A FORMULA OF SIMONS' TYPE AND HYPERSURFACES WITH CONSTANT MEAN CURVATURE

KATSUMI NOMIZU \& BRIAN SMYTH

In a recent work [8] J. Simons has established a formula for the Laplacian of the second fundamental form of a submanifold in a Riemannian manifold and has obtained an important application in the case of a minimal hypersurface in the sphere, for which the formula takes a rather simple form. The application is made by means of the Laplacian of the function f on the hypersurface, which is defined to be the square of the length of the second fundamental form.

In the present paper, by a more direct route than Simons' we first obtain the same type of formula (see (16)) in the case of a hypersurface M immersed with constant mean curvature in a space \bar{M} of constant sectional curvature, and then derive a new formula (see (18)) for the function f which involves the sectional curvature of M. Based on this new formula our main results are the determination of hypersurfaces M of non-negative sectional curvature immersed in the Euclidean space R^{n+1} or the sphere S^{n+1} with constant mean curvature under the additional assumption that the function f is constant. This additional assumption is automatically satisfied if M is compact. We state the general results in a global form assuming completeness of M, but they are essentially of local nature.

1. Formula of Simons' type

Let \bar{M} be an $(n+1)$-dimensional space form, i.e., a Riemannian manifold of constant sectional curvature, say, c. Let $\phi: M \rightarrow \bar{M}$ be an isometric immersion of an n-dimensional Riemannian manifold M into \bar{M}. For simplicity, we say that M is a hypersurface immersed in \bar{M} and, for all local formulas and computations, we may consider ϕ as an imbedding and thus identify $x \in M$ with $\phi(x) \in M$. The tangent space $T_{x}(M)$ is identified with a subspace of the tangent space $T_{x}(\bar{M})$, and the normal space T_{x}^{\perp} is the subspace of $T_{x}(\bar{M})$ consisting of all $X \in T_{x}(\bar{M})$ which are orthogonal to $T_{x}(M)$ with respect to the Riemannian metric g. For the basic notations and formulas concerning differential geometry of submanifolds, we follow Chapter VII of Kobayashi-Nomizu [4].

Received September 24, 1968. This work was partially supported by NSF grants.

For an arbitrary point $x_{0} \in M$, we may choose a field of unit normal vectors ξ defined in a neighborhood U. The second fundamental form h and the corresponding symmetric operator A are defined and related to covariant differentiations \tilde{V} and V in \bar{M} and M, respectively, by the following formulas:

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\nabla}_{X} \xi=-A X \tag{2}
\end{equation*}
$$

where X and Y are vector fields tangent to M. The Gauss equation is:

$$
\begin{equation*}
R(X, Y)=c X \wedge Y+A X \wedge A Y, \quad X, Y \in T_{x}(M) \tag{3}
\end{equation*}
$$

where $X \wedge Y$ denotes the skew-symmetric endomorphism of $T_{x}(M)$ defined by $(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y$.

The Codazzi equation is expressed by

$$
\begin{equation*}
\left(\nabla_{X} A\right)(Y)=\left(\nabla_{Y} A\right)(X) \tag{4}
\end{equation*}
$$

Since ξ is defined locally up to a sign, so is A, and A^{2} is thus defined globally on M. We consider the function $f=$ trace A^{2} which is globally defined on M and wish to compute its Laplacian Δf. This is given as the trace of the symmetric bilinear form

$$
\begin{equation*}
H_{f}(X, Y)=X(Y f)-\left(\Gamma_{x} Y\right) f ; \tag{5}
\end{equation*}
$$

in fact, H_{f} coincides with the usual Hessian of f at a critical point of f. If $\left\{e_{1}, \cdots, e_{n}\right\}$ is an arbitrary orthonormal basis in $T_{r}(M)$, then

$$
\begin{equation*}
(1 f)(x)=\sum_{i=1}^{n} H_{l}\left(e_{i}, e_{i}\right) . \tag{6}
\end{equation*}
$$

In order to compute Δf, we need to compute the "restricted" Laplacian of the tensor field A, which we now explain. Let T be an arbitrary tensor field of type (r, s) on M. Then the second covariant differential $V^{2} T$ is a tensor field of type $(r, s+2)$ which is given by

$$
\begin{equation*}
\left(\nabla^{2} T\right)(; Y ; X)=\Gamma_{y}\left(\Gamma_{Y} T\right)-\nabla_{r_{.}{ }^{Y}} T \tag{7}
\end{equation*}
$$

where X and Y are vector fields on M. At each point $x \in M$, we take an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right\}$ in $T_{r}(M)$ and set

$$
\begin{equation*}
\left(\Delta^{\prime} T\right)(x)=\sum_{i=1}^{n}\left(\nabla^{2} T\right)\left(; e_{i} ; e_{i}\right) . \tag{8}
\end{equation*}
$$

This is independent of the choice of an orthonormal basis and the tensor field $\Delta^{\prime} T$ of type (r, s) so defined is called the restricted Laplacian of T. When T is
a function $f, \nabla^{2} T$ coincides with H_{f} in (5) and $\Delta^{\prime} T$ is nothing but Δf. The expression for $\Delta^{\prime} T$ in conventional tensor notation is

$$
\left(\Delta^{\prime} T\right)_{j_{1} \cdots j_{s}}^{i_{1} \cdots i r_{s}}=\sum_{p, q=1}^{n} g^{p q} T_{j_{1} \cdots j_{s}}^{i_{1} \cdots ; i_{q}} .
$$

If T is a differential form ω of degree $r, \Delta^{\prime} T$ does not coincide with the Laplacian $\Delta \omega$ as defined in the theory of harmonic integrals; indeed, $\Delta^{\prime} \omega$ is part of $\Delta \omega$. This accounts for the name of "restricted Laplacian" which we are proposing. (In Simons [8], $\Delta^{\prime} T$ is called simply the Laplacian; for results on the restricted Laplacian, see, for example, Lichnerowicz [5; pp. 1-4].)

Going back to the function $f=\operatorname{trace} A^{2}$ on the hypersurface M, we have

$$
Y f=Y\left(\text { trace } A^{2}\right)=\operatorname{trace}\left(\nabla_{\Gamma} A^{2}\right),
$$

since taking the trace is a contraction on tensor fields of type (1,1), which commutes with covariant differentiation (cf. Kobayashi-Nomizu [3, p. 123]). Since

$$
\begin{aligned}
\operatorname{trace} \nabla_{\mathrm{r}} A^{2} & =\operatorname{trace}\left(\nabla_{\mathrm{r}} A\right) A+\operatorname{trace} A\left(\nabla_{\mathrm{r}} A\right) \\
& =2 \operatorname{trace}\left(\nabla_{\mathrm{r}} A\right) A
\end{aligned}
$$

we have

$$
Y f=2 \operatorname{trace}\left(\nabla_{r} A\right) A
$$

Thus we have

$$
X Y f=2 \operatorname{trace}\left(\nabla_{X}\left(\nabla_{Y} A\right)\right) A+2 \operatorname{trace}\left(\nabla_{Y} A\right)\left(\nabla_{X} A\right)
$$

as well as

$$
\left(\nabla_{X} Y\right) f=2 \operatorname{trace}\left(\nabla_{\nabla_{X} Y} A\right) A
$$

Hence

$$
\frac{1}{2} f=\sum_{i=1}^{n}\left\{\operatorname{trace}\left(\nabla^{2} A\right)\left(; e_{i} ; e_{i}\right) A+\operatorname{trace}\left(\nabla_{e_{i}} A\right)^{2}\right\}
$$

where $\left\{e_{1}, \cdots, e_{n}\right\}$ is an orthonormal basis in $T_{x}(M)$. Thus

$$
\frac{1}{2} \Delta f=\operatorname{trace}\left(\Delta^{\prime} A\right) A+\sum_{i=1}^{n} \operatorname{trace}\left(\nabla_{e_{i}} A\right)^{2}
$$

By extending the metric g to the tensor space in the standard fashion, we may write

$$
\begin{equation*}
\frac{1}{2} \Delta f=g\left(\Delta^{\prime} A, A\right)+g(\nabla A, \nabla A) . \tag{9}
\end{equation*}
$$

We shall now compute $\Delta^{\prime} A$. For this purpose, let us write $K(X, Y)$ for $\left(V^{2} A\right)(; Y ; X)$ so that

$$
K(X, Y)=\nabla_{X}\left(\nabla_{r^{\prime}} A\right)-\nabla_{r_{.} X^{r}} A
$$

Using the identities $\nabla_{X} Y-\nabla_{Y} X-[X, Y]=0$ and $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{C ., ~, ~}$, $]$, where the curvature transformation $R(X, Y)$ and the other terms are regarded as derivations of the algebra of tensor fields, we obtain

$$
\begin{equation*}
K(X, Y)=K(Y, X)+[R(X, Y), A] . \tag{10}
\end{equation*}
$$

Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis in $T_{x}(M)$, and extend them to vector fields E_{1}, \cdots, E_{n} in a neighborhood of x such that $\nabla E_{i}=0$ at x. Let X be a vector field such that $\Gamma X=0$ at x. (Such vector fields can be easily obtained by using parallel displacement along each geodesic with origin x.) In (10) take E_{i} and X instead of X and Y, respectively, and apply each endomorphism to E_{i}. Since

$$
\begin{array}{rlr}
K\left(E_{i}, X\right) E_{i} & \left.=\left(\nabla_{E_{i}}\left(\nabla_{X} A\right)\right) E_{i}-\left(\Gamma_{r_{E_{i}}} A\right) E_{i} \quad \text { (the second term is } 0 \text { at } x\right) \\
& \left.\left.=\nabla_{E_{i}}\left(\nabla_{X} A\right) E_{i}\right)-\left(\Gamma_{X} A\right)\left(\Gamma_{E_{i}} E_{i}\right) \quad \text { (the second term is } 0 \text { at } x\right) \\
& =\Gamma_{E_{i}}\left(\left(\nabla_{E_{i}} A\right) X\right) \\
& =\left(\nabla_{E_{i}}\left(\nabla_{E_{i}} A\right)\right) X+\left(\Gamma_{E_{i}} A\right)\left(\Gamma_{E_{i}} X\right) \quad \text { (the second term is } 0 \text { at } x \text {) } \\
& =K\left(E_{i}, E_{i}\right) X,
\end{array}
$$

we get at x

$$
\begin{equation*}
K\left(E_{i}, E_{i}\right) X=K\left(X, E_{i}\right) E_{i}+\left[R\left(E_{i}, X\right), A\right] E_{i} \tag{11}
\end{equation*}
$$

By a similar computation we get at x

$$
\begin{equation*}
K\left(X, E_{i}\right) E_{i}=\Gamma_{t}\left(\left(\Gamma_{E,}, A\right) E_{i}\right) \tag{12}
\end{equation*}
$$

We now assume that M has constant mean curvature, that is, trace $A=$ constant. Under this assumption we prove

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\Gamma_{E_{i}} A\right) E_{i}=0 \tag{13}
\end{equation*}
$$

Indeed, since $\nabla_{F_{i}} A$ is a symmetric operator together with A, we get, by using Codazzi's equation,

$$
\begin{aligned}
g\left(\sum_{i=1}^{n}\left(\nabla_{L_{i}} A\right) E_{i}, Z\right) & =\sum_{i=1}^{n} g\left(E_{i},\left(\Gamma_{L_{i}} A\right) Z\right) \\
& =\sum_{i=1}^{n} g\left(E_{i},\left(\nabla_{Z} A\right) E_{i}\right) \\
& =\operatorname{trace}\left(\nabla_{\%} A\right)=Z \cdot(\operatorname{trace} A)=0
\end{aligned}
$$

Since this is valid for an arbitrary vector Z, we conclude (13). Substituting (13) in (12) we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} K\left(X, E_{i}\right) E_{i}=0 . \tag{14}
\end{equation*}
$$

From (11) and (14) we get

$$
\begin{equation*}
\left(\Delta^{\prime} A\right)(X)=\sum_{i=1}^{n}\left[R\left(E_{i}, X\right), A\right] E_{i} \tag{15}
\end{equation*}
$$

The right-hand side can be computed as follows. By the Gauss equation, we have

$$
R\left(E_{i}, X\right)=c\left(E_{i} \wedge X\right)+A E_{i} \wedge A X
$$

Thus

$$
\begin{aligned}
\sum_{i=1}^{n} R\left(E_{i}, X\right) A E_{i}= & \sum_{i=1}^{n} c\left\{g\left(A E_{i}, X\right) E_{i}-g\left(E_{i}, A E_{i}\right) X\right\} \\
& +\sum_{i=1}^{n}\left\{g\left(A E_{i}, A X\right) A E_{i}-g\left(A E_{i}, A E_{i}\right) A X\right\}
\end{aligned}
$$

Here

$$
\begin{gathered}
\sum_{i=1}^{n} g\left(E_{i}, A E_{i}\right)=\operatorname{trace} A, \\
\sum_{i=1}^{n} g\left(A E_{i}, A E_{i}\right)=\sum_{i=1}^{n} g\left(A^{2} E_{i}, E_{i}\right)=\operatorname{trace} A^{2}, \\
\sum_{i=1}^{n} g\left(A E_{i}, X\right) E_{i}=\sum_{i=1}^{n} g\left(E_{i}, A X\right) E_{i}=A X,
\end{gathered}
$$

and

$$
\sum_{i=1}^{n} g\left(A E_{i}, A X\right) A E_{i}=A \sum_{i=1}^{n} g\left(E_{i}, A^{2} X\right) E_{i}=A\left(A^{2} X\right)=A^{3} X
$$

Hence

$$
\sum_{i=1}^{n} R\left(E_{i}, X\right) A E_{i}=c A X-c(\operatorname{trace} A) X+A^{3} X-\left(\operatorname{trace} A^{2}\right) A X
$$

Similarly, we get

$$
\sum_{i=1}^{n} A R\left(E_{i}, X\right) E_{i}=c A X-c n A X+A^{3} X-(\operatorname{trace} A) A^{2} X
$$

From these two equations we obtain

$$
\begin{aligned}
\sum_{i=1}^{n}\left[R\left(E_{i}, X\right), A\right] E_{i}= & n c A X-\left(\text { trace } A^{2}\right) A X \\
& -c(\text { trace } A) X+(\operatorname{trace} A) A^{2} X
\end{aligned}
$$

that is, (15) gives

$$
\begin{equation*}
\Delta^{\prime} A=n c A-\left(\operatorname{trace} A^{2}\right) A-c(\operatorname{trace} A) I+(\operatorname{trace} A) A^{2} \tag{16}
\end{equation*}
$$

where I is the identity transformation. From (9), we obtain

$$
\begin{align*}
\frac{1}{2} \Delta f= & c n\left(\text { trace } A^{2}\right)-\left(\operatorname{trace} A^{2}\right)^{2}-c(\operatorname{trace} A)^{2} \tag{17}\\
& +(\operatorname{trace} A)\left(\operatorname{trace} A^{3}\right)+g(\nabla A, \nabla A)
\end{align*}
$$

In particular, if M is minimal in \bar{M}, that is, trace $A=0$, then

$$
\begin{align*}
\Delta^{\prime} A & =n c A-\left(\operatorname{trace} A^{2}\right) A \tag{16'}\\
\frac{1}{2} \Delta f & =c n f-f^{2}+g(\nabla A, \nabla A) \tag{17'}
\end{align*}
$$

In the case where M is the unit sphere S^{n+1} (so that $c=1$), (16^{\prime}) and (17^{\prime}) are found in Simons [8].

We shall now transform (17) into a form which is convenient for our applications. We first prove

Lemma. Let A be an $n \times n$ symmetric matrix with eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$. Then, for any constant c,

$$
n c \operatorname{tr} A^{2}-\left(\operatorname{tr} A^{2}\right)^{2}-c(\operatorname{tr} A)^{2}+(\operatorname{tr} A)\left(\operatorname{tr} A^{3}\right)=\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(c+\lambda_{i} \lambda_{j}\right)
$$

