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M O D U L I A N D M O D U L A R G R O U P S OF A CLASS OF 
C A L A B I - Y A U n - D I M E N S I O N A L M A N I F O L D S , n > 3 

HAO CHEN & STEPHEN S.-T. YAU 

1. Introduction 

Since the discovery of mirror symmetry in string theory by physi­
cists, there have been tremendous activities on Calabi-Yau manifolds 
both by physicists and mathematicians. The reason that mirror sym­
metry has attracted a lot of mathematicians' attention is that it predicts 
successfully the number n k of rational curves of degree k in these mani­
folds. This so-called Mirror Conjecture was first solved recently by Lian, 
Liu and Yau in their celebrated work [3]. In this paper we shall study 
the geometry of distinguished class of Calabi-Yau manifolds 

(1.1) 
X s = {(xi : ••• :x n) G CP n~l :x n + ---+x n n + sxix2...x n = 0}. 

For n = 5, this class of Calabi-Yau 3-manifolds were studied in detail 
by Candelas, Ossn, Green and Parkers [1] by means of the period map. 
In particular, they observed that the modular group is not SL(2, Z). 

It is the purpose of this paper to find out the moduli and the modular 
group of this one-parameter family of Calabi-Yau manifolds in (1.1) for 
all n > 5. Our argument is uniform for all n > 5. We remark that 
n = 3 was treated by our previous paper [2] with different motivation. 
The crucial contribution of our paper is the introduction of some special 
points in Calabi-Yau manifolds. 

Let pi, i = 1,2,... , n, be n-distinct roots of x n = —1. It is clear 
that the following N = ^n2{n — 1) points Q i , . . . , Q N of the form 
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( 0 , . . . , 0 , 1 , 0 , . . . , 0, pi,0,... ,0), where 1, pi run over all possible 2-
tuple positions of 1, 2 , . . . , n, are on each Calabi-Yau manifold X s. We 
shall show in Proposition 2.1 that there are (n — 2) independent hyper-
planes through Q i in T Q ̂ X s), the tangent plane of X s at Q i, for which 
all the lines passing through Q i in these (n — 2) independent hyperplanes 
have contact order n with X s at Q i. 

Defini t ion 1.1. A point Q in a (n — 2)-dimensional Calabi-Yau 
manifold X is said to have C—Y property if there are (n—2) independent 
hyperplanes through Q in T Q ( X ) for which all the lines passing through 
Q in these (n — 2) independent hyperplanes have contact order at least 
n with X at Q. Such point Q is called a C — Y point in X. 

T h e o r e m A. For n > 5, s ^ 0 and s n ^ (—n)n, the C — Y points 
on the Calabi-Yau manifolds 

X s = {(xi : ... : x n) G CP n~l : x n + • • • + x + sxt... x n = 0} 

are precisely Qi, • • • , Q N, N = ^n2(n—1), of the form ( 0 , . . . , 0 , 1 , 0 , . . . , 0, 
/ i , 0 , . . . ,0) , where l,Pi,l < i < n, run over all possible 2-tuple po­
sitions of 1 ,2, . . . , n and pi,I < i < n, are the n-distinct roots of 
x n = - 1 . 

Using Theorem A, we can prove the following theorem. 

T h e o r e m B . For n > 5, t ^ s, s n and t n ^ 0 and ^ {—n)n, the 
group G of biholomorphisms between 

X t= {(xi : . . . :x n) G CP n ' 1 : x n + • • • + x n n + txx... x n = 0} 

and 

X s = {(xi : ... : x n) G CP n~l : x n + • • • + x + sxt... x n = 0} 

consists of all projective nonsingular linear transformation 
B G PGL(n, C) of the following form: 

/ 0 . . . 0 ali 0 . . . 0 0 0 . . . 0 0 0 . . . \ 
0 . . . 0 0 0 . . . 0 a2i2 0 . . . 0 0 0 . . . 

B = 

V 0 . . . 0 0 0 . . . 0 0 0 . . . 0 a ni n 0 . . . / 

where ( i i , . . . ,i n) is a permutation of ( 1 , . . . ,n ) and a i i 1 5 . . . ,a ni n are 
n-th root of unity. Each such B induces a linear transformation on the 
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parameter space by sending t to taii ... a ni n. The group G has order 
nn_1(n!). Let N be the group of automorphisms of X t. Then N is a 
normal subgroup of G of order n n~2(n\). 

