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ARAKELOV INEQUALITIES AND THE

UNIFORMIZATION OF CERTAIN RIGID SHIMURA

VARIETIES

Eckart Viehweg & Kang Zuo

Abstract

Let Y be a non-singular projective manifold with an ample
canonical sheaf, and let V be a Q-variation of Hodge structures of
weight one on Y with Higgs bundle E1,0 ⊕ E0,1, coming from a
family of Abelian varieties. If Y is a curve the Arakelov inequality
says that the slopes satisfy µ(E1,0) − µ(E0,1) ≤ µ(Ω1

Y ).
We prove a similar inequality in the higher dimensional case.

If the latter is an equality, and if the discriminant of E1,0 or the
one of E0,1 is zero, one hopes that Y is a Shimura variety, and V
a uniformizing variation of Hodge structures. This is verified, in
case the universal covering of Y does not contain factors of rank
> 1. Part of the results extend to variations of Hodge structures
over quasi-projective manifolds U .

Let Y be a complex n-dimensional projective manifold, S ⊂ Y a
reduced normal crossing divisor, U = Y \ S, and let f : V → U be
a smooth family of g-dimensional Abelian varieties. Assume that the
local system R1f∗CV has uni-potent monodromy along the components
of S. Let V be a C-sub-variation of Hodge structures in R1f∗CV .

The Deligne extension of V ⊗ OU to Y carries a Hodge filtration.
Taking the graded sheaf one obtains the (logarithmic) Higgs bundle

(E, θ) = (E1,0 ⊕ E0,1, θ),

where θ : E → E ⊗ Ω1
Y (log S) is zero on E0,1 and factors through

θ : E1,0 −→ E0,1 ⊗ Ω1
Y (log S)

on E1,0. Define for a torsion free coherent sheaf F on Y

Υ(F) =
c1(F)

rk(F)
∈ H2(Y, Q) and

∆(F) = 2 · rk(F) · c2(F) − (rk(F) − 1) · c1(F)2 ∈ H4(Y, Q).
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Over the n-dimensional variety Y choose an invertible sheaf N , or more
generally an R-divisor N , and define the slope and the discriminant of
F as

µN (F) = Υ(F).c1(N )n−1 and δN (F) = ∆(F).c1(N )n−2,

respectively. For the Higgs bundle (E, θ) of the variation of Hodge
structures V we define

µN (V) = µN (E•,•) = µN (E1,0) − µN (E0,1) and

δN (V) = δN (E•,•) = Min{δN (E1,0), δN (E0,1)}.
We will choose N = ωY (S) in the introduction and we will write µ and
δ instead of µωY (S) and δωY (S).

For Y a curve and V = R1f∗CV the Arakelov inequality due to Falt-
ings [F83] says that

deg(E1,0) − deg(E0,1) = 2 · deg(E1,0) ≤ rk(E1,0) · deg(Ω1
Y (log S)),

or equivalently that

(1) µ(R1f∗CV ) ≤ µ(Ω1
Y (log S)).

If (1) is an equality the Higgs field θ is an isomorphism. As shown
in [V-Z04], this forces U to be a Shimura curve and R1f∗ZV to be a
uniformizing variation of Hodge structures. An intermediate result says
that R1f∗CV = L ⊗ U, for a unitary bundle U and for a uniformizing
variation of Hodge structures L of weight one and rank two, i.e., for
some L with Higgs bundle (L ⊕ L−1, τ : L → L−1 ⊗ ωY (S)), where
L2 ∼= ωY (S). In particular E1,0 = L ⊗C U and E0,1 = L−1 ⊗C U are
both poly-stable.

We want to obtain inequalities similar to (1), hoping that equality
forces Y \S to be a locally Hermitian symmetric domain, and the varia-
tion of Hodge structures to be again the standard one, up to the tensor
product with a unitary local systems.