Proof. Since the equality is trivial for $n=1$, assume that it is valid for the degree $n-1$. Then the left-hand side is equal to

$$
\begin{aligned}
n c\left(\sum_{i=1}^{n-1} \lambda_{i}^{2}\right. & \left.+\lambda_{n}^{2}\right)-\left(\sum_{i=1}^{n-1} \lambda_{i}^{2}+\lambda_{n}^{3}\right)^{2} \\
& -c\left(\sum_{i=1}^{n-1} \lambda_{i}+\lambda_{n}\right)^{2}+\left(\sum_{i=1}^{n-1} \lambda_{i}+\lambda_{n}\right)\left(\sum_{i=1}^{n-1} \lambda_{i}^{3}+\lambda_{n}^{3}\right) \\
=\{ & \left\{(n-1)\left(\sum_{i=1}^{n-1} \lambda_{i}^{2}\right)-\left(\sum_{i=1}^{n-1} \lambda_{i}^{2}\right)^{2}-c\left(\sum_{i=1}^{n-1} \lambda_{i}\right)^{2}+\left(\sum_{i=1}^{n-1} \lambda_{i}\right)\left(\sum_{i=1}^{n-1} \lambda_{i}^{3}\right)\right\} \\
& +\left\{c\left(\sum_{i=1}^{n-1} \lambda_{i}^{2}\right)-2 c\left(\sum_{i=1}^{n-1} \lambda_{i}\right) \lambda_{n}+c(n-1) \lambda_{n}^{2}\right\} \\
& +\sum_{i=1}^{n-1}\left(\lambda_{i}^{3} \lambda_{n}-2 \lambda_{i}^{2} \lambda_{n}^{2}+\lambda_{i} \lambda_{n}^{3}\right) .
\end{aligned}
$$

On the above right side the first term is, by inductive assumption, equal to

$$
\sum_{1 \leq i<j<n}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(c+\lambda_{i} \lambda_{j}\right),
$$

the second is equal to

$$
\sum_{i<n} c\left(\lambda_{i}-\lambda_{n}\right)^{2},
$$

and the third is equal to

$$
\sum_{i<n} \lambda_{i} \lambda_{n}\left(\lambda_{i}-\lambda_{n}\right)^{2}
$$

Therefore the whole sum is equal to

$$
\begin{aligned}
& \sum_{1 \leq i<j<n}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(c+\lambda_{i} \lambda_{j}\right)+\sum_{i<n}\left(\lambda_{i}-\lambda_{n}\right)^{2}\left(c+\lambda_{i} \lambda_{n}\right) \\
& \quad=\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(c+\lambda_{i} \lambda_{j}\right)
\end{aligned}
$$

which completes the proof of the lemma.
Now for each point x of the hypersurface M, let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis in $T_{x}(M)$ such that $A e_{i}=\lambda_{i} e_{i}, 1 \leq i \leq n$. By the Gauss equation (3) we see that the sectional curvature $K_{i j}$ for the 2-plane spanned by e_{i} and $e_{j}, i \neq j$, is equal to $c+\lambda_{i} \lambda_{i}$. Thus (17) can be written as follows:

$$
\begin{equation*}
\frac{1}{2} \Delta f=\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} K_{i j}+g(\Gamma A, \Gamma A) \tag{18}
\end{equation*}
$$

2. Main results

Let M be a connected hypersurface immersed with constant mean curvature in a space form \bar{M} of dimension $n+1$ with constant curvature, say, c. We establish the following lemmas.

Lemma 1. If M is compact and has non-negative sectional curvature (for all 2-planes), then at every point of M we have

$$
\nabla A=0 \quad \text { and } \quad\left(\lambda_{i}-\lambda_{j}\right)^{2} K_{i j}=0 \quad \text { for all } i, j
$$

In particular, the eigenvalues of A are constant (where the field of unit normals ξ is defined).

Proof. By assumption, $K_{i j} \geq 0$. From the formula (18) we have $d f \geq 0$. Since M is compact, we conclude that f is constant and $\Delta f=0$ (see, for instance, Yano [10, p. 215] or Kobayashi-Nomizu [4, Note 14]). Thus we get $\nabla A=0$ and $\left(\lambda_{i}-\lambda_{j}\right) K_{i j}=0$ for all i, j.

