J. DIFFERENTIAL GEOMETRY
3 (1969) 367-377

A FORMULA OF SIMONS’ TYPE AND HYPERSURFACES
WITH CONSTANT MEAN CURVATURE

KATSUMI NOMIZU & BRIAN SMYTH

In a recent work [8] J. Simons has established a formula for the Laplacian
of the second fundamental form of a submanifold in a Riemannian manifold
and has obtained an important application in the case of a minimal hypersur-
face in the sphere, for which the formula takes a rather simple form. The
application is made by means of the Laplacian of the function f on the hyper-
surface, which is defined to be the square of the length of the second funda-
mental form.

In the present paper, by a more direct route than Simons’ we first obtain
the same type of formula (see (16)) in the case of a hypersurface M immersed
with constant mean curvature in a space M of constant sectional curvature,
and then derive a new formula (see (18)) for the function f which involves the
sectional curvature of M. Based on this new formula our main results are the
determination of hypersurfaces M of non-negative sectional curvature immersed
in the Euclidean space R"*! or the sphere $"*!' with constant mean curvature
under the additional assumption that the function f is constant. This additional
assumption is automatically satisfied if M is compact. We state the general
results in a global form assuming completeness of M, but they are essentially
of local nature.

1. Formula of Simons’ type

Let M be an (n + 1)-dimensional space form, i.e., a Riemannian manifold
of constant sectional curvature, say, c. Let ¢: M — M be an isometric immer-
sion of an n-dimensional Riemannian manifold M into M. For simplicity, we
say that M is a hypersurface immersed in M and, for all local formulas and
computations, we may consider ¢ as an imbedding and thus identify x e M
with ¢(x) e M. The tangent space T.(M) is identified with a subspace of the
tangent space T.(M), and the normal space T+ is the subspace of T,(M) con-
sisting of all X e T,(M) which are orthogonal to T,(M) with respect to the
Riemannian metric g. For the basic notations and formulas concerning differ-
ential geometry of submanifolds, we follow Chapter VII of Kobayashi-Nomizu

[4].
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For an arbitrary point x, ¢ M, we may choose a field of unit normal vectors
¢ defined in a neighborhood U. The second fundamental form 4 and the cor-
responding symmetric operator A are defined and related to covariant differ-
entiations ¥ and // in M and M, respectively, by the following formulas:

(1) VyY = V.Y + h(X,Y),

(2) s = —AX,

where X and Y are vector fields tangent to M. The Gauss equation is:
(3) RX,Y)=cX NY + AX \ AY , X, YeT (M),

where X A Y denotes the skew-symmetric endomorphism of T,(M) defined
by (X AY)Z = g(Y,Z)X — g(X,2)Y.
The Codazzi equation is expressed by

(4) 7 AY) = (P ANX) .

Since £ is defined locally up to a sign, so is 4, and A? is thus defined globally
on M. We consider the function f = trace 4* which is globally defined on M
and wish to compute its Laplacian 4f. This is given as the trace of the sym-
metric bilinear form

(5) H/(X,Y) = X(Yf) — (F\Y)f;
in fact, H, coincides with the usual Hessian of f at a critical point of f. If
{e,, - - -, e,} is an arbitrary orthonormal basis in T (M), then
(6) N = 3 H (e,ve) -
i1

In order to compute Jf, we need to compute the “restricted” Laplacian of
the tensor field 4, which we now explain. Let T be an arbitrary tensor field
of type (r,s) on M. Then the second covariant differential F*T is a tensor field
of type (r, s + 2) which is given by

(1) PTG Y;X) = F(FeT) = Py 4T,

where X and Y are vector fields on M. At each point xe M, we take an
orthonormal basis {e,, - - -, e,} in T, (M) and set

(8) umm=§memw

This is independent of the choice of an orthonormal basis and the tensor field
A'T of type (r, s) so defined is called the restricted Laplacian of T. When T is
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a function f, P*T coincides with H, in (5) and 4'T is nothing but 4f. The
expression for 4'T in conventional tensor notation is

n
4 et — PQTigeeod
@Dy, = p§-1g T3 epia -

If T is a differential form o of degree r, 4T does not coincide with the
Laplacian 4w as defined in the theory of harmonic integrals; indeed, 4w is
part of dw. This accounts for the name of “restricted Laplacian” which we
are proposing. (In Simons [8], 4'T is called simply the Laplacian; for results
on the restricted Laplacian, see, for example, Lichnerowicz [5; pp. 1-4].)
Going back to the function f = trace A* on the hypersurface M, we have

Yf = Y(trace A% = trace (F};A?) ,

since taking the trace is a contraction on tensor fields of type (1, 1), which
commutes with covariant differentiation (cf. Kobayashi-Nomizu [3, p. 123]).
Since

trace V;-A%? = trace (F-A)A + trace A(V;A)

= 2 trace (F;yA)A ,
we have

Yf = 2trace (F;A)A .
Thus we have

XYf = 2trace P y(F-A)A + 2 trace (F;A)F A)
as well as
F,Y)f = 2 trace 7y v A)A .

Hence

% f= Zn] {trace (F?A4)(; e;; e;)A + trace .4},

i=1

where {e,, - - -, ¢,} is an orthonormal basis in T,(M). Thus

%Af = trace (4'A)A + an trace (V,,4)* .
: i=1

By extending the metric g to the tensor space in the standard fashion, we may
write

(9) %Af = g(l'A, A) + gA, T A) .



370 KATSUMI NOMIZU & BRIAN SMYTH

We shall now compute 4’A. For this purpose, let us write K(X,Y) for
(7*A)(; Y; X) so that

K(X,Y) = Vy(PyA) — F, vA .

Using the identities VY — V. X — [X, Y]=0and R(X, Y) =[P,V 1— V(. 1y
where the curvature transformation R(X, Y) and the other terms are regarded
as derivations of the algebra of tensor fields, we obtain

(10) K(X,Y)=K(Y.X) + [R(X.Y), A] .

Let {e,, - - -. ¢,} be an orthonormal basis in T (M), and extend them to vector
fields E,, - - -, E, in a neighborhood of x such that FE, = 0 at x. Let X be a
vector field such that X = O at x. (Such vector fields can be easily obtained
by using parallel displacement along cach geodesic with origin x.) In (10) take
E; and X instead of X and Y, respectively, and apply each endomorphism to
E,. Since

K(E;, X)E, = (V,(FyANE; — (F. (AE,; (the second term is O at x)
=V, (PyAE;) — (F AXT  E;) (the second term is O at x)

= Fp((Fp,A)X) (by virtue of Codazzi’s equation)
=Fp,FprANX + (F,, AT, X) (the second term is 0 at x)
= K(E,E)X,

we get at x

an K(E,,E)X = K(X,E)E; + [R(E,. X), A]E,; .

By a similar computation we get at x
(]2) K(Xv E,-)E,- = l',\.((r,.;,A)E,-) .

We now assume that M has constant mean curvature. that is, trace A = con-
stant. Under this assumption we prove

(13) > (P AE; = 0.

Indeed, since F,; 4 is a symmetric operator together with 4, we get, by using
Codazzi’s equation,

85 TuAELZ) = £ 2, (T)2)
i=1 i1

= 3 g(E, (FzA)E)
= trace (F,A) = Z-(trace A) = 0.
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Since this is valid for an arbitrary vector Z, we conclude (13). Substituting
(13) in (12) we obtain

(14) 5" K(X,E)E, = 0.

i=1
From (11) and (14) we get

(15) (L AX) = 5 [RE,, X), AE, .

i=1

The right-hand side can be computed as follows. By the Gauss equation, we
have

R(E,X) =c(E; N\ X) + AE, \ AX .
Thus

3 R(E,, X)AE, = ¥, c{8(AE;, X)E; — g(E;, AE)X)
i=1 i=1

+ 3 {&(AE,, AX)AE, — g(AE,, AE)AX} .
i=1

Here
i 8(E;, AE,)) = trace 4,
i=1
lé 8(AE, AE) = é 8(A’E, E,) = trace 47,
i g(AEn X)Et s i g(E,-, AX)El = AX ,
i=1 i=1
and
il g(AEi, AX)AE,: = A é g(Ei,AZX)Ei = A(A?X) = A°X .
i= is1
Hence

