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THE DIAMETER OF δ-PINCHED MANIFOLDS

KATSUHIRO SHIOHAMA

0. Introduction

It is interesting to investigate the manifold structures of a complete rieman-
nian manifold whose sectional curvature is bounded below by a positive con-
stant. As is well known such a riemannian manifold is compact and we may
suppose that its sectional curvature Kσ satisfies 0 < δ < Kσ < 1 for every plane
section σ. Berger proved in [2] and [3] that a complete, simply connected and
even dimensional riemannian manifold with δ = 1/4 is homeomorphic to a
sphere, or otherwise M is isometric to one of the compact symmetric spaces of
rank one. For arbitrary dimensional riemannian manifolds, Klingenberg proved
in [8] that a complete and simply connected riemannian manifold with δ >
1/4 is homeomorphic to a sphere. Moreover, Berger claimed in [4] that M is
a homology sphere if the diameter d(M) of M satisfies d(M) > π/(2^/~δ) for
0 <δ < 1.

Since the diameter d(M) of a ^-pinched manifold M plays an important role
in the proofs of these interesting results mentioned above, it might be significant
to investigate the relationship between the manifold structure of M and its
diameter d(M) of a ^-pinched riemannian manifold.

One of our main results obtained in the present paper is:
A connected and complete riemannian manifold with δ = 1/4 is homeo-

morphic to a sphere if the diameter d(M) of M satisfies d(M) > π.
For a simply connected riemannian manifold with δ = II A, Klingenberg

claimed in [9] that the distance d(p, C(p)) between any point peM and its cut
locus C(p) is no less than π, and M is either homeomorphic to a sphere or M
is isometric to one of the compact symmetric spaces of rank one. However the
proof stated in [9] seems to us to be incomplete1.

As the main theorem, it will be proved that a three dimensional, connected,
complete and orientable riemannian manifold with δ > 1/4 is isometric to the
lens space L(l,k) of constant curvature 1, if M has a closed geodesic segment
Γ with the length S£(Γ) — 2π/k and the fundamental group πλ{M) of M satis-
fies πx(M) = Zk, where k is an odd prime.

Definitions and notations are given in § 1. In § 2, we shall give an estimate

Communicated by W. P. A. Klingenberg, October 13, 1969.
1 Added in Proof. Recently J. Cheeger proved this theorem completely.
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of the distance between some point p on a <5-pinched riemannian manifold
and its cut locus C(p), which plays an important role in a proof of a sphere
theorem stated above, and the sphere theorem will be proved in this section.
In § 3, we shall study some estimates of cut loci of ^-pinched riemannian mani-
folds which are not simply connected. In § 4, we shall investigate some topolo-
gical structure of a ^-pinched riemannian manifold with δ > 1/4 whose funda-
mental group satisfies πλ(M) = Z2. In the last section, we shall prove our main
theorem stated above.

1. Definitions and notations

Throughout this paper let M be a connected, complete and differentiable
riemannian manifold of dimension n(n > 2), whose sectional curvature Kσ satis-
fies 0 < δ < Kσ < 1 for every plane section σ. Geodesies in M are parametrized
by arc-length, and the tangent space at a point x e M is denoted by Mx. Let u
and v be tangent vectors at x, and denote by <(w, Vs} the inner product of u and
v with respect to the riemann metric tensor of M and by d the distance function
of M. For a geodesic segment Γ = {γ(t)} (0 < t < I), the length of Γ is denoted
by &(Γ) which is equal to Z. A geodesic triangle (Γ, A, Φ) in M is a triple of
shortest geodesic segments each of which is not a constant geodesic. For a
geodesic triangle (Γ,Λ,Φ) let (Γ*, Λ*, Φ*) be the geodesic triangle in S 2

1/V7

satisfying J*?(Γ*) = Jδf(Γ), Sf(A*) = &(A) and J*?(Φ*) = &(φ)9 where S*
denotes the ^-sphere with radius r in a euclidean space Rk+1. We shall call
(Γ*,A*,Φ*) the corresponding triangle of (Γ,A,Φ) in Syvj- The universal
covering manifold of M is denoted by M and the projection map by π. The
diameter d(M) of M is defined by d(M) = sup {J(x, y) | x, y e M).

Let G be the cyclic group of order k whose generator g is given by g =

ι?π / jΛ ' w ^ e r e * i s a n ° ^ prime and #(0) means the rotation of R2

which is defined by R(θ) = Γ c o s J ^ s m I*6]. The lens space L(l , Jfc) of
L — sm 2πθ cos 2πθj

constant curvature 1 is defined by L(l, /:) = Sl/G where k is an odd prime.

2. An estimate of cut locus of certain ^-pinched manifold

In this section, we shall give an estimate of the distance between some point
x e M and its cut locus C{x) where the diameter d(M) of M satisfies d(M) >
πj{2^~δ). Our technique does not hold for all points of M but for some pair
of points JC, y e M satisfying d(x, y) > π/(2</δ) for any 0 < δ < 1.

First of all, we shall prove the following proposition.

Proposition 2.1. // the diameter d(M) of M satisfies d(M) > π/(2</~δ) for
any 0 < δ < 1, then M is simply connected.

Proof. Suppose that M is not simply connected. Let p and q be the points



δ-PINCHED MANIFOLDS 63

in M such that d(p, q) = d(M). There are at least two points pλ and p2 in M
satisfying π(pλ) = π(p2) = p. By completeness of M, there exists a shortest
geodesic Θ = {β(t)} (0 < t < I) satisfying £(0) = p19 0(0 = p2 and &(&) = I =
d(pι,p2). Putting θ = πoθ, we have a geodesic Γ = {γ(t)} (0 < t < d(M))
such that γ(0) = p, γ(d(M)) = q which satisfies </(0), 0'(O)> > 0, where γ'(t)
denotes the tangent vector of Γ at γ(t). Then, there is a geodesic f in M
which satisfies Γ — πoΓ and f(0) = p19 f(d(M)) = q eM. Consider a geodesic
triangle (Γ, θ, A) in M where A is a shortest geodesic joining q to p2. Assume
that the perimeter of (f, 0, i ) is less than 2π/V~δ, and let (Γ*, θ* ? ^*) be the
corresponding geodesic triangle of (Γ, θ, A) in S v̂y- Then by virtue of the basic
theorem on the triangles of Toponogov, every angle of (f, θ, A) is not less than
the corresponding angle of (Γ*, θ*9 A*). Hence we have <£ (;-*/(0),

^(0)) < π/2. On the other hand, the inequality &(A) >
implies that Ĉ (γ*'(O),θ*'(O)) > π/2, giving a contradiction. There-

fore the perimeter of (Γ, θ, A) must be 2π/VJ. Then Theorem 4 of [13] im-
plies that M is isometric to the rc-sphere Sy^j of radius 1/V<5 Making use of
the inequality ^ (f'(O),0'(O)) < τr/2, was see that ^(Γ) = &(A) + &(&) =
π/Vδov Seφ) = &ψ) + Se(λ) = π/fδ. If Seφ) = π/</Ί, then
d(M) = 7r/V<Hmplies that M is isometric to SjVτ I f -^(θ) = ^ ( ^ ) +
= TΓ/VI holds, we have S£{Γ) < π/(2V~δ) from <£{Γ) < £>(A), which is a
contradiction.

Theorem 2.2. For any /?az> o/ points x, y in M satisfying d(x, y) > π/(2Vδ),
we have d(x, C(x)) > π and d(y, C(y)) > π where C(x) denotes the cut locus
of x.

Proof. It δ satisfies δ > 1 /4, Proposition 2.1 and a theorem of Klingenberg
[8] imply the statement. Suppose that d(y, C(y)) = p < π holds for some pair
of points x, y satisfying d(x, y) > π/(2^δ). We shall derive a contradiction,
and need only to consider δ satisfying ^ < 1/4. By the hypothesis p < π and
an elementary property of cut locus, there is a closed geodesic segment Σ =
{σ(t)} (0 < t < 2p) such that σ(0) = σ(2p) = y. For any te [0,2p], we get
d(x, σit)) > d(x, y) - d(y, σ(t)) > π/(2^/~δ) - π > 0 which shows that x <£ Σ.
Then there exists a point z on Σ satisfying d(x, z) = d(x,Σ). Suppose that
zΦy. Then by virtue of the second variation formula [1, Proposition 3], we
have d(x, Σ) < π/(2^δ). The points y and z divide Σ into two subarcs. Let Σ
be the shorter subarc, Φ and A be the shortest geodesies from x to y and x to
z respectively, and (Φ*, J7*, Λ*) be the corresponding geodesic triangle of (Φ,
Σ, A) in S'/vy. Then the inequalities &(Φ*) > TΓ/(2Λ/I), &(!*) <p< π/(2<J~δ)
and £?(A*) < π/(2V"3) imply that the angle between 2* and A* is greater than
τr/2, which contradicts the basic theorem on triangles.

Therefore we must have y = z, and we have immediately d(x, σ(t)) > d(x, y)
for all 16 (0,2p). Putting yγ = σ(/t>) andj/(y15 C(yi)) = ft, we get ft < p from
y e C(yχ) and d(*, yx) > <i(x, y) > π/(2V~δ). There is a closed geodesic segment
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Σx = {σ^t)} (Q<t< 2pλ) such that σ^O) = σ1(2/o1) = yx and xiΣx and therefore
we have the same argument for Σx as for Σ. If Σλ is a closed geodesic, the
second variation formula stated above implies that the nearest point zλ e Σλ to
x is different from y1? and the same discussion for the geodesic triangle with
vertices ( J C , ^ , ^ ) leads a contradiction. Hence we only consider Σx being a
closed geodesic segment and satisfying d(x, σ^t)) > d(x, yj for all ί € (0 ,2^) .

Putting again y2 = σ ^ ) and p2 = d(;y2, C(j2)), there is a closed geodesic
segment Σ2 = {σ2(0} (0 < ί < 2p2), where we have p2 < p1 < p < π and
d(x9y£ > d(x9yd > dfoy) > π/(2«/δ). Repeating this argument, we have
the sequences of points, closed geodesic segments and real numbers as follows:

y y y . . .

p > Pi > p2 >, ' ' ' ,

d(x9y) < d(x,yx) < d(x,y2) < , .

Since M is compact, the last sequence satisfies d(x, yk) < d(M) for all k, from
which d(x, yk) has a limit and we can choose a subsequence of {yk} converging
to some point y* in M by compactness. Because the function p —• d(p, C(p))
is lower semi-continuous, we have lim pk > p* where p* = d(y*, C(y*)).

On the other hand, there is a shortest geodesic φ^x from x to y^, and for
any fixed Φt we have the subarc Σi_1 of ϋ 1 ^ ! which starts from yt^ and ends
at yt with the property that the angle between Φt and Σi_x at j ^ is no greater
than 7r/2. Let (Φf_1? -Σf-i, Φt*) be the geodesic triangle corresponding to (Φi_19

Σi-ι,Φi) in Sl/jj, where we denote Φo = Φ and Σo = I', and let α^ be the
angle between φf and J ^ . Then we get at < π/2 for all i. By the spherical
trigonometry, it follows that

cos (d(x,y^Wδ) - cos (d(x,ytWδ)-cos (p

= sin (^.iV^) sin (d(^, ytW~d) -cos ^ > 0 ,

which implies cos (d(x, y^W δ) > cos (d(x, yiWδ)-cos (pi-iVδ), for all i.
Therefore it follows clearly that

cos (d(x,y)<\/δ) > cos (d(x,yλ)^δ)-cos (pVδ) > cos (d(x9yk)y/δ)

c o s (Pi-W~δ) > c o s WU» 3^A;)V^) (cos (p*</δ))k, k = 1,2,

Hence we must have cos (d(x9y)*/δ) > 0, so that d(jc,y) < π/(2^ δ), a con-
tradiction, q.e.d.

In order to estimate the distance betweem a point p e M and its cut locus
C(p), the simply connectedness of M is the essential hypothesis for the argu-
ments developed in [7], [8] and [9]. We note that the technique of a proof of
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Sphere Theorem investigated by Klingenberg need not the estimate d(x, C(x))
> π for all points of M.

Theorem 2.3. Let M be a connected and complete riemannian manifold.
If the sectional curvature Kσ of M satisfies 1/4 < Kσ < 1 for every plane
section σ and the diameter d(M) of M satisfies d(M) > π, then M is homeo-
morphic to Sn.

By virtue of Theorem 2.2, it suffices to show the following proposition for a
proof of Theorem 2.3.

Proposition 2.4. Suppose that δ = 1/4 and d(M) > π hold, and set d(p, q)
= d{M). Then for any point rεM, we have d(p, r) <π or d(q, r) < π.

In the following we prepare Lemmas 2.5-2.8 for a proof of Proposition 2.4.
The method is analogous to that of Berger [3].

Lemma 2.5 (Lemma 4 of Berger [3]). For any point r e M, we have d(p, r)
<π or d(q, r) < π or otherwise d(p, r) — d(q, r) = π.

Lemma 2.6 (Lemma 5 of Berger [3]). Suppose that there is a point rzM
satisfying d(p, r) = d(q, r) = TΓ, where d(p, q) — d(M). For any shortest geodesic
φ = {φ(t)} (0 < t <π), <p(0) = p, ψ(π) = r, let Γ be a geodesic such that Γ
= {γ(t)} (0<t< d(M)), r(0) - p, γ(d(M)) = q and ^ (γ'(0),Ψ'(0) < π/2.
Then we have d(r,γ(i)) — π for all 0<t< d(M) and there is a piece of totally
geodesic surface of constant curvature 1/4 with boundaries Φ, Γ and Ψ, where
¥ is a geodesic such that Ψ = {Ψ(t)} (0<t<π), 0(0) = q, φ(π) = r, and we
also have < (y/(0),/(0)) = π/2, £ (γ'(d(M)), ψ'(0)) = π/2 and ^ (ψ\π),
ψ'(π)) = d(M)/2.

We can prove Lemmas 2.5 and 2.6 in the same way as that stated in [3].

Lemma 2.7. Let N be defined by N = {xεM\ d(x, y) > π/(2\/~δ) for some
y <ε M] where δ is any positive constant 0 < δ < 1. For any fixed point xeN,
let Θ and Θx be shortest geodesies of length π satisfying x = 0(0) = θ^O), θ(π)
= θx(π) = z and Θ\O) Φ ±θ'1(0). Then there exists a lune of totally geodesic
surface of constant curvature 1 with boundaries θ and θλ.

Proof. 0'(O) Φ ±0J(O) implies clearly θ'(π) Φ ±θ[(π) from Theorem 2.2.
Since N is open in M there is a point w e θ Π N. It follows that d(w, θ^t)) < π
for every t g [0, TΓ] and expw | U is a diffeomorphism, where U is an open ball
in Mw with radius π and center at the origin.

Let θ * = {0*(O} (0 < t < π) be a great circle on Sf. Take a point w* e 0*
satisfying w* = θ*(t0), where tQ is denned by w = θ(tQ). Let t be an isometric
isomorphism of Mw onto (S?)w* such that c o Θ'(Q = θ*'(t0) and put JC* = ί*(0),
z* = 0*(τr). Then the curve θf = (expw* o c o (expw 11/)"1) o θ x is a regular curve
which connects x* to z* and whose length is equal to π by Rauch's metric com-
parison theorem [11]. Since θf becomes a great circle, we obtain a lune of
totally geodesic surface of constant curvature 1 with boundaries θ and Θx.