Before stating the results, let us consider the example of a two di-
mensional compact ball quotient Y . Replacing Y by an étale cover, the
uniformizing R-variation of Hodge structures splits over C as a direct
sum V⊕ V̄, and interchanging V and V̄, if necessary, the Higgs bundles
of V and V̄ are given by (E1,0 ⊕ E0,1, θ) and (E′1,0 ⊕ E′0,1θ′) for

E1,0 = ω
1
3
Y , E0,1 = T 1

Y ⊗ ω
1
3
Y and E′1,0

= Ω1
Y ⊗ ω

− 1
3

Y , E′0,1
= ω

− 1
3

Y ,

respectively (see [Lo03, 4.1], [S88, 9.1] and Section 7). One finds

µ(V) = µ(V̄) = µ(Ω1
Y ),

whereas for the whole variation of Hodge structures one has a strict
inequality µ(V⊕V̄) < µωY

(Ω1
Y ). So one should expect optimal Arakelov

type inequalities only for the Hodge bundles of irreducible local sub-
systems.
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Theorem 1. Assume that ωY (S) is nef and ample with respect to U ,

and let f : V → U be a smooth family of polarized g-dimensional Abelian

varieties such that the local monodromy of R1f∗CV around the compo-

nents of S is uni-potent. Let V be a sub-variation of Hodge structures

in R1f∗CV without a unitary direct factor and with Higgs bundle

(E = E1,0 ⊕ E0,1, θ).

Then

(2) µ(V) ≤ µ(Ω1
Y (log S)).

The equality

(3) µ(V) = µ(Ω1
Y (log S))

implies that E1,0 and E0,1 are both semi-stable, and that

(4) δ(V) ≥ 0.

Here “semi-stable” refers to semi-stability for the slope µ. The defini-
tion, as well as the condition “ample with respect to U ,” will be recalled
in 1.1.

The inequality (4) follows immediately from the semi-stability of E1,0

and E0,1 and the Bogomolov inequality, saying that the discriminant of
semi-stable locally free sheaves is non negative (see for example [H-L97,
7.3.1]).

Remark 2. As we will see in the proof of Theorem 1 at the end
of Section 2, one can allow V to have unitary direct factors U which
are invariant under complex conjugation. In particular the inequality
(2) holds for all R-sub-variations V of Hodge structures, and for V =
R1f∗CV itself.

If the equality (3) holds for some V, it holds for all irreducible C-sub-
variations of Hodge structures in V. So it will never hold if V contains
non-trivial unitary direct factors.

The assumption “ωY (S) nef and ample with respect to U” allows us
to apply Yau’s uniformization theorem [Y93], recalled in 1.4. It implies
that the sheaf Ω1

Y (log S) is µ-poly-stable. Hence one has a direct sum
decomposition

Ω1
Y (log S) = Ω1 ⊕ · · · ⊕ Ωs′′ ⊕ · · · ⊕ Ωs′ ⊕ · · · ⊕ Ωs

in stable sheaves. We choose the indices such that for i = 1, . . . , s′′

the sheaf Ωi is invertible. For i = s′′ + 1, . . . , s′, we assume that the
sheaves Sm(Ωi) are stable for all m > 1, and not invertible. Finally, for
i = s′ + 1, . . . , s we have the remaining stable direct factors, i.e., those
with Smi(Ωi) non-stable, for some mi > 1.

We will need stronger positivity conditions. First of all we have to
require the sheaves Ωi to be nef, or equivalently Ω1

Y (log S) to be nef.
If S = ∅ this condition holds true for projective submanifolds Y of
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the moduli stack Ag of polarized Abelian varieties (see Lemma 4.1).
In general, the assumption “Ω1

Y (S) nef” depends on the choice of a
“good” compactification Y of U . For the moduli space itself, such a
compactification is described in [F83].

Secondly we will frequently need the following properties of the slope
and the discriminant.

(∗) The the tensor product of F ⊗ G of µ-poly-stable sheaves F and
G is again µ-poly-stable.

(∗∗) A locally free µ-poly-stable sheaf F is unitary if µ(F) = δ(F) = 0.

Note that both (∗) and (∗∗) hold true, if ωY (S) is ample (see Lemma
1.3). Again, as we will see in Lemma 4.1, this condition holds for pro-
jective submanifolds Y of the moduli stack Ag. However, for S 6= ∅
ampleness is too much to expect. S.-T. Yau informed us that (∗) and
(∗∗) hold true under the assumption that ωY (S) is nef and ample with
respect to some open dense subscheme, and that the proof will be given
in a forthcoming article by Sun and Yau.

So we will work with the following set-up, noting that at present, i.e.,
without using the unpublished result of Sun and Yau, the conditions
are only reasonable for S = ∅.

Set-up 3. The sheaf Ω1
Y (log S) is nef, ωY (S) is ample with respect

to U and the conditions (∗) and (∗∗) hold true for µ = µωY (S) and
δ = δωY (S).

