = Dι (where / is the rank of X).
Given x, y e X there exists an automorphism of X which brings x, y in F. In
order to prove the second inequality in (2), we may therefore assume x,yeF.
The restriction of dx2 to F is invariant under Aut F, hence majorizes a multiple
of the Poincare metric of F. But the inclusion map F —> X is holomorphic,
hence decreases the Kobayashi distance. Therefore it suffices to prove the
second inequality of (1) in the case of a polydisc. But then it follows from
[10, Example 1, p. 47].
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3.3. Let X = Xλ X X Xm be the canonical decomposition of X as a
product of irreducible bounded symmetric domains. This decomposition is also
a Riemannian product with respect to any invariant Riemannian metric. In
particular if dt is the restriction of dx to Xu then dx is majorized by the sum
of the di's. It follows further from §3.1 (1) and §3.2(1) that there exist
constants c, d > 0 such that

( 1 ) c max; (di(xi9 yj) < dQ(x, y) < d> J]t d^xi9 yt) ,

for all x = (* t), y = (yt), (xi9 yt e Xi91 < i < s).
3.4. Assume now & to be simple over Q. Let Γ be an arithmetic subgroup

of &, V — X/Γ, V* be the complex analytic compactification of V constructed
in [3], and π: X —> V be the canonical projection. We shall now use the results
and notation of [3], and recall here briefly those which are most pertinent for
the sequel. The numbering of the elements of Δ will be the canoical one
[3, §1.2, Prop. 2.9].

F * is by definition the quotient by Γ of a space X* on which GQ operates.
X* is the union of X, which is open in X*9 and of so-called rational boundary
components. Those are the transforms under GQ of the standard boundary
components Fb (1 < b < s = rkQ^). For each boundary component F there
is a canonical holomorphic projection σF: X -> F, which is constructed as the
map v of § 1.8. In particular, § 1.8 (1) holds true for σF.

Let {Jtrj^i be a sequence of elements in ©, d e GQ, and F be a rational
boundary component. Then xn-d tends to a point u e F in the topology of X*9

if Z? is the greatest index / such that lim a(xn)
ai = 0, Fb d = F and σF(o * n d)

— • w .

Conversely, let {pw} be a sequence of elements of V which tends to an
element p e F * — F. Let Z? e {1, , s} and ceGQ be such that p e π(F 6 c),
and w e F = Fb >c be such that π(ύ) = p. Then, after having replaced {pn} by
an infinite subsequence, we may assume that there exist xn and d as before, with
π{xn d) = pw for all n's and Fbd = F.

This follows from the description of the topology of X* or F * in terms of
"truncated Siegel sets" [3, §4.12, Lemma 4.13], if we take into account the
fact that σFb(o) — ob.

3.5. Proof of Theorem B. We first reduce the proof to the case where ^
is Q-simple. We may assume ^ to be adjoint type [3, Lemma 11.5]. It is then
the direct product over Q of g-simple groups ^ i (1 < i < m). The symmetric
space Xi of maximal compact subgroups of Gt is a bounded symmetric domain,
and X is (complex analytically) the product of the Z / s . Let Γt = Γ Π Gt,
and Γ be the product of the Γ€ . It is a normal subgroup of Γ, which is
arithmetic [5, § 7], hence of finite index in Γ. The canonical projection F ' =
X/Γ' —> F extends to a holomorphic map F 7 * —» F * with finite fibers, which
sends boundary components onto boundary components. From this it is
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elementary that it suffices to prove Theorem B for V and V*. But V is the
product of the quotients Vt = XijΓu and then F ' * is the product of the
complexifications Vf of the K€'s, whence the reduction to the g-simple case.

Let now pn, qn and p, q be as in the statement of Theorem B. Let F and Ff

be rational boundary components of X* whose projections contain p and q
respectively, and uζF,u' eF' be such that π(u) = p, π(u') = q. We have to
show the existence of γεΓ such that uf = u γ. Let 6, 6 'e{l , -,s} and
c, d € GQ be such that F = Fb-c,F' = Fb,-c'. In view of § 3.4 we may assume
(after having taken subsequences and renumbered), the existence of elements
xn, x'n € © and d, d! e GQ such that b (resp. 60 is the greatest index / for which
a(xn)

ai (resp. a(x'n)
ai) tends to zero, Fb d = F, Fb,-d' = F' and vF(o-xn d)-+u

(resp. vF,{ρ-x'n>dr) -• wO
Let ^ be the distance function on X/Γ defined by

dί(π(x), π(y)) = Inf dz(x, y. r ) , (JC, y € X) .

