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GROWTH OF FINITELY GENERATED SOLVABLE
GROUPS AND CURVATURE OF
RIEMANNIAN MANIFOLDS

JOSEPH A. WOLF

1. Introduction and summary

If a group I is generated by a finite subset S, then one has the “growth
function” gs, where gs(/m) is the number of distinct elements of I" expressible
as words of length <m on S. Roughly speaking, J. Milnor [9] shows that the
asymptotic behaviour of g5 does not depend on choice of finite generating set
§ C I, and that lower (resp. upper) bounds on the curvature of a riemannian
manifold M result in upper (resp. lower) bounds on the growth function of
m,(M). The types of bounds on the growth function are

polynomial growth of degree < E: gg(m) < c-m¥ |
exponential growth: u-v™ < gs(m) ,

where ¢, u and v are positive constants depending only on S, » > 1, and m
ranges over the positive integers.

In § 3 we show that, if a group I has a finitely generated nilpotent subgroup
4 of finite index, then it is of polynomial growth, and in fact c;m®*» < gi(m)
< eym®9 where 0 < ¢, < ¢, are constants depending on the finite generating
set S C I', and E.(4) < E,(4) are positive integers specified in (3.3) by the
lower central series of 4. In § 4 we consider a class of solvable groups which
we call “polycyclic”; Proposition 4.1 gives eleven characterizations, all useful
in various contexts; finitely generated nilpotent groups are polycyclic. We
prove that a polycyclic group, either has a finitely generated nilpotent
subgroup of finite index and thus is of polynomial growth, or has no such
subgroup and is of exponential growth. We also give a workable criterion for
deciding between the two cases. Applying a result of Milnor [10] which says
that a finitely generated nonpolycyclic solvable group is of exponential growth,
we conclude that a finitely generated solvable group, either is polycyclic and
has a nilpotent subgroup of finite index and is thus of polynomial growth, or
has no nilpotent subgroup of finite index and is of exponential growth.
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In § 5 the results of §§ 3 and 4 are applied to quotient groups of subgroups
of fundamental groups of riemannian manifolds whose mean curvature® > 0
everywhere, resulting in fairly stringent conditions on the fundamental group
of a complete riemannian manifold of non-negative mean curvature. Those
conditions, however, are not strong enough to prove the conjecture that the
fundamental group must be finitely generated.

In § 2, before considering growth rate, we make a few estimates and prove
that if a compact riemannian manifold M has every sectional curvature < 0,
and =,(M) is nilpotent, then M is a flat riemannian torus. In § 6 we combine
the results of §§2 and S with a result of Cheeger and Gromoll [5], proving
a result on quotient manifolds of nilmanifolds, which contains L. Auslander’s
conjecture that if a compact nilmanifold M admits a riemannian metric ds*
with every sectional curvature < QO or with every sectional curvature > 0,
then M is diffeomorphic to a torus. In fact we prove (M, ds?) isometric to a
flat riemannian torus, and we manage the diffeomorphism only assuming non-
negative mean curvature. Here we do not require any invariance property on
the metric, so that considerations are more delicate than the known results
([171, [19] and G. Jensen’s thesis) for invariant metrics on nilmanifolds.

The results of §2 raise the question of whether a compact riemannian
manifold M with every sectional curvature < 0, such that =,(M) has a solvable
(or polycyclic) subgroup of finite index, is necessarily flat. If the amswer is
“yes” then one can strengthen Corollary 2.2, replacing “nilpotent” by
“solvable” (or “polycyclic) in the formulation: if M is a compact riemannian
manifold with every sectional curvature < 0, then m,(M) has a nilpotent
subgroup of finite index if and only if M is flat.

The results of §§3 and 4 raise the question of whether every finitely
generated group I', which is not of exponential growth, necessarily has a
nilpotent subgroup of finite index. The answer “yes” is suggested, first by
Theorem 4.8 which proves it in case I' is solvable, second by the work of
Shub and Frank on expanding maps, and third by a personal prejudice that
a finitely generated group must be of very rapid growth if it has no solvable
subgroup of finite index.

2. Manifolds of nonpositive curvature and nilpotent fundamental group

In this section we adapt some of our earlier results [16] on bounded iso-
metries to prove

1If X is a tangent line at a point x ¢ M then the mean curvature at (x, X) is defined to be
the average of the sectional curvatures K(x, E) where E C M. ranges over the plane
sections containing X. Analytically, if n = dim M, § = (§i) is a unit tangent vector at x,

1 I .
and (R;;) is the Ricci tensor, then the mean curvature k(x, &)= pa— 2 Ri;§€7 in the sign
- 17

convention R;; = 3, R™; ;.
m
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2.1. Theorem. Let M be a compact connected riemannian manifolds uch
that

(i) every sectional curvature of M is nonpositive, and

(i) the fundamental group =,(M) is nilpotent.

Then M is a flat riemannian torus. In particular, =,(M) is the free abelian
group on (dim M) generators.

2.2. Corollary. Let M be a compact connected riemannian manifold with
every sectional curvature < 0. Suppose that n,(M) has a nilpotent subgroup
4 of finite index. Then M is a compact euclidean space form and 4 is free
abelian on (dim M) generators.

Proof of corollary from theorem. There is a riemannian covering =: M’ — M
where 4 = =,(M’). The multiplicity of the covering is the index of 4 in =,(M),
and hence finite; so M’ is compact. Theorem 2.1 says that M’ is a flat
riemannian torus, and so M is flat, and that 4 is free abelian on (dim M’)
= (dim M) generators.

Proof of theorem. Letz: N — M denote the universal riemannian covering,
and I the group of deck transformations of the covering. Then I" = =,(M),
so I" is nilpotent, and I" is a properly discontinuous group of fixed point free
isometries of N such that M = I'\N. Compactness of M provides us with a
compact set K C N such that N = I'- K.

If f: N — N is any map, we define the displacement function ,: N — R by

d,(x) is the distance from x to f(x) .

Then §, is continuous if f is continuous. In particular the 4,, y € I', are con-
tinuous. Thus we have well defined bounds

(2.3) by, K) = max {§,(x): xe K} < oo

for displacement on K of elements of I".

Let Z, denote the center of the group I”. It is a nontrivial free abelian group
because " is a torsion free finitely generated nilpotent group. Let x ¢ N and
ye Z,. Then we have £ e I" such that £(x) € K, and we compute

d,(x) = distance (x, yx) = distance (£x, £rx)
= distance (§x, y&x) = §,(§x) .
In other words,
2.4) 8,(x) < b(7,K) < foralxeNand yeZ, .

Thus every element of Z, is a bounded isometry [16] of N.

N is complete because M is compact. Thus we have the de Rham decom-
positon N =N, X N; X --- X N, = N, X N’ where N, is a euclidean
space and N’ = N, X --- X N, is a product of irreducible riemannian mani-
folds. We know [16, Theorem 1] that the bounded isometries of N are just
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the transformations (n,, n’) — (zn,, n’), n,e N, and n’ ¢ N’, where 7 is an
ordinary translation of the euclidean space N,. Now
if y € Z, then there is an ordinary translation t, of N, such

2.5
@.5) that y acts on N = N, X N’ by y(n,, n') = (z,n,, n') .

This decomposes N, into a product of euclidean spaces A4 and B where, from
the vector space viewpoint,

(2.6) A is the span of {r,: y e Z;} and B = 4+ .

That decomposition N, = A X B has both factors stable under I", because
Z, is normal in I". If I denotes the full group of isometries, then

2.7 N=A4AX (B XN, I' C I(4) X I(B X N') .
If y e I, this decomposes
(2.8) 7y =174 X7, where r, e I(4) and y’ e I(B X N') .

Note thaty, =z, and y/ = 1 in case y e Z,. Thus every element of {y,: e I'}
commutes with every element of {z,: y € Z}. It follows that

2.9 if y € I, then 7, is an ordinary translation of 4 .
In particular (2.5) and (2.6) give
(2.10) Zr={rel': ¢y =1}=TNIA) .
Let I'” denote the projection of I" to I(B X N’). Then (2.8) and (2.10) say
2.11) I'={:velt=Tr|Z,.