Theorem C. For n > h, the modulus function of the one parameter 
family of Calabi- Yau manifolds 

X s = {(xi : ... :x n) G CP n~x : x n + • • • + x n n + sxx... x n = 0} 

is s n, i.e. for any two parameters t, s, X t is biholomorphically equivalent 
to X s if and only if t n = s n. 

2. Special points on Calabi-Yau manifolds 

Let X s be the (n — 2)-dimension hypersurface defined by x n + • • • + 
x n n + sx\x'i... x n = 0 in CP n~l. It is easy to see that X s is a non-
singular manifold for s n ^ (—n)n. In fact, let 

(2.1) f(xi,... ,x n) = xi~\ \-x n + sxix2 ...x n. 

Then X s is nonsingular if and only if there is no common solution to 
the n equations 

df 
(2.2) —- = nx n'1 + sxi.. .x i-ix i+i.. .x n = 0, l<i<n 

Ox i 

in CP n~l. These equations imply that 

(2.3) nx n = nx2 = • • • = nx n = — sx\x2 • • • x n, 

whence 

n n 

(2.4) (-n)nY[x n = (s)nl[x n. 
i=l i=l 

If P = (pi : ... : p n) G CP n~l is a common solution of equations 
(2.2), then none of the p^s may be zero by (2.3). Hence s n 
Conversely it is easy to see that X s is singular when s n = (—n) 

n = ( 

Proposition 2.1. Let pj, j = 1, 2 , . . . ,n, ben distinct roots of x n = 
— 1. For each s with s n ^ (—n)n, let Q i be one of the N = n2(n — l) /2 
points of the form (0 , . . . , 0,1, 0 , . . . , 0, pj, 0 , . . . ,0) on the Calabi-Yau 
manifold X s = {(x\ : . . . : x n) G CP n~l : x n-\ Vx n + sxi ...x n = 0}. 
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Then Q i is a C — Y point i.e., there are (n — 2) independent hyperplanes 
through Q i in T Q ̂ X s) for which all the lines passing through Q i in these 
(n — 2) independent hyperplanes have contact order at least n with X s 
at Q i. 

Proof. Without loss of generality, we only check that Q\ = 
( l , p i , 0 , . . . ,0) is a C — Y point. It is clear that the tangent plane 
T Q1(X s) of X s at Qi has equation 

(2.5) xx + n - x x 2 = 0. 

Thus T QX (X s) n X s is defined by the equations 

(2.6) 
n— 1 xi + n Lx2 = 0 

+ x n + sxi ... x n = 0 n 

We can think of (T Q1(X s)) nX s as a hypersurface in P{T Q1(X s)) with 
(x2 : xs : . . . : x n) as homogeneous coordinates. Its defining equation is 

(2.7) x n + ••• + x - s n ^ x l x z . . . x n = 0 

Observe that x2 coordinate of Q\ is nonzero. Let x = x2-,... ,x'n = x2-
be the inhomogeneous coordinates. Then the inhomogeneous form of 
the equation of (T Q1(X s)) fl X s at Q\ is 

(2.8) (x)n + ... + (x n)n-s n- 1x. . .x = o 

It is clear that all lines tangent to X s at Q\ are parameterized by 
P(T Ql{X s)) = CP n~3. Among all these lines we would like to find 
those lines with contact order to X s at least n. We can write the equa­
tion of a line L as 

(2.9) 

x'o = at 

x * - * ' t 

where (a3 : . . . : an) G P T Q ̂ X s)) = C P n"3. If the line L has contact 
order n with X s at Qi, the coefficients of t k for k < n — I have to be zero 
when (2.9) is substituted in (2.8). It is clear that L has contact order n 
with X s at Qi if and only if one of the i has to be zero. This means 
that there are (n — 2) independent hyperplanes through Q i in T Q ̂ X s) 
for which all the lines passing through Q i in these (n — 2) independent 
hyperplanes have contact order at least n with X s at Q i. q.e.d. 



c a l a b i - y a u n - d i m e n s i o n a l m a n i f o l d s 5 

We shall show that all the C — Y points on X s are exactly those 
N = n2(n — l ) / 2 points listed in Proposition 2.1. For this purpose, we 
need to prove the following lemma. 