Lemma 2.8 (Lemma 6 of Berger [3]). Let M be a riemannian manifold
whose sectional curvature Kσ satisfies δ < Ka < 1 for every plane section σ,
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and let X, Y and Z be tanget vectors at xzM such that Y ψ Z, K{X, Y) =
K(X,Z) = δ and <Y,Z> = <Z,X> > 0. Then we have K(Y,Z) < 1.

Proof of Theorem 2.3. Let Γ,Φ,Θbe the shortest geodesic segments join-
ing p to q, p to r and # to r respectively which are defined in such a way that
there is a piece of totally geodesic surface SF of constant curvature 1/4 with
boundaries Γ, Φ and θ . Developing the same discussion as Berger [3], there is
a shortest geodesic Γx = foC*)} (0 < t < d(M)), γ^O) = p, f M M ) ) = 4 which
satisfies ΓλΦ Γ and <fί(0), #/(0)> = 0. Therefore we have another totally geo-
desic surface 3FX of constant curvature 1/4 with boundaries /\, Φ and θ 1 5 where
©! is a shortest geodesic from g to r. Suppose that <( (0'(O), θ[(O)) = π. We have
<£ (θf(π), θ[{π)) = π and moreover J^ and 3Fλ have the same tangent plane at r.
Hence we get <(p'0r), ̂ (π)) = < (^(π), ^(TΓ)) = τr/2, which imply d(M) - TΓ.
Therefore we must have < (^(0),^(0))<τr. Suppose that <$: (^(0),^[(0)) = 0.
Then <F and J^χ have a common tangent plane at q from which we get Γ = Γλ.
Hence we have ^ (θ'(0), θ[(0)) e (0, TΓ), and Lemma 2.8 implies a contradiction.

3. Estimates of cut locus of o-pinched manifold which

is not simply connected

In this section we shall investigate some estimates of cut locus of <5-ρinched
riemannian manifold which is not simply connected.

Proposition 3.1. // M is not simply connected and 0 < δ < 1, then
d(p, C(p)) < d(M) < π/(2\/~δ) for every point peM. Suppose that there is a
point peM at which d(p,C(p)) = π/(2^/δ) holds. Then M is isometric to the
real protective space PRn(δ) of constant curvature δ.

Proof. Let M be the universal covering manifold of M and π be the pro-
jection map. There and at least two distinct points p^pz of M such that π(p^)
= π(p2) = p. Let Γ be a shortest geodesic joining pλ to p2, and Γ b e a closed
geodesic segment at p defined by π o f = Γ. Then Jδf(Γ) is not less than
2d(p,C(p)) = π/Vδ, from which we have d(p1,p2)>π/*Jδ. Thus M is
isometric to Sj/vy by the maximal diameter theorem of Toponogov [13]* Sup-
pose that there is a point p3eM satisfying pxΦ pzΦ p2 and π(p3) = p . Then
the perimeter of a geodesic triangle in M with vertices p 1 ? p 2

 a n d p3 is not less
than 3π/V δ, which is a contradiction. Therefore M must be a double covering
of M, and hence we get M = PRn(δ).

Proposition 3.2. Let M be a δ-pinched riemannian manifold which is not
simply connected, and suppose that there is a point p € M at which d(p, C(p))
> π/OVδ) holds. Then the fundamental group of M is πλ{M) = Z2 or
otherwise, M is odd dimensional riemannian manifold of constant curvature δ.

Proof. If there are three different points px,p2 and p3 in M such that π(p^)
= π(p2) = π(p3) = pεM, then we have d(pi9 pά) > 2d(p, C(p)) > 2π/(3V^) for
every /, j — 1,2, 3, i Φ j , and the perimeter of a geodesic triangle with vertices
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p19p2 and pz is not less than 2π/V δ, from which M is of constant curvature δ.
As is well known, an even dimensional complete riemannian manifold of con-
stant positive curvature is isometric to either a sphere or a real projective space.
Hence dimM must be odd.

Corollary to Proposition 3.2. Let M be a δ-pinched riemannian manifold
which is not simply connected, and suppose that πx(M) Φ Z2. Then we have
d(x,C(x)) < π/(3y/δ) for any xeM. Furthermore if there is a point xeM at
which d(x, C(x)) = π/(3</δ), then M is an odd dimensional riemannian mani-
fold of constant curvature δ.

We shall give some estimates of cut loci under the assumption δ > 1/4 and
certain assumptions for the fundamental groups of pinched manifolds.

Theorem 3.3. Suppose that δ satisfies δ > 1/4 and M is not simply con-
nected. Then there does not exist any δ-pinched riemannian manifold M whose
diameter satisfies π/(2<J δ) <d(M) <π. In particular if the fundamental group
πγ{M) of such M satisfies πλ(M) = Zk, where k is an integer not less than 2,
then we have d(x, C(x)) > π/k for every point xeM. Moreover if there is a
point xeM where d(x, C(x)) = π/k is satisfied, then M is of constant
curvature 1.

Proof. The first statement is evident from Proposition 2.1 and the Theorem
of Klingenberg [8]. Suppose that the fundamental group πx(M) of M satisfies
πλ{M) — Zk, where k is an integer such that k>2. Since the function p —>
d(p, C{p)) is lower semi-continuous, there is a point p0 e M at which the function
takes infimum p. We have a closed geodesic Σ = {σ(t}} (0 < t < 2p) such that
tf(0) = σ(2p) — p0 and p = d(p0, C(p0)). Then there exists a closed geodesic Σ
in M satisfying π o Σ = Σ. By virtue of π,(M) = ZkJ we have <£(Σ) = 2pk. On
the other hand, every closed geodesic segment in M has length no less than 2π.
Hence we have p > π/k.