The quotient of a torsion free nilpotent group by its center is torsion free (see
[7, p- 247]). Thus (2.11) says that

2.12) I'" is a torsion free nilpotent group.

By (2.6), (2.8) and (2.10) we have a compact set K, C A such that Z..K,
= A. Suppose n’ ¢ B X N’ such that {y/(n’): ¥’ € [’} has an accumulation
point. Choose n, ¢ A and let n = (n,, n) e N; if yeI'" has yeI" as pre-
image, we replace y by the appropriate element of yZ,, and then we may
assume 7,(n,) € K,. But then {y(n): y € I'} has an accumulation point, which
is absurd. We conclude that

2.13) I'’ acts discontinuously on B X N’ .
Now (2.10) and compactness of M say that
2.14) I'’\(B X N’) is compact .
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Define M’ = I""\(B X N’). Construction of B X N’ and hypothesis on M
say that B X N’ is a simply connected riemannian manifold®> with every
sectional curvature nonpositive. I’ is a properly discontinuous (by (2.13))
group of fixed point free (by (2.12)) isometries, so M’ is a riemannian
manifold® such that

(1) every sectional curvature of M’ is nonpositive, and

(i) m(M’) = I'’, nilpotent group.

Finally M’ is connected by construction and is compact by (2.14). Thus

(2.15) M’ satisfies the hypotheses of Theorem 2.1 .

We are ready to prove Theorem 2.1 by induction on dimension. Nontriviality
of Z, implies dim 4 > 0, so

dimn M’ =dim(B X N) < dmN =dmM .

By (2.15) and induction hypothesis, now M’ is a flat riemannian torus. Thus
B X N’ = B, a euclidean space, and I is a group of ordinary translations of
B. Now N = N, = A X B, product of euclidean spaces, and every element
7 € I" has form y, X y’ where 7’ is an ordinary translation of B. But (2.9) says
that y, is an ordinary translation of A. It follows that every ye I" is an
ordinary translation of the euclidean space N. This proves M = I'\N to be a
flat riemannian torus. q.e.d.

If M is a compact n-dimensional euclidean space form, then [18, Chapter 3]
the fundamental group x,(M) has a normal subgroup X of finite index such
that Y is free abelian on (dim M) generators and z,(M)/Z2 is isomorphic to the
linear holonomy group of M. In particular, if M has solvable linear holonomy
group, then x,(M) is solvable. If n = 2 [18, p. 77] or n = 3 [18, Theorems
3.5.5 and 3.5.9], then the linear holonomy group is automatically solvable;
so m,(M) is automatically solvable, although M need not be a torus. Thus the
version of Theorem 2.1 and Corollary 2.2, which might possibly generalize to
a larger class of fundamental groups, is

2.16. Corollary. Let M be a compact riemannian manifold with every
sectional curvature < 0. Then n, (M) has a nilpotent subgroup of finite index,
if and only if M is flat.

Generalization of Corollary 2.16 would consist of weakening the condition
“nilpotent”, for example replacing it by “solvable” without strengthening the
curvature condition on M.

3. The growth function for nilpotent groups
—groups of polynomial growth

Let S be a finite subset of a group I". As usual an expression
s¢ .87, s;eS, a;eZ

2 We allow the dimension to be zero. In fact that is the objective of the proof.
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is called a word of length |a,| + --- + |a,| based on S. Following Milnor [9]
we define the growth function g to be the function on positive integers given
by

3.1) gs(m) is the number of distinct elements of I expressible
) as words of length < m based on S.

Milnor [9, Lemma 4] proved that, if S is a finite generating set of the torsion
free nilpotent group

{x, y: [x, [x, yI1 = Iy, [x, y1l = 1}

of rank 3, then g is quartic in the sense that there are constants 0 < ¢, < ¢,
such that c;m* < gs(m) < c,m* for all integers m > 1. Our purpose here is to
prove the following extension of that result of Milnor.

3.2. Theorem. Let I be a finitely generated nilpotent group with lower
central series

F=F0;F12"'2F32Fs+1={1}3 Fk+1=[r,rk]-

Then each I'y|T,,, is a finitely generated abelian group, say I |T.,
= A, X B, with A, finite abelian and B, free abelian of finite rank n,, and
we define “growth exponents” by

3.3) E) = z k+Dn,, E(= z 2%n, .

If S is any finite generating set for I', then there are constants 0 < ¢, < ¢,
such that

emB < g (m) < cmExD for all integersm > 1 .

Remark. Notice E,(I") < E(I') with equality if and only if 0 < s < 1,
and in particular E\(I") = E(I') = n, if I is commutative. In the general case
perhaps gs(m) < c,m®:),

We start the proof of Theorem 3.2 with two lemmas which simplify estimates
and prove gg asymptotically independent of choice of finite generating set S.
Those lemmas are just formalizations of remarks of Milnor [9].

3.4. Lemma. Let S be a finite subset of a group I', and g5 denote the
growth function. If r > 0 and q > 0 are fixed integers such that gg(m)
> c(m — r)? for some constant ¢ > 0, then gs(m) > ¢’m? for another constant
¢’ >0.1If ] >0 and q > 0 are fixed integers such that gg(Im) > c(Im)? for
some constant ¢ > 0, then gg(m) > ¢”’m? for another constant ¢’ > 0.

Proof. As 1>M=T > 11 for m>r we have (m — r)

m r+
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>0+ D imiform > r. If gg(m) > c(m — r)?, then gs(m) > ¢‘'m? where
¢ =min {c(r + 1)79; gs(N/r%, gs(r — 1)/(r — 1)9, - .-, gs(1/)19}, and the
first statement is proved. For the second, divide [ into m, say m = al + b
with 0 < b < Il. Then gs(m) > gslal) > c(al)? = c(m — b)? > c(m — r)*
where r =1 — 1, and the assertion follows from the first statement with
¢’ =min{c/l9; gs(I — 1)/ — 1)9, - - -, gs(1)/19}.

3.5. Lemma. LetS and T be finite generating sets for the same group I'.
Suppose that we have constants 0 < b, < b, and integers 0 < p < q such
that bym? < g.(m) < b;m?. Then there are constants 0 < ¢, < ¢, such that
cem? < gs(m) < cm?.

Proof. We have integers k and ! such that every element of S is a word of
length < % based on T, and every element of T is a word of length < [ based
on S. Now g¢(m) < gr(km) < b,k'm? and we define ¢, = b,k?. Also gs(im)
> gp(m) > bym? = (bl~?)(Im)?. So Lemma 3.4 provides ¢”” > 0 such that
8s(m) > ¢’m?, and we define ¢, = min {¢”, ¢;}. q.e.d.

Milnor [9] observes that, if I is the free abelian group on T = {z,, z,}, then
gr(m) = 2m? 4+ 2m + 1. We give his observation a slight push.

3.6. Proposition. Let T = {z,, - - -, t,} be a minimal generating set for a
free abelian group I" of rank n. Then the growth function

v = £2(3) 7]

If S is any finite generating set for I" then there are constants 0 < ¢, < ¢, with
cm® < gs(m) < c,mn.

Proof. For every integer I > 0 let P, denote the function on non-negative
integers given by: Py(m) = 1 for all integers m > 0, and P,(;m), ] > 0, is the
number of distinct sequences (a,, - - -, a,) of positive integers with a, + - - - + a;

< m. Notice Py(m) = (’6’) And if [ >0, then each of the P,(m) sequences

(ay, - - -, @) gives rise to a subset {a,, @, + a,, - - -, @, + - - - + a,} of cardinality
lin {1, 2, .- -, m}. Conversely if a subset of cardinality / in {1, 2, --., m} is
put in ascending order it is seen to be of the form {a,, a, + a;,- - - ,a,+ - - - +a;}.