Let f : V → U be a smooth family of polarized g-dimensional Abelian
varieties such that the local monodromy of R1f∗CV around the compo-
nents of S is uni-potent.

For surfaces Y with U Ã Y we will consider in 8.2 a slightly different
Set-up.

Proposition 4. In Set-up 3 assume that s = s′, that for all irre-

ducible C-sub-variations V of Hodge structures in R1f∗CV with loga-

rithmic Higgs bundle (E1,0⊕E0,1, θ) one has µ(V) = µ(Ω1
Y (log S)), and

that one of the following conditions holds true:

i. δ(V) = 0,
ii. s′′ = s.

Then there exists some i ∈ {1, . . . , s′} such that:

a. The Higgs field θ factors like

E1,0 θi−−−−→ E0,1 ⊗ Ωi
⊂−−−−→ E0,1 ⊗ Ω1

Y (log S).

b. E1,0 and E0,1 are stable.

c. Either rk(E1,0) = rk(E0,1)+rk(Ωi) or rk(E0,1) = rk(E1,0)+rk(Ωi).

If ωY (S) is ample, one can replace the condition c) in 4 by:
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c. Either θi is an isomorphism or E0,1 ∼= E1,0 ⊗ Ω∨
i and θi is the

natural map

E1,0 −→ E1,0 ⊗ Ω∨
i ⊗ Ωi

∼= E0,1 ⊗ Ωi.

We hope that the conclusion a) of Proposition 4 remains true if one
allows stable factors Ωi of the third type, i.e., those with Sm(Ωi) non-
stable for some m > 0. Moreover the conditions i) and ii) should not be
necessary at this place. So we will not use the condition s = s′ in the
next theorem, and refer instead to the conclusion of Theorem 4.

Theorem 5. In Set-up 3 let V be an irreducible C-sub-variation of

Hodge structures in R1f∗CV with Higgs bundle (E1,0⊕E0,1, θ). Assume

that µ(V) = µ(Ω1
Y (log S)) and that for some i ∈ {1, . . . , s′} the condi-

tions a)–c) in Proposition 4 hold true. If either i ≤ s′′, or if s′′ < i ≤ s′

and δ(V) = 0, there exists an étale covering φ : Y ′ → Y , and an invert-

ible sheaf Li with:

a. Lni+1
i = φ∗ det(Ωi), for ni = rk(Ωi).

b. V′ = φ∗(V) or its dual is the tensor product of a unitary local

system Ui, regarded as a variation of Hodge structures of bidegree

(0, 0), with a variation of Hodge structures Li with Higgs bundle
(

Li ⊕ Li ⊗ φ∗Ω∨
i , τ

)

where τ is given by the morphism

Li →֒ Li ⊗ End(φ∗Ωi) = Li ⊗ φ∗(Ω∨
i ⊗ Ωi)

⊂−−−−→ Li ⊗ φ∗(Ω∨
i ) ⊗ Ω1

Y ′(log S′),

induced by the homotheties OY →֒ End(Ωi).

The explicit form of the variation of Hodge structures given in The-
orem 5 will allow in Section 10 to calculate the derived Mumford-Tate
group of W = R1f∗QV . To this aim, we have to study in Section 9 the
decomposition of certain wedge products of W, and to determine the
possible Hodge cycles. This will finally allow to prove:

Theorem 6. Under the assumptions made in Proposition 4, assume

that the morphism ϕ : U → Ag to the moduli stack of polarized g-
dimensional Abelian varieties, induced by f : V → U , is generically

finite. Then U is a rigid Shimura subvariety of Ag. The universal

covering Ũ of U decomposes as the product of s = s′ complex balls of

dimensions ni = rk(Ωi).

The assumption that s = s′, i.e., that there are no direct factors Ωi

of the third type, automatically holds if Y is a surface. We will discuss
this case in the second half of Section 8, and we will formulate and prove
variants of Theorems 5 and 6 enforcing the conditions (∗) and (∗∗) in
Set-up 3 by considering certain small twists of the slope µ.
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In Section 1 we will recall Yau’s Uniformization Theorem, and some
of its consequences. The proof of Theorem 1 will be given in Section
2. In Section 3 we prove Proposition 4, as well as the stability of the
Hodge bundles E1,0 and E0,1.

The next section (Section 4) recalls some well known properties of the
moduli stack of Abelