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THE DIAMETER OF ¢-PINCHED MANIFOLDS

KATSUHIRO SHIOHAMA

0. Introduction

It is interesting to investigate the manifold structures of a complete rieman-
nian manifold whose sectional curvature is bounded below by a positive con-
stant. As is well known such a riemannian manifold is compact and we may
suppose that its sectional curvature K, satisfies 0 < § < K, < 1 for every plane
section ¢. Berger proved in [2] and [3] that a complete, simply connected and
even dimensional riemannian manifold with § = 1/4 is homeomorphic to a
sphere, or otherwise M is isometric to one of the compact symmetric spaces of
rank one. For arbitrary dimensional riemannian manifolds, Klingenberg proved
in [8] that a complete and simply connected riemannian manifold with ¢ >
1/4 is homeomorphic to a sphere. Moreover, Berger claimed in [4] that M is
a homology sphere if the diameter d(M) of M satisfies d(M) > z/(2+4/6) for
0<o< 1.

Since the diameter d(M) of a §-pinched manifold M plays an important role
in the proofs of these interesting results mentioned above, it might be significant
to investigate the relationship between the manifold structure of M and its
diameter d(M) of a §-pinched riemannian manifold.

One of our main results obtained in the present paper is:

A connected and complete riemannian manifold with 6 = 1/4 is homeo-
morphic to a sphere if the diameter d(M) of M satisfies d(M) > .

For a simply connected riemannian manifold with 6 = 1/4, Klingenberg
claimed in [9] that the distance d(p, C(p)) between any point p € M and its cut
locus C(p) is no less than x, and M is either homeomorphic to a sphere or M
is isometric to one of the compact symmetric spaces of rank one. However the
proof stated in [9] seems to us to be incomplete!.

As the main theorem, it will be proved that a three dimensional, connected,
complete and orientable riemannian manifold with § > 1/4 is isometric to the
lens space L(1, k) of constant curvature 1, if M has a closed geodesic segment
I" with the length £(I") = 2z | k and the fundamental group =,(M) of M satis-
fies (M) = Z,, where k is an odd prime.

Definitions and notations are given in § 1. In §2, we shall give an estimate

Communicated by W. P. A. Klingenberg, October 13, 1969.
1 Added in Proof. Recently J. Cheeger proved this theorem completely.
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of the distance between some point p on a g-pinched riemannian manifold
and its cut locus C(p), which plays an important role in a proof of a sphere
theorem stated above, and the sphere theorem will be proved in this section.
In § 3, we shall study some estimates of cut loci of §-pinched riemannian mani-
folds which are not simply connected. In § 4, we shall investigate some topolo-
gical structure of a §-pinched riemannian manifold with 6 > 1/4 whose funda-
mental group satisfies x,(M) = Z,. In the last section, we shall prove our main
theorem stated above.

1. Definitions and notations

Throughout this paper let M be a connected, complete and differentiable
riemannian manifold of dimension n(n > 2), whose sectional curvature K, satis-
fies 0 <5 < K, <1 for every plane section g. Geodesics in M are parametrized
by arc-length, and the tangent space at a point x € M is denoted by M. Letu
and v be tangent vectors at x, and denote by {u, v} the inner product of u and
v with respect to the riemann metric tensor of M and by d the distance function
of M. For a geodesic segment I = {y(#)} (0 <t <), the length of I" is denoted
by £(I") which is equal to I. A geodesic triangle (I", 4,®) in M is a triple of
shortest geodesic segments each of which is not a constant geodesic. For a
geodesic triangle (I°, 4, ®) let (I'*, A*, @*) be the geodesic triangle in S 2,5
satisfying (') = (I, L(4*) = L(A) and L (9*) = L (D), where Sk
denotes the k-sphere with radius r in a euclidean space R**!. We shall call
(I'*, A*, @*) the corresponding triangle of (I, 4, ®) in S},,5. The universal
covering manifold of M is denoted by M and the projection map by z. The
diameter d(M) of M is defined by d(M) = sup {d(x,y)|x,y € M}.

Let G be the cyclic group of order k& whose generator g is given by g =
[R(l k)

R(/ k)]’ where k is an odd prime and R(#) means the rotation of R*

s _ [ cos2z6 sin2x6
which is defined by R(6) = [—sin 220 oS 2 0]. The lens space L(1,k) of

constant curvature 1 is defined by L(1, k) = S3/G where k is an odd prime.

2. An estimate of cut locus of certain g-pinched manifold

In this section, we shall give an estimate of the distance between some point
x € M and its cut locus C(x) where the diameter d(M) of M satisfies d(M) >
7/(24/8). Our technique does not hold for all points of M but for some pair
of points x,y e M satisfying d(x,y) > =/(24/5) for any 0 < § < 1.

First of all, we shall prove the following proposition.

Proposition 2.1. If the diameter d(M) of M satisfies d(M) > = /(24/3) for
any 0 < ¢ < 1, then M is simply connected.

Proof. Suppose that M is not simply connected. Let p and g be the points
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in M such that d(p, q) = d(M). There are at least two points f, and j, in M
satisfying ﬂ(pl) = n(p,) = p. By completeness of M, there exists a shortest
geodesic 6 = {6(1)} (0 < t < D) satisfying 6(0) = p,, 6(I) = p,and L(6) = | =
d(p,, p,). Putting ©® = no8, we have a geodesic I' = {y(?)} (0 < t < d(M))
such that 7(0) = p, y(d(M)) = g which satisfies {;/(0), 0’(0)> > 0, where r’(t)
denotes the tangent vector of I" at y(f). Then, there is a geodesic I° in M
which satisfies I" = 7o " and 7(0) b, 7dM) =g e M. Consider a geodesic
triangle (17, @, 4) in M where / is a shortest geodesic joining § to p,. Assume
that the perimeter of (I°, 8, /) is less than 2z /48, and let (I'*, ©*, A*) be the
corresponding geodesic triangle of (17, 6, A) in S ,+5- Then by virtue of the basic
theorem on the triangles of Toponogov, every angle of (", 8, A) is not less than
the corresponding angle of (I'*, 0%, A*). Hence we have < (y*/(0), 6*/(0)) <
I (7(0),6'(0)) < ©/2. On the other hand, the inequality #(1) > £(I") >
7/(2+/§) implies that < (y*/(0), 6*/(0)) > =/2, giving a contradiction. There-
fore the perimeter of (I°, 8, A) must be 2x/+/ 5. Then Theorem 4 of [13] im-
plies that M is isometric to the n-sphere S}, of radius 1/+4/5. Making use of
the inequality <{ (7/(0),4’(0)) < z/2, was see that L) =2 + £6) =
z/Vdor (@) = () + ) = z/+/6. It L) = x|+, then L(I) =
d(M) = r/+/8 implies that M is isometric to S7,,5. If £(6) = L(I') + £()
= r/+/6 holds, we have Z(I") < n/(24/6) from L(I") < £([), which is a
contradiction.

Theorem 2.2. For any pair of points x,y in M satisfying d(x,y) > /(24 5),
we have d(x,C(x)) > = and d(y, C(y)) > = where C(x) denotes the cut locus
of x.

Proof. It § satisfies § > 1/4, Proposition 2.1 and a theorem of Klingenberg
[8] imply the statement. Suppose that d(y, C(y)) = p < = holds for some pair
of points x,y satisfying d(x,y) > x/(24/3). We shall derive a contradiction,
and need only to consider § satisfying § < 1/4. By the hypothesis p < z and
an elementary property of cut locus, there is a closed geodesic segment 3 =
{a(D} (0 < t < 2p) such that ¢(0) = o(2p) = y. For any t¢[0,2p], we get
d(x,o(®) > d(x,y) — d(y, () > n/(24/6) — = > 0 which shows that x¢ 3.
Then there exists a point z on X satisfying d(x,z) = d(x, ). Suppose that
z # y. Then by virtue of the second variation formula [1, Proposition 3], we
have d(x, X) < /(24/8). The points y and z divide ¥ into two subarcs. Let 3
be the shorter subarc, @ and A be the shortest geodesics from x to y and x to
z respectively, and (@*, 3*, 4*) be the corresponding geodesic triangle of (@,
3, 4)in 8, /5. Then the inequalities Z(@*) > z/(2v/9), Z(3%) < p < z/(2V/3)
and Z(A¥) < n/(24/5) imply that the angle between X* and A* is greater than
7 /2, which contradicts the basic theorem on triangles.

Therefore we must have y = z, and we have immediately d(x, a(¢) > d(x,y)
for all z € (0,2p). Putting y, = o(p) and d(y,, C(y) = p,, we get p, < p from
y e C(y) and d(x,y,) > d(x,y) > r/(2+/5). There is a closed geodesic segment
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3, ={a,(t)} (0 < t < 2p) such that ¢,(0) = 6,(2p,) = ¥, and x ¢ 3, and therefore
we have the same argument for X, as for X. If X, is a closed geodesic, the
second variation formula stated above implies that the nearest point z, € X, to
x is different from y,, and the same discussion for the geodesic triangle with
vertices (x,y,,2;) leads a contradiction. Hence we only consider X, being a
closed geodesic segment and satisfying d(x, ¢,()) > d(x,y,) for all ¢ ¢ (0, 2p,).
Putting again y, = a,(p,) and p, = d(y,, C(y,)), there is a closed geodesic
segment 3, = {0,(8)} (0 < t < 2p,), where we have p, < p, < p <z and
d(x,y,) > d(x,y) > d(x,y) > x/(2v/5). Repeating this argument, we have
the sequences of points, closed geodesic segments and real numbers as follows:

VsVisVos oot s

2,21,2‘2,... s

PO =025

dx,y) <d(x,y) <d(x,y) <,---.

Since M is compact, the last sequence satisfies d(x, y,) < d(M) for all k, from
which d(x, y,) has a limit and we can choose a subsequence of {y,} converging
to some point y* in M by compactness. Because the function p — d(p, C(p))
is lower semi-continuous, we have lim p, > p* where p* = d(y*, C(y¥)).

On the other hand, there is a shortest geodesic @,_, from x to y;_,, and for
any fixed @; we have the subarc 3,_, of ¥, , which starts from y,_, and ends
at y, with the property that the angle between @; and 5., at 'y, is no greater
than /2. Let (®} ,, 3% ., &F) be the geodesic triangle corresponding to (&;_,,
3., @) in 83,45, where we denote @, = @ and ¥, = X, and let «; be the
angle between @F and 3% ,. Then we get a; < x/2 for all i. By the spherical
trigonometry, it follows that

cos (d(x,y;_)v/ §) — cos (d(x,y)v §)-cos (o;_1v/ &)
= sin (p;_,/ 6)-sin (d(x, y)v/ 8)-cosa; > 0,

which implies cos (d(x, y;_)v/8) > cos (d(x, y)4/ ) -cos (p;_¥/ 8), for all i.
Therefore it follows clearly that

cos (d(x, y)v/8) > cos (d(x, y)v/ ) -cos (pv/ §) > cos (d(x, y)v/3)
] €08 (pi-/3) = ©05 (dlx, YW B)-(cos (*VB*,  k=1,2,--- .

Hence we must have cos (d(x, )4/ ) > 0, so that d(x,y) < x/(24/8), a con-
tradiction. g.e.d.

In order to estimate the distance betweem a point pe M and its cut locus
C(p), the simply connectedness of M is the essential hypothesis for the argu-
ments developed in [7], [8] and [9]. We note that the technique of a proof of



8-PINCHED MANIFOLDS 65

Sphere Theorem investigated by Klingenberg need not the estimate d(x, C(x))
>« for all points of M.

Theorem 2.3. Let M be a connected and complete riemannian manifold.
If the sectional curvature K, of M satisfies 1/4 < K, < 1 for every plane
section ¢ and the diameter d(M) of M satisfies d(M) > w, then M is homeo-
morphic to S™.

By virtue of Theorem 2.2, it suffices to show the following proposition for a
proof of Theorem 2.3.

Proposition 2.4. Suppose that 6 = 1/4 and d(M) > r hold, and set d(p, q)
=d(M). Then for any point r e M, we have d(p,r) <z or d(q,r) <.

In the following we prepare Lemmas 2.5-2.8 for a proof of Proposition 2.4.
The method is analogous to that of Berger [3].

Lemma 2.5 (Lemma 4 of Berger [3]). For any point r e M, we have d(p, r)
<z or d(q,r) <=z or otherwise d(p,r) = d(q,r) = =.

Lemma 2.6 (Lemma 5 of Berger [3]). Suppose that there is a point re M
satisfying d(p, r) = d(q, r) = =, where d(p, q) = d(M). For any shortest geodesic
O ={p®} (0< t< ), (0) = p, o(x) = r, let I" be a geodesic such that I'
= {10} (0 <t < dM)), 1(0) = p, 1(dM)) = q and X ((0),¢(O0) < =/2.
Then we have d(r, y(t)) = « for all 0 < t < d(M) and there is a piece of totally
geodesic surface of constant curvature 1[4 with boundaries @, I' and V', where
U is a geodesic such that ¥ = {¥T' ()} (0 < t < ), ¢(0) = q, ¢(x) = r, and we
also have J (¢'(0),7(0) = n/2, L (YAM)), ¢'(0)) = n/2 and I (¢'(n),
¢(@) = dM) 2.

We can prove Lemmas 2.5 and 2.6 in the same way as that stated in [3].

Lemma 2.7. Let N be defined by N = {x e M |d(x,y) > n/(2+/5) for some
Y € M} where § is any positive constant 0 < § < 1. For any fixed point x € N,
let © and O, be shortest geodesics of length r satisfying x = 6(0) = 6,(0), 6(x)
= 6,(r) = z and 6'(0) #= +6,(0). Then there exists a lune of totally geodesic
surface of constant curvature 1 with boundaries @ and 0),.

Proof. 6'(0) #+ =+ 6,(0) implies clearly ¢'(x) + =+6i(x) from Theorem 2.2.
Since N is open in M there is a point w e ® N N. It follows that d(w, 6,(¢)) <=
for every t¢ [0, ] and exp,,|U is a diffecomorphism, where U is an open ball
in M,, with radius = and center at the origin.

Let 6* = {#*()} (0 < t < n) be a great circle on Sp. Take a point w* e O*
satisfying w* = 6*(¢,), where ¢, is defined by w = 6(¢,). Let ¢ be an isometric
isomorphism of M,, onto (S?),. such that ;0 §'(¢,) = 6*'(¢,) and put x* = 6*(0),
7% = 6*(xw). Then the curve O = (exp,+o o (€xp, | U)™?) 0O, is a regular curve
which connects x* to z* and whose length is equal to = by Rauch’s metric com-
parison theorem [11]. Since Of becomes a great circle, we obtain a lune of
totally geodesic surface of constant curvature 1 with boundaries @ and 6,.