L e m m a 2.2. Let Q = (qi,... , q n) be a C — Y point in the Calabi-
Yau manifold 

X s = {(xi : . . . :x n) G CP n~l : x n + • • • + x + sxt... x n = 0 } . 

Let f = x n + • • • + x n + sxx.. .x n and §x{Q) = bXi... ,-§x{Q) = b n. 

Suppose bi = Jx-(Qi) ^ 0 and q2 7̂  0. Denote a2 = b , . . . , a n = b ̂ . 
Then all partial derivatives of f(—a2x2 — • • • — a n x n,x2, • • • ,x n) with 
respect to the variables x 3 , . . . , x n with order at most n — 3 are zero at 
Q. 

Proof. We first make a general observation. Let g(x2,... x n) be a 
homogeneous polynomial of degree m. Let 

g ( x 3 , . . . , x n) = g ( 1 , x 3 , . . . , x n) 

be a homogeneous form of g where x'3 = x , . . . , x'n = xn. It is easy to 
see that 

— = (x2)n~p — H~T' i l , - - . , p G { 3 , . . . , n } . 

Thus in order to prove the lemma, it is enough to prove the following 
statement: For the inhomogeneous form ) of 
f{-a2x2 a n x n,x2, • • • , x n), where x'3 = x , . . . ,x'n = x , 

dp w(x'3l... ,x'n) 

(2.10) ^x' • • • dx' 
= 0 

Q 

for p < n — 3 and i i , . . . , i p G { 3 , . . . , n } . 

Consider the inhomogeneous coordinate (q'3,... , q'n) of Q where q3 

... ,q n = -^. Let x3 = x3 — q3,... ,x n = x n — q n. It is clear th 
2.10) holds if and only if the following (2.11) holds 

3 w x ' , . . . , x n) 

(2.11) dx ^-.-dx i (0 0) 

if p < n — 3, i i , . . . ,i p G { 3 , . . . , n } . 
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Notice that under the new coordinates (x3,... ,x n), the point Q is 
( 0 , . . . ,0) . Consider the (n — 2) hyperplanes in T Q(X s) with the special 
property in the Definition 1.1. Let L\,... , L n-2 be their defining equa­
tions. Then L 3 , . . . ,L n are linearly independent 1-forms in x3,... ,x n 
variables. Write 

(2.12) w(x3,... ,x n) = w>n + w<n-1, 

where w>n denotes the sum of monomials in w(x3,... ,x n) with degrees 
at least n while w<n- i denotes the sum of monomials in w(x3,... , x n) 
with degree at most n — 1. We shall prove that w<n- i can be divided 
by L3l... ,L n. 

Since L 3 , . . . ,L n are linearly independent, we can take L 3 , . . . ,L n 
as new coordinates. If w<n- i is not divisible by L3, then 

w<n-i = L3P + R, 

where P is a polynomial in L3,... ,L n and R is a polynomial in L 4 , . . . , Zn 
Let « 4 , . . . , an be such that R ( « 4 , . . . , an) 7̂  0. Consider the line L 

L3 = 0 

L4 = 04t 
(2.13) 

n — " n t 

Then w<n_i(0, 0 4 t , . . . , an t) is a polynomial of t with degree less than 
or equal to n — 1. Thus the line L cannot have contact order n with 
w = 0 at Q. This is a contradiction. 

From the above argument, we have proved that 
polynomials of L 3 , . . . , L n, contains only monomials with degree at least 
n — 2. Since L 3 , . . . ,L n are linear in x o 5 . . . } x n variables, we conclude 
that ) contains only monomials of x3,... , x n with degree 
at least n — 2. Thus (2.11) is proved, q.e.d. 

The following theorem is the key theorem of this paper. 

T h e o r e m 2.3. For n > 5, the set { Q i , . . . ,Q N g in Proposition 
2.1 is precisely the set of all C — Y points in the Calabi-Yau manifold 
X s = {(xi : . . . ,x n) GCP n - 1 :x n + --- + x1n + sx1...x n = 0},s^0. 

