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A UNIQUENESS THEOREM FOR
MINIMAL SUBMANIFOLDS

ROBERT HERMANN

1. Introduction

The following theorem is well known: There is a unique geodesic joining
two points on a complete simply connected Riemannian manifold of nonposi-
tive sectional curvature.

The main point of this paper is the following generalization.

Theorem. Let N and B be minimal submanifolds of a Riemannian mani-
fold M whose sectional curvature is nonpositive. (If dim N=dim M—1, it
would suffice to know that M has nonpositive Ricci curvature.)

Suppose that:
a) N is oriented and finite with oriented boundary 6N C B.
b) B is a totally geodesic submanifold of M.
c) Each point p of N can be joined to B by a geodesic, which is perpen-
dicular to B at the end-point, and varies smoothly with p.
Conclusion: N c B.

The main tool is an integral-geometric inequality, which enables one to
make various extensions of the main result, e.g., to the case where B is only
a minimal submanifold of M, or where N is a manifold with singularities,
e.g., a piece of an analytic subvariety of a Kdhler manifold.

2. Proof of the theorem

Let M be a complete Riemannian manifold, and N and B submanifolds of
M. (For notations not explained here, refer to [1] and [2].) Let exp:
T(M) — M be the exponential map of the Riemannian structure, where T(M)
is the tangent bundle of M. Suppose there exists a vector field X on M such
that:

a) For peN, exp(X(p)) e B.

b) The geodesic ¢t — exp (tX(p)) is perpendicular to B at t = 1.

Let | | denote the norm on tangent vectors associated with the inner product
{, > defining the Riemannian metric on M, f(p) = |X(p)|* for pe N, and 4%
be the Laplace-Beltrami operator, relative to the induced metric on N. Our
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goal is first to find a convenient formula for 4¥f, and then to integrate it
over N.

Let p be a point of N, and s — o(s) a geodesic of N starting at p. Construct
the homotopy 4(s, 1) = exp (tX(c(s))), 0 <s,¢t < 1. Then

1 d 1.4
5 1oy = > = [ (8.3, 3,54t
1
@.1) = f (.3.8, 3,8)dt

= f (7,83, 8.5>dt = (3,5, 3,8 121 .
[

Here 3,6(s, t) is the tangent vector to the curve u — (s, u) at u =1t, 9,6 is
the corresponding vector field along the homotopy 4, 3,5 is defined similarly,
and V,3,6(s, t) is the covariant derivative (with respect to the Levi-Civita
affine connection) of the vector field u — 3,(s, ©) along the curve u — (s, u).
The rules of this formalism are given in more detail in [1] or [2]. For
example, since each curve ¢t — (s, t) is a geodesic, we have F,3,5(s, t) = 0.

1 @
E Ef(o(s)) = <Vsasaa ata> - <as§: Vsat5>ﬂ=0
19
= .08, 00) k0 — [ 2 <00, V.2,33d1
at
2.2) g
1
= (P8, 00k — f V3.3, 7,8,5>dt
0

- f1<6,6, R(0.5, 0.0)(9,0))dt ,
0

where R(,)( ) is the curvature tensor of M. The last term can be written as
1
f 13:5 A 3,5]°K(@.5, 3,8)dt ,
[}

where K(,) is the sectional curvature, and |96 N 3.(s, D)|? is the square of
the area of the parallelogram spanned by 3,5(s, t) and 3,d(s, ). Let S¥,(, )
and S%,(, ) be the second fundamental form of N and B. Write X = X’ + X"/,
where X” is tangent, and X”/ perpendicular to N. Then

<Vsasay a£5>(0, l) = s?ta(o, 1)(335(0, 1), 335(0, 1)) )
P 0:8, 3,650, 0) = S%.(,(07(0), ¢’(0)) .
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Thus,

1
24d

2.3) — $%,.,(@(0), ¢'(0)) — f V3,8, V3,8>dt

& LA o = $u, 50,30, 1), 3:5(0, 1)

1
+ f 165 A 3.5|°K (@3, 8,3)dt .
1]

Let us suppose that B is totally geodesic, and the sectional curvature of M is
nonpositive. Then

(2.4) 2 PE 2f(a(S)) k=0 < 8% (07(0), 0’(0)) .

Suppose u,, - -+, u, form an orthonormal basis of N,. Let g,(s) be the
geodesics of N beginning at p and tangent there to u,, a=1, ---, n. Then

= ; y szf(aa(S))],.o < Z S%or ) (Ua, Ug) -

The left-hand side of this inequality is just 34%f(p). Let X, ---, X, be an
orthonormal basis for vector fields on N so that at the boundary points, X,(p)
is the inward pointing normal to dN. Then, we have the basic inequality

i<y spix, x).
2 a

The right-hand side is zero if N is a minimal submanifold of M. Integrate
this over N. Green’s formula gives

JV”f= ixl(f),

where the volume elements are assumed to be those defined by the induced
Riemannian metric on N and dN.
(2.1) applies to calculate X (f). In fact, X,(f) = (X, X>. Let us assume

that f(Xl, X> =0, and N is a minimal submanifold of M, i.e., the trace of
aN
its second fundamental form is zero in every normal direction. (For example,

if aN C B, as in the statement of Theorem 1, then X(p) = O automatically.)
Thus, we have

75335 = 0 = V,aﬁ s
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i.e., X has zero corvariant derivative at every point of N and in every direc-
tion tangential to N. In particular, (X, X) = f is constant along N. We also
have

l9:6 N 8.5)K(8,6, 8,6) = O .

If N is a hypersurface, we have either N is totally geodesic, or X’ = 0 on
an open subset of N; that open subset is a “focal submanifold” for the family
(p, ) — exp (tX(p)) of geodesics of N. At any rate, Theorem 1 is proved.
Final remarks on Theorem 1: If B is a closed submanifold of M, hypothe-
sis b) of Theorem 1 follows from the assumption that the curvature of N is
nonpositive, and, say, an assumption that M is simply connected (see [1]).

3. Weakening the hypothesis

Let 8,(s, t) = exp (tX(c.(5)), a= 1, - - -, n. Using (2.3) again and assum-
ing that the curvature is nonpositive give

A(f) S E Sg,s,,(c, 1)(3350(0: 1)3 3360(09 1))

3.1
-2 Sfr’wp)(di(o), 0,(0) .

The second term on the right-hand side vanishes, of course, if N is a minimal
submanifold. The first term will also vanish if B is a minimal submanifold,
providing that 3,6,(0, 1), - - -, 3,0,(0, 1) is a basis for the tangent space to B.
This requires

(3.2) dimB = dim N .

Now, if (3.2) is satisfied, and each point pe N is not a focal point of B
relative to the geodesic t — exp (tX(p)), then an orthonormal basis u,, - - -, u,
of N, can be found so that 9,5,(0, 1), - - -, 3.6,(0, 1) is a basis of B;,,,. In
this case the argument then goes through.

The argument also goes through if

(33) Szaa(o, 1)(3,5a(0, l), asaa(os 1)) = 0 ’

and N is 2 minimal submanifold. Now, (3.3) can be regarded as a ‘“con-
cavity” condition. The conclusion is that N cannot be completely on the
“concave” side of B, if its boundary lies in B.

It is well known that complex-analytic submanifolds of Kihler manifolds
are minimal submanifolds. One of the goals of minimal-submanifold theory
is to understand whether or not facts known from algebraic geometry about
algebraic varieties extend to genmeral minimal submanifolds. This suggests
that we investigate how singularities in N will affect the above arguments.
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Suppose then that N is a closed subset of N such that N — N° is a minimal
submanifold, but that N° has no points in common with dN. Let us suppose
that N° can be surrounded with “tube” T,, depending on a parameter ¢, with
boundary 97T,, whose area goes to zero as ¢ — 0. Let us apply these arguments
to N — T, instead of N. When applying Stoke’s theorem to 47f, we will have
to take into account a term of the form:

[xo,

a7,

where X, is the unit normal to the boundary d7,. Note, however, that this
does not depend on the derivative of X, as one would expect a priori. It is
this simple fact that gives hope that the uniqueness proofs can be extended to
manifolds with singularities.

The next situation to be considered should be that where N has constant
positive curvature. However, the methods used here break down in this case.
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