Lemma 2.8 (Lemma 6 of Berger [3]). Let M be a riemannian manifold
whose sectional curvature K, satisfies 6 < K, < 1 for every plane section o,
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and let X,Y and Z be tanget vectors at x e M such that Y + Z, K(X,Y) =
K(X,Z) =6and {Y,X) = {Z,X) > 0. Then we have K(Y,Z) < 1.

Proof of Theorem 2.3. Let I',®, O be the shortest geodesic segments join-
ing p to g, p to r and q to r respectively which are defined in such a way that
there is a piece of totally geodesic surface & of constant curvature 1/4 with
boundaries I', @ and 0. Developing the same discussion as Berger [3], there is
a shortest geodesic I', = {r,(0)} (0 <t < d(M)), 1,(0) = p, 7(d(M)) = q which
satisfies I'; & " and {77(0), ¢’(0)> = 0. Therefore we have another totally geo-
desic surface &, of constant curvature 1/4 with boundaries I";, @ and ©,, where
0, is a shortest geodesic from g to r. Suppose that < (6'(0), 6;(0)) = z. We have
X (#'(n), 6)(x)) = = and moreover & and &, have the same tangent plane at r.
Hence we get < (¢/(n), 6'(z)) = <L (¢'(n), 6,(x)) = = /2, which imply d(M) = =.
Therefore we must have <{ (¢'(0), 6,(0)) <z. Suppose that <{ (¢'(0), 8;(0))=0.
Then & and %, have a common tangent plane at g from which we get I"' = I",.
Hence we have < (§'(0), 6,(0)) € (0, =), and Lemma 2.8 implies a contradiction.

3. Estimates of cut locus of 5-pinched manifold which
is not simply connected

In this section we shall investigate some estimates of cut locus of §-pinched
riemannian manifold which is not simply connected.

Proposition 3.1. If M is not simply connected and 0 <6 < 1, then
d(p, C(p)) < d(M) < 7/(24/ &) for every point p e M. Suppose that there is a
point p e M at which d(p, C(p)) = n/(2v/ 8) holds. Then M is isometric to the
real projective space PR™(5) of constant curvature §.

Proof. Let M be the universal covering manifold of M and r be the pro-
jection map. There and at least two distinct points ,, p, of M such that z(f,)
= 7(p,) = p. Let I" be a shortest geodesic joining f, to j,, and I" be a closed
geodesic segment at p defined by zol' = I'. Then Z(I") is not less than
2d(p, C(p)) = n/+/5, from which we have d(p,,p,) > n/+/6. Thus M is
isometric to S7,,5 by the maximal diameter theorem of Toponogov [13]. Sup-
pose that there is a point j, ¢ M satisfying p, = p, # p, and n(p,) = p. Then
the perimeter of a geodesic triangle in M with vertices p,, p, and p, is not less
than 37/4/ 9, which is a contradiction. Therefore M must be a double covering
of M, and hence we get M = PR"™(J).

Proposition 3.2. Let M be a §-pinched riemannian manifold which is not
simply connected, and suppose that there is a point p e M at which d(p, C(p))
> n/(34/8) holds. Then the fundamental group of M is mn,(M) = Z, or
otherwise, M is odd dimensional riemannian manifold of constant curvature §.

Proof. 1f there are three different points j,, p, and p, in M such that =(p,)
= n(p,) = n(py) = p € M, then we have d(j;, p;) > 2d(p, C(p)) > 2z/(3v/ §) for
every i,j=1,2,3, i+ j, and the perimeter of a geodesic triangle with vertices
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Py, P, and P, is not less than 2x/+/ 5, from which M is of constant curvature 3.
As is well known, an even dimensional complete riemannian manifold of con-
stant positive curvature is isometric to either a sphere or a real projective space.
Hence dim M must be odd.

Corollary to Proposition 3.2. Let M be a §-pinched riemannian manifold
which is not simply connected, and suppose that © (M) +#+ Z,. Then we have
d(x,C(x)) < ©/(34/8) for any x e M. Furthermore if there is a point x ¢ M at
which d(x,C(x)) = n/(34/8), then M is an odd dimensional riemannian mani-
fold of constant curvature §.

We shall give some estimates of cut loci under the assumption § > 1/4 and
certain assumptions for the fundamental groups of pinched manifolds.

Theorem 3.3. Suppose that § satisfies § > 1/4 and M is not simply con-
nected. Then there does not exist any §-pinched riemannian manifold M whose
diameter satisfies n/(24/3) < d(M) < . In particular if the fundamental group
7,(M) of such M satisfies n.(M) = Z,, where k is an integer not less than 2,
then we have d(x,C(x)) > n/k for every point x e M. Moreover if there is a
point xe M where d(x,C(x)) = =]k is satisfied, then M is of constant
curvature 1.