Thus P,(m) = (’7) in general.® In particular P, is a polynomial of degree !
with positive leading coefficient on the non-negative integers.

Observe that g,(m) = Zn: N,(m) where N,(m) is the number of distinct
expressions 2 . .. ln, Zl;=|oa,~| < m, such that exactly [/ of the a; are nonzero.
Let U = {4, ---, u;} be any of the (';) subsets of T with exactly ! elements.

By definition of P, there are precisely P,(m) distinct u¢* ... uft with a, > 0
and }] a, < m. Changing signs of the a; at will, we see that there are precisely

3 This fact was pointed out to me by J. Milnor, who observed that it simplified the
original version of Proposition 3.6.
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2'P,(m) distinct ufr... ugt with g, #0 and Y |a,| < m. Thus N,(m)
= 2! (';>P,(m) = 2! (';) (r?) and the equation for g, is proved.

gr(m) now is a polynomial of degree n in m with leading coefficient b > 0.
For m large, say m > m,, we thus have {bm" < g,(m) < 2bm". Now define

b, = min{—zb— ; 8r(my) /mg, gr(my — 1)/(my — 1), - - -, gr(l)/l"},

b, = max {2b; gr(my)/mg, gr(my — 1)[(my — D)=, - - -, gr(1)/17} .

Then 0 < b, < b,, and bym™ < gr(m) < b,m™ for every integer m > 1. Now
Lemma 3.5 provides constants 0 < ¢; < ¢, such that ¢m* < go(m) < c,m™.
q.e.d.
Proposition 3.6 is the starting step for our inductive proof of Theorem 3.2.
The next two lemmas provide the specific information that we need to carry
out the induction step of the proof of Theorem 3.2.
3.7. Lemma. Let I" be an (s + 1)-step nilpotent group with lower central
series

F=F02F12'-°2F32F3+1={1}, Fk+1=[F’Fk]~

Suppose that I'|I'y is finitely generated. Then there are finite sets T,
= {te,1 - *» Tu,rx} C I SuUch that
® ifop: I'y — I'y| Ty, denotes the projection, then I | I, is a finitely
generated abelian group and {¢,(z, 1), - - -, ¢i(ts,»,)} is an independent set of
generators;
(i) if k > 0, then every ;€ T, is of the form [z, ;, 7,y ;] wWith 7, ;€ T,
and z,_, ;€ T,_,; and

@iii)) T, generates I.

Proof. To construct T, we take any independent generating set {a,, - - -, a,,
of I'/T", and make arbitrary choices z,; € p;'(a,). Then (i) is satisfied by
construction and (ii) is satisfied because it is vacuous. Now let kK > 0 and
suppose that we have constructed T, T, - - -, T,_, satisfying (i) and (ii); we
go on to construct T,.

Let 4 =1I/I,,, let §: I’ — 4 be the projection, observe 4, = §(I";) and
in particular that 4 is (k + 1)-step nilpotent, and define S, = {6,,, - - -, 6, .}
with ¢, , = 8(z; ). If v € 4, then v is a product of commutators [«, ] with
aedand Bed,_,. As 4, is central in 4 we have [a, ] = [«’, f’] whenever
o' e ad, and B’ € B4, ; so we may assume o = o' - - - 0,°%, 0, €S, and q; ¢ Z,
and g = Crorn v - a,,_l,,k_lb”‘". Again because 4, is central in 4,

n Tk-1
[a, Bl = [n oo, Tl ak-,.,"f] = ] [os, 0oy 109
i=1 i= i,J
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Thus 4, is generated by the [o, ;, 6, ;1. In other words, I";/ I, is generated
by the [z, ;, 7,1 ;]. Choose any independent generating subset, ; that defines
a finite set T, = {zy, - * -, Tg,,,} in I'; satisfying (i) and (ii).

We have recursively defined the sets T,, 0 < k < s, satisfying (i) and (ii);
and (iii) is immediate from (ii).

Proof of Theorem 3.2. Retain the notation of Lemma 3.7. We first prove
the lower bound for gy,.

Suppose 7, ; € T, given with k > 0. Then we have z,; € T, and r;_, ;€ T,
such that 7, ; = [z, T4, ;1. Denote

X =10y =14,; and Z=r;};502=[y, x].
Then z commutes with x and y modulo I.,. If a, m and b integers, then
zom+d = zemzd = [y®, x™][y, x%] modulo I, .

If |a] < m*, then by induction on & the elements y, y™ and y* are expressible
modulo ", as words of length < 8%~'m based on T,; if |am + b| < m**! it
follows that z, z* and z*™*? are expressible modulo [";,, as words of length
< 8%m based on T,. This proves:

every t, "%, |p, | < m**, is expressible modulo

3.8
3.8) I'... as a word of length < 8*m based on T, .

Suppose T to be ordered so that {p.(z;,), - - -, i(7s .,)} generates a free
abelian subgroup of rank n, in I',,/I";,,. Then (3.8) says that I",/I",., has at
least {2m**! 4 1}m > m®*Dne  elements {r,,"*' - - - 4 5, "5} 4o, P,
< m"“, expressible as words of length < (8*n,)m based on T,. Denote B

= Z 8kn,; then I" has at least m® distinct elements expressible as words of
length < Bm based on T,, where E = Z (k + Dn, = E(I'). Thus g, (Bm)

> mED) = B-E) . (Bm)Fy), The second part of Lemma 3.4 provides a
constant b, > 0 such that g, (m) > bm=xD for all integers m > 1.

For the upper bound on g, we first note that every element y e I has
expression

(3.9a) y =88 --- &, £y = 1 " PR gy, P

which, though not unique because of torsion in the I",/I;.,, can be made
“almost” unique by assuming T, to be ordered so that {p,(z+,)), - - -, @r(Te,n,)}
generates a free abelian group of rank n, in I'/I;,,. Then that free abelian
group has some finite index I, in I /I";.,, and (3.9a) can always be chosen
such that

(3.9b) 0<p, <I, for m<i<r,.
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Consider the (finite) set of all commutators y = [z, ;*', 7, ;] with ¢, ; € T,
74,5 € T, and 0 < ¢ < u. Each such commutator has expression (3.9a, b) with

=6 = = &, = 1, which is turn provides a number Z Z [Py,1]- Let

k=u+1
N denote the maximum of that finite collection of numbers.

It will be convenient to have the notation T* = T, U T, U .-+ UT,. Note
that (3.9) expresses an element y € I";, as a word of length Z 2. |p.,.| based
t=k 1

on T*.

Let y e I be expressed as a word w, of length < m based on T,. We operate
on w, by pulling each occurrence of z,,*! to the left, then each occurrence of
75,,*! to the left, and so on through T, representing y by z,,*** - - - 7, ,,**"w,
where 3 |a,;| < m |a, ;| < I, for n, < i < r,, and w, is a word on T*. Each
of these < m pulls of 7, ;*! to the left involves < m?* crossings of elements or
inverses of elements of {r;.,, - -, 7o}, €ach such crossing introducing a
word of length <N based on T*, and involves crossings of previously introduced
words on T". If the previously introduced word is of the form » =y, ... 5,

where 7, is a word of length < (Z) N* based on T%, then 5-7,,*'=1,,*'-7
where ' =71 - - - 7}, 71 =1, and g = [, 70,7 Iy, for k > 1. Thus 7} is a
word of length < (k v 1)N""N+ <k> N = (” T I)Nk on T*. Let |w,|, denote
the sum of the absolute values of the exponents of the elements of T, in w,. Then
jwy i, < tzkl_‘,_l(":z)N‘ <k ('7:) Nt< Nym?**, where N; > O depends only on s and

is independent of m. This starts the induction.

Now suppose that ¢ > O and 7y is represented by a word &£, --- &,_,w,
where, for certain positive integers {1 = M,, M,, ---, M,_,, N,} depending
only on I" and independent of m,

. . Ti :
(l) fi = ‘L'i,la"'l‘l'i,za"z ot Ti,r,;az’”9 Z lai,j| < Mimzt,
j=1

(i) w, is a word on T* with |w,|, < N,m*.
Then as above we pull the 7, ,*! to the left in w,; so the element of I" repre-
sented by w, is also represented by £,w,,, where &, satisfies (i) with M, = N,
and with w,,, a word on T**! such that

L 2t +1

Weale < Z ({I;I‘mz}>NP t < (k- t)( M )N“ ¢t < N,,,m*,
p=t+1

where N,,, > 0 depends only on s and ¢ and is independent of m. That is the

induction. We have proved the existence of a sequence {1 = M,, M,, ---, M}

of positive integers depending only on I”, such that:

if y e I is expressible as a word of length < m based on T,

3.10 % )
( ) then ¢ has expression (3.9a, b) with each ¥, |p. | < M,m*.
=1
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Consider the set G,, of all elements of I” expressible as words of length < m
on T,. If y e G,, then we put it in the form &£, - .. & of (3.9) with each
|P,.| < M,m* as given by (3.10). Now the number of possibilities for &, is
< L7 Q2M,m*™ 4+ 1)"*; so

gr(m) < { 1 Ik'“"”‘} { 11 @M, + 1)%} .

The leading term of the bounding polynomial is a positive multiple of m=

where E = Zs; 2*n, = EI"). Thus there is a constant b, > 0 such that g, (m)
k=0

< bmE«D for every integer m > 1. m = 1 gives b, > b,.

Recall the arbitrary finite generating set S for I". We have constants 0 < b,
< b, such that bm*" < g, (m) < by;m®", Now Lemma 3.5 provides us
with constants 0 < ¢, < ¢, such that cmE" < go(m) < c;m®=D for every
integer m > 1. q.e.d.

Remark. By using [I",, I',] C I',,,., one can sharpen (3.10) and thus the
upper bound on g5 from ¢,m®*" to ¢,m® where

E =n,+ 2n, + 4n, + 6n, + 10n, + 14n, + ... ;

but for our purposes this is not necessary.
Let I" be a finitely generated group, S a finite generating set, and E > 0 an
integer. If there is a constant ¢ > O such that

gs(m) < cm?® for every integer m > 1,

then we say that I has polynomial growth of degree < E. Lemma 3.5 says
that this condition is independent of choice of S.

Theorem 3.2 says, among other things, that a finitely generated nilpotent
group I has polynomial growth of degree < E,(I).

3.11. Theorem. Let 2 be a finitely generated group, and I" a subgroup of
finite index.

1. I is finitely generated.

2. If I" has polynomial growth of degree < E, then X has polynomial
growth of degree < E.

3. If I' is nilpotent and has polynomial growth of degree < E, then X has
polynomial growth of degree < min {E, E,(I")}.

Proof. Let ¥ be the intersection of the conjugates ¢/'¢~! of I" in X'. Then
¥ is a finitely generated normal subgroup of finite index in 2. In particular I
is finitely generated. Suppose that Theorem 3.11 is known for normal
subgroups. Let I" have polynomial growth of degree < E. Let U C V be
respective finite generating sets of ¥ C I, and let ¢ > 0 such that g,(m)
< cm®. Then gy(m) < g,(m) shows that ¥ has polynomial growth of degree
< E, so 2 has polynomial growth of degree < E. If I is nilpotent, then further
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¥ is nilpotent, so 3 has polynomial growth of degree < min {E, E,(¥')}. But
E,(¥) = E(I'). Thus the assertions follow for I". Now we need only consider
the case where I” is normal in 2.

Now I’ is a normal subgroup of finite indexin 2. Let U = {g,, - - -, p,} be

a system of representatives of X' /I". Let T, be a finite generating set for I" and
define

V=UUT, where T = {g'rp;: ;€ U, e Ty} .

Let N > 0 be an integer large enough to satisfy the finite collection of
conditions

S = MrGinpWeisg »
where ¢= +1,7= *1, and w,,;isaword of length < NonT.

If teT, say t= p;'rpy, with reT, and g, e U, then rty; = pi'rpp;
= p Ty, pWis = I 16, 0T Wis = i, 16, Wi, 76,0 Wiy, Where ' e T. Thus
ty; has form g,w where w is a word of length < 2N + 1 on T.

Len y € X be represented by a word w of length < m based on V. Take
the first occurence of an y;*! from the right and pull it left until it meets another
occurence of an g;*'. That involves crossings of elements of T U T, each
crossing inserting a word of length < 2N + 1 on T'; amalgamation p,*'y;*!
= pyW., .; inserts a further word of length < N on T. Now push g, left until
it hits an g,*'. Continue until we have y represented by a word pw,, ¢ e U and
w, a word of length <mN +m(2N + 1). That proves g,(m) < p-g,((3N +1)m).
Thus if I" has polynomial growth of degree < E, then 3 has polynomial growth
of degree < E.

Remark. We proved, more generally, that if I C X has finite index, then
there are respective finite generating sets T C V and a number M > 0 such
that

(3.12) gr(m) < gy(m) < g-(Mm) for all integers m > 1.

4. The growth function for solvable groups
—groups of exponential growth

In this section we extend our growth function estimates from the class of
finitely generated nilpotent groups to a larger class of solvable groups.

A solvable group is called polycyclic if it satisfies the (equivalent) conditions
of the following proposition.

4.1. Proposition. Let I" be a solvable group with derived series

r=rara...-2rar"={1}, I =I[r-,r4.

Then the following conditions are equivalent.
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(1) There is a normal series I’ = A, D A, D --- D A, = {1} with every
quotient A,/ A,,, finite or infinite cyclic.

(2) There is a normal series I' = B, D B, D --- D B, = {1} with every
quotient B;/B,,, finitely generated abelian.

(3) In any solvable normal series I' = C, 5 C, D --- D C, = {1} each
C;/C;., is a finitely generated abelian group.

(4) Each quotient I'*[I'**! in the derived series is a finitely generated
abelian group.

(5) All derived groups I'* of I' are finitely generated.

(6) Every subgroup of I' is finitely generated.

(7) I satisfies the maximal condition for increasing sequences of
subgroups.

(8) There is an exact sequence {1} — 4 — I'* — @ — {1}, where 4 is a
finitely generated nilpotent group, @ is a finitely generated free abelian group,
and I'* is a subgroup of finite index in I'.

(9) I is isomorphic to a discrete subgroup of a Lie group which has only
a finite number of topological components.

(10) I is isomorphic to a discrete subgroup of a connected solvable Lie
group.

(11) I has a faithful representation by integer matrices.

Remark. The proof of Proposition 4.1 consists more or less of noticing
some known hard theorems at the same time.

Proof. K. A. Hirsch [6] proved equivalence of (2), (3) and (7). The
equivalences

D=2, 060)0@=>2,60)=>0)>@

are obvious. For (4) = (5) by induction on d — k, we first note finite gener-
ation of I'¢ by hypothesis, then have finite generation for I'**! by induction
and for I'*/I'**! by hypothesis, and finally conclude finite generation for I'%.
For (5) = (6), since (5) and (7) are equivalent, every subgroup X C I satisfies
the maximal condition and thus has every 2* finitely generated; so every
subgroup 3 C I" has ¥ = 2° finitely generated. Now the first 7 conditions
are equivalent.

Mal’cev [8] proved (4) = (8). Given (8), every subgroup of 4 or @ is finitely
generated; so every subgroup of I'* is finitely generated, and (6) follows. Now
the first 8 conditions are equivalent.

L. Auslander [3] (or see Swan [13]) proved that (4) = (11). Given (11) we
have I' € GL(n, Z) C GL(n, C), and conjugate I" into a Borel subgroup of
GL(n, C); thus (11) = (10). Trivially (10) = (9). Given (9), say with ' C G
and G/G, finite, G. D. Mostow [11, Theorem 1’] proves that every subgroup
of I' N G, is finitely generated on < dim G, elements, so every subgroup of I”
is finitely generated. Thus (9) = (6). Now all eleven conditions are equivalent.

q.e.d.
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Let I" be a group with a finite generating set S. We say that I" is of expo-
nential growth if there are constants u > 0 and v > 1 such that

4.2) u-v™ < go(m) for every integer m > 1 ,

which does not depend on choice of S. For if T is another finite generating set
for I, then every element of S is expressible as a word of some length < k
on T; so gs(m) < gr(km) < gr(m)*, and (4.2) implies u/*.(vV¥)™ < gr(m),
forallm > 1.

J. Milnor observed that we can always take u = 1 in (4.2). For, given (4.2),
u-v'™ < go(tm) < gs(m)t for all positive integers m and 7. Taking ¢-th root,
ut.ym < go(m). Then taking the limit as t — c we obtain v™ < ggs(m) for
all m > 1. Milnor further observed that if I" is of exponential growth with
finite generating set S, then lim,,_.gs(m)V™ is the largest number v such that
™ < gs(m).

4.3. Theorem. Let I' be a polycyclic group, and S a finite set of
generators.

1. If I has a nilpotent subgroup A of finite index, then there are constants
0 < ¢, < ¢, such that, in the notation (3.3),

cmB < g(m) < c,mE for every integer m > 1 ;

in particular I is of polynomial growth of degree < E,(4).
2. If I' does not have a nilpotent subgroup of finite index, then there is a
constant v > 1 such that

™ <L gs(m) < gs(D)™ for every integer m > 1 ;

in particular I" is of exponential growth.

In order to apply Theorem 4.3, and in fact in order to prove part 2 of it,
we need a criterion for deciding whether I" has a nilpotent subgroup of finite
index.

4.4. Proposition. Let I" be a polycyclic group.

1. T has a torsionfree subgroup I'* of finite index and an exact sequence
{1} > 4> TI'* - @ — {1}, where 4 and @ are finitely generated, A nilpotent
and @ free abelian.

Fix I'* and the sequence. Let D be the unique connected simply connected
nilpotent Lie group containing 4 as a discrete subgroup with coset space D[4
compact. If y e I'*, let {(y) denote the unique Lie group automorphism of D
such that {(y): & — ydy~! for every § € 4, and {,(y) be the induced automor-
phism of the Lie algebra © of D.

2. A subgroup N C I'* is nilpotent if and only if every L. (y), v € N, has
every eigenvalue equal to 1.

3. T has a nilpotent subgroup of finite index, if and only if every {.(y),
7 € I'*, has every eigenvalue of absolute value 1.
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Proof. Selberg [12, Lemma 8] proved that a finitely generated group of
matrices over a field of characteristic zero has a torsionfree normal subgroup
of finite index. Conditions (6) and (10) of Proposition 4.1 now say

@.5) in a polycyclic group, every subgroup has a torsionfree
' normal subgroup of finite index.

Let I be any subgroup of finite index in I" such that there is an exact

sequence {1} — 4 — Ly {1} with 4’ nilpotent and @’ free abelian;
this is condition (8) of Proposition 4.1. Let I"* be a torsionfree subgroup of
finite index in ™. Then I'* is a torsionfree subgroup of finite index in I", and

we have an exact sequence {1} — 4 Lo+ 2, @ — {1}, where 4 = i~'(I'*)
is still nilpotent and @ = j(I"*) remains free abelian. 4 is torsionfree because
I'* is so, and 4 and @ are finitely generated because I'* is polycyclic. Thus
the first assertion of Proposition 4.4 is proved.

Suppose that [" has a nilpotent subgroup N of finite index. We can intersect
N with its conjugates and assume N to be normal in I". Now I'/N is finite,
and therefore I'* has finite image I'*/(I™* N N) under ' — I'/N; thus ’'* N N
is a nilpotent normal subgroup of finite index in I'*. Let [* NN =L, 2 L,
=2+ 2L, 2 L, = {1} be defined by: L;/L;,, is thecenterof L,_,/L,,,.
If e NN and 2 e L,, then it follows that [y, 21 e L;,,, i.e. that y2y~! = v
with v e L;,,. Define 4, = 4N L,;, and let D, be the analytic subgroup of D
containing 4, such that D,/ 4; is compact. Then y € I'* N N and d € D, implies
{()-d = dn with ne D,,,. Now {,(y) preserves each ®, and is the identity
transformation on each ®,/9;,,. Thus every {,(7), y€ ['* N N, has every
eigenvalue equal to 1. If m is the index of I"* N N in I'*, then every eigenvalue
of every {,(7), y € I'*, is an m-th root of 1, and thus has absolue value 1.

The part of Proposition 4.4 just proved suggests that in general the group

4.6) U = {r e I'*: {,(7) has every eigenvalue 1} is nilpotent .

Letm =dimD. If m = O, then '* = @ abelian; so U is abelian and thus
nilpotent. If m = 1, then 4 is central in U; so U is nilpotent because 4/U < @
is nilpotent. Suppose m > 1. Refine the lower central series of D to a central
series L, 2L, 2 --- 2L, 2L,., ={1} with {(U)-stable 1-dimentional
quotients such that each L;/(4 N L,) is compact. Then 4 N L,, is central in U,
and U/(4 N L,) is nilpotent by induction on m. Thus U is nilpotent, and
(4.6) is proved.

If y € I'*, then we use the Jordan canonical form to obtain polynomials 4,
and U, in {,(y) such that

() A, is diagonable over the complex numbers,
(i) U, has every eigenvalue 1, and
(111) ArUr = C*(T) = UrAr'
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If we put the solvable group {,.(I'*) in simultaneous triangular form on ®°,
then A, is the diagonal of {,(y) and U, — I is the superdiagonal. Thus
A ={A,: yeI'*} is a commutative group of linear transformations of D and the
map ['* — A given by y — A4, is a group homomorphism. By definition the
kernel is the group U of (4.6). Thus

4.7 r*/u=4.

Every element of A4 is an automorphism of ® because D is a linear algebraic
group. Let 4 be the closure of A in the automorphism group of ®. Every
a € A induces an automorphism of D, which preserves 4; the same follows
for every a € A. If B is a connected subgroup of 4, then it must centralize the
discrete group 4, act trivially on D, and thus be the trivial group. So 4 is
discrete. Thus A is a discrete subgroup of the automorphism group of ®.

Now suppose that every {,(y), y € I'*, has every eigenvalue of absolute
value 1. In other words every « € A has every eigenvalue of absolute value 1.
A is contained in the compact group af all automorphisms of © having matrix
diag {b,, - - -, by}, |b;| = 1, in the basis of D, that diagonalizes 4. As A4 is
discrete now A is finite. Thus (4.7) says that U has finite index in I'*, and
hence also in I". But (4.6) says that U is nilpotent. Now I” has a nilpotent
subgroup of finite index, and hence the proof of Proposition 4.4 is complete.

Proof of Theorem 4.3. Let I" have a nilpotent subgroup 4 of finite index.
Then Theorems 3.2 and 3.11 provide ¢, > 0 such that gs(m) < c,m®@. Let
T be a finite generating set for 4. Then Theorem 3.2 provides b > 0 such
that bm®@ < g,(m). But g,(m) < gr,s(m), and now Lemma 3.5 provides
¢, > 0 such that cm®“ < gs(m). Part 1 of Theorem 4.3 is proved.

From now, I" has no nilpotent subgroup of finite index. We retain the
notation of Proposition 4.4 fixing

{(l-4—TI*>0—-{1}, Dand®

there. Thus we have y e I'* and an eigenvalue 2 of {,(y) such that || s 1. Let
D=D,DoD,D--- DD, DD,,, = {1} be the lower central series of D.
Then the eigenvalue 2 of {,(y) occurs on one of the quotients (D, /D,,,)°. Let
S denote the vector space group D, /D,.,, 2 the lattice (4 N D,)/(4 N D,.,)
in S, and g the action of {,(7) on the Lie algebra ©.

