
J. DIFFERENTIAL GEOMETRY
2 (1968) 421-446

GROWTH OF FINITELY GENERATED SOLVABLE
GROUPS AND CURVATURE OF

RIEMANNIAN MANIFOLDS

JOSEPH A. WOLF

1. Introduction and summary

If a group Γ is generated by a finite subset 5, then one has the "growth
function" gs, where gs(m) is the number of distinct elements of Γ expressible
as words of length <m on 5. Roughly speaking, J. Milnor [9] shows that the
asymptotic behaviour of gs does not depend on choice of finite generating set
S c Γ, and that lower (resp. upper) bounds on the curvature of a riemannian
manifold M result in upper (resp. lower) bounds on the growth function of
π^M). The types of bounds on the growth function are

polynomial growth of degree < E: gs(m) < c mE ,

exponential growth: u vm < gs(.m) ,

where c, u and v are positive constants depending only on S, v > 1, and m
ranges over the positive integers.

In § 3 we show that, // a group Γ has a finitely generated nϊlpotent subgroup
Δ of finite index, then it is of polynomial growth, and in fact c1m

£:i(J) < gs(m)
< c2m

E2{Δ), where 0 < cx < c2 are constants depending on the finite generating
set S C Γ, and EX(Δ) < E2(A) are positive integers specified in (3.3) by the
lower central series of A. In § 4 we consider a class of solvable groups which
we call "polycyclic" Proposition 4.1 gives eleven characterizations, all useful
in various contexts; finitely generated nilpotent groups are polycyclic. We
prove that a polycyclic group, either has a finitely generated nilpotent
subgroup of finite index and thus is of polynomial growth, or has no such
subgroup and is of exponential growth. We also give a workable criterion for
deciding between the two cases. Applying a result of Milnor [10] which says
that a finitely generated nonpolycyclic solvable group is of exponential growth,
we conclude that a finitely generated solvable group, either is polycyclic and
has a nilpotent subgroup of finite index and is thus of polynomial growth, or
has no nilpotent subgroup of finite index and is of exponential growth.
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In § 5 the results of §§ 3 and 4 are applied to quotient groups of subgroups
of fundamental groups of riemannian manifolds whose mean curvature1 > 0
everywhere, resulting in fairly stringent conditions on the fundamental group
of a complete riemannian manifold of non-negative mean curvature. Those
conditions, however, are not strong enough to prove the conjecture that the
fundamental group must be finitely generated.

In § 2, before considering growth rate, we make a few estimates and prove
that // a compact riemannian manifold M has every sectional curvature < 0,
and πx(M) is nilpotent^ then M is a flat riemannian torus. In § 6 we combine
the results of §§2 and 5 with a result of Cheeger and Gromoll [5], proving
a result on quotient manifolds of nilmanifolds, which contains L. Auslander's
conjecture that if a compact nilmanifold M admits a riemannian metric ds2

with every sectional curvature < 0 or with every sectional curvature > 0,
then M is diffeomorphic to a torus. In fact we prove (M, ds2) isometric to a
flat riemannian torus, and we manage the diffeomorphism only assuming non-
negative mean curvature. Here we do not require any invariance property on
the metric, so that considerations are more delicate than the known results
([17], [19] and G. Jensen's thesis) for invariant metrics on nilmanifolds.

The results of §2 raise the question of whether a compact riemannian
manifold M with every sectional curvature < 0, such that π2(M) has a solvable
(or polycyclic) subgroup of finite index, is necessarily flat. If the answer is
"yes" then one can strengthen Corollary 2.2, replacing "nilpotent" by
"solvable" (or "polycyclic) in the formulation: if M is a compact riemannian
manifold with every sectional curvature < 0, then πα(M) has a nilpotent
subgroup of finite index if and only if M is flat.

The results of §§3 and 4 raise the question of whether every finitely
generated group Γ, which is not of exponential growth, necessarily has a
nilpotent subgroup of finite index. The answer "yes" is suggested, first by
Theorem 4.8 which proves it in case Γ is solvable, second by the work of
Shub and Frank on expanding maps, and third by a personal prejudice that
a finitely generated group must be of very rapid growth if it has no solvable
subgroup of finite index.

2. Manifolds of nonpositive curvature and nilpotent fundamental group

In this section we adapt some of our earlier results [16] on bounded iso-
metries to prove

i If X is a tangent line at a point x € M then the mean curvature at (xf X) is defined to be
the average of the sectional curvatures K{x, E) where EcMx ranges over the plane
sections containing X. Analytically, if n = dim M, $ = (£0 is a unit tangent vector at x>

is the Ricci tensor, then the mean curvature k(x, f) = _ . Σ RijξiξJ in the sign

convention Rij = Σ Rm

ijm
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2.1. Theorem. Let M be a compact connected riemannian manifolds uch
that

(i) every sectional curvature of M is nonpositive, and
(ii) the fundamental group πx(M) is nilpotent.

Then M is a flat riemannian torus. In particular, πx(M) is the free abelian
group on (dim M) generators.

2.2. Corollary. Let M be a compact connected riemannian manifold with
every sectional curvature < 0. Suppose that πΎ(M) has a nilpotent subgroup
Δ of finite index. Then M is a compact euclidean space form and Δ is free
abelian on (dim M) generators.

Proof of corollary from theorem. There is a riemannian covering π\Mr-*M
where Δ = π^MO- The multiplicity of the covering is the index of Δ in π^M),
and hence finite; so Mf is compact. Theorem 2.1 says that M' is a flat
riemannian torus, and so M is flat, and that Δ is free abelian on (dim M')
= (dim M) generators.

Proof of theorem. Let π: N —*M denote the universal riemannian covering,
and Γ the group of deck transformations of the covering. Then Γ = πΎ(M)7

so Γ is nilpotent, and Γ is a properly discontinuous group of fixed point free
isometries of N such that Ad = Γ\N. Compactness of M provides us with a
compact set K c N such that N = Γ-K.

lff:N-*Nis any map, we define the displacement function δf: N —* Rby

δf(x) is the distance from x to f(x) .

Then δf is continuous if / is continuous. In particular the δr, γ e Γ, are con-
tinuous. Thus we have well defined bounds

(2.3) b(γ, K) = max {δr(x): x € K} < oo

for displacement on K of elements of Γ.
Let ZΓ denote the center of the group Γ. It is a nontrivial free abelian group

because Γ is a torsion free finitely generated nilpotent group. Let x € N and
γeZΓ. Then we have ξ € Γ such that ξ(x) e K, and we compute

δr(x) = distance (x, γx) = distance (ξx, ξγx)

= distance (ξx, γξx) = δr(ξx) .

In other words,

(2.4) δτ(x) < b(γ, K) < oo for all x e N and γ € ZΓ .

Thus every element of ZΓ is a bounded isometry [16] of N.
N is complete because M is compact. Thus we have the de Rham decom-

position N = N0X NXX X Nt = N0X N' where No is a euclidean
space and N' = NXX X Nt is a product of irreducible riemannian mani-
folds. We know [16, Theorem 1] that the bounded isometries of N are just
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the transformations (n0, n') —• (τn0, AI'), n0 € No and nf € N', where τ is an
ordinary translation of the euclidean space N o. Now

if γ € Zr, then there is an ordinary translation τr of No such

that γ acts on N = No X N' by γ(n09 nf) = (τ7n0, ή) .

This decomposes No into a product of euclidean spaces A and B where, from
the vector space viewpoint,

(2.6) A is the span of {τr: γ € ZΓ] and B = A-1 .

That decomposition No = A X B has both factors stable under Γ, because
ZΓ is normal in Γ. If / denotes the full group of isometries, then

(2.7) W = A X (B X NO , Γ C /(^) X /(£ X NO .

If γ € JΓ, this decomposes

(2.8) T = TAX f, where Γ i l € / U ) and r
r <= 7(B X NO .

Note that γA = τr and f = 1 in case y € Z Γ . Thus every element of {γA: γ e Γ}
commutes with every element of {rΓ: ^ € Z Γ }. It follows that

(2.9) if γ € Γ, then ^ is an ordinary translation of A .

In particular (2.5) and (2.6) give

(2.10) ZΓ = {γ € Γ: r' = 1} = Γ Π IW) .