Proof. Let Q = (qi,... ,q n) be a C — Y point on X s. We need 
to show that Q G {Qi, • • • , Q N g- We shall consider the local form of 
the equation of (T Q(X s)) fl X s at Q. Let f(x\,... ,x n) = x n + • • • + 
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x n + sxi... x n and b1 = x - ( Q ) , . . . ,b n = Jx-(Q)- Without loss of 

generality, we shall assume bi 7̂  0. Let a2 = b - , . . . ,a n = n . The 

defining equation of (T Q(X s)) fl X s is 

(2.14) f(-a2x2 a n x n, x2,... , x n) = 0 

with homogeneous coordinates (x2 : . . . : x n) on P(T Q(X s)). We as­
sume also without loss of generality that q2 7̂  0. In view of Lemma 
2.2, we know that all 2 order partial derivatives of f{—a2x2 — • • • — 
a n x n, x2,... , x n) with respect to x i, x j , i,j G { 3 , . . . , n} at Q are zero 
because of n > 5. Hence, we have 

/2 15x d2f(-a2x2 a n x n,x2,... ,x n) 

dx idx j 
0, i,j>3. 

By chain rule, we get 

(2.16) a ^ Q ) - a x x ( Q ) - a Q ) + x x Q) = ». 

Multiplying (2.16) with b? = ( x ( Q ) ) 2 ^ 0, we get, for i,j > 3, 

bb j?f(Q) =bib i1^f-(Q) + b1b j^f-(Q) 
ox? ax-[0x 

(2-17) l
 d2 

dx{ dx\dx j dx idxi 

bliErltrQ dx idx j 

which can be rewritten as, for i, j > 3 

n{n - l)<ni~2(n<i"_1 + sqi... q i-iq i+i ...q n) 

• {nq n j X + sqt ... q j-iq j+i • • • q n) 

= sq2... q i-q+i • • • q j-iq j+i • • • q n{nqi~l + sq2 ... q n) 

• (nq n + nq™ - nq™ + sqi... q n). 

Now we only need to prove that q% = • • • = q n = 0 because these will 
imply that Q G { Q i , . . . , Q N}- There are two cases to be considered. 

C a s e 1. q 3 , . . . , q n are nonzero. If q\ = 0 in this case, we have 

(2.19) nq n + nq n - nq n + sqi...q n = 0 V i, j > 3 
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by (2.18). Thus q n + q n = 0 for any i,j > 3. In particular, if we 
take i = j> 3, we get qf = 0 and hence q i = 0 for i > 3. This is a 
contradiction. 

On the other hand if qi ^ 0, we shall consider (2.18) for i, j > 3 and 
k,j > 3. By dividing these two equalities, we have 

(2.20) 

which implies 

nq n + sqi...q n _ nq n + sq1...q n + nq n - nq n 

nq k +sq\...q n nq k +sq\...q n + nq n - nq n ' 

( 2 2 1 ) nq n + sqi...q n = n(q n - <n ) = ^ 

nq n + sqi...q n n(q n - q n 

Hence we have x n = x k for i, k > 3. Similarly by exchanging the 
roles of the indices 2 and 3, (recall that q% ^ 0 is assumed), we have 
q n=q n = ... = q n_ If b = jf(Q) = nq n~ l + sqq ... q n ± 0, then by 
exchanging the roles of the indices of 1 and 2, (note q\ ^ 0), we have 
q n = q n = • • • = q n- Since ( q i , . . . , q n) satisfies the following equation 

(2.22) q n + • • • + q n + sql... q n = 0 

we have qiinq ^ nf + sqiq2 • • • q n) = 0. This contradicts our assumption 
that b2 = nq n _ 1 + sqiq3 ...q n ^0. If 

b2 = ^ — (Q) = n ̂ _ 1 + sqiq3 ...q n = 0, 
Ox2 

then nq2 + sqiq2 • • • q n = 0. (2.22) implies q" + (n — l)q n + sq\... q n = 0. 
By adding q™ in both sides of this equation, we get q n = q n. Thus 
q n = • • • = q n . (2.22) implies nq n + sq\... q n = 0 for 1 < i < n. This 
implies that Q is a singular point of X s, a contradiction. 