Proof. The first statement is evident from Proposition 2.1 and the Theorem
of Klingenberg [8]. Suppose that the fundamental group =,(M) of M satisfies
n(M) = Z,, where k is an integer such that k > 2. Since the function p —
d(p, C(p)) is lower semi-continuous, there is a point p, ¢ M at which the function
takes infimum p. We have a closed geodesic 3 = {o(#)} (0 < ¢ < 2p) such that
0(0) = a(2p) = p, and p = d(p,, C(p,)). Then there exists a closed geodesic
in M satisfying 7 o S=23. By virtue of 7,(M) = Z,, we have #(3) = 2pk. On
the other hand, every closed geodesic segment in M has length no less than 2z.
Hence we have p > = /k.

If there is a pomt xeM at which d(x,C(x)) = = /k holds Then we have p
= n/k and £(3) = 2x. We shall prove that C(f,) consists of only one point
{¢(=)}. In fact, if there is a point § in C(j,) such that § + &(x), then let 7 be
a shortest geodesic from ¢(x) to §. Without loss of generality we can assume
that {&'(x), ¢’(0)> > 0. For a geodesic triangle & |[x, 2x], ¥, @) with vertices
Do, () and §, we have a contradiction to the basic theorem on triangles be-
cause 7 > w(2+/6) holds.

Remark. If the diameter d(M) of M with § > 1/4 satisfies d(M) = =, then
M is isometric to S7. Furthermore, if there is a closed geodesic segment of length
2z in such a simply connected M, then M is isometric to S7.

4. Topological structures of M satisfying 6 > 1/4 and =,(M) = Z

Throughout this section we only consider M satisfying § > 1/4 and 7,(M)
= Z, First of all we shall prove the following lemma.
Lemma 4.1. Take a pair of points p, q e M such that d(p, q) = d(M). Then
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there is a closed geodesic I'={y(9)} (0 <t < 2d(M)) such that y(0) = y(2d(M))
=pand y(dM))=q

Proof. From the assumptions § > 1/4 and z,(M) = Z,, we have d(M) <
n](2V3) <z Let I' = {r®} (0 <t < d(M)) be a shortest geodesic from p to
q. Since d(p,q) = d(M), there is a shortest geodesic I',, I", = {r,(0} (0 < ¢
< d(M)) from p to g satisfying <{y/(d(M)), —7i(d(M))> > 0. Suppose that
AL G (dM), 1:(d(M))) # =. Then there is a shortest geodesic I', from p to g
satisfying {7'(d(M)) + 7i(d(M)), —r(d(M))» > 0. Take a fixed point j, e M
such that =( pl) =p, and let [", ", and I, be geodesics in M which satisfy z o I
=TI, nol, =T, and nol’, =T, and start from p, Since there are
just two points in ]\71, whose images under = are g, we may consider that I,
and I, have same extremals. But we have d(p,, C(p))) > = by the theorem of
Klingenberg [8]; this is a contradiction. Therefore we must have < (/(d(M),
71(d(M))) = = and < (4(0), 71(0)) = =. q.e.d.

Making use of Lemma 4.1, we have the following:

Theorem 4.2. For any point xe M, n/2 < d(x,C(x)) < n/(24/6) and =2
< dM) < 7/(24/ 8), where the left hand side equalities hold if and only if M
is isometric to the real projective space PR™(1) of constant curvature 1, and the
right hand side equalities hold if and only if M is isometric to PR™() of con-
stant curvature §.

Proof. 1t suffices to prove that M is isometric to PR™(3) if d(M) = =/(2+/ §).
Putting d(p, q) = d(M) = = /(24/ §), there is a closed geodesic I" = {r} 0<t¢
< n/+/8) satisfying (0) = 7(x/+/'5) = p and y(z/(2v/§)) = g. Let I" be the
closed geodesic in M defined by 7o/ = I". Then I’ becomes a closed geodesic
with length 2/ 4/ 8, and we can decompose I” into four shortest geodesic segments
whose lengths are not equal at the same time. A theorem investigated by Sugi-
moto in [12] thus shows that M is isometric to S} ,7, and hence M is isometric
to PR™(9). q.e.d.

Now we shall investigate the topology of M satisfying z/2 < d(M) <z /(2+/ ).
According to the homology theory, M has the same homology group as that
of PR" under our assumptions =,(M) = Z, and M is homeomorphic to S™.

There is an interesting problem which is not yet solved completely.

Problem. Let j be a homeomorphism of S* onto itself satisfying:

(1) jis fixed point free,

(2) jis involutive.

Then, is §*/j homeomorphic to PR"?

Livesay proved this problem affirmatively in [10] under the assumption n<3.
When j is a diffeomorphism or a piecewise linearly diffeomorphism, Hirsch and
Milnor showed in [6] that S*/;j is not diffeomorphic or piecewise linearly diffeo-
morphic to PR in general.

Turning to our situation that § > 1/4 and =, (M) = Z,, we shall prove that
M is homeomorphic to S*/j, where j is a homeomorphism of S™ onto itself with
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the properties (1) and (2) stated above. For the construction of j, we prepare
Lemmas 4.3-4.6 below. We set d(p,q) = d(M) = l. and the closed geodesic

={®} 0 <t <L 2D, y(0) = y2D) = N2 and y(l) = q as stated in Lemma
4 1. Then there exists a closed geodesic I” in M satistying 7 o I' = I', and there-
fore we have £(I") = 4l.