Let Γ7 denote the projection of Γ to I(B X NO. Then (2.8) and (2.10) say

(2.11) Γ' = {r':γeΓ}g

The quotient of a torsion free nilpotent group by its center is torsion free (see
[7, p. 247]). Thus (2.11) says that

(2.12) Γ' is a torsion free nilpotent group.

By (2.6), (2.8) and (2.10) we have a compact set KAc A such that ZΓKA

= A. Suppose n' e B X N' such that {f(nθ: f € Γ'} has an accumulation
point. Choose nAeA and let n = (nA,n

f) eN; if / € Γ' has 7 € Γ as pre-
image, we replace γ by the appropriate element of γZΓ, and then we may
assume γA(nA) € KA. But then {^n): γ e Γ} has an accumulation point, which
is absurd. We conclude that

(2.13) Γf acts discontinuously on B X N' .

Now (2.10) and compactness of M say that

(2.14) Γ'\(B X NO is compact .
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Define M = Γ'\{B X NO- Construction of B X N' and hypothesis on M
say that B X N' is a simply connected riemannian manifold2 with every
sectional curvature nonpositive. Γf is a properly discontinuous (by (2.13))
group of fixed point free (by (2.12)) isometries, so Mr is a riemannian
manifold2 such that

(i) every sectional curvature of Mr is nonpositive, and
(ii) TΓiίMO ^ Γ", nilpotent group.

Finally M' is connected by construction and is compact by (2.14). Thus

(2.15) M' satisfies the hypotheses of Theorem 2.1 .

We are ready to prove Theorem 2.1 by induction on dimension. Nontriviality
of ZΓ implies dim A > 0, so

dimM' = dim (B X NO < dim JV = dimM .

By (2.15) and induction hypothesis, now M' is a flat riemannian torus. Thus
B X N' = B, a euclidean space, and Γ' is a group of ordinary translations of
B. Now N = No = A X JB, product of euclidean spaces, and every element
γ € JΓ has form 7̂  X p' where p' is an ordinary translation of B. But (2.9) says
that γA is an ordinary translation of A. It follows that every γ € Γ is an
ordinary translation of the euclidean space N. This proves M = Γ\N to be a
flat riemannian torus, q.e.d.

If M is a compact ^-dimensional euclidean space form, then [18, Chapter 3]
the fundamental group πλ(M) has a normal subgroup Σ of finite index such
that Σ is free abelian on (dim M) generators and πx(M)IΣ is isomorphic to the
linear holonomy group of M. In particular, if M has solvable linear holonomy
group, then πx(M) is solvable. If n = 2 [18, p. 77] or n = 3 [18, Theorems
3.5.5 and 3.5.9], then the linear holonomy group is automatically solvable;
so πx(M) is automatically solvable, although M need not be a torus. Thus the
version of Theorem 2.1 and Corollary 2.2, which might possibly generalize to
a larger class of fundamental groups, is

2.16. Corollary. Let M be a compact riemannian manifold with every
sectional curvature < 0. Then πλ{M) has a nilpotent subgroup of finite index,
if and only if M is flat.

Generalization of Corollary 2.16 would consist of weakening the condition
"nilpotent", for example replacing it by "solvable" without strengthening the
curvature condition on M.

3. The growth function for nilpotent groups
—groups of polynomial growth

Let S be a finite subset of a group Γ. As usual an expression

2 We allow the dimension to be zero. In fact that is the objective of the proof.
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is called a word of length lαj + + \ar\ based on S. Following Milnor [9]
we define the growth function gs to be the function on positive integers given
by

gs(m) is the number of distinct elements of Γ expressible

as words of length < m based on S.

Milnor [9, Lemma 4] proved that, if 5 is a finite generating set of the torsion
free nilpotent group

{x, y: [x, [χ> y]] = \y, U, yϊ\ = 1}

of rank 3, then gs is quartic in the sense that there are constants 0 < cx < c2

such that cjri < gs(m) < c2m
4 for all integers m > 1. Our purpose here is to

prove the following extension of that result of Milnor.
3.2. Theorem. Let Γ be a finitely generated nilpotent group with lower

central series

Γ = Γo 2 Λ 2 2 Γs 2 Γs+ι = {1}, Γfc+1 = [Γ, Γk] .

Then each Γk/Γk+ι is a finitely generated abelian group, say Γk/Γk+1

= Ak X Bk with Ak finite abelian and Bk free abelian of finite rank nk, and
we define "growth exponents" by

(3.3) ExiΓ) = Σ & + I K , E2{Γ) = Σ 2knk .
k=0 k=0

If S is any finite generating set for Γ, then there are constants 0 < cx < c2

such that

Clm
El{Π < gs(m) < c2m

ί?2(71) for all integers m > 1 .

Remark. Notice E^Γ) < E2(Γ) with equality if and only if 0 < s < 1,
and in particular E^Γ) = E2(Γ) = nQ if Γ is commutative. In the general case
perhaps gs(m) < c2m

El(Π.
We start the proof of Theorem 3.2 with two lemmas which simplify estimates

and prove gs asymptotically independent of choice of finite generating set 5.
Those lemmas are just foπnalizations of remarks of Milnor [9].

3.4. Lemma. Let S be a finite subset of a group Γ> and gs denote the
growth function. If r > 0 and q > 0 are fixed integers such that gs(m)
> c(m — r)q for some constant c > 0, then gs{m) > c'mq for another constant
c' > 0. If I >0 and q > 0 are fixed integers such that gs(lm) > c(lm)q for
some constant c > 0, then gs(m) > c;/mq for another constant c" > 0.

Proof. As 1 > HLnJL ^ —I— for m> r we have (m - r)q

m r + 1
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> (r + \yqmq for m > r. If £5(m) > c(m — r)9, then gs(m) > cfmq where
c' = min {c(r + 1)"*; gs(r)/rq, gs(r - l)/(r - 1)«, . . , fe(l/)l*}, and the
first statement is proved. For the second, divide / into m, say m = al + b
with 0 < b < Z. Then gs(m) > gs(al) > c(al)q = c(m - &)« > c(m - r)«
where r = Z — 1, and the assertion follows from the first statement with
c" = min{c//«; gs(l - l)/(/ - 1)«, . -., * β(l)/l«}.

3.5. Lemma. Le/ 5 α«d Γ fee /zrate generating sets for the same group Γ.
Suppose that we have constants 0 < bx < b2 and integers 0 < p < q such
that b{m? < gτ(m) < b2m

Q. Then there are constants 0 < c1 < c2 such that
qm? < gs(m) < c2m*.

Proof. We have integers k and I such that every element of 5 is a word of
length < k based on T, and every element of T is a word of length < / based
on S. Now gs(m) < gτ(km) < b2k

qmq and we define c2 = b2k
q. Also gs(lm)

> gτ(m) > bλmp = (bjr*)(jm)*. So Lemma 3.4 provides c" > 0 such that
gs(™) > C'mP, and we define cx = min {c", c2}. q.e.d.

Milnor [9] observes that, if Γ is the free abelian group o n T = {r1? r2}, then
gτ(m) = 2m2 + 2m + 1. We give his observation a slight push.

3.6. Proposition. Let T = {r19 , τn} be a minimal generating set for a
free abelian group Γ of rank n. Then the growth function

If S is any finite generating set for Γ then there are constants 0 < cx < c2 with
cxm

n < gs(m) < c2m
n.

Proof. For every integer I > 0 let Pt denote the function on non-negative
integers given by: P0(m) = 1 for all integers m > 0, and Pt{m), I > 0, is the
number of distinct sequences (au , at) of positive integers with aλ + + aι

< m. Notice P0(m) = ί^j. And if I > 0, then each of the Pt{m) sequences

(βj, , aL) gives rise to a subset fa, a1 + a2, . . . , aλ + + αz} of cardinality
/ in {1, 2, , m). Conversely if a subset of cardinality / in {1, 2, -, m) is
put in ascending order it is seen to be of the form fa, aτ + a2,

Thus PKm) = ί1?J in general.3 In particular Pz is a polynomial of degree /

with positive leading coefficient on the non-negative integers.
n

Observe that gT(m) = 2 N^m) where N^m) is the number of distinct
1 = 0

expressions τ*1 r£n, Σ IΛJ < m, such that exactly / of the at are nonzero.

Let U = {w1? , Mj} be any of the I ^) subsets of T with exactly Z elements.

By definition of Pt there are precisely Pι(m) distinct wfx «fΣ with ^ > 0
and Σ at < m. Changing signs of the at at will, we see that there are precisely

3 This fact was pointed out to me by J. Milnor, who observed that it simplified the
original version of Proposition 3.6.
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m) distinct uf1 - - ufι with α, ψ 0 and £ \at\ < m. Thus NL(m)

= 2' (") P*("0 = 2 ι f"\ ί™) and the equation for gΓ is proved.

now is a polynomial of degree n in m with leading coefficient b > 0.
For m large, say /w > /w0, we thus have \bmn < gτ(m) < 2bmn. Now define

bx = m i n j — gT(m0)/n%9 gτ(m0 - l)/(m 0 - 1)», . . . , gτ(l)/ln\,

62 = max {2fe; gτ(m0)/m$, gτ(m0 - l)/(m0 - 1)», . •, gΓ(l)/l»} .

Then 0 < bx < b2, and bλm
n < gτ(m) < b2m

n for every integer m > 1. Now
Lemma 3.5 provides constants 0 < cx < c2 such that cλm

n < gs(m) < c2m
n.

q.e.d.
Proposition 3.6 is the starting step for our inductive proof of Theorem 3.2.

The next two lemmas provide the specific information that we need to carry
out the induction step of the proof of Theorem 3.2.

3.7. Lemma. Let Γ be an (s + I)-step nilpotent group with lower central
series

Γ = Γo 2 Λ 2 • 2 Λ 2 Γ9+ι = {1} , Γk+1 = [Γ, Γk] .

Suppose that Γ/Γ1 is finitely generated. Then there are finite sets Tk

= {τjt.1, , τkirk} C Γk such that
(i) if ψk: Γk —> Γk/Γk+1 denotes the projection, then Γk/Γk+1 is a finitely

generated abelian group and {<pk(τkil), , 9*(rfc>rjfc)} is an independent set of
generators;

(ii) // k > 0, then every τ M € Tk is of the form [τOf4, Tfc-!̂ ] with τ M € Γo

(iii) To generates Γ.
Proof. To construct To we take any independent generating set {a^ , αro}

of 7 7 Λ a n d make arbitrary choices rOf< e^i" 1 ^). Then (i) is satisfied by
construction and (ii) is satisfied because it is vacuous. Now let k > 0 and
suppose that we have constructed To, T19 , Tfc^! satisfying (i) and (ii); we
go on to construct Tk.

Let Δ = Γ/Γk + 1, let δ: Γ —• J be the projection, observe Δt = δ(Γt) and
in particular that Δ is (k + l)-steρ nilpotent, and define St = {σM, , σljTl}
wiά σ^m = δ(τlj7n). UvεΔk then y is a product of commutators [a, β] with
or e Δ and β € J t - 1 . As Δk is central in Δ we have [αr, ^ ] = [<*', ^'1 whenever
α7 e aΔk and β' € βΔk so we may assume a = σfx <7n

α«, σt e 50 and ̂  e Z,
and /3 = α^.!,!61 ffΛ_1)rA;_1

δr;fc~1. Again because Δk is central in J,

[α, j3l = Γft = Π
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Thus Δk is generated by the [σM, σk_ltj]. In other words, Γk/Γk+ι is generated
by the φk[τQΛ, τkmmlj]. Choose any independent generating subset, that defines
a finite set Tk = {τ M , , rΛ, rJ in Γk satisfying (i) and (ii).

We have recursively defined the sets Tfc, 0 < k < s, satisfying (i) and (ii);
and (iii) is immediate from (ii).

Proof of Theorem 3,2. Retain the notation of Lemma 3.7. We first prove
the lower bound for gTo.

Suppose τka € Tk given with k > 0. Then we have rOϊ< € Γo and τk-1%j e Tk_1

such that r M = [r0) i, Tk-ιj] Denote

x = rOf<, y = τ *-u and z = τky, so z = [y, x] .

Then z commutes with x and y modulo Γk+1. If α, m and b integers, then

zam + b = zamzb Ξ [ĵ α̂  ^m-]^^ ^δ] m θ d u l θ Γk+1 .

If \a\ < mk, then by induction on k the elements y, y m and yα are expressible
modulo Γk as words of length < 8*"xm based on To; if |αm + b\ < mk+ι it
follows that z, zm and z α m + δ are expressible modulo Γk+1 as words of length
< Skm based on Γo. This proves:

every rM

Pfc'£, |p 4 t i | < mΛ+1, is expressible modulo

Γk+1 as a word of length < Skm based on To .

Suppose Tk to be ordered so that {φk(τkΛ), , p*(r*fnjb)} generates a free
abelian subgroup of rank nk in Γk/Γk+1. Then (3.8) says that Γk/Γk+1 has at
least {2m*+1 + 1}»* > /n(λ+1>^ elements {r^^^1 . T!.fn/* **}Γ4+1, |p*tί|
< m*"1, expressible as words of length < (Sknk)m based on Γo. Denote JB

= Σ 8fcfl* then Γ has at least w^ distinct elements expressible as words of
Λ = 0 s

length < Bm based on To, where E = Σ (/: + l)wfc = ^ ( Γ ) . Thus gTo(Bm)
Λ = 0

> m £ l ( Γ ) = B-E«n-(Bm)E*(Γ\ The second part of Lemma 3.4 provides a
constant frj > 0 such that gTo(m) > ί)1m^l(Γ) for all integers m > 1.

For the upper bound on gTi) we first note that every element γ € Γ has
expression

(3.9a) r = ξjξ, .. f „ f fc = uS*^/*'* r*,r/*"* ,

which, though not unique because of torsion in the Γk/Γk+U can be made
"almost" unique by assuming Γfc to be ordered so that {φk(τkΛ), , y>fc(rfc>nA.)}
generates a free abelian group of rank nk in Γk/Γk+i. Then that free abelian
group has some finite index Ik in Γk/Γk+X9 and (3.9a) can always be chosen
such that

(3.9b) 0 < pk>ι < lk for nk < I < rk .
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Consider the (finite) set of all commutators γ = [rtii*
2, τuj] with τtΛ € Tt,

τuj € Tu and 0 < t < u. Each such commutator has expression (3.9a, b) with

ξ0 = ξx = . . . = ξu = l, which is turn provides a number 2 Σ I/7* ι( Let
k=u+l I '

N denote the maximum of that finite collection of numbers.
It will be convenient to have the notation Tk = Tk U Tk+1 U U Ts. Note

s

that (3.9) expresses an element γ e Γk as a word of length 2 2 jpM| based
o n P .

Let γ € Γ be expressed as a word >v0 of length < m based on Γo. We operate
on M>0 by pulling each occurrence of τ^y1 to the left, then each occurrence of
ΓQ^1 to Λe left, and so on through Γo, representing γ by τo,i

αM ro,rβ

ββ rβiv1

where 2 \^i\ < m
 IΛ<MI < ô ̂ r n0 < i < r0, and wx is a word on TK Each

of these < m pulls of τo^*1 to the left involves < m2 crossings of elements or
inverses of elements of {τOf<+i, , *Vo}> e a c ^ s u c ^ crossing introducing a
word of length <iV based on T\ and involves crossings of previously introduced
words on P. If the previously introduced word is of the form η = -ηλ • ηs

where ηk is a word of length <, [V\Nk based on Tk, then ^.τo,ί

±1 = τ^ η'

where ^ = η[ ^, ^ = %, and ^ = [%_fα, ro^Γ1]̂ ^ for A: > 1. Thus ηk is a

word of length < L v_ ])Nk-1N+ (fjN* = (V { 2JN f c on Γfc. Let |wJΛ denote

the sum of the absolute values of the exponents of the elements of Tk in w1# Then

1^1* < Σ W ^ ^ * ( " k ) N k ^ i V i m 2 A> w h e r e N i > ° depends only on s and

is independent of m. This starts the induction.
Now suppose that t > 0 and y is represented by a word f^ . ξt_1wt

where, for certain positive integers {1 = Λf0, M19 , M£.1? NJ depending
only on Γ and independent of m,

(i) ft = r,/^/*' 2 - r<fr| ' ", Σ K I < M^\

(ii) w£ is a word on Γ* with \wt\k < Ntm
2k.

Then as above we pull the rίf i*
1 to the left in wt so the element of Γ repre-

sented by wt is also represented by ξtwt+i where ?f satisfies (i) with Mt == iVr

and with wt+1 a word on Tt+1 such that

where Nt+1> 0 depends only on s and / and is independent of m. That is the
induction. We have proved the existence of a sequence {1 = Mo, Ml9 , MJ
of positive integers depending only on Γ, such that:

if γ € Γ is expressible as a word of length < m based on To,
(3.10) r*

then γ has expression (3.9a, b) with each 2 \pk ι\ < Mkm
2'.

ii



SOLVABLE GROUPS AND CURVATURE 431

Consider the set Gm of all elements of Γ expressible as words of length < m
on Γβ. If γ € Gm, then we put it in the form ξoξι - ξs of (3.9) with each
\Pk,ι\ < Mkm

2k as given by (3.10). Now the number of possibilities for ξk is
) k + l)nfc; so

J U=o

The leading term of the bounding polynomial is a positive multiple of mE

s

where E = £ 2knk = £2(Γ). Thus there is a constant b2 > 0 such that £Γo(m)

< b2m
E'(Γ) for every integer m > 1. m = 1 gives 62 > bx.

Recall the arbitrary finite generating set S for Γ. We have constants 0 < bx

< b2 such that ft1m
£l(r) < gTo(m) < b2m

Es(Π. Now Lemma 3.5 provides us
with constants 0 < cx < c2 such that c1m

ί : i(/1) < gs(m) < c2m
E-(Γ) for every

integer m > 1. q.e.d.
Remark. By using [Γu, Γv] C Γu+V+1 one can sharpen (3.10) and thus the

upper bound on gs from c2m
Ez{n to c2m

E where

E = n0 + In, + 4n2 + 6n3 + lθn4 + I4n5 + . . .

but for our purposes this is not necessary.
Let Γ b e a finitely generated group, S a finite generating set, and E > 0 an

integer. If there is a constant c > 0 such that

gs(m) <Ξ cmE for every integer m > 1 ,

then we say that Γ has polynomial growth of degree < E. Lemma 3.5 says
that this condition is independent of choice of 5.

Theorem 3.2 says, among other things, that a finitely generated nilpotent
group Γ has polynomial growth of degree < £2(Γ).

3.11. Theorem. Let Σ be a finitely generated group, and Γ a subgroup of
finite index,

1. Γ is finitely generated.
2. If Γ has polynomial growth of degree < E, then Σ has polynomial

growth of degree < E.
3. If Γ is nilpotent and has polynomial growth of degree < E, then Σ has

polynomial growth of degree < min {£, E2(Γ)}.
Proof. Let Ψ be the intersection of the conjugates σΓσ~ι of Γ in Σ. Then

Ψ is a finitely generated normal subgroup of finite index in Σ. In particular Γ
is finitely generated. Suppose that Theorem 3.11 is known for normal
subgroups. Let Γ have polynomial growth of degree < E. Let U c V be
respective finite generating sets of Ψ C Γ, and let c > 0 such that gv(m)
< cmE. Then gu(m) < gv(m) shows that Ψ has polynomial growth of degree
< £, so Σ has polynomial growth of degree < E. UΓ is nilpotent, then further
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Ψ is nilpotent, so Σ has polynomial growth of degree < min {E, E2(Ψ)}. But
E2(W) = E2(Γ). Thus the assertions follow for Γ. Now we need only consider
the case where Γ is normal in Σ.

Now Γ is a normal subgroup of finite index in Σ. Let U = {μ19 , μp} be
a system of representatives of Σ/Γ. Let To be a finite generating set for Γ and
define

F = U U Γ, where T = {μΓ 1 ^: μieU,τβ TQ} .

Let TV > 0 be an integer large enough to satisfy the finite collection of
conditions

where ε = ± 1 , 3 7 = ± 1 , and wti%1ί is a word of length < N on Γ .

If * € Γ, say * = μϊhμi with r e Γ 0 and μt 6 t/, then /^y = μϊιτμψj
= tfτμj^iWii = μϊιμκt,flfWij = A«/(-i,/(i,i»w-i,/<ify)^<i, where ^ € T. Thus
///^ has form μΛM> where w is a word of length < 2N 4- 1 on T.

Len 7- € Σ be represented by a word w of length < m based on F . Take
the first occurence of znμj±ι from the right and pull it left until it meets another
occurence of an μt

±ι. That involves crossings of elements of Γ U Γ"1, each
crossing inserting a word of length < 2N + 1 on T; amalgamation μ^μ^1

= μkw±i,±j inserts a further word of length < N on Γ. Now push μk left until
it hits an μt

±ι. Continue until we have γ represented by a word μw0, μeU and
w0 a word of length <mN+m(2iV-{-l). That proves gF(m) <p-gT((3N+\)m).
Thus if Γ has polynomial growth of degree < E, then Σ has polynomial growth
of degree < E.

Remark. We proved, more generally, that if Γ C Σ has finite index, then
there are respective finite generating sets T c V and a number M > 0 such
that

(3.12) gτ(m) < gv(m) < gτ(Mm) for all integers m > 1 .

4. The growth function for solvable groups
—groups of exponential growth

In this section we extend our growth function estimates from the class of
finitely generated nilpotent groups to a larger class of solvable groups.

A solvable group is called polycyclic if it satisfies the (equivalent) conditions
of the following proposition.

4.1. Proposition. Let Γ be a solvable group with derived series

Γ = Γ°^Γ1^ . 2 Γd 2 Γd+1 = {1} , Γk+ι = [Γ*, Γk] .

Then the following conditions are equivalent.
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(1) There is a normal series Γ = Ao D Ax D • Z) At = {1} with every
quotient AJAi+1 finite or infinite cyclic.

(2) There is a normal series Γ = BQZ) BλZ) D Bu = {1} w/ίΛ every
quotient Bi/Bi+1 finitely generated abelian.

(3) In any solvable normal series Γ = Co Z> d D D C , = {1} έrccΛ
CJCi+ι is a finitely generated abelian group.

(4) £αcA quotient Γk/Γk+1 in the derived series is a finitely generated
abelian group.

(5) All derived groups Γk of Γ are finitely generated.
(6) Every subgroup of Γ is finitely generated.
(7) Γ satisfies the maximal condition for increasing sequences of

subgroups.
(8) There is an exact sequence {1} —> Δ —> Γ* —* Φ —> {1}, where Δ is a

finitely generated nilpotent group, Φ is a finitely generated free abelian group,
and Γ* is a subgroup of finite index in Γ.

(9) Γ is isomorphic to a discrete subgroup of a Lie group which has only
a finite number of topological components.

(10) Γ is isomorphic to a discrete subgroup of a connected solvable Lie
group.

(11) Γ has a faithful representation by integer matrices.
Remark. The proof of Proposition 4.1 consists more or less of noticing

some known hard theorems at the same time.
Proof. K. A. Hirsch [6] proved equivalence of (2), (3) and (7). The

equivalences

(1) <^> (2), (3) => (4) ̂ > (2), (6) φ (5) => (4)

are obvious. For (4) =£> (5) by induction on d — k, we first note finite gener-
ation of Γd by hypothesis, then have finite generation for Γ*+ 1 by induction
and for Γk/Γk+1 by hypothesis, and finally conclude finite generation for Γk.
For (5) =£> (6), since (5) and (7) are equivalent, every subgroup Σ C Γ satisfies
the maximal condition and thus has every Σk finitely generated; so every
subgroup Σ c Γ has Σ = Σ° finitely generated. Now the first 7 conditions
are equivalent.

MaΓcev [8] proved (4) => (8). Given (8), every subgroup of Δ or Φ is finitely
generated; so every subgroup of Γ* is finitely generated, and (6) follows. Now
the first 8 conditions are equivalent.

L. Auslander [3] (or see Swan [13]) proved that (4) =$> (11). Given (11) we
have Γ C GL(n, Z) C GL(n9 C), and conjugate Γ into a Borel subgroup of
GL(n, C); thus (11) =φ (10). Trivially (10) => (9). Given (9), say with Γ C G
and G/GQ finite, G. D. Mostow [11, Theorem Γ] proves that every subgroup
of Γ Π Go is finitely generated on < dim Go elements, so every subgroup of Γ
is finitely generated. Thus (9) =£> (6). Now all eleven conditions are equivalent.

q.e.d.
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Let Γ b e a group with a finite generating set 5. We say that Γ is of expo-
nential growth if there are constants u > 0 and v > 1 such that

(4.2) u-vm < gs(m) for every integer m > 1 ,

which does not depend on choice of 5. For if T is another finite generating set
for Γ, then every element of 5 is expressible as a word of some length < k
on T; so gs(m) < gτ(km) < gτ(m)k, and (4.2) implies uι/k (v1/k)m < gτ(™)i
for all m > 1.