Zn: R(E,, X)AE; = cAX — c(trace A)X + A’X — (trace AYAX .
i=1
Similarly, we get

3! AR(E;, X)E, = cAX — cnAX + A’X — (trace A)A’X .

i=1
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From these two equations we obtain

z;1 [R(E,, X), AJE; = ncAX — (trace ADAX
— c(trace A)X + (trace A)A*X ,
that is, (15) gives
(16) A'A = ncA — (trace AY)A — c(trace A)I + (trace A)A?,

where [ is the identity transformation. From (9), we obtain

an —;—Af = cn(trace A*) — (trace A?)* — c(trace A)>
+ (trace A)(trace A°) + g(WA,V A) .
In particular, if M is minimal in M, that is, trace 4 = 0, then

(16" A'A = ncA — (trace ANA ,
(17 ~%Af==ad——f4—dVA,VA),

In the case where M is the unit sphere $**' (so that ¢ = 1), (16”) and (17)
are found in Simons [8].
We shall now transform (17) into a form which is convenient for our appli-

cations. We first prove
Lemma. Let A be an n X n symmetric matrix with eigenvalues 2,,- - -, 2,.

Then, for any constant c,

nctr A2 — (tr A% — c(tr A + (tr A)(tr A%) = 3 A, — 2))%c + 2.2 .

i<Jj

Proof. Since the equality is trivial for n = 1, assume that it is valid for
the degree n — 1. Then the left-hand side is equal to

n-1 n-1 2
ne(g %+ 2)— (5 2+ 2)
i=1 i=1

_ c(Zl A+ a4 (2}‘1 + 1) (M‘ Rt
=l = (Z2) - () - o(£4) +(Z4) (2 2)}
n {c(z';: zg) - 2c(:§1 zi)z,, + c(n — 1)23,}

n-1
+ L (B2, — 224, + A8) .
i=1
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On the above right side the first term is, by inductive assumption, equal to

> @, — xj)z(c + Zizj) s

15i<j<n
the second is equal to

z: C(Zi - zn)za

i<n
and the third is equal to
Z ’ziln('zi - 211)2 .

ikn
Therefore the whole sum is equal to

Z (Ri - Zj)z(c + 21'2)) + Z @; — zn)z(c + ;‘izn)

1<i<j<n i<n
= 5 A — 2)Mc + 22,
i<j
which completes the proof of the lemma.

Now for each point x of the hypersurface M, let {e, ---,e,} be an ortho-
normal basis in T,(M) such that Ae; = 1,¢;,, 1 < i < n. By the Gauss cquation
(3) we see that the sectional curvature K;; for the 2-plane spanned by e; and
e;, I # j, is equal to ¢ + 2,2;. Thus (17) can be written as follows:

(18) %Af = ¥ — K, + g(FA,FA).

i<J

2. Main results

Let M be a connected hypersurface immersed with constant mean curvature
in a space form M of dimension n + 1 with constant curvature, say, ¢. We
establish the following lemmas.

Lemma 1. If M is compact and has non-negative sectional curvature (for
all 2-planes), then at every point of M we have

PA =0 and @A, —2)K;; =0 foralli,j.

In particular, the eigenvalues of A are constant (where the field of unit normals
& is defined). _

Proof. By assumption, K,; > 0. From the formula (18) we have Jf > 0.
Since M is compact, we conclude that f is constant and Jf = O (see, for in-
stance, Yano [10, p. 215] or Kobayashi-Nomizu [4, Note 14]). Thus we get
VA = 0and (1, — 2,)K,; = O for all i, j.

Lemma 2. If M has non-negative sectional curvature, and f = trace A° is
constant on M, then we have the same conclusions as Lemma 1.
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Proof. This is obvious from the formula (18) itself.

Lemma 3. Under the assumptions of Lemma 1 or Lemma 2, either M is
totally umbilical or A has exactly two distinct constants as eigenvalues at every
point.