Case 2. At least one of q$,... , q n is equal to zero. Without loss 
of generality, we shall assume q ̂  = 0. Since 

df 
bi = — (Q) = nq n - sq2...q n ^0 

is assumed, we have q\ ^ 0. Consider (2.18) for i = j > 4. The 
right-hand side of (2.18) becomes zero because of our assumption that 
at least one of q%,... ,q n is equal to zero. It follows that nq n~ + 
sqi... q i-iq i+i... q n = 0, 4 < i < n. These n — 3 equations together 
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with the assumption that at least one of qs,... ,q n is zero imply q ̂  = 
q5 = • • • = q n = 0. If q3 is nonzero, then at least one of q2, q4 , . . . ,q n is 
zero. By considering (2.18) with i = j = 3, we have 

n(n - l ) q i " 2 ( n q 3 - 1 + sqiq2qA ... q n)2 

= sq2qA . . . q n{nqi~l + sq2 • . . q n)(2nq ^ - nq" + sqi... q n) = 0, 

which implies q% = 0. Thus we have shown q% = q ̂  = • • • = q n = 0 and 

Q has to be in {Qi,Q2,--- ,Q n g- q-e.d. 

3. Modul i and modular group of Calabi -Yau manifolds 

We shall use Theorem 2.3 to study the moduli and modular group 
of Calabi-Yau manifolds. 

T h e o r e m 3 .1 . For n > 5 and any nonzero t ^ s, the biholo-
morphism between X t = {(x\ : . . . : x n) G CP n~l : x n + • • • + a;n + 
txi...x n = 0,t n ^ ( - n ) n } and X s = {{xx : . . . : x n) G CP n~n : 
x n + • • • + a;n + sx\... x n = 0, s n ^ (—n)n} is induced by a projective 
nonsingular linear transformation B G PGL(n,C) on coordinates with 
only one nonzero entry in each row and each column. Moreover, these 
entries is B are n-th roots of unity. Conversely any matrix B of the 
above form will send X t to X s where s = tc\c2 ... c n, being c i , . . . c n the 
nonzero entries of B. 

Proof. It is well known that any biholomorphism between X t 
and X s is induced by a projective nonsingular linear transformation 
B = (b ij), 1 < i,j <n, in PGL(n, C). For any C — Y point Q in X t, it 
is clear that B(Q), the image of Q under B, is also a C — Y point on X s. 
In view of Theorem 2.3, we have { B ( Q i ) , . . . , B ( Q N ) } = { Q i , . . . , Q N g 
where N = ^n2(n — 1). 

We now consider the set of first coordinates of the points B(Qi),... , 
B(Q N)- This set consists of N = ^n2(n — 1) elements of the form 
aH + Pm a i j , with 1 < i < j < n, 1 < m < n. We know that there are 
^n(n — l ) (n — 2) of N first coordinates of those points 

{B(Q1),...,B(Q N)} = {Q1,...,Q N g 

equal to zero. Hence there are ^n(n — l ) (n — 2) of an + pm a\j, with 
l<i<j<n, l<m<n, equal to zero. Suppose that k of n numbers 
a n , • • • , ain are zero. Notice that for nonzero complex numbers c and 
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d, there is at most one zero among n complex numbers c + pm d. We also 
note that if precisely only one of c, d is zero, then c + pm d can never be 
zero for 1 < m < n. Thus among N complex numbers an + pm a ij, 1 < 
i<j<n,l<m<n, there are at most ^nk(k — 1) + ^(n — k)(n — k — 1) 
of them are zero. It follows that we have the following inequality 

nk(k — 1) (n — k)(n — k — l) n(n — l ) (n — 2) 
( 3 - 1 } 2 + 2 - 2 ' 

(3.1) implies k > 0. It follows that nk > n — k because k is a positive 
integer. Thus, in view of (3.1) we have 

nk(n — 2) nk(k — 1) nk(n — k — 1) 

2 ~ 2 + 2 
nk( — 1) (n — k)(n — k — 1) 

(3.2) > — k i+K- ^ ^ 

> 
n(n — l ) (n — 2) 

(3.3) implies k > n — I. Since B is a nonsingular matrix, we have 
k = n — 1. Therefore we have proved that there is only one nonzero 
entry in the first row. Similarly, we can prove that there is only one 
nonzero entry in each row. Since B is nonsingular, there is only one 
nonzero entry in each column. 