J. Milnor observed that we can always take u = 1 in (4.2). For, given (4.2),
u vtm < gs(tm) < gs(m)1 for all positive integers m and t. Taking ί-th root,
iιvt. vm < gs(m). Then taking the limit as t -* oo we obtain vm < gs(m) for
all AW > 1. Milnor further observed that if Γ is of exponential growth with
finite generating set S, then UmnmΛ9Ogs(ηι)ι/m is the largest number v such that
vm < gs(m).

4.3. Theorem. Let Γ be a polycyclic group, and S a finite set of
generators.

1. If Γ has a nϊlpotent subgroup Δ of finite index, then there are constants
0 < cx< c2 such that, in the notation (3.3),

cjnEM < gs(m) < c2m
EM for every integer m > 1

in particular Γ is of polynomial growth of degree < E2(Δ).
2. If Γ does not have a nilpotent subgroup of finite index, then there is a

constant v > 1 such that

vm < 8s(m) < £s(DTO for every integer m > 1

in particular Γ is of exponential growth.
In order to apply Theorem 4.3, and in fact in order to prove part 2 of it,

we need a criterion for deciding whether Γ has a nilpotent subgroup of finite
index.

4.4. Proposition. Let Γ be a polycyclic group.
1. JΓ has a torsionfree subgroup Γ* of finite index and an exact sequence

{1} —» Δ —*> Γ* —> Φ —> {1}, where Δ and Φ are finitely generated, Δ nilpotent
and Φ free abelian.

Fix Γ* and the sequence. Let D be the unique connected simply connected
nilpotent Lie group containing Δ as a discrete subgroup with coset space D/Δ
compact. If γ 6 Γ1*, let ζ(γ) denote the unique Lie group automorphism of D
such that ζ(γ): δ -* γδγ'1 for every δ e Δ, and ζ*(γ) be the induced automor-
phism of the Lie algebra S) of D.

2. A subgroup N C Γ* is nilpotent if and only if every ζ#(γ), γ € N, has
every eigenvalue equal to 1.

3. Γ has a nilpotent subgroup of finite index, if and only if every ζ*(γ),
γ e Γ*, has every eigenvalue of absolute value 1.
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Proof. Selberg [12, Lemma 8] proved that a finitely generated group of
matrices over a field of characteristic zero has a torsionfree normal subgroup
of finite index. Conditions (6) and (10) of Proposition 4.1 now say

in a poly cyclic group, every subgroup has a torsionfree
(4.5)

normal subgroup of finite index.

Let Γf be any subgroup of finite index in Γ such that there is an exact

sequence {1} -• Δf —U> Γ' —*—* Φ'-+{1} with Δf nilpotent and Φf free abelian;
this is condition (8) of Proposition 4.1. Let Γ* be a torsionfree subgroup of
finite index in Γ' Then Γ* is a torsionfree subgroup of finite index in Γ, and

we have an exact sequence {1} -> Δ -?-* Γ* —2-* φ—>{1}, where J = i"^/7*)
is still nilpotent and Φ = /(Γ*) remains free abelian. Δ is torsionfree because
Γ* is so, and J and Φ are finitely generated because Γ* is polycyclic. Thus
the first assertion of Proposition 4.4 is proved.

Suppose that Γ has a nilpotent subgroup N of finite index. We can intersect
N with its conjugates and assume N to be normal in Γ. Now Γ/N is finite,
and therefore Γ* has finite image Γ*/(Γ* Π N) under Γ-> Γ/N; thus Γ* Π N
is a nilpotent normal subgroup of finite index in Γ*. Let Γ* Π iV = Lo 2 Lj
2 2 Ls 2 £*+i = {1} be defined by: Li/Li+1 is the center of L^JL^^
If γ e Γ* Π JV and ^ 6 L ί ? then it follows that [γ, λ] € Li+l9 i.e. that jv^-1 = λv
with I; 6 Li+ι. Define Δt = J Π L i 5 and let D^ be the analytic subgroup of D
containing Δt such that DJΔi is compact. Then 7- e Γ* Π iV and d e Dt implies
ζ(γ)-d = dn with n € £>ΐ+1. Now ζ^(^) preserves each S)t and is the identity
transformation on each S>i/S)<+1. Thus every ζ*(r)> 7 € Γ* Π N, has every
eigenvalue equal to 1. If m is the index of Γ* Π iV in Γ*, then every eigenvalue
of every ζ*(γ), γ e Γ*, is an m-th root of 1, and thus has absolue value 1.

The part of Proposition 4.4 just proved suggests that in general the group

(4.6) U = {γ € Γ*: ζ*(γ) has every eigenvalue 1} is nilpotent .

Let m = dim D. If m = 0, then Γ* = Φ abelian; so t/ is abelian and thus
nilpotent. If m = 1, then J is central in I/; so U is nilpotent because Δ/U C Φ
is nilpotent. Suppose m > 1. Refine the lower central series of D to a central
series Lo^ Lx^ 2 L m 2 Lm + 1 = {1} with ζ(£/)-stable 1-dimentional
quotients such that each L f/(J Π Lt) is compact. Then J IΊ Lm is central in [/,
and ί//(J Π Lm) is nilpotent by induction on m. Thus U is nilpotent, and
(4.6) is proved.

If γ € Γ*, then we use the Jordan canonical form to obtain polynomials Aγ

and Ur in ζ^^) such that
(i) Ar is diagonable over the complex numbers,

(ϋ) Ur has every eigenvalue 1, and
(iii) Arϋτ = ζJr)
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If we put the solvable group ζ*(Γ*) in simultaneous triangular form on S) c,
then Ar is the diagonal of ζ#(γ) and J7r — / is the superdiagonal. Thus
A = {A7: γ € Γ*} is a commutative group of linear transformations of 2) and the
map Γ* —• A given by γ —> /4r is a group homomorphism. By definition the
kernel is the group U of (4.6). Thus

(4.7) Γ*/UςzA .

Every element of A is an automorphism of S) because Z> is a linear algebraic
group. Let A be the closure of A in the automorphism group of 2). Every
a e A induces an automorphism of D, which preserves Δ; the same follows
for every a e A. If B is a connected subgroup of J , then it must centralize the
discrete group J, act trivially on D, and thus be the trivial group. So Ά is
discrete. Thus A is a discrete subgroup of the automorphism group of £>.

Now suppose that every ζ*(γ), γ e T7*, has every eigenvalue of absolute
value 1. In other words every a € A has every eigenvalue of absolute value 1.
A is contained in the compact group af all automorphisms of 2) having matrix
diag {615 - , bm}9 \bt\ = 1, in the basis of S)c, that diagonalizes A. As A is
discrete now^4 is finite. Thus (4.7) says that U has finite index in Γ*9 and
hence also in Γ. But (4.6) says that U is nilpotent. Now Γ has a nilpotent
subgroup of finite index, and hence the proof of Proposition 4.4 is complete.

Proof of Theorem 4.3. Let Γ have a nilpotent subgroup Δ of finite index.
Then Theorems 3.2 and 3.11 provide c2 > 0 such that gs{m) < c2m

E*{Δ). Let
T be a finite generating set for Δ. Then Theorem 3.2 provides b > 0 such
that bmEi(J) < gτ(m). But gτ(m) < gΓ U 5(m), and now Lemma 3.5 provides
cx > 0 such that cxm

El{a) < gs(m). Part 1 of Theorem 4.3 is proved.
From now, Γ has no nilpotent subgroup of finite index. We retain the

notation of Proposition 4.4 fixing

{1} _* Δ -> Γ* -» Φ -» {1} , Z> and ©

there. Thus we have 7- € Γ* and an eigenvalue λ of C^ίf) such that |Jl| f̂c 1. Let
D r ΰ j D ^ D D Z)s D £>ί+1 = {1} be the lower central series of D.
Then the eigenvalue λ of ζ*(f) occurs on one of the quotients (S)fc/S)fc+1)

c. Let
5 denote the vector space group Dk/Dk+1, Σ the lattice (Δ Π Dk)/(Δ Π Z>Λ+1)
in 5, and β the action of ζ+(γ) on the Lie algebra ©.