Proof. As we already know, the eigenvalues of 4 remain constant (in its
domain of definition). Thus the set of umbilics is an open set in M. Since it
is obviously a closed set, either M is totally umbilical or M has no umbilic. In
the second case, we show that 4 has at most (hence exactly) two eigenvalues
at any point x. Let 4, > 2, > --. > 1, be the eigenvalues of 4 at x. We may
assume that 2, > O for the following reason. 1f 4, < 0, then 1, < 0. Since
A, =0 implies 2, = -.. = 1, = 0 contrary to our premise, we must have
1, < 0. We may then change the field of unit normals & around x into —¢&
thus changing 4 into —A, whose largest eigenvalue —2,, is positive. Having
assumed that 4, > 4, > --- > 4, with4, > 0, we have K,, > K, > ... > K,,
and these are all non-negative by assumption. Assume that p is the largest
integer such that K,, > 0 and K,,,, = 0 (set p = n if K,, > 0, although we
see in a moment that this does not arise). From the second conclusion of
Lemma 1 or 2, we get

A —-2)K;=0 foralll <i<p,
which imply that
A= .-+ =2,=2, say.

Here p + n, since x is not an umbilic. In addition we have

K, ,=---=K,=0,
that is,
c+ A2, = =c+22, =0,
which imply that
pp= -+ =4, = —c/h.

This proves our assertion that 4 has at most two distinct eigenvalues.

With these preparations we shall now prove our main results.

Theorem 1. Let M be a complete Riemannian manifold of dimension n
with non-negative sectional curvature, and ¢: M — R"*'' an isometric immer-
sion with constant mean curvature into a Euclidean space R**'. If f = trace A*
is constant on M, then ¢(M) is of the form S? X R*~?, 0 < p < n, where
R"*"? js an (n — p)-dimensional subspace of R"'?, and S is a sphere in the
Euclidean subspace perpendicular to R*~7?. Except for the casep = 1, ¢ is an
imbedding.
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Poorf. We first assume that M is simply connected. By Lemma 3 we know
that either M is totally umbilical or 4 has exactly two distinct constant eigen-
values 2, g, where 2 # 0 has multiplicity p, 1 < p < n — 1, and g is actually
0 (since ¢ = 0 in the proof of Lemma 3). In the first case, it follows that (M)
is actually a Euclidean hyperplane R or a sphere S*, depending on whether
A is O or not. Since M and ¢(M) are simply connected, we conclude that ¢ is
an imbedding (cf. Theorem 4.6, p. 176 of Kobayashi-Nomizu [3]).

In the second case, we can define two distributions

T'(x) = {xeT,(M); AX = 2X},
and
T(x) = {XéT,(M); AX = 0}

of dimensions p and n — p, respectively. Knowing that 1 is a constant, it is
easy to see that both distributions are differentiable, involutive and totally
geodesic on M. Thus M is the Riemannian direct product M' x M°, where M'
and M° are the maximal integral manifolds of T' and T°, respectively, through
a certain point of M. From this point on, we may use the same arguments as
those for Proposition 3 in Nomizu [6] to conclude that ¢(M) is of the form
S§? x R*-?. If p > 2, then ¢(M) is simply connected and we conclude that ¢ is
an imbedding. (If p = 1, then M may be R X R"~' which is immersed onto
S' < R*™'in Rn+l') .

In the general case, let M be the universal covering manifold on M with
the projection 7: M — M. With respect to the naturally induced metric, M and
¢ = ¢ o & satisfy the same assumptions as those for M and ¢. Thus $(M)
= ¢(M) is of the form §? x R"~?. If p # 1, then ¢ is an imbedding and so
is @.

Corollary 1. If M is, in particular, minimal in Theorem 1, then $(M) is
a hyperplane and ¢ is an imbedding.

Remark 1. Without completeness of M the corresponding local versions
of Theorem 1 and Corollary 1 are valid.

Remark 2. Theorem 1 may be thought of as a partial extension of a result
of Klotz and Osserman [2].

Corollary 2. Let M be a connected compact Riemannian manifold of
dimension n with non-negative sectional curvature. If ¢: M — R"*' is an iso-
metric immersion with constant mean curvature, then ¢(M) is a hypersphere
and ¢ is an imbedding.

Proof. By Lemma 1, we know that f is a constant. Since $(M) is compact,
we must have p = n in the conclusion of Theorem 1.

Remark. Corollary 2 is slightly stronger than the classical theorem of Siiss
[9], where M is assumed to be a convex hypersurface.