Lemma 4.3. Putting p, = 7(0), 4, = 7(D), p, = 72D and G, = 73D, for
any point % e M we have d(%, p)) < (24 8) or d(%, p)) < n/(2/).

Proof. We may suppose that % ¢ I". Take a point Z on I” satisfying d(%, I")
=d(%, 7). It follows d(%,7) < =/(2+4/8) by use of the second variation formula
(Proposition 3 of [1]). Without loss of generality we may also suppose that
d(p,,?7) <1< =/(2+/5). Making use of the basic theorem on triangles for a geo-
desic triangle with vertices (p,, Z, %), we thus have d(p,, %) < n/(24/9).

q.e.d.

No_w, let U, and U, be open balls with radius z centered at the origin in M,
and M ;, respectively. Then exp;;, | U; is a diffeomorphism. Let D be the standard
n-cell with boundary D = $"~! C R", and let V| and V, be given as follows:

V,= {¥eM|dZ, p) < d, )}, V,={¥eM|d&,p) > d(&,pp} .

We have a construction of a homeomorphism 4 of S* onto M investigated by
Klingenberg in [7] as follows.

Lemma 4.4. There are homeomorphisms h, and h, such that h;: D — V,
satisfying h{D) = V;, h(D) U h(D) = M and h,(D) N h(D) = h(S"!) =
h,(S*~Y). Making use of h, and h,, we have a homeomorphism h: S* — M.

On the other hand, by virtue of the hypothesis z,(M) = Z, we have a map
f of M onto itself defined by f(¥,) = %, for any % e M, where (%) = n(%,),
X, # X,. Then clearly we have the following:

Lemma 4.5. f satisfies the following:

(a) fisan isometry.

(b) f is involutive.

(c) f has no fixed point.

(d) fol' = I, where I' is stated in Lemma 4.3.

Combining Lemmas 4.4 and 4.5, we get

Lemma 4.6. We have f(V,) =V, and f(V,) = V,. In particular f(p,) = p,.

Proof. foI' = I' implies f(,) = p,. Take a point % ¢ ¥, N V,. Then there
exist uniquely determined shortest geodesics 4 and @ joining p, to % and , to
% respectively. Thus /4 and @ have the same length which is not greater than
7/(24/3), an dthe intersection of fo 4 and f o @ must coincide with f(¥). Hence
we get f(X) e V, N V,, from which the statements follow. g.e.d.

Combining Lemmas 4.3-4.6, we find the following:

Theorem 4.7. Let j be defined by j = h™'ofoh. Then M is homeomorphic
to S*|j, and j satisfies (1) and (2) in the problem stated above.

Remark. According to [10], Livesay proved that S”/j is homeomorphic
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to PR™ if n < 3. But in our case, we shall be able to prove that M is homeo-
morphic to PR" if n < 4. Since V', NV, is homeomorphic to PR® (in case n = 4),
(c) in Lemma 4.5 implies the statement.

Putting p} = h™*(p,), p¥ is the antipodal point of p} on S*. Hence the image
of every great circle from p¥ to p¥ under j is also a great circle from p¥ to p¥.

5. Proof of the main theorem

Throughout this section, let & be an odd prime. Let M be a §-pinched
(6 > 1/4) riemannian manifold whose fundamental group =,(M) satisfies z,(M)
= Z,. Then we shall prove the following:

Theorem 5.1. Let M be a connected, complete and orientable riemannian
manifold of dimension 3 satisfying 6 > 1/4 and =(M) = Z,, and suppose that
there is a closed geodesic segment I" of length 2r [ k. Then M is isometric to the
lens space L(1, k) of constant curvature 1.

Our method of the proof is as follows:

Put M* = L(1, k) and take two arbitrarily fixed points p* e M* and pe M
respectively. It is clear that M is of constant curvature 1. It is easily seen that
for any tangent vector X* ¢ M}, satisfying X* ¢ C,., we have X* ¢ Q%., where

. is the first conjugate locus in M. Then there is at least one tangent vector
Y* e C¥ which satisfies exp,« X* = exp,« Y* ¢ C(p*). We shall prove that there
is an isometric isomorphism ¢ of M, onto M3 such that «(C,) concides with
C#.C M3, as a set in M3},, and moreover the identifying structures of C, under
exp, and C} under exp,. are quite equivalent under .. That is to say, let
X,YeC, and exp,X =exp, YeC(p). Then we have exppcoX =
exp,«¢o Y e C*(p*). Hence exp,.ocoexp,' becomes a global isometry of M
onto M*.

As the first step, we study the tangent cut lous C,, of M. Theorem 3.3 and
the hypothesis of M imply that M is of constant curvature 1. Then the universal
covering manifold M is S2.

Lemma 5.2. Let M satisfy the assumptions of Theorem 5.1. Then d(q, C(q))
= x|k for any point ge M.