Let {yt1? , λΌ} be the eigenvalues of β on <3; Λ is one of them. If each
1̂ 1 < 1, then replace 7- by γ~ι; now |jl| > 1. If some | ^ | > λ, then replace λ
by the λj of greatest modulus; now |jl| > | ^ | for each 7. After having done
this, choose a nonzero L € © c such that β(L) = XL. If λ is real we can choose
L € ©. If λ is not real, and ^ = re*' with r = |jl|, then L + X and i(L — -L)

span a real 2-plane P c S o n which β has matrix ( r c o s θ r s m

—rsinθ rcosθΓ
Choose a minimal generating set V = {1 ,̂ , v j for the free abelian group
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Σ. Let {Zj, , Zv) be the basis of © such that exp (Z, ) = vjm If λ is real,
define JSΓ0 = L and let < , > be any inner product on © such that each
||ZJ > 1. If λ is not real, define Xo = L + L and let_<, > be any inner product
on © such that each ||ZJ > 1 and <L + L, ί(L - L)> = 0. Define
b = max {||ZJ : 1 < / < v}. If σ 6 Σ is expressible as a word of length < m
on F, say σ = vf1 i/,β« with 1^1 + - + \aΌ\ < m, then exp ( α ^ + •
+ avZΌ) = σ and flα^ + + fl^H < mb.

We have ^ = rei0, r = | i | and ^ real. Replace p by a high positive power
f, so that first r > 12b and then (modulo 2π)\θ\ < 10"3. Then β(X0) = ^ o
+ y 0 where ft > life, <X,, Γo> = 0 and ||yβ|| < 10"Voll^ol|. Approximate
Xo by a rational linear combination X of the Zά. Then

(i) there is an integer n > 0 such that l ^ α = exp (nX) e 21 and ||ΛXΊ|
> b; and

(ii) jSW = PX + y, where μ > 116, <Z, Γ> = 0, | |r| | < lQ-ιp\\X\\.
As λ has maximum modulus among the eigenvalues of β on ©, the above
condition (ii) implies

(iii) ||]8*Y|| > lOb\\βk~ιX\\ for every integer k > 1.
Let ?F = Σ-{γ} semidirect product, where commutation γτγ~ι = τ\ with

T, τ' € 21, is induced from the conjugation action of γ on Δf\ Dk. Then
£/ = {γ, Vi, , vv) = {7} U F is a finite generating set for ¥, γ is a word of
length 1 on [/, and σ = exp (nX) is a word of some length / on £7. Given an
integer p > 0, we have 10 p + 1 integers with decimal expansion q = &0 + ^10
+ £2102 + + fcplO*, 0 < Λj < 10. With each such integer q we associate
the group element

σq = σk»'γσkιγ-ι-γ2σk2γ-2 γvσ**γ-* 6 Σ .

For example 1 = σ0 and a = σx. First observe that σQ = exp (nXq) where

Z , = kjί + β{kλX) + ^ ( ^ Z ) + + i8»(*pX) .

The above conditions (ii) and (iii) show that {Xq}q^0 are distinct; so {σβ} ί2s0 are
distinct. Thus, with p we have associated 10 p + 1 distinct elements σq of Σ.
Second, observe

σq = σk0'γσkl-γσk* γσkp-ι γσkp'γ'p ,

which is a word of length < l(k0 + . - + kp) + 2p on U. As 0 < kj < 10
now gu(9l(p + 1) + 2p) > 10 p + 1, which proves that ψ is of exponential
growth. But Ψ is a homomorphic image of the semidirect product (J Π Dk) {7-},
which must thus be of exponential growth. Finally (J Γ\Dk) {γ} is a subgroup
of Γ, and so Γ is of exponential growth, q.e.d.

J. Milnor extended the scope of Theorem 4.3 by proving [10] that a finitely
generated nonpolycyclic solvable group must be of exponential growth.
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Combining that result with Theorem 4.3 we have an estimate on the growth
of finitely generated solvable groups:

4.8. Theorem. Let Γ be a finitely generated solvable group. If Γ has a
nilpotent subgroup Δ of finite index, then Γ is polycyclic and of polynomial
growth of degree < E2(Δ). If Γ does not have a nilpotent subgroup of finite
index, then Γ is of exponential growth.

5. Manifolds of non-negative curvature and
solvable fundamental group

We apply Theorems 3.2 and 4.3 to complete riemanian manifolds of non-
negative mean curvature. Eλ(Δ) is the notation (3.3).

5.1. Theorem. Let M be a complete n-dimensional riemannian manifold
whose mean curvature > 0 everywhere, i.e. whose Ricci tensor is positive
semidefinite everywhere. Let Γ be a quotient group of a subgroup of the
fundamental group πSM).

1. If Γ is a finitely generated solvable group, then Γ has a finitely gener-
ated nilpotent subgroup of finite index.

2. If Δ is a finitely generated nilpotent subgroup of Γ, then Eγ(Δ) < n.
Proof. In the guise of the fact that any exponential map expx: Mx —• M

of the universal covering must be volume decreasing, J. Milnor uses the com-
pleteness and non-negative mean curvature on M to prove [9, Theorem 1]

every finitely generated subgroup of πXM) has polynomial
(5.2)

growth of degree < n.

Let Γ be a quotient group of a subgroup Ψ c πγ(M). If a subgroup Σ C Γ
has a finite set 5 of generators,, then we take an arbitrary finite set H C.Ψ
which projects to 5, and observe gs(m) < gH(m). Now (5.2) says

every finitely generated subgroup of Γ has polynomial

growth of degree < n.

If Γ is finitely generated and solvable then (5.3) and Theorem 4.8 force Γ
to have a (necessarily finitely generated) nilpotent subgroup of finite index. If
Δ C Γ is a finitely generated nilpotent group, then (5.3) and Theorem 3.2 say
EX(Δ) < n.

5.4. Corollary. Let M be a complete riemannian manifold of non-negative
mean curvature with πx{M) finitely generated and solvable. Then πγ{M) has a
nilpotent subgroup of finite index, and every nilpotent subgroup Δ C πλ(M)
satisfies Eλ(Δ) < dim M.

In order to take advantage of Mostows's result, written as (9) >̂ (6) in
Proposition 4.1, we need
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5.5. Proposition. Let M be a connected simply connected homogeneous
riemannian manifold. Then the Lie group of all isometries of M has only a
finite number of topological components.

Proof. Let G be the isometry group of M, x € A/, and K the isotropy
subgroup of G at JC. Then M is diffeomorphic to G/K; so K meets every
component of G. Thus it suffices to show that K has only a finite number of
components.

Let 2/ί be the curvature tensor on M, and χ the linear isotropy representation
of K on the tangent space Mx. Then χ(K) is the set of all linear isometries of
Mx which preserve every covariant differential (Fm3Z)x, m > 0; so χ(K) is a
closed subgroup of the orthogonal group of Mx. Thus χ(K) has only finitely
many components. As χ is a faithful representation it follows that K has only
finitely many components.

5.6. Corollary. Let M be a complete connected locally homogeneous
riemannian manifold. Then every solvable subgroup of π^M) is polycyclic.
In particular every solvable subgroup of πx(M) is finitely generated.

Proof. Let p: M —• M be the universal riemannian covering. Then M is
homogeneous. Let G be its isometry group. Then M = Γ\A? where Γ is a
discrete subgroup of G, and Γ = π^M). Let Σ be a solvable subgroup of Γ.
As G has only finitely many components by Proposition 5.5, condition (9) of
Proposition 4.1 says that Σ is polycyclic. q.e.d.

We combine Theorem 5.1 and Corollary 5.9:
5.7. Theorem. Let M be a complete connected locally homogeneous

riemannian manifold with mean curvature > 0 everywhere. Then
(1) every solvable subgroup of π^M) has a nilpotent subgroup of finite

index,
(2) every nilpotent subgroup Δ C πλ(M) is finitely generated and satisfies

We end this section by writing down a consequence of Theorem 5.7, which
we will need in [19].