Let aii! , a2i2, • • • , a ni n be the nonzero entries of the 1st row, 2nd 
row, . . . , and n th row of the matrix B respectively. Consider the ac­
tion of B on the point P = ( 0 , . . . , 0, pm, 0 , . . . , 0 , 1 , 0 , . . . ,0) where 
1 < m < n, pm is the ii-coordinate of P while 1 is the i -coord ina te 
of P. Clearly B(P) = (aii m a , 0 , . . . ,0) is a C — Y point. In 
view of Theorem 2.3, we have pm au1/a2i2 G { p i , . . . ,pn}- This implies 
aiii la2i2 is a n th root of unity. Similarly we can show that all ratios be­
tween a\ix, a2i2, • • • , a ni n are n th root of unity. The first part of Theorem 
3.1 follows immediately. 

Conversely, suppose that B is a nonsingular matrix given by 

B : [xi, x2, - - - , x n) i y \aiilx ilì a2i2x i2, • • • , a ni n x i n), 

where aii1,a2i2i- • • ia ni n are n th roots of unity and (ii, i25 - - - 5i n) is a 
permutation of ( 1 , 2 , . . . , n). Then clearly X t : #n + • • -+x n+txi... x n = 
0 is sent to X s : x n + • • • + x1n + sx\... x n = 0 where s = ta\i ... a ni n. 

q.e.d. 

Corollary 3.2 . For n > 5, t ^ s, s n and t n ^ 0 and {—n)n, the 
group G of biholomorphisms between X t = {(x\ : • • • : x n) G CP n~l : 
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x n + • • • + a;n + txi... x n = 0} and X s = (x\ : • • • : x n) G CP n~x : 
x n + • • • + a;n + sx\... x n = 0} consists of all projective nonsingular 
linear transformation B G PGL(n, G) of the following form: 

/ 0 . . . 0 aUl 0 . . . 0 0 0 . . . 0 0 0 ... \ 
0 . . . 0 0 0 . . . 0 a2i2 0 . . . 0 0 0 . . . 

B = , 

\ 0 . . . 0 0 0 . . . 0 0 0 . . . 0 a ni n 0 . . . / 

where (it, • • • , i n) is a permutation of ( 1 , . . . , n) and aii,... , a ni n are 
n th root of unity. Each such B induces a linear transformation on the 
parameter space by sending t to ta\i ... a ni n. The group G has order 
nn _ 1 (n ! ) . Let N be the group of automorphisms of X t. Then N is a 
normal subgroup of G of order n n~2(n\). 

Proof. To compute the order of G, consider the first row of B. We 
can pick any number from 1 to n as i\ and we can assign a\i to be any 
number in the set of n roots of unity. So we have n 2 choices. In the 
second row, we can pick i% to be any number from 1 t o n except i\ and 
assign a2i2 to be any number in the set of n th roots of unity. So we have 
n(n — 1) choices. By continuing this argument, we see that there are 
(n\)n elements. By dividing the scalar multiplications, we conclude 
that the order of the group G is (n!)nn _ 1 . 

To compute the order of the automorphism group N of X t, we ob­
serve that B G N if and only if aula2i2 • • • a ni n = 1. Thus the order of 
N is (n!)nn _ 2 . q.e.d. 

T h e o r e m 3.3 . For n > h, the modulus function of the one param­
eter family of Calabi-Yau manifolds X s = {(x\ : ••• : x n) G CP n~l : 
x n + • • • + a;n + sx\... x n = 0} is s n, i.e., for any two parameters t, s, 
X t is biholomorphically equivalent to X s if and only if t n = s n. 

Proof. It is easy to see that X t is biholomorphically equivalent 
to X tr for any n th root of unity r. Conversely, we know that if X t is 
biholomorphically equivalent to X s, then s = tr for some n root of 
unity r in view of Corollary 3.2. Hence the modulus function of the 
one-parameter family of Calabi-Yau manifold X s is s n. q.e.d. 
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