If there is a point x e M at which d(x, C(x)) — π/k holds. Then we have p
— π/k and ££(X) — 2π. We shall prove that C(pQ) consists of only one point
{σ(τr)}. In fact, if there is a point q in C(p0) such that q Φ σ(π), then let Ψ be
a shortest geodesic from σ(π) to q. Without loss of generality we can assume
that <<7'(ττ), $7(0)> > 0. For a geodesic triangle (Σ | [π, 2π], Ψ, Φ) with vertices
p0, σ(π) and q, we have a contradiction to the basic theorem on triangles, be-
cause π > TΓ(2Λ/^) holds.

Remark. If the diameter d(M) of M with δ > 1/4 satisfies d(M) = π, then
M is isometric to Sj*. Furthermore, if there is a closed geodesic segment of length
2π in such a simply connected M, then M is isometric to Sj\

4. Topological structures of M satisfying δ > 1/4 and πx(M) = Z2

Throughout this section we only consider M satisfying δ > 1/4 and πx{M)
— Z2 First of all we shall prove the following lemma.

L e m m a 4 . 1 . Take a pair of points p,qeM such that dip, q) = d(M). Then
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there is a closed geodesic Γ={γ(t)} (0 < t < 2d(M)) such that γφ) = γ(2d(M))
= p and γ(d(M)) = q.

Proof. From the assumptions δ > 1/4 and πλ(M) = Z2, we have d(M) <
π/(2V~δ) < π. Let Γ = {γ(f)} (0 < ί < d(M)) be a shortest geodesic from p to
g. Since d(p,q) = d(M), there is a shortest geodesic.Γ15 A = {TΊ(O} (0 < f

from p to q satisfying <f(d(M))9 -γ[(d(M))} > 0. Suppose that
(J(M))) :£ 7r. Then there is a shortest geodesic JP2 from p to q

satisfying <j'(d(M)) + rί(d(M)), -^(d(M))> > 0. Take a fixed point ^ g M
such that π(pi) = p, and let Γ, Γ x and Γ 2 be geodesies in M which satisfy π o Γ
= Γ, πof1 = Γ1 and πoΓ2 — Γ2, and start from j ^ . Since there are
just two points in M, whose images under π are q, we may consider that f1

and Γ 2 have same extremals. But we have J(p1 ? C(pj)) > TΓ by the theorem of
Klingenberg [8] this is a contradiction. Therefore we must have <£ (γ'(d(M),
γ'MM))) = TΓ and < (/(0) ? rί(0)) - TΓ. q.e.d.

Making use of Lemma 4.1, we have the following:

Theorem 4.2. For any point xεM, π/2 < d(x, C(x)) < π/(2^/~δ) and π/2

< d(M) < π/(2y/δ), where the left hand side equalities hold if and only if M
is isometric to the real projective space PRn(l) of constant curvature 1, and the
right hand side equalities hold if and only if M is isometric to PRn(δ) of con-
stant curvature δ.

Proof. It suffices to prove that M is isometric to PRn(δ) if d(M) = π/(2^/~δ).
Putting d(p, q) = d(M) = π/(2j~δ), there is a closed geodesic Γ = {γ(t)} (0 < t

< τr/V^) satisfying ^(0) = γ(π/V~δ) = P and γ(π/(2</~δ)) = q. Let Γ be the
closed geodesic in M defined by π o f — Γ. Then Γ becomes a closed geodesic
with length 2π\ \l δ, and we can decompose Γ into four shortest geodesic segments
whose lengths are not equal at the same time. A theorem investigated by Sugi-
moto in [12] thus shows that M is isometric to Sjyvy, and hence M is isometric
to PRn{δ). q.e.d.

Now we shall investigate the topology of M satisfying π/2 < d(M) < π/(2\/ δ).
According to the homology theory, M has the same homology group as that
of PR71 under our assumptions πλ(M) = Z2 and M is homeomorphic to Sn.

There is an interesting problem which is not yet solved completely.
Problem. Let / be a homeomorphism of Sn onto itself satisfying:
(1) / is fixed point free,
(2) j is involutive.

Then, is Sn/j homeomorphic to PRnΊ
Livesay proved this problem affirmatively in [10] under the assumption n<3.

When j is a difϊeomorphism or a piecewise linearly difϊeomorphism, Hirsch and
Milnor showed in [6] that Sn/j is not diffeomorphic or piecewise linearly diffeo-
morphic to PRn in general.

Turning to our situation that δ > 1/4 and πγ{M) = Z2, we shall prove that
M is homeomorphic to Sn/j, where 7 is a homeomorphism of Sn onto itself with



δ-PINCHED MANIFOLDS 69

the properties (1) and (2) stated above. For the construction of /, we prepare
Lemmas 4.3-4.6 below. We set d(p, q) = d(M) = I. and the closed geodesic
Γ = {γ(t)} (0 < t < 21), γ(0) = γ(2l) = p, and γ(l) = q as stated in Lemma
4.1. Then there exists a closed geodesic f in M satisfying π o Γ = Γ, and there-
fore we have <£{f) = 41.