5.8. Corollary. Let M be a compact connected locally homogeneous
riemannian manifold with mean curvature > 0 everywhere. Suppose that πSM)
has a solvable subgroup of finite index. Let M-+M be the universal riemannian
covering, G the largest connected group of isometries of lif, R the solvable
radical of G, and S a semisimple complement so that G = RS. Then S is
compact. Let Z be the center of R, and N the nilpotent radical of G. Then
R/ZN is compact.

Proof. Let G* be the full group of isometries of Λ?, and Γ C G* the
discrete subgroup such that M = Γ\M. As Γ = π^M), Theorem 5.7(1) says
that Γ has a nilpotent subgroup Δ of finite index. G* having only a finite
number of components by Proposition 5.5, we may assume Δ contained in the
identity component G of G*. As M = Γ\A? is compact, G*/Γ is compact; so
G/Δ is compact.
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Let R be the solvable radical of G. Choose a semisimple (Levi-Whitehead)
complement S to R in G. Let Sx be the subgroup of 5 generated by the compact
simple normal analytic subgroups, and S2 the subgroup of S generated by the
noncompact simple normal analytic subgroups of S. Then G = RS, almost
a semidirect product except that R Π 5 is discrete but possibly nontrivial, and
5 = SrS2 local direct product.

We use compactness of G/Δ to prove 5 compact. Define Σ = Δ Π (R-SJ
and Ψ = Δ/Σ. A result of L. Auslander [2, Theorem 1] says* that Σ C RSX

and Ψ c GjRS, are discrete subgroups with (R SJ/Σ and (G/R SJ/Ψ
compact. Let L = S2/0RSi Π S2) = G/RSιy semisimple Lie group of non-
compact type. Now Ψ is a nilpotent discrete subgroup such that L/Ψ is
compact. The latter implies [14, Theorem 3.2] that every ψεψ is a semisimple
element of L. It follows ([4, Theorem 7.6], or see [14, Remark 3.8]) that Ψ
normalizes a Cartan subgroup C C L. As L/(normalizer of C in L) is
noncompact whenever L Φ {1} we conclude that L = {1}. Thus S2 = {1} and
S is compact.

Now we must establish some notation. N is the nilpotent radical of R and
also of G. Z is the center of /?, and T is a maximal compact subgroup of R,
necessarily a torus. Let ΓiV be a maximal compact subgroup of N. Then TN

is central in G and hence contained in Z, and T = TN X T^^ where T^^
acts effectively on 9Ϊ under the adjoint representation of R. Let Zo be the
identity component of Z. Then TN C Zo C N; it follows that Zo = Z Π iV by
a glance at the action of R on N/TN.

Let F be the identity component of the closure of RΔ in G. We check that
there is a torus subgroup U (Z S such that F = RU. For let π: G' -*G be
the universal covering group, /?' the radical of G', and S7 a semisimple comple-
ment such that τr(SO = 5. Then Δ' = π~\Δ) is discrete in G' with compact
quotient. Let F' be the identity component of the closure of R'Δf in G'. As
Λ' is simply connected, F/ is solvable [2, Proposition 2 ] ; so F'jR' is a torus.
But F / /Λ / = (S'DFO/CS'nflO = S ' Π F ' . Thus F' = R'U' where ί/'
= 5 r Π F' is a torus. Now F = r(F') = π(R') - π(U') = RU where V = ;r(l/0
is a torus subgroup of 5.

Let ZF be the center of F and iVF the nilpotent radical of F. Then Ẑ ΛΓp. is
a closed normal subgroup of F. We check that F/ZFNF is a torus group. Let
φ: F" —• F be the universal covering group, Δ" = ^ ( Λ Π F), ZF the center of
F" and NF the nilpotent radical of F. J Π F is a discrete nilpotent subgroup
of F with compact quotient, and the kernel of φ is a discrete central subgroup
of F"; thus J " is a discrete nilpotent subgroup of F" with compact quotient.
F" is torsion free; so Δ" Π N% and J " are torsion free. F/fjNF is a real vector

4 Auslander states his result only for simply connected G but it follows in general by a
glance at the universal covering group.
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group and Δ"j(Δ" Π NF) is a discrete subgroup with compact quotient. Now
application of Proposition 4.4(2) to the exact sequence

{1} -+ Δ" Π Ή'i — Δ" -> J " / ( J " ΓΊ N'J) -> {1}

proves for every δ € Δ" that ad(δ)\^ is a unipotent linear transformation. Let
β: F" -»F"\Z'£Nfί be the projection. Tnen β(Δ") is discrete with compact
quotient in the abelian ([F", F"] c Λ&') group β(F"). Thus β(F") = F* X Γ*,
product of a vector group and a torus, where F*/(F* Π j8(J")) is compact.
If /<= β'KV*), then ad(/) |^ is unipotent. Thus β"ι(V*)0 is a connected normal
nilpotent subgroup of F" containing NF; this shows β-ι(V*)0 = NF; so F* is
a point and F"\Zr;N'± is a torus. As p(F") = F, φ(Z'jf) = Z F and φW) = JVF,
now F/ZFNF is a torus.

Recall the center Z and the nilpotent radical N of Λ. ZF a ZU and
NFa N'U; so ZFNF cZiVϋ. Thus RDZFNF c Z ί 7 . As Λ has closed image
in the torus F/ZFNF, it follows that R/ZN is a torus group.

Remark. In the above notation, NT is the semidirect product N TR/N,
and it is a normal subgroup of R because [R, R] c iV. It follows that
V = R/NT is a real vector group. Notice

Z/Zo s ZN/N s (ZNT)/(NT) free abelian .

Now V contains (ZNT)/(NT) ^ Z/Zo as a lattice, for

R/ZN->RI(ZNT) s V/{(ZNT)/(NT)}

is a surjective Lie group homomorphism of torus groups, with kernel
(ZNT)/(ZN) ^ ΓΛ/ΛΓ. In [19] we study a condition on the metric of M which,
if it holds, forces V to be trivial, so that R/N is compact.

6. Application to generalized nilmanifolds

Let G be a connected Lie group, and Aut (G) denotes its automorphism
group. We can view Aut (G) as the group of all automorphisms of the Lie
algebra © of G which preserve the kernel of the universal Lie group covering
G —> G. So Aut (G) is a real linear algebraic group. In particular it is a Lie
group with only finitely many components. Thus every compact subgroup of
Aut (G) is contained in a maximal compact subgroup, and any two maximal
compact subgroups are conjugate.

The affine group A(G) is defined to be the semidirect product G- Aut (G).
It has manifold G X Aut (G) and group law (g, α)(Λ, β) = (g α(A), aβ) for
g,heG and a, β e Aut (G). A(G) acts effectively and differentiably on G by

Let K be a maximal compact subgroup of Aut(G). Then the euclidean group
E(G) = G'K is a closed Lie subgroup of the affine group A(G). As any two
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choices of K are conjugate in Aut (G), now any two choices of E(G) are
conjugate in A(G) by an element of the form (1, a).

6.1. Lemma. Let Γ be a subgroup of E(G).
(1) Γ is a discrete subgroup of E(G) if and only if the action of Γ on G

is properly discontinuous.
(2) Suppose that Γ is closed in E(G). Then the coset space E(G)/Γ is

compact if and only if the identification space Γ\G is compact.
(3) Suppose that G is acyclic' and Γ is discrete in E(G). Then Γ acts

freely on G if and only if Γ is torsionfree.
Proof. Γ is discrete in E(G) if and only if its action on E(G) by left

translation is properly discontinuous. Now (1) follows from the fact that the
map E(G) -» G, by (g, a) —> g, is proper and Γ-equivariant this also proves
(2) by showing Γ\E(G) -» Γ\G to be an induced proper map. And for (3) we
use the fact [15] that every compact subgroup of E(G) is conjugate to a
subgroup of K. q.e.d.

Finally we define a crystallographic group on G to be a discrete subgroup
Γ of E(G) such that Γ\G is compact.

If it happens that G is the n-dimensional real vector group Rn, then Aut (G)
= GL(n, R) general linear group, and its maximal compact subgroup is just
(a choice of) the orthogonal group O(ri). Then A(G) is the usual affine group
A(w) = Rn GL(/2, R), E(G) is the usual euclidean group E(Λ) = Rn O(w),
Lemma 6.1 is classical, and "crystallographic group" has its usual meaning.