Putting [ = d(q, C(g)), there is a closed geodesic segment 3, of length 2/ such
that ¢,(0) = ¢,(2]) = g. Then we have a great circle 5 in §} = M satisfying
Tl = %,, on which we get 7(6,(0) = n(6,2D) = --- = n(3,(2kD) = q.
Hence we have 2kl = 2. q.e.d.

We denote by 3, the closed geodesic at g with length 2r/k.

Lemma 5.3. Max {d(g, x)|x € M} = = |2 for any point q € M. In particular,
dM) = z/2.

Proof. Putting I = d(q, r) = Max {d(q, x) | x € M}, there is a closed geodesic
Y, = {a,®)} (0 < t < 2z/k) such that ¢,(0) = ¢,(2x/k) = r. By the assump-
tion of d(q, r), there are at least two shortest geodesic segments joining g to r,
say I'; and I',. Suppose that < (75(D), 74(D)) = =. Since | < dM) < ©/(2+/ 8)
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= m/2 and k is an odd prime, there exist at least k + 1 points on S? whose
images under z are all g. Then we must have <{ (yi(D), 75()) # =, from which
there is another shortest geodesic I, from g to r such that <T1(l) + 71D, — (D>
> 0. Let § ¢ M be a fixed point such that z(§) = g, and I"; be defined by
mol'y, =T, and 7,0) = § (i = 1,2,3). It is clear that the geodesic 3 given
by 703 = X, is a great circle on which lie the points 710, 7,(D and 7,0).
Three geodesic triangles with vertices (§, 7,(D), 7,()), (4, 7.(D), 75(D) and (G, 7,(D,
7:1(D) respectively become isosceles triangles whose base angles are all equal to
n/2. Therefore we must have | = z/2 by the cosine rule of spherical trigo-
nometry.

Lemma 5.4. Let q,p e M be a fixed pair of points such that d(p, q)==/2.
Then there are shortest geodesics I'\,I,, ---,I", from p to q satisfying the
following:

D X GUO), 7140 = <L Gil@/2), 1744(x/2) =2z [k for all i = 1,2, - - -,
k, (mod k).

(2) There is a piece of totally geodesic surface F; of constant curvature 1
whose boundaries are I';, I';,, and % ,.

(3) It can be considered that F} is generated by the family of shortest
geodesics {/,} (0 <t < 2n) where each A, starts from ¢,(t) and ends at q with
length Z(A,) = n/2. Moreover, we can consider that A, = I'y and A, _y
= Iy, and the vector field t — 2,(0) is parallel along ¥ ,.

(4) Putting woI'; = I'; such that 7{(x|2) = g where ﬂ(q) = gq, each F} is
covered by the face of geodesic triangle (Fz,]“m,Z |2z — 1)/k, 2xi]k])
under the covering map w©, where wo 2 5 = 2,05(0) = p. In particular,
FrUF;s U .. UZF} is the image of the two dimensional hemisphere with
north pole § and equator 3'; under .

Proof. Let $%g) be the totally geodesic hypersurface of S3, which contains
4 and 5;, and S%(q) be the hemisphere with north pole §. For a geodesic
segment /, in $%(g) joining §;(#) to § and the corresponding geodesic 4, = o 4,
in M joining ¢,(¢) to q, makmg use of Rauch’s comparison theorem we get the
statements (2), (3) and (4). Since we have < (7i(n/2), 7;,.(x/2)) = L (yi(=/2),
7im(m/2)) = 2x/k for i = 2,3,---,k — 1, we get <L (71(0),77,,(0)) = 2x/k
by exchanging the situation of p for the one of g. g.e.d.

Letusput #F*=%; UZ; U --- UZF¢. Since d(p, o,(x/k)) = x/2 holds,
o,(r/k) is able to take place for g in the Lemma 5.2-5.4. Then we have a piece
of totally geodesic hypersurface #; of constant curvature 1 with boundaries
I';|[—=/2,0], I';,,|[—=/2,0] and X, which is a prolongation of & . Putting
F-=F7UZF;U...UZF;, we get a compact totally geodesic hypersurface
For = F* |J F~ which is the image n(5%q)) of S*(g) C ¢ under the covering
map =. It is clearly seen that %7 covers Y,k times, and its tangent space
(F 7)), at p consists of k-sheeted planes (F; U #1),, -+, (FiF UZF ') each
of which contains ¢/(0) and the angle between (#; U Z. )pand (FLUF L),
is equal to 2z /k.
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Lemma 5.5. The cut locus of the totally geodesic hypersurface n(S*(§))
= F %P with respect to p consists of A, |l—=/2,7/2), Asepp|l—=n]2,7/2] and
Agi—vyese | l—7 /2, @ [2], which is contained entirely in the cut locus C(p) of M.

Proof. By the construction of & %2, the first statement is evident. Suppose
that there is a shortest geodesic of M from p to 1,,,(s) € #%? which is not con-
tained in & %?. Then there are at least k + 1 points in S whose images under
z are ,,(s). Hence p and 2,,,(s) can be joined by shortest geodesics of M which
lie in F¢?. q.e.d.