By § 3.3 and the assumption of Theorem B, d'v(pn, qn)-^0; therefore we can
find γnεΓ such that

By Theorem 2.5, we have then

a(xn)
a X a(x'n)

a (a e Δ) ,

which implies in particular that 6 = 6'. Let / = J — {6}. The group Pj is the
normalizer of Fb. After having gone over to subsequences, we may assume
a(xn)

a and a(xf

n)
a to converge for all cceJ; xn and t^ are then of type /' for

some ]' Z) /; by Theorem 2.5, there exists then w0 such that

( 1 ) d'.rn d-*sPj (n>nQ).

We have therefore

( 2 ) F'-u = Fb.d' γn.d-^d = Fδ d = F , (n > n0) ,

whence also

( 3 ) ΰlyn 6 d^.P^.d - JΓiJ?) (n > n0) .

By construction

( 4 ) \imσF(θ'Xn'd) = u , limσ^o ^ dO = wr .

Since Ff ^no = F, the second relation implies

( 5 ) limσF(θ'X'n'd''γno) = uJ'-γnQ .
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As pointed out at the end of § 3.4, σF is distance decreasing, F being endowed
with a suitable invariant distance function dF. We have then

( 6 ) lim dF(σF(o -xn'd), σF(o x'n. d
1 - γn)) = 0 .

Together with (4), this yields

( 7 ) YιmσF(θ'Xf

n>d''γn) = u .

We have o-x?n-d-γnzF and

The map v commutes with the action of Jf(F) on X and F. Since γ~] - γn e
we have

( 8 ) σF(o-χn'd'-rn) = ^ ( β ^ ^ r ^ rnί r * .

Let ^ ( F ) = fee^(f1)|/.g = /,(/6/0} be the centralizer of F, and G(F) =

tA
r(F)/^'(F). Since F is a rational boundary component, the image of ^ ( F ) Π Γ

in G(F) is a discrete subgroup (in fact of arithmetic type, see [3, Thm. 3.7]).
In particular, it acts in a properly discontinuous manner on F. In view of (4)
and (8), there exists then γ e Jf(F) Π Γ such that

( 9 ) σF(p xf

n d7 γno) - γ = <^(o. < . d7 γn)γ~l ^^ = σF(o < d r. γn)

for infinitely many n's. We have then, using (5) and (7):

u' ΐn0'ϊ = l i m ^ o . ^ . d 7 . ^ ) . ; - = limσ^o ^ d'.T'J = u ,

hence uzu! -Γ and p = 7r(w) = 7r(wO = q.
3.6. Let Z be a complex space. A holomorphic map f:Z^V is said to

be locally liftable if for every zεZ there exist a neighborhood Uz of z inZ and
a holomorphic map fz of C/2 into X such that the restriction of / to Uz is equal
to πofz. li Γ is torsion-free, then it operates freely on X, the projection π is
a covering map, and every holomorphic map of Z into V is locally lif table.
Since a product of open discs is a hyperbolic space, the following theorem
contains Theorem A of the introduction as a special case.

3.7. Theorem. Let Z be a normal hyperbolic space, a a positive integer

and f: D* α x Z -> V a locally lif table holomorphic map. Then f extends to a

holomorphic map of Da X Z into 7*.
The space E = D* α x Z is a normal hyperbolic analytic space, since both

factors are so. Let dE be the hyperbolic metric on E. Then [10, Prop. 6.1,
p. 104]

( 1 ) d'0(f(u), f{v)) < dE(u, v) , (u,vεE) .
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Since Da x Z is normal, it suffices, by Riemann's extension theorem
[1, Thm. 44.42, p. 420], to show that / extends to a continuous map of
Da x Zinto F * .

First let Z be reduced to a point. In view of (1) and § 3.5, our assertion is
essentially contained in [9, Thm. 2]. For the sake of completenss, we sketch
a proof. First let a — 1. Let Cn be a sequence of concentric circles in Z)*, with
center at the origin, whose radii rn tend to zero. Then the hyperbolic length
L(Cn) = 2τr(ln(l/rJ)-1 (see [10, p. 81]) tends to zero. By (1), the length of
f(Cn) also tends to zero, and § 3.5 then shows that, for some infinite subse-
quence, the images f(Cn) converge to a point of F * . Hence M. H. Kwack's
theorem [12, Thm. 3], [10, Thm. 3.1] obtains and yields our assertion.

Let a > 2, and u = {ut) eDa — Z)*α. Let r be a strictly positive number
< max (|Ui|, 1 — | ut|) if ut Φ 0 (1 < / < a). Let λ = (^) be a sequence of com-
plex numbers of modulus one. Then j u λ : z^» (ut + λi-z) is a holomorphic
embedding of D* — {z e C\ 0 < |z| < r) into D*a by the above, / o j u a extends
to a holomorphic mapping of Dr = {z € C\ 0 < | z\ < r} into V*. Let vua be its
value at the origin. In fact, vu^λ is independent of λ. This follows from Theorem
1 in [9], or also from § 3.1, § 3.5 and the fact that if X = U ) is another
sequence of complex numbers of modulus one, and if zn e D* tends to 0, then
the hyperbolic distance of λiZn and Λ zw also tends to zero. We then define an
extension f of / to Da by putting f(u) = fUii(0) for uεDa — D * α . Let now zn