Before we prove our results for hypersurfaces in the unit sphere S"*' (i.e.
the standard model for a space form of dimension n + 1 with constant sectional
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curvature 1), we explain a few examples. In R"*? with usual inner product,
S*+ = {xe R"*?; (x,x) = 1}.
For any unit vector a and for any r, 0 < r < 1, let

2r={xeS"; (x,a) =r}.

When r =0, 3™ is a great sphere in S**'. When r > 0, we call }" a small
sphere in S™*'. By elementary computation we find that the second fundamental
form of 3" as a hypersurface of $"*! is given by

A= ——r———,—I (up to a sign) ,
1—1r

where [ is the identity transformation. The mean curvature is constant and so
is the function f = trace A% It is known that a totally umbilical hypersurface
in $**!' is locally (globally if it is complete) >.*; in particular, it is a great
sphere if it is totally geodesic.

Another example is a product of spheres S”(r) x S9(s), where p + q=n
and r* 4+ s* = 1. For such p,q > 0, consider R*** as R"*!' x R*'! and let

SXr) = {xe R (x,x) = 17},
Ss) = {ye R""; (y,y) = 8%} .
Then
SP(r) X §s) = {(x,y) e R"'*; x e §"(r), y € SUus)}

is a hypersurface of §**'. The second fundamental form A4 has eigenvalues
s/r of multiplicity p and —r/s of multiplicity q. Both the mean curvaturc and
the function f are constants. S$2(r) X S$%(s) is minimal if and only if r = \p/n.

In particular, consider the case n = 2. For r, s such that r* + s* =1, S'(r)
X S'(s) in §* is called a flat torus. When r=s=1/J2, it is a minimal
surface in S°.

We now prove

Theorem 2. Let M be an n-dimensional complete Riemannian manifold
with non-negative sectional curvature, and ¢: M — S"'' an isometric immer-
sion with constant mean curvature. If f = trace A* is constant on M, then either

(1) (M) is a great or small sphere in $**', and ¢ is an imbedding;
or

(2) ¢(M) is a product of spheres S¥(r) x S'(s), and for p+1, n—1, ¢
is an imbedding.

Proof. We may assume that M is simply connected. By Lemma 3 we know
that either M is totally umbilical, in which case we get the conclusion (1), or
A has two constants 2, ¢ such that 2z = —1 as the cigenvalues at all points.
Let p, g be the multiplicities of 2, p (so that p + q = n). 1t follows that M is
the direct product M, X M,, where M, is a p-dimensional space of constant
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curvature 1 + 22, and M, is a g-dimensional space of constant curvature 1 + .
(We may prove this fact again by considering the distributions of eigenspaces
for 2 and g; for the detail, see Ryan [7]). If p + 1, then M, = S?(r) where
r=1/J1 + 2. Similarly, if g # 1, then M, = S(s) where s = 1/T + . Of
course, r* + s*=1. If p=1 or g =1, we take R! instead of S'(r) or S'(s).
At any rate, the type number for ¢ (i.e. the rank of A) is equal to n every-
where. Thus if n > 3, the classical rigidity theorem (cf., for example, Ryan
[71) shows that ¢(M) is the product of spheres S7(r) X S%s) in $**' and that
¢ is an imbedding unless p = 1 or g = 1. It remains to show that, for n = 2,
#(M) is a flat torus. But this can be done by an elementary argument. We
have thus proved Theorem 2.

Corollary 1. If M is, in particular, minimal in Theorem 2, then $(M) is
a great sphere or S*(NpJn) x S$*~?*(J(n — p)/n).

Remark. Without completeness of M, the corresponding local versions of
Theorem 2 and Corollary 1 are valid.

Corollary 2. Let M be a connected compact Riemannian manifold of
dimension n with non-negative sectional curvature. If ¢: M — §"*' is an iso-
metric immersion with constant mean curvature, then (1) or (2) of Theorem
2 holds.

The following special case is worth mentioning.

Corollary 3. Let M be a connected compact minimal hypersurface im-
mersed in S**'. If M has positive sectional curvature, then M is imbedded as
a great sphere.

Remark. Corollary 3 is a generalization of a result of Almgren [1] which
says that a compact minimal surface of genus 0 in $° is a great sphere.
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