Let {2, ---, 4,} be the eigenvalues of § on &; 2 is one of them. If each
|2;] < 1, then replace y by y~!; now || > 1. If some |2;| > 2, then replace 2
by the 2; of greatest modulus; now |4| > |2,| for each j. After having done
this, choose a nonzero L ¢ ©° such that B(L) = AL. If 2 is real we can choose
Le®. If 2 is not real, and 2 = re* with r = |2|, then L + L and i(L — L)

rcosf rsin 0)
—rsind rcosf/’
Choose a minimal generating set ¥V = {y,, - - -, v,} for the free abelian group

span a real 2-plane P C © on which 8 has matrix(
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2. Let{Z, .--, Z,} be the basis of © such that exp (Z;) = v,. If 2 is real,
define X, =L and let <, > be any inner product on & such that each
IZ;| > 1.If 2is not real, define X,= L + L and let <, > be any inner product
on © such that each |Z;|>1 and <L + L,iL — L)> = 0. Define
b=max{|Z;|: 1 <j< v} If 0e X is expressible as a word of length < m
onV,say o =% ...y with|a|+ -+ +|a,| < m, thenexp(@Z, + ---
+ avzv) = ¢ and ”alzl + .-+ avzv” < mb.

We have 2 = re*, r =|2| and @ real. Replace y by a high positive power
7%, so that first r > 12b and then (modulo 27)[4| < 10~%. Then B(X,) = pX,
+ Y, where p, > 11b,<X,, Y,> = 0 and | Y,|| < 10~%p,| X,|. Approximate
X, by a rational linear combination X of the Z;. Then

(i) there is an integer n > O such that 1 % ¢ = exp (nX) € 2 and ||nX||
> b; and

(i) BX) = pX + Y, where p > 115, (X, Y) =0, |Y| < 10~%p| X].
As 2 has maximum modulus among the eigenvalues of 8 on &, the above
condition (ii) implies

(iii) ||B*X( > 10b(|g*~'X| for every integer kK > 1.

Let ¥ = ¥.{y} semidirect product, where commutation yzy~' = 7/, with
7,7’ e X, is induced from the conjugation action of y on 4N D,. Then
U={r,v, -+, v} = {r} UV is a finite generating set for ¥, y is a word of
length 1 on U, and ¢ = exp (nX) is a word of some length / on U. Given an
integer p > 0, we have 107*! integers with decimal expansion q = &, + k,10
+ k,10* + .-+ + k,107, 0 < k; < 10. With each such integer g we associate
the group element

0, = gko.yghiy=l.flgkiy T oo LyPokPyTP e X |
For example 1 = ¢, and ¢ = ¢,. First observe that g, = exp (nX,) where
X, = kX + BkX) + X)) + - + Bk, X) .

The above conditions (ii) and (iii) show that {X },,, are distinct; s0 {g,},>0 are
distinct. Thus, with p we have associated 107*! distinct elements o, of 3.
Second, observe

. kp_ kp -
0, ___o-ko.Ta-kl.Ta'k-. eeo .Tgp 1.70- P.T ? ,

which is a word of length < I(k, + -+ + k,) + 2p on U. As 0 < k; < 10
now gy;(9l(p + 1) + 2p) > 107*!, which proves that ¥ is of exponential
growth. But ¥ is a homomorphic image of the semidirect product (4 N Dy)-{r},
which must thus be of exponential growth. Finally (4N D,)-{r} is a subgroup
of I', and so I is of exponential growth. q.e.d.

J. Milnor extended the scope of Theorem 4.3 by proving [10] that a finitely
generated nonpolycyclic solvable group must be of exponential growth.
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Combining that result with Theorem 4.3 we have an estimate on the growth
of finitely generated solvable groups:

4.8. Theorem. Let I" be a finitely generated solvable group. If I" has a
nilpotent subgroup 4 of finite index, then I" is polycyclic and of polynomial
growth of degree < E,(4). If I" does not have a nilpotent subgroup of finite
index, then I" is of exponential growth.

5. Manifolds of non-negative curvature and
solvable fundamental group

We apply Theorems 3.2 and 4.3 to complete riemanian manifolds of non-
negative mean curvature. E,(4) is the notation (3.3).

5.1. Theorem. Let M be a complete n-dimensional riemannian manifold
whose mean curvature > O everywhere, i.e. whose Ricci tensor is positive
semidefinite everywhere. Let I" be a quotient group of a subgroup of the
fundamental group =, (M).

1. If I is a finitely generated solvable group, then I has a finitely gener-
ated nilpotent subgroup of finite index.

2. If 4 is a finitely generated nilpotent subgroup of I', then E,(4) < n.

Proof. In the guise of the fact that any exponential map exp,: M, — M
of the universal covering must be volume decreasing, J. Milnor uses the com-
pleteness and non-negative mean curvature on M to prove [9, Theorem 1]

5.2) every finitely generated subgroup of n, (M) has polynomial
) growth of degree < n.

Let I" be a quotient group of a subgroup ¥ C =,(M). If a subgroup S C I”
has a finite set S of generators,, then we take an arbitrary finite set H C ¥
which projects to S, and observe gg(m) < gx(m). Now (5.2) says

(5.3) every finitely generated subgroup of I' has polynomial
) growth of degree < n.

If I is finitely generated and solvable then (5.3) and Theorem 4.8 force I”
to have a (necessarily finitely generated) nilpotent subgroup of finite index. If
4 c I is a finitely generated nilpotent group, then (5.3) and Theorem 3.2 say
E4) < n.

5.4. Corollary. Let M be a complete riemannian manifold of non-negative
mean curvature with r,(M) finitely generated and solvable. Then n,(M) has a
nilpotent subgroup of finite index, and every nilpotent subgroup 4 C n,(M)
satisfies E,(4) < dim M.

In order to take advantage of Mostows’s result, written as (9) = (6) in
Proposition 4.1, we need
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5.5. Proposition. Let M be a connected simply connected homogeneous
riemannian manifold. Then the Lie group of all isometries of M has only a
finite number of topological components.

Proof. Let G be the isometry group of M, xe M, and K the isotropy
subgroup of G at x. Then M is diffeomorphic to G/K; so K meets every
component of G. Thus it suffices to show that K has only a finite number of
components.

Let Z be the curvature tensor on M, and y the linear isotropy representation
of K on the tangent space M. Then y(K) is the set of all linear isometries of
M which preserve every covariant differential ("%),, m > 0; so y(K) is a
closed subgroup of the orthogonal group of M,. Thus y(K) has only finitely
many components. As y is a faithful representation it follows that K has only
finitely many components.

5.6. Corollary. Let M be a complete connected locally homogeneous
riemannian manifold. Then every solvable subgroup of =,(M) is polycyclic.
In particular every solvable subgroup of n,(M) is finitely generated.

Proof. Let p: M — M be the universal riemannian covering. Then M is
homogeneous. Let G be its isometry group. Then M = I'\M where I is a
discrete subgroup of G, and I" = =,(M). Let 2’ be a solvable subgroup of I".
As G has only finitely many components by Proposition 5.5, condition (9) of
Proposition 4.1 says that 3 is polycyclic. q.e.d.

We combine Theorem 5.1 and Corollary 5.9:

5.7. Theorem. Let M be a complete connected locally homogeneous
riemannian manifold with mean curvature > 0 everywhere. Then

(1) every solvable subgroup of n,(M) has a nilpotent subgroup of finite
index,

(2) every nilpotent subgroup 4 C =,(M) is finitely generated and satisfies
E(4) < dim M.

We end this section by writing down a consequence of Theorem 5.7, which
we will need in [19].

5.8. Corollary. Let M be a compact connected locally homogeneous
riemannian manifold with mean curvature >0 everywhere. Suppose that =,(M)
has a solvable subgroup of finite index. Let M —M be the universal riemannian
covering, G the largest connected group of isometries of M, R the solvable
radical of G, and S a semisimple complement so that G = RS. Then S is
compact. Let Z be the center of R, and N the nilpotent radical of G. Then
R/ZN is compact.