Lemma 2. If M has non-negative sectional curvature, and $f=\operatorname{trace} A^{2}$ is constant on M, then we have the same conclusions as Lemma 1 .

Proof. This is obvious from the formula (18) itself.
Lemma 3. Under the assumptions of Lemma 1 or Lemma 2, either M is totally umbilical or A has exactly two distinct constants as eigenvalues at every point.

Proof. As we already know, the eigenvalues of A remain constant (in its domain of definition). Thus the set of umbilics is an open set in M. Since it is obviously a closed set, either M is totally umbilical or M has no umbilic. In the second case, we show that A has at most (hence exactly) two eigenvalues at any point x. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of A at x. We may assume that $\lambda_{1}>0$ for the following reason. If $\lambda_{1} \leq 0$, then $\lambda_{n} \leq 0$. Since $\lambda_{n}=0$ implies $\lambda_{1}=\cdots=\lambda_{n}=0$ contrary to our premise, we must have $\lambda_{n}<0$. We may then change the field of unit normals ξ around x into $-\xi$ thus changing A into $-A$, whose largest eigenvalue $-\lambda_{n}$ is positive. Having assumed that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ with $\lambda_{1}>0$, we have $K_{12} \geq K_{13} \geq \cdots \geq K_{1 n}$ and these are all non-negative by assumption. Assume that p is the largest integer such that $K_{1 p}>0$ and $K_{1 p+1}=0$ (set $p=n$ if $K_{1 n}>0$, although we see in a moment that this does not arise). From the second conclusion of Lemma 1 or 2 , we get

$$
\left(\lambda_{1}-\lambda_{i}\right)^{2} K_{1 i}=0 \quad \text { for all } 1 \leq i \leq p,
$$

which imply that

$$
\lambda_{1}=\cdots=\lambda_{p}=\lambda, \quad \text { say } .
$$

Here $p \neq n$, since x is not an umbilic. In addition we have

$$
K_{1 p+1}=\cdots=K_{1 n}=0,
$$

that is,

$$
c+\lambda_{1} \lambda_{p+1}=\cdots=c+\lambda_{1} \lambda_{n}=0
$$

which imply that

$$
\lambda_{p+1}=\cdots=\lambda_{n}=-c / \lambda
$$

This proves our assertion that A has at most two distinct eigenvalues.
With these preparations we shall now prove our main results.
Theorem 1. Let M be a complete Riemannian manifold of dimension n with non-negative sectional curvature, and $\phi: M \rightarrow R^{n+1}$ an isometric immersion with constant mean curvature into a Euclidean space R^{n+1}. If $f=$ trace A^{2} is constant on M, then $\phi(M)$ is of the form $S^{p} \times R^{n-p}, 0 \leq p \leq n$, where R^{n-p} is an $(n-p)$-dimensional subspace of R^{n+p}, and S^{p} is a sphere in the Euclidean subspace perpendicular to R^{n-p}. Except for the case $p=1, \phi$ is an imbedding.

Poorf. We first assume that M is simply connected. By Lemma 3 we know that either M is totally umbilical or A has exactly two distinct constant eigenvalues λ, μ, where $\lambda \neq 0$ has multiplicity $p, 1 \leq p \leq n-1$, and μ is actually 0 (since $c=0$ in the proof of Lemma 3). In the first case, it follows that $\phi(M)$ is actually a Euclidean hyperplane R^{n} or a sphere S^{n}, depending on whether A is 0 or not. Since M and $\phi(M)$ are simply connected, we conclude that ϕ is an imbedding (cf. Theorem 4.6, p. 176 of Kobayashi-Nomizu [3]).

In the second case, we can define two distributions

$$
T^{1}(x)=\left\{x \in T_{x}(M) ; A X=\lambda X\right\}
$$

and

$$
T^{0}(x)=\left\{X \in T_{r}(M) ; A X=0\right\}
$$

of dimensions p and $n-p$, respectively. Knowing that λ is a constant, it is easy to see that both distributions are differentiable, involutive and totally geodesic on M. Thus M is the Riemannian direct product $M^{1} \times M^{0}$, where M^{1} and M^{0} are the maximal integral manifolds of T^{1} and T^{0}, respectively, through a certain point of M. From this point on, we may use the same arguments as those for Proposition 3 in Nomizu [6] to conclude that $\phi(M)$ is of the form $S^{p} \times R^{n-p}$. If $p \geq 2$, then $\phi(M)$ is simply connected and we conclude that ϕ is an imbedding. (If $p=1$, then M may be $R \times R^{n-1}$ which is immersed onto $S^{1} \times R^{n-1}$ in R^{n+1}.)