By exchanging g (north pole) and ¥, (equator) for p and ¥, respectively,
we get a compact totally geodesic surface %77 instead of .#%? whose tangent
space (#9), at p is the plane in M, orthogonal to ¢/,(0). Therefore we get
the family of compact totally geodesic hypersurfaces {F°1©?} (0 < ¢t < 2n),
and M can be considered to be constructed by this family of hypersurfaces.

Lemma 5.6. Let (e, e,, e;) be an orthonormal basis for M, such that e, =
0,(0) and e, = 11(0). Then for any X e C, given by

X/||X]|| = e, cosa + e,sin wcos B + e;sin o sin
0<a<27,08< 20,

we have || X| = cot™' (cos wcot x/k). Let X,eC, be defined by exp, X, =
exp, X € C(p), where X is given by the above equation and a + n|2. Then we
have

X, = cot™! (cos @ cot z/k)[e, cos (x — &) + e,sin(x — a) cos (8 + 2x/k)
+ e,sin(x — @) cos (B + 2z /k)] .

Hence the identifying structure of C, under exp, is completely known.

Proof. Since d(p, a,(1)) = x/2 holds for all ¢ ¢ [0, 2x], there exist ¢, and the
compact totally geodesic hypersurface % “”>? a sheet of whose tangent planes
at p is spanned by e, and e,cos  + e;sin 8. Then we find #, = 8, and also see
that #° #? is obtained by =(S&(B))). There is a geodesic triangle on $%(&5(B))
with vertices exp; X, p and 4;(2z/k) satisfying I (exp; X,p,6;Q2n/k) =
I (expp X, d3Q2r/k), p) = a, where we define da(X) = X, X ¢ M Then the
cosine rule of spherical trigonometry implies that || X || = cot™! (cos acotr/k).
It is easily seen that < (X,,d,(0)) = 7 — < (exp; X, 6;(22/k),p) =1 — «
because  is a local isometry.

Remark. As for a vector X = (x/2)(e,cos 8 + e,sin ), putting X; =
(z/2){e,cos (B + 2zi/k) + e;sin (B + 2xi/k)}, i=1,2, - - -, k we have exp, X,
= exp, X

As the final step, we shall study the tangent cut locus C#% of the lens space
M* = L(1, k). The universal covering manifold of M* is S3. Let ge G be the
generator of the cyclic group G of order k, where k is an odd prime.

k
For arbitrary point X ¢ S, we have ), g¢(¥)=0, from which the points g(%),
i=1
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-+, 8%(X) = X lie on a great circle of S} and divide the great circle into equal
parts of length 2zk. Putting x* = z(X), there is a closed geodesic in M* with
length 2z /k which starts at x* and is obtained from the image of the great
circle containing g‘(x) under z. We also see that Max {d(x*, y*) | y* e M}=x/2.

Let (u, v, w) be a local coordinate system of S¢ defined by

x(u,v,w) =cosucosv-E, + sinucosv-E,

+ coswsinv-E; + sihnwsinv-E, ,

where (E,, E,, E,, E,) is the orthonormal basis for R*. A totally geodesic hyper-
surface S$%(§) is expressed locally by w = w, which is a two-sphere in S$? with
the north pole § given by g = cos w,- E; + sin w,-E, and the equator given by
u—cosu-E, + sinu-E,. Since S§) is of constant curvature 1 and 7 is a local
isometry, =(S%§)) is also compact and of constant curvature 1 with self inter-
section in such a way that the image of equator is a closed geodesic of length
2z [k and is covered k times by the equator u — cos u-E, + sin u-E,. We see
that any other point on #(S*(g)) has no intersection.

Let ﬁ'ﬁ = {6;(w)} (0 < u < 2r) be defined by ¢;(w) = cosu-E, + sinu-E,
where we put p = (1,0, 0,0) or p(u,v,w) = (0,0,0), and =(p) = p*. We see
that the cut locus of #($%(§)) with respect to p* e z($*(§)) is contained entirely
in the cut locus C*(p*) of M*. Putting 4, = {1,(v)} (0 < v < 7/2), 1,(0) =
d;w) and 1,(x/2) = §, o35 = 2%, 0%(0) = p* and xod, = A%, 25(0) =
o¥(u), the cut locus of =#(S*§)) with respect to p* = ¢%(0) is the set
{4¥ I1—=/2,x/2l|u = i — D=x/k,i=1, 2, , k}. Denoting by I'; the
geodesic in S} joining ¢;(2xi/k) to g, i.e., r,= Am /5> We see the angle between
glol';and g/*'o I';_, at j is equal to 27r/k forevery j,i=1,2, -,k (mod k).
ThlS fact shows that the angle between I'} and I'},, at p* is equal to 27r Jkfori=

-, k. We also see that the angle between X%, and I'} is equal to z/2.

Denoting F P = 1(S4§)), where g* = n(§), we have the same arguments
for the tangent space (& 7"7%),,, at p* as those of # %7, and the family {% **¢*®. 7"}
(0<t<2x) generates M*. Then we have the same argument as that in Lemma
5.6 for Ck C M.
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