Proof. Let G* be the full group of isometries of M, and I" C G* the
discrete subgroup such that M = I'\M. As I" = n,(M), Theorem 5.7(1) says
that I" has a nilpotent subgroup 4 of finite index. G* having only a finite
number of components by Proposition 5.5, we may assume 4 contained in the
identity component G of G*. As M = I'\M is compact, G*/I" is compact; so
G/ 4 is compact.
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Let R be the solvable radical of G. Choose a semisimple (Levi-Whitehead)
complement S to R in G. Let S, be the subgroup of S generated by the compact
simple normal analytic subgroups, and S, the subgroup of S generated by the
noncompact simple normal analytic subgroups of S. Then G = R-S, almost
a semidirect product except that R N S is discrete but possibly nontrivial, and
S = §,-8, local direct product.

We use compactness of G/4 to prove S compact. Define 5 = 4N (R-S)
and ¥ = 4/2. A result of L. Auslander [2, Theorem 1] says* that J C R-S,
and ¥ c G/R-S, are discrete subgroups with (R-S))/2 and (G/R-S)/¥
compact. Let L = §,/(RS, N S,) = G/R-S,, semisimple Lie group of non-
compact type. Now ¥ is a nilpotent discrete subgroup such that L/¥ is
compact. The latter implies [14, Theorem 3.2] that every ¢ e ¥ is a semisimple
element of L. It follows ([4, Theorem 7.6], or see [14, Remark 3.8]) that ¥
normalizes a Cartan subgroup C C L. As L/(normalizer of C in L) is
noncompact whenever L 5 {1} we conclude that L = {1}. Thus S, = {1} and
S is compact.

Now we must establish some notation. N is the nilpotent radical of R and
also of G. Z is the center of R, and T is a maximal compact subgroup of R,
necessarily a torus. Let Ty be a maximal compact subgroup of N. Then Ty
is central in G and hence contained in Z, and T = Ty X Ty where Ty y
acts effectively on 3 under the adjoint representation of R. Let Z, be the
identity component of Z. Then T C Z, C N; it follows that Z, = Z N N by
a glance at the action of R on N/T.

Let F be the identity component of the closure of R4 in G. We check that
there is a torus subgroup U C S such that F = R-U. For let n: G’ —» G be
the universal covering group, R’ the radical of G/, and §’ a semisimple comple-
ment such that #(S") = S. Then 4’ = z~(4) is discrete in G’ with compact
quotient. Let F’ be the identity component of the closure of R’4’ in G’. As
R’ is simply connected, F’ is solvable [2, Proposition 2]; so F’/R’ is a torus.
But F//RR =" NF)/(SNR)=SNF. Thus F'=R’-U’ where U’
= 8N F’ is atorus. Now F = z(F’) = a(R’)-z(U’) = R-U where U = =(U’)
is a torus subgroup of S.

Let Z, be the center of F and N the nilpotent radical of F. Then Z,N is
a closed normal subgroup of F. We check that F/Z,N is a torus group. Let
¢: F”” — F be the universal covering group, 4” = ¢~(4NF), Z; the center of
F” and Ny the nilpotent radical of F. 4 N F is a discrete nilpotent subgroup
of F with compact quotient, and the kernel of ¢ is a discrete central subgroup
of F””; thus 4’ is a discrete nilpotent subgroup of F*”/ with compact quotient.
F” is torsion free; so 47 N N and 4 are torsion free. F’/N% is a real vector

4 Auslander states his result only for simply connected G but it follows in general by a
glance at the universal covering group.
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group and 4”/(4” N N7) is a discrete subgroup with compact quotient. Now
application of Proposition 4.4(2) to the exact sequence

{1} > 4" NN} = &7 — 47| (4" N Np) — {1}

proves for every § e 4” that ad(9)|y; is a unipotent linear transformation. Let
B: F” — F”|ZENy be the projection. Tnen B(4”) is discrete with compact
quotient in the abelian ([F”, F”’] C N) group B(F”"). Thus B(F"") = V* X T*,
product of a vector group and a torus, where V*/(V* N g(4”)) is compact.
If fe p~'(V*), then ad(f)|y; is unipotent. Thus g~'(V'*), is a connected normal
nilpotent subgroup of F”’ containing Nz ; this shows g~'(V*), = N7; so V* is
a point and F”/ZZ Ny is atorus. As o(F”") = F, o(Zf) = Z and ¢(N7) = Np,
now F/Z.Ny is a torus.

Recall the center Z and the nilpotent radical N of R. Z, € Z-U and
NCN-U;s0 Z;N, CZNU. Thus RNZ N C ZU. As R has closed image
in the torus F/Z;Ny, it follows that R/ZN is a torus group.

Remark. In the above notation, N-T is the semidirect product N-Tg,y,
and it is a normal subgroup of R because [R, R] C N. It follows that
V = R/NT is a real vector group. Notice

Z|Z,=ZN|N = (ZNT)/(NT) free abelian .
Now V contains (ZNT)/(NT) = Z/Z, as a lattice, for
R/ZN — R/(ZNT) = V/{(ZNT)/(NT)}

is a surjective Lie group homomorphism of torus groups, with kernel
(ZNT)/(ZN) = Tg,y. In [19] we study a condition on the metric of M which,
if it holds, forces V to be trivial, so that R/N is compact.

6. Application to generalized nilmanifolds

Let G be a connected Lie group, and Aut (G) denotes its automorphism
group. We can view Aut (G) as the group of all automorphisms of the Lie
algebra ® of G which preserve the kernel of the universal Lie group covering
G — G. So Aut (G) is a real linear algebraic group. In particular it is a Lie
group with only finitely many components. Thus every compact subgroup of
Aut (G) is contained in a maximal compact subgroup, and any two maximal
compact subgroups are conjugate.

The affine group A(G) is defined to be the semidirect product G- Aut (G).
It has manifold G X Aut (G) and group law (g, a)(h, B) = (g-a(h), ap) for
8 he G and a, B e Aut (G). A(G) acts effectively and differentiably on G by
(& a):x— g-alx).

Let K be a maximal compact subgroup of Aut(G). Then the euclidean group
E(G) = G-K is a closed Lie subgroup of the affine group A(G). As any two
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choices of K are conjugate in Aut(G), now any two choices of E(G) are
conjugate in A(G) by an element of the form (1, «).

6.1. Lemma. Let I" be a subgroup of E(G).

(1) I is a discrete subgroup of E(G) if and only if the action of I' on G
is properly discontinuous.

(2) Suppose that I' is closed in E(G). Then the coset space E(G)/I is
compact if and only if the identification space I'\G is compact.

(3) Suppose that G is acyclic® and I' is discrete in E(G). Then I acts
freely on G if and only if I is torsionfree.

Proof. I is discrete in E(G) if and only if its action on E(G) by left
translation is properly discontinuous. Now (1) follows from the fact that the
map E(G) — G, by (g, @) — g, is proper and I'-equivariant; this also proves
(2) by showing I"\E(G) — I'\G to be an induced proper map. And for (3) we
use the fact [15] that every compact subgroup of E(G) is conjugate to a
subgroup of K. q.e.d.

Finally we define a crystallographic group on G to be a discrete subgroup
I' of E(G) such that I"\G is compact.

If it happens that G is the n-dimensional real vector group R”, then Aut (G)
= GL(n, R) general linear group, and its maximal compact subgroup is just
(a choice of) the orthogonal group O(n). Then A(G) is the usual affine group
A(n) = R*-GL(n, R), E(G) is the usual euclidean group E(n) = R*-O(n),
Lemma 6.1 is classical, and “crystallographic group” has its usual meaning.