In the general case, let \hat{M} be the universal covering manifold on M with the projection $\pi: \hat{M} \rightarrow M$. With respect to the naturally induced metric, \hat{M} and $\hat{\phi}=\phi \circ \pi$ satisfy the same assumptions as those for M and ϕ. Thus $\hat{\phi}(\hat{M})$ $=\phi(M)$ is of the form $S^{p} \times R^{n-p}$. If $p \neq 1$, then $\hat{\phi}$ is an imbedding and so is ϕ.

Corollary 1. If M is, in particular, minimal in Theorem 1 , then $\phi(M)$ is a hyperplane and ϕ is an imbedding.

Remark 1. Without completeness of M the corresponding local versions of Theorem 1 and Corollary 1 are valid.

Remark 2. Theorem 1 may be thought of as a partial extension of a result of Klotz and Osserman [2].

Corollary 2. Let M be a connected compact Riemannian manifold of dimension n with non-negative sectional curvature. If $\phi: M \rightarrow R^{n+1}$ is an isometric immersion with constant mean curvature, then $\phi(M)$ is a hypersphere and ϕ is an imbedding.

Proof. By Lemma 1, we know that f is a constant. Since $\phi(M)$ is compact, we must have $p=n$ in the conclusion of Theorem 1 .

Remark. Corollary 2 is slightly stronger than the classical theorem of Süss [9], where M is assumed to be a convex hypersurface.

Before we prove our results for hypersurfaces in the unit sphere S^{n+1} (i.e. the standard model for a space form of dimension $n+1$ with constant sectional
curvature 1), we explain a few examples. In R^{n+2} with usual inner product, $S^{n+1}=\left\{x \in R^{n+2} ;(x, x)=1\right\}$.

For any unit vector a and for any $r, 0 \leq r<1$, let

$$
\sum^{n}=\left\{x \in S^{n+1} ;(x, a)=r\right\}
$$

When $r=0, \Sigma^{n}$ is a great sphere in S^{n+1}. When $r>0$, we call Σ^{n} a small sphere in S^{n+1}. By elementary computation we find that the second fundamental form of \sum^{n} as a hypersurface of S^{n+1} is given by

$$
A=\frac{r}{\sqrt{1-r^{2}}} I \quad(\text { up to a sign })
$$

where I is the identity transformation. The mean curvature is constant and so is the function $f=$ trace A^{2}. It is known that a totally umbilical hypersurface in S^{n+1} is locally (globally if it is complete) Σ^{n}; in particular, it is a great sphere if it is totally geodesic.

Another example is a product of spheres $S^{p}(r) \times S^{\prime}(s)$, where $p+q=n$ and $r^{2}+s^{2}=1$. For such $p, q>0$, consider R^{n+2} as $R^{p+1} \times R^{q+1}$ and let

$$
\begin{aligned}
& S^{p}(r)=\left\{x \in R^{p+1} ;(x, x)=r^{2}\right\}, \\
& S^{\prime}(\cdot)=\left\{y \in R^{q+1} ;(y, y)=s^{2}\right\} .
\end{aligned}
$$

Then

$$
S^{p}(r) \times S^{q}(s)=\left\{(x, y) \in R^{\prime \prime \prime} ; x \in S^{\prime \prime}(r), y \in S^{q}(s)\right\}
$$

is a hypersurface of S^{n+1}. The second fundamental form A has eigenvalues s / r of multiplicity p and $-r / s$ of multiplicity q. Both the mean curvature and the function f are constants. $S^{p}(r) \times S^{u}(s)$ is minimal if and only if $r=\checkmark p / n$.