Let M be a differentiate manifold. Then M is called a nilmanifold if it is
diffeomorphic to a coset space Γ\N of a connected simply connected nilpotent
Lie group N by a discrete subgroup Γ. M is called a generalized nilmanifold
if it is diffeomorphic to an identification space Γ\N, where N is a connected
simply connected nilpotent Lie group and Γ is a subgroup of E(N) that acts
freely and properly discontinuously on N then

(i) Γ = τri(M) because N is simply connected,

(ii) M is a nilmanifold if and only if (N, Γ) can be chosen so that
Γ ON C E(Λ0.

In the above definitions, simply connectivity of N is just a convenience. For
suppose N' = N/Δ is a nilpotent Lie group with universal covering π: N—*N'9

and Γ' C E(iV0 is a closed subgroup. Then π induces a diffeomorphism of
π"1(Γ/)\^V onto Γ 'W, Γ' acts freely and properly discontinuously on N' if and
only if π~ι(Γ') has the same property on N, and Γr C N' if and only if
π'\Γ) C N.

The euclidean space forms (see [18, Chapter 3]) are the generalized nilmani-
folds M s Γ\Rn where M is equipped with a flat riemannian metric induced
from R71. L. Auslander [1] has extended the Bieberbach Theorems (see [18,

5 G is acyclic if and only if G = 5 ( l x l x x L) where S is a simply connected
solvable Lie group and each of the >0 copies of L is the universal covering group of
SL(2, R). See [15].
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Chapter 3]) on compact eυclidean space forms to a structure theory for
compact nilmanifolds. His result can be stated as:

6.2. Proposition. Let Γ be a group. Then Γ is isomorphic to the funda-
mental group of a compact generalized nilmanifold, if and only if (i) Γ is
finitely generated and torsionfree, and (ii) there is an exact sequence

where ¥ is finite and Δ is a maximal nilpotent subgroup of Γ. In that case Δ
is unique, there is an unique realization {up to isomorphism of N) of Γ as
fundamental group of a compact generalized nilmanifold Γ\N, and Δ = ΓΠN.

In the case of a compact euclidean space form, which is the case where Δ
is commutative, ¥ = Γ/Δ is the linear holonomy group.

L. Auslander has suggested that a commpact nilmanifold M = Γ\N, which
admits a riemannian metric6 ds2 with all sectional curvatures of one sign, must
be diffeomorphic to a torus. That conjecture is contained in the following
application of our results of §§ 2 and 5.

6.3. Theorem. Let M be a compact generalized nilmanifold, say M = Γ\N.
Let ds2 be any6 riemannian metric on M.

(1) The following conditions are equivalent, and each implies that N is a
real vector group.

(la) (M, ds2) has every sectional curvature < 0.
(lb) (M, ds2) has every sectional curvature = 0.
(lc) (M, ds2) has every sectional curvature > 0.
(Id) (M, ds2) is isometric to a compact euclidean space form.
(2) Under the conditions of (I), the following conditions are equivalent.
(2a) M is a nilmanifold.
(2b) The fundamental group πx(M) is nilpotent.
(2c) (M, ds2) is isometric to a fiat riemannian torus.
6.4. Theorem. Let M be a compact generalized nilmanifold, say M = Γ\N.

Let ds2 be any6 riemannian metric on M. Suppose that (M, ds2) has mean
curvature > 0 everywhere. Then N is a real vector group, M is diffeomorphic
to a compact euclidean space form, and the following conditions are equivalent:
(a) M is a nilmanifold, (b) Γ = πx(M) is nilpotent, and (c) M is diffeomorphic
to a torus.

Proof. As described in Propositon 6.2 we have an exact sequence {1} —> Δ
—> Γ —* ¥ —> {1}, where Δ = Γ Π N is a normal subgroup of finite index in Γ,
and Δ = Γ if and only if Γ is nilpotent. We thus have a finite normal
riemannian covering π: (M', dsn) —> (M, ds2), where M' = Δ\N, π(Δn) = Γn,
and dsn = π*ds2. Hence M' is a compact nilmanifold.

6 We do not assume ds2 to come from a left invariant riemannian metric on N. Its only
presumed invariance property is the trivial one, namely, its lift to N is jΓ-invariant, i.e. is
the lift of a riemannian metric on M.
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First suppose that (M, ds2) has every sectional curvature < 0. Then the
same is true for (M',ds/2), which has nilpotent fundamental group Δ; so
Theorem 2.1 tells us that (M', dsn) is a flat riemannian torus and that Δ is
free abelian on (dim M) generators. In particular (M, ds2) is flat. Let Z be the
center of N. Then Z Π Δ is the center of Δ so Δ C Z; as Δ\N is compact and
Z\N is acyclic, now Z = TV; thus N is a real vector group.

Second suppose that (M, <is2) has mean curvature > 0 everywhere. Then
Theorem 5.1 says E^Δ) <: dimM = dimiV. We compare the lower central
series

Δ = Δo 2 A 2 2 Δ, 2 ΔM = {1} , Δk+ι = [J, Δk] ,

and use the fact that Z Γϊ Δ is the center of J, where Z is the center of TV. It
follows by induction on t that (i) s = ί and (ii) each JA\NΛ is compact. Thus
ΔkjΔk+ι has free abelian rank equal to the dimension of Nk/Nk+1\ so

s

Eχ(Δ) = 2 (Λ + l)dim(TVλ/TVλ+1) .

Now £j(J) < dim TV implies Λ + 1 = 1 for 0 < k < s, proving s = 0; so TV
is a real vector group. Let dτ2 be any Γ'-invariant TV-invariant riemannian
metric on TV, and dσ2 the metric induced on M. Then the identity map is a
diffeomorphism of M onto the compact euclidean space form (M, d<r2).

Third suppose that (Aί, <£s2) has every sectional curvature > 0. Then a
theorem of Cheeger and Gromoll [5] says that the universal riemannian
covering manifold of (M, ds2) is the product of an euclidean space and a
compact simply connected manifold. It follows that (M, ds2) is flat. As (M, ds2)
has every mean curvature > 0, it also follows, as just seen, that TV is a real
vector group.

To complete the poof of Theorem 6.3, we notice that (la) and (lc) each
implies that (M, ds1) is flat and that TV is a real vector group, thus implying
(lb). As (lb) classically implies (Id), which in turn implies both (la) and (lc),
now part 1 of Theorem 6.3 is proved. Proposition 6.2 gives equivalence of
(2a), (2b) and the condition that Δ = Γ. Under the conditions of (1), (M', ds'2)
is a flat riemannian torus. Thus Δ = Γ if and only if (M, ds2) is a flat
riemannian torus, and hence part 2 of Theorem 6.3 is proved.

To complete the proof of Theorem 6.4, we recall that TV is a real vector
group and that M is diff eomorphic to a compact euclidean space form (M, dσ2).
Thus Proposition 6.2 gives equivalence of (a), (b) and the condition that
Δ = Γ. But Δ = Γ if and only if M is diff eomorphic (in fact equal) to the
torus M'. Hence Theorem 6.4 is proved.
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Added in Proof

1. B. Hartley recently sent me a manuscript consisting of an alternate
proof that a polycyclic group without nilpotent subgroups of finite index is of
exponential growth, as well as an interesting bound gs(m)<cmF(Π in case Γ
is a finitely generated nilpotent group. In the latter one considers the derived
series Γ = Γ° D Γι - Z) Γk ^ Γk+ι = {1} and defines F(Γ) = f0 + cjx

+ cJ2+ ->• + ck_{fk where (i) Γ* is nilpotent of class ct and (ii) Γ*/Γi+ι

has free abelian part of rank /̂ . In this connection see the Remark just after
the proof of Theorem 3.2.

2. Jeff Cheeger recently sharpened the bound E^Δ) < n of Theorem 5.1
to Ex(Δ)<in in the case of strictly positive mean curvature. That sharpens
corresponding statements of Corollary 5.4 and Theorem 5.7 in case the mean
curvature is strictly positive.

3. M. Shub has given a short exposition [Expanding maps, Proceedings
of the 1968 Summer Institute on Global Analysis, Amer. Math. Soc, to
appear] on the relations between growth estimates, expanding maps, Anasov
diffeomorphisms and generalized nilmanifolds. The main problem there is the
one mentioned in the last paragraph of our Introduction.
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