Let M be a differentiable manifold. Then M is called a nilmanifold if it is
diffeomorphic to a coset space I"\IV of a connected simply connected nilpotent
Lie group N by a discrete subgroup I'. M is called a generalized nilmanifold
if it is diffeomorphic to an identification space I"\N, where N is a connected
simply connected nilpotent Lie group and I is a subgroup of E(N) that acts
freely and properly discontinuously on N; then

(i) I = =(M) because N is simply connected,

(ii) M is a nilmanifold if and only if (N, ) can be chosen so that

I' ¢ N c E(N).

In the above definitions, simply connectivity of N is just a convenience. For
suppose N’ = N/ is a nilpotent Lie group with universal covering z: N— N/,
and IV C E(N’) is a closed subgroup. Then r induces a diffeomorphism of
=~ '(I")\N onto I'/\N’, I'’ acts freely and properly discontinuously on N’ if and
only if n~}(") has the same property on N, and [ C N’ if and only if
z~'(I"") C N.

The euclidean space forms (see [18, Chapter 3]) are the generalized nilmani-
folds M = ['\R*» where M is equipped with a flat riemannian metric induced
from R”. L. Auslander [1] has extended the Bieberbach Theorems (see [18,

5 G is acyclic if and only if G=S-(L X L X --- X L) where S is a simply connected
solvable Lie group and each of the >0 copies of L is the universal covering group of
SL(2, R). See [15].
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Chapter 3]) on compact euclidean space forms to a structure theory for
compact nilmanifolds. His result can be stated as:

6.2. Proposition. Let I" be a group. Then I is isomorphic to the funda-
mental group of a compact generalized nilmanifold, if and only if (i) I is
finitely generated and torsionfree, and (ii) there is an exact sequence

1} >4-T ¥ {1}

where U is finite and 4 is a maximal nilpotent subgroup of I'. In that case 4
is unique, there is an unique realization (up to isomorphism of N) of I" as
fundamental group of a compact generalized nilmanifold I'\N, and 4 = I'NN.

In the case of a compact euclidean space form, which is the case where 4
is commutative, ¥ = I'/4 is the linear holonomy group.

L. Auslander has suggested that a commpact nilmanifold M = I"'\N, which
admits a riemannian metric® ds* with all sectional curvatures of one sign, must
be diffeomorphic to a torus. That conjecture is contained in the following
application of our results of §§2 and 5.

6.3. Theorem. Let M be a compact generalized nilmanifold, say M = I'\N.
Let ds® be any® riemannian metric on M.

(1) The following conditions are equivalent, and each implies that N is a
real vector group.

(1a) (M, ds?) has every sectional curvature < 0.

(1b) (M, ds* has every sectional curvature = 0.

(1c) (M, ds® has every sectional curvature > 0.

(1d) (M, ds*) is isometric to a compact euclidean space form.

(2) Under the conditions of (1), the following conditions are equivalent.

(2a) M is a nilmanifold.

(2b) The fundamental group =,(M) is nilpotent.

(2c) (M, ds® is isometric to a flat riemannian torus.

6.4. Theorem. Let M be a compact generalized nilmanifold, say M = I"\N.
Let ds* be any® riemannian metric on M. Suppose that (M, ds*) has mean
curvature > 0 everywhere. Then N is a real vector group, M is diffeomorphic
to a compact euclidean space form, and the following conditions are equivalent :
(a) M is a nilmanifold, (b) I" = =,(M) is nilpotent, and (c) M is diffeomorphic
to a torus.

Proof. As described in Propositon 6.2 we have an exact sequence {1} — 4
— I' - ¥ — {1}, where 4 = I N N is a normal subgroup of finite index in I",
and 4 =T if and only if I" is nilpotent. We thus have a finite normal
riemannian covering z: (M’, ds’*) — (M, ds*), where M’ = A\N, n(dn) = I'n,
and ds”? = n*ds’. Hence M’ is a compact nilmanifold.

6 We do not assume ds? to come from a left invariant riemannian metric on N. Its only
presumed invariance property is the trivial one, namely, its lift to N is ['-invariant, i.e. is
the lift of a riemannian metric on M.
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First suppose that (M, ds*) has every sectional curvature < 0. Then the
same is true for (M’, ds”?), which has nilpotent fundamental group 4; so
Theorem 2.1 tells us that (M’, ds’?) is a flat riemannian torus aad that 4 is
free abelian on (dim M) generators. In particular (M, ds?) is flat. Let Z be the
center of N. Then ZN 4 is the center of 4; so 4 C Z; as 4\N is compact and

Z\N is acyclic, now Z = N; thus N is a real vector group.
Second suppose that (M, ds*) has mean curvature > O everywhere. Then

Theorem 5.1 says E,(4) < dim M = dim N. We compare the lower central
series

A'-"Ao:Al;"':AsQAsn:{l}’ Ak+1=[A,Ak],
N=N22N, 2 --- ;NI.QNt+l={1}’ Nk+l=[N3Nk]7

and use the fact that Z N 4 is the center of 4, where Z is the center of N. It
follows by induction on ¢ that (i) s = ¢ and (ii) each 4,\N, is compact. Thus
4,/ 4,., has free abelian rank equal to the dimension of N,/N,.,; so

E() = kzo (k + 1) dim (N, /N,.,) .

Now E,(4) < dim N implies k + 1 = 1for 0 < k < s, proving s = 0; so N
is a real vector group. Let dz’ be any I'-invariant N-invariant riemannian
metric on N, and do® the metric induced on M. Then the identity map is a
diffeomorphism of M onto the compact euclidean space form (M, do?.

Third suppose that (M, ds?) has every sectional curvature > 0. Then a
theorem of Cheeger and Gromoll [5] says that the universal riemannian
covering manifold of (M, ds?*) is the product of an euclidean space and a
compact simply connected manifold. It follows that (M, ds?) is flat. As (M, ds?)
has every mean curvature > 0, it also follows, as just seen, that N is a real
vector group.

To complete the poof of Theorem 6.3, we notice that (1a) and (1c) each
implies that (M, ds*) is flat and that N is a real vector group, thus implying
(1b). As (1) classically implies (1d), which in turn implies both (1a) and (1c),
now part 1 of Theorem 6.3 is proved. Proposition 6.2 gives equivalence of
(2a), (2b) and the condition that 4 = I". Under the conditions of (1), (M’, ds")
is a flat riemannian torus. Thus 4 = I" if and only if (M, ds%) is a flat
riemannian torus, and hence part 2 of Theorem 6.3 is proved.

To complete the proof of Theorem 6.4, we recall that N is a real vector
group and that M is diffeomorphic to a compact euclidean space form (M, do?).
Thus Proposition 6.2 gives equivalence of (a), (b) and the condition that
4=1T.Butd =T if and only if M is diffeomorphic (in fact equal) to the
torus M’. Hence Theorem 6.4 is proved.
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Added in Proof

1. B. Hartley recently sent me a manuscript consisting of an alternate
proof that a polycyclic group without nilpotent subgroups of finite index is of
exponential growth, as well as an interesting bound gg(m)<cmf ™ in case I’
is a finitely generated nilpotent group. In the latter one considers the derived
series I'=["D I ... DI* 2 I'**' = {1} and defines F(I') = f, + ¢,
+ af, + -+ + c;_if. where (i) I"¢ is nilpotent of class ¢, and (i) I't/I"i*!
has free abelian part of rank f,. In this connection see the Remark just after
the proof of Theorem 3.2.

2. Jeff Cheeger recently sharpened the bound E,(4) < n of Theorem 5.1
to E(4)<n in the case of strictly positive mean curvature. That sharpens
corresponding statements of Corollary 5.4 and Theorem 5.7 in case the mean
curvature is strictly positive.

3. M. Shub has given a short exposition [Expanding maps, Proceedings
of the 1968 Summer Institute on Global Analysis, Amer. Math. Soc., to
appear] on the relations between growth estimates, expanding maps, Anasov
diffeomorphisms and generalized nilmanifolds. The main problem there is the
one mentioned in the last paragraph of our Introduction.
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