In particular, consider the case $n=2$. For r, s such that $r^{2}+s^{2}=1, S^{\prime}(r)$ $\times S^{1}(s)$ in S^{3} is called a flat torus. When $r=s=1 / 2$, it is a minimal surface in S^{3}.

We now prove
Theorem 2. Let M be an n-dimensional complete Riemannian manifold with non-negative sectional curvature, and $\phi: M \rightarrow S^{n+1}$ an isometric immersion with constant mean curvature. If $f=$ trace A^{2} is constant on M, then either
(1) $\phi(M)$ is a great or small sphere in S^{n+1}, and ϕ is an imbedding; or
(2) $\phi(M)$ is a product of spheres $S^{p}(r) \times S^{q}(s)$, and for $p \neq 1, n-1, \phi$ is an imbedding.

Proof. We may assume that M is simply connected. By Lemma 3 we know that either M is totally umbilical, in which case we get the conclusion (1), or A has two constants λ, μ such that $\lambda \mu=-1$ as the eigenvalues at all points. Let p, q be the multiplicities of λ, μ (so that $p+q=n$). It follows that M is the direct product $M_{1} \times M_{2}$, where M_{1} is a p-dimensional space of constant
curvature $1+\lambda^{2}$, and M_{2} is a q-dimensional space of constant curvature $1+\mu^{2}$. (We may prove this fact again by considering the distributions of eigenspaces for λ and μ; for the detail, see Ryan [7]). If $p \neq 1$, then $M_{1}=S^{p}(r)$ where $r=1 / \sqrt{1+\lambda^{2}}$. Similarly, if $q \neq 1$, then $M_{2}=S^{q}(s)$ where $s=1 / \sqrt{1+\mu^{2}}$. Of course, $r^{2}+s^{2}=1$. If $p=1$ or $q=1$, we take R^{1} instead of $S^{1}(r)$ or $S^{1}(s)$. At any rate, the type number for ϕ (i.e. the rank of A) is equal to n everywhere. Thus if $n \geq 3$, the classical rigidity theorem (cf., for example, Ryan [7]) shows that $\phi(M)$ is the product of spheres $S^{p}(r) \times S^{q}(s)$ in S^{n+1} and that ϕ is an imbedding unless $p=1$ or $q=1$. It remains to show that, for $n=2$, $\phi(M)$ is a flat torus. But this can be done by an elementary argument. We have thus proved Theorem 2.

Corollary 1. If M is, in particular, minimal in Theorem 2, then $\phi(M)$ is a great sphere or $S^{p}(\sqrt{p / n}) \times S^{n-p}(\sqrt{(n-p) / n})$.

Remark. Without completeness of M, the corresponding local versions of Theorem 2 and Corollary 1 are valid.

Corollary 2. Let M be a connected compact Riemannian manifold of dimension n with non-negative sectional curvature. If $\phi: M \rightarrow S^{n+1}$ is an isometric immersion with constant mean curvature, then (1) or (2) of Theorem 2 holds.

The following special case is worth mentioning.
Corollary 3. Let M be a connected compact minimal hypersurface immersed in S^{n+1}. If M has positive sectional curvature, then M is imbedded as a great sphere.

Remark. Corollary 3 is a generalization of a result of Almgren [1] which says that a compact minimal surface of genus 0 in S^{3} is a great sphere.

Bibliography

[1] F. J. Almgren, Jr., Some interior regularity theorems for minimal surfaces and extensions of Bernstein's theorem, Ann. of Math. 84 (1966) 277-292.
[2] T. Klotz \& R. Osserman, Complete surfaces in E^{3} with constant mean curvature. Comment. Math. Helv. 41 (1966/67) 313-318.
[3] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
[4] -. Foundations of differential geometry, Vol. II, Interscience, New York, 1969.
[5] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
[6] K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J. 20 (1968) 46-59.
[7] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J. 21 (1969) 363-388. Thesis, Brown University, 1968.
[8] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968) 62-105.
[9] W. Süss, Zur relativen Differentialgeometrie V, Tôhoku Math. J. 31 (1929) 202209.
[10] K. Yano, The theory of Lie derivatives and its applications, North Holland, Amsterdam, 1957.

Brown University
University of Notre Dane