be a sequence of elements in D*a which converges to u. By Theorem 1 of [9]
applied to the sequence of maps fu^λn where λn = (zni/\znί\), we have

lim f(z n) = lim /ttf2fl(zn) = lim / ^ J O ) = f(u) ,

whence the continuity of /'.
Let now Z be not reduced to a point. For each zeZ, there is a continuous

extension fz: Da x {z} -* F * of the restriction of / to D* α x {z}. Let then
f: Da x Z —> F * be the map whose restriction to Da x {z} is equal to fz for
every zzZ. It extends /, and there remains to show that it is continuous. To
prove the continuity of f it suffices to show that if (y, z) eDa x Z and (yn, zn)
is a sequence of elements in E which converges to (y,z), then f((yn,zn)) —>
/,(y,z). By §3.1,

^(Cyn, zn), (yn, z)) < dz(zn, z) ,

hence the left hand side tends to zero. By (1) and § 3.5, it follows (after having
taken subsequences convergent in F*) that

Um K(yn, zn)) = Hm f((yn, z)) .

Since the right hand side is fz((y, z)) by definition, this proves our contention.
3.8. Remark. If Γ has torsion, d'Q is not necessarily the hyperbolic distance
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on F, but majorizes it [10, p. 103]. Thus, strictly speaking, V is not necessarily
hyperbolically imbedded in F * in the sense of [9], [11], and the theorems of
[9] do not apply directly to our situation. However, this is a harmless point:
since we have the "hyperbolic embedding" condition for the modified pseudo-
distance d'O9 and the distance decreasing property § 3.7 (1), the arguments of
[9] apply without change to our case (see [11] for similar remarks).

3.9. Let us denote by F * * the set F * endowed with the topology defined
by Piateckii-Sapiro [12], using "cylindrical sets" in realizations of X as "Siegel
domains of the third kind". The identity map t: V* -^ V** is continuous [2].
Since F * is compact and Hausdorfϊ, i is a homeomorphism if and only if F * *
is Hausdorfϊ. In [12], it is asserted that this follows from the results announced
in [4], but the assertion is not really convincing to the author of the present
paper.

Theorem B is obviously equivalent to the following assertion:
( * ) Given p e V* — V and a neighborhood Uλ of p in V*, there exists a

neighborhood U2 of p in Uλ such that

d'0(u2 n v, v - (u, n v)) > o .

This statement is proved in [11] for F * * . From this, the authors deduce
Theorem 3.7 for E = £>* x Db by using Theorem 6.1 of [10]. However, in
the latter, all spaces under consideration are of course Hausdorff. Similarly [9]
proves Theorem A for F * * , using (*) above, and Theorem 1 of [9], where
again the spaces are Hausdorff. It is also pointed out there that the proof of
Theorem 2 is also valid for F * , provided (*) holds true in F * .

All these distinctions will be happily superfluous and the situation more
satisfactory once it is shown that F * * is Hausdorff. The author believes it
follows from his joint work with J-P. Serre on corners, but prefers not to
commit himself firmly on this point until everything is fully written up. The
proof of (*) in [11], unlike the one of Theorem B here, does not involve any
reduction theory this is maybe an indication that indeed some rather strong
results in reduction theory are hidden behind the equivalence of the two
topologies.

In the following theorem, which was pointed out by P. Deligne, V is endowed
with its canonical structure of quasi-projective variety [3, § 10].

3.10. Theorem. Let S be a complex algebraic variety, f a holomorphic
map of S, viewed as an analytic space, into V. Then f is a morphism of alge-
braic varieties.

This assertion is local in the Zariski topology of S, so we may assume S to

be affine, and in particular to be quasi-projective. Furthermore, it suffices to

show that the restriction of / to an open Zariski-dense subset is algebraic. So

we may assume S to be smooth. By Hironaka's desingularization theorem [8],

S may be embedded as a Zariski-open subset in a smooth projective variety S
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in such a way that S — S consists of smooth divisors with normal crossings

more precisely, around any point of S — S there are coordinates with respect

to which 5 is of the form £>*α x Db (a + b = ή). By Theorem A, / extends to

a holomorphic map f of S into V*. Since S and F * are projective varieties,

the map f is a morphism of algebraic varieties by Chow's theorem [13, Prop.

15], whence the theorem.

3.11. Let us now drop the assumption that X carries an invariant complex

structure. Theorem B is then also true for the embedding of V = X/Γ into

any Satake compactification [4, § 1.4]. The proof is essentially the same and

relies on suitable analogues of the facts recalled in § 3.4. However, since there

is no adequate reference for them in the literature, we shall not try to make

this more precise.
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