Lemma 4.3. Putting pλ = f(0), qλ = fjj), p2 = f (20 and q2 = f (30, for
any point x e M we have d(x,p^ < π/(2</~δ) or d(x,p2) < π/(2</~δ).

Proof. We may suppose that x $ Γ. Take a point z on Γ satisfying d(x, Γ)
= d(x, 2). It follows d(x, z) < π/Wδ) by use of the second variation formula
(Proposition 3 of [1]). Without loss of generality we may also suppose that
d(pλ, 2) < / < τr/(2V δ). Making use of the basic theorem on triangles for a geo-
desic triangle with vertices (p^z, x), we thus have d{pux) < π/(2^δ).

q.e.d.
Now, let U1 and U2 be open balls with radius π centered at the origin in M^

and Mfc respectively. Then exp^ 11/̂  is a diίϊeomorphism. Let D be the standard
Jΐ-cell with boundary D = Snl (Z Rn, and let Vx and V2 be given as follows:

Vx = {x€MId(i,A) < d(ί,^2)} , V2 = {xeM\d(x,A) > d(x,p2)} .

We have a construction of a homeomorphism h of 5W onto M investigated by
Klingenberg in [7] as follows.

Lemma 4.4. There are homeomorphίsms hx and h2 such that hi: D —» F\
satisfying ht{D) = Vi9 hγ(P) U Λ2(D) = M and Λt(D) Π Λ2(Z>) = hλ{Sn~ι) =
h2(Sn~ι). Making use of hγ and h2, we have a homeomorphism h: Sn —> M.

On the other hand, by virtue of the hypothesis πλ(M) = Z2 we have a map
/ of M onto itself denned by f(xλ) = x2 for any xx eM, where πix^ — π(x2),
xx φ χ2. Then clearly we have the following:

Lemma 4.5. / satisfies the following:
(a) / is an ίsometry.
(b) / is involutive.
(c) / has no fixed point.
(d) fof = f, where Γ is stated in Lemma 4.3.
Combining Lemmas 4.4 and 4.5, we get
Lemma 4.6. We have f(Vλ) = V2 and f(V2) = Vx. In particular fip,) = p2.
Proof. foΓ — Γ implies fipj = p2. Take a point xzVxC\ V2. Then there

exist uniquely determined shortest geodesies A and Φ joining px to x and p2 to
jc respectively. Thus A and Φ have the same length which is not greater than
π/(2y/δ), andthe intersection of fo A and foφ must coincide with f(x). Hence
we get f(x) € Vx Π V2, from which the statements follow. q.e.d.

Combining Lemmas 4.3-4.6, we find the following:
Theorem 4.7. Let j be defined by j = h~ι of oh. Then M is homeomorphic

to Sn/j, and j satisfies (1) and (2) in the problem stated above.
Remark. According to [10], Livesay proved that Sn/i is homeomorphic
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to PR71 if n < 3. But in our case, we shall be able to prove that M is homeo-
morphic to PR71 if n < 4. Since Vx Π V2 is homeomorphic to PR2 (in case n = 4),
(c) in Lemma 4.5 implies the statement.

Putting pf — h'^pi), pf is the antipodal point of pf on S?. Hence the image
of every great circle from pf to pf under / is also a great circle from pf to pf.

5. Proof of the main theorem

Throughout this section, let k be an odd prime. Let M be a ^-pinched
(δ > 1/4) riemannian manifold whose fundamental group πλ(M) satisfies π^M)
= Zk. Then we shall prove the following:

Theorem 5.1. Let M be a connected, complete and orientable riemannian
manifold of dimension 3 satisfying δ > 1/4 and πλ(M) = Zk, and suppose that
there is a closed geodesic segment Γ of length 2π/k. Then M is isometric to the
lens space L(l,k) of constant curvature 1.

Our method of the proof is as follows:
Put M* = L(ί,k) and take two arbitrarily fixed points p* e M* and p e M

respectively. It is clear that M is of constant curvature 1. It is easily seen that
for any tangent vector X* e M** satisfying X* € Cp*, we have X* $ β**, where
g** is the first conjugate locus in M**. Then there is at least one tangent vector
Γ* € C** which satisfies expp* Z* = exρp* Y* e C(p*). We shall prove that there
is an isometric isomorphism c of Mp onto M** such that c(Cp) concides with
C** C M** as a set in M**, and moreover the identifying structures of Cp under
expp and C** under expp* are quite equivalent under t. That is to say, let
X,Y εCp and expp X = exρp Y e C(p). Then we have expp* t oX —
expp*^o Y €C*O*). Hence expp* o * o exp"1 becomes a global isometry of M
onto M*.

As the first step, we study the tangent cut lous Cp of M. Theorem 3.3 and
the hypothesis of M imply that M is of constant curvature 1. Then the universal
covering manifold M is S\.

Lemma 5.2. Let M satisfy the assumptions of Theorem 5.1. Then d(q, C(q))
= π/k for any point q e M.

Putting / = d(q, C(q)), there is a closed geodesic segment ΣQ of length 2/ such
that σq(0) = σq{2ΐ) = q. Then we have a great circle Σ in S\ = M satisfying
πoΣ = Σq, on which we get π(σq(0)) = π(σq(2l)) = . . . = π(σq(2kl)) = <?.
Hence we have 2&/ = 27Γ. q.e.d.

We denote by 2^ the closed geodesic at q with length 2τr/&.
Lemma 5.3. Max {d(q, x) \ x e M} = π/2 for any point qzM.In particular,

d(M) = π/2.
Proof. Putting / = d(q, r) — Max {d(q, x)\xe M}, there is a closed geodesic

Σr = {σr(ί)} (0 < ί < 2ττ/Λ) such that σr(0) = σr(2π/k) = r. By the assump-
tion of d(q, r), there are at least two shortest geodesic segments joining q to r,
say Γ1 and Γ2. Suppose that <£ (^(0,^(0) = π. Since / < d(M) < πl(2V~δ)
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= π/2 and k is an odd prime, there exist at least k + 1 points on S\ whose
images under π are all q. Then we must have <£ (;<(/), ̂ (/)) φ π, from which
there is another shortest geodesic Γ 3 from q to r such that <jί(/) + ^(Z), — rs(0>
> 0. Let q e M be a fixed point such that π(q) = q, and Γt be denned by
πoft == Γ* and ft(0) = 5 0 ' = 1,2, 3). It is clear that the geodesic Σ given
by πoΣ = I7,, is a great circle on which lie the points γSJ),f2(ΐ) and f3(Q.
Three geodesic triangles with vertices (q, f x(0, f 2(0), (tf, f 2(0, ?3(0) and (#, f3(0,
f x(ΐ)) respectively become isosceles triangles whose base angles are all equal to
π/2. Therefore we must have / = π/2 by the cosine rule of spherical trigo-
nometry.

Lemma 5.4. Let q,p e M be a fixed pair of points such that d(p, q) = π/2.
Then there are shortest geodesies Γu Γ2, , Γk from p to q satisfying the
following:

(1) < (rf(0), r +i(0)) = < (rfOr/2), fi+i(πl2)) = 2π/k for all i = 1, 2, . . .,
k, (mod/:).

(2) T/iere w α p/^c^ o/ totally geodesic surface SF$ of constant curvature 1
whose boundaries are Γi9Γi+ι and Σp.

(3) It can be considered that 3F^ is generated by the family of shortest
geodesies {Λt} (0<t< 2π) where each Λt starts from σp(t) and ends at q with
length J?(Λt) — π/2. Moreover, we can consider that Λo = Γ1 and Λ2π{k-1)/k

= Γk, and the vector field t —> λ't(0) is parallel along Σp.
(4) Putting πofi = Γi such that fiiπ/2) — q where π(q) = q, each 2F$ is

covered by the face of geodesic triangle (/\,f\+ 1,Σ-\[2π(i — ΐ)/k,2πi/k\)
under the covering map π, where π o Σ- = Σpσ^(0) = p. In particular,
2^1 U 2Ft U U 2Ft is the image of the two dimensional hemisphere with
north pole q and equator Σ$ under π.

Proof. Let S\q) be the totally geodesic hypersurface of SI, which contains
q and Σ^, and S2

+(q) be the hemisphere with north pole q. For a geodesic
segment Λt in S\(q) joining σ^{t) to q and the corresponding geodesic At — πoAt

in M joining σp(t) to q, making use of Rauch's comparison theorem we get the
statements (2), (3) and (4). Since we have < (f{(π/2), γ +1(π/2)) = < {y\{π/2),
fi+ι(π/2)) = 2π/k for i = 2, 3, . , k - 1, we get <£ (rί(0), ft+M) = 2π/k
by exchanging the situation of p for the one of q. q.e.d.

Let us put eT+ = &ϊ U JS + U U &%* Since d(p, σQ(τr/Λ)) = π/2 holds,
σq(π/k) is able to take place for q in the Lemma 5.2-5.4. Then we have a piece
of totally geodesic hypersurface 2Fϊ of constant curvature 1 with boundaries
Γi I [—7r/2,0], Γ ί + 11 [-τr/2,0] and Σp which is a prolongation of ^ + . Putting
J^- = ^ - U ̂ 2" U U ̂ ί , we get a compact totally geodesic hypersurface
^rq,P _ j^+ y j r - which is the image π(S\q)) of 52((?) C S\ under the covering
map π. It is clearly seen that ^^v covers i/pΛ times, and its tangent space
( # ^ ' 2 % at p consists of /c-sheeted planes ( ^ U ̂ r ) p , , (&Ϊ U ̂ ) p each
of which contains σp(0) and the angle between ( J ^ U i Γ

ΐ ~) p and
is equal to
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Lemma 5.5. The cut locus of the totally geodesic hypersurface π(S2(q))
= ^q>p with respect to p consists of Λπ/Jc \ [ — π/2, π/2], A3π/k \ [ — π/2, π/2] and
Λ-vk-Dπ/k I [ — κ/2, π/2], which is contained entirely in the cut locus C(p) of M.

Proof. By the construction of £Fq^p, the first statement is evident. Suppose
that there is a shortest geodesic of M from p to λπ/k(s) e 2Fq"p which is not con-
tained in J ^ ' P . Then there are at least k + 1 points in S\ whose images under
π are λπ/k(s). Hence p and λπ/k(s) can be joined by shortest geodesies of M which
lie in &*>*>. q.e.d.

By exchanging q (north pole) and Σp (equator) for p and Σq respectively,
we get a compact totally geodesic surface SFp^q instead of ^rq^p whose tangent
space ( J ^ ' % at p is the plane in Mp orthogonal to σp(0). Therefore we get
the family of compact totally geodesic hypersurfaces {^' β(ί)'1'} (0 < t < 2π)9

and M can be considered to be constructed by this family of hypersurfaces.
Lemma 5.6. Let (eί7 e2, e3) be an orthonormal basis for Mp such that eλ =

σp(0) and e2 = γ[(0). Then for any XeCp given by

X/\\X\\ = eλ cos a + e2 sin a cos β + e3 sin a sin β

(0 < a < 2τr, 0 β < 2π) ,

we have \\X\\ = cot"1 (cos a cot π/k). Let X1^CP be defined by expp Xx =
expp X e C(p), where X is given by the above equation and aψπ\2. Then we
have

X1 — cot"1 (cos a cot π/k)[eί cos (π — a) + e2 sin (π — a) cos (β + 2π/k)

+ e2 sin (π — a) cos (β + 2π/k)] .

Hence the identifying structure of Cp under expp is completely known.
Proof. Since d(p, σq(t)) = π/2 holds for all t e [0,2π], there exist t0 and the

compact totally geodesic hypersurface ^^tohP a sheet of whose tangent planes
at p is spanned by eλ and e2 cos β + e3 sin β. Then we find t0 = β, and also see
that &a iβhP is obtained by π(S2(σ(β))). There is a geodesic triangle on S2(σ^(β))
with vertices exp^X, p and σ^(2π/k) satisfying <£ (exp^ X,p, σ$(2π/k)) —
Ĉ (exp^ X, σ$(2π/k),p) = a, where we define dπ(X) = X, X e Mp. Then the

cosine rule of spherical trigonometry implies that | | Z | | = cot"1 (cos a cot π/k).
It is easily seen that <£ (X19 σp(0)) — π — Ĉ (exp^ X, σ^(2π/k),p) — π — a
because π is a local isometry.

Remark. As for a vector X — (π/2)(e2 cos β + e3sin/3), putting Xt =
(π/2){e2 cos (β + 2πi/k) + ez sin (β + 2πi/k)}, i = 1,2, , k we have expp X%

= expp X.
As the final step, we shall study the tangent cut locus C** of the lens space

M* = L(l , k). The universal covering manifold of M* is S\. Let g e G be the
generator of the cyclic group G of order k, where k is an odd prime.

For arbitrary point x e SI, we have 2 £*(*) = 0, from which the points g(x),
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'"9 8k(x) = x lie on a great circle of S\ and divide the great circle into equal
parts of length 2πk. Putting x* = π(x), there is a closed geodesic in M* with
length 2π/k which starts at x* and is obtained from the image of the great
circle containing g*(x) under π. We also see that Max {d(x*,y*) \ y* e M} = π/2.

Let (u, v, w) be a local coordinate system of S\ defined by

x(u, v, w) = cos u cos v - Eι + sin w cos v E2

+ cos w sin v-E3 + sin w sin v-EA ,

where (Ex, E2,E3, E4) is the orthonormal basis for RA. A totally geodesic hyper-
surface S\q) is expressed locally by w = w0 which is a two-sphere in SI with
the north pole q given by q = cos w0 E3 + sin w0 E4 and the equator given by
u —> cos w Eγ + sin w E2. Since 52(^) is of constant curvature 1 and TΓ is a local
isometry, π(S2(q)) is also compact and of constant curvature 1 with self inter-
section in such a way that the image of equator is a closed geodesic of length
2π/k and is covered k times by the equator u —> cos uΈ1 + smu>E2. We see
that any other point on π(S2(q)) has no intersection.

Let Σ$ = {σ$(u)} (0 < u < 2π) be defined by σ$(u) = cos uΈγ + sin u E2

where we put p = (1,0,0,0) or j?(w, v, w) = (0,0,0), and τr(j?) = p*. We see
that the cut locus of π(S2(q)) with respect to /?* e π(S2(q)) is contained entirely
in the cut locus C*(p*) of M*. Putting Λw = {λu(v)} (0 < v < π/2), λu(0) =
ds(u) and λu(π/2) = q,πoΣ$ = Σ**, σ**(0) = p* and πoΛu = Λ*, λ*(0) =
<τ**(w), the cut locus of π{S\q)) with respect to p* = σ**(0) is the set
{Λ* | [ -τr/2, π/2]I w = (2i - l)τr/Ar, i = 1, 2, . , k). Denoting by ft the
geodesic in S\ joining σ$(2πi/k) to q, i.e., Γ^ = Λ2πί/k, we see the angle between
gj o Γ^ and gj+1o Γt^ι at p is equal to 2π/k for every /, i = 1,2, , k (mod £).
This fact shows that the angle between Γf and Γf+1 at p* is equal to 2π/& for i =
1, , Λ. We also see that the angle between 21** and Γf is equal to π/2.

Denoting ^^P* = π(S\q)), where (?* = π(q), we have the same arguments
for the tangent space C^****)** at p* as those of ^^p, and the family {^Vw.**}
(0<ί<2τr) generates M*. Then we have the same argument as that in Lemma
5.6 for C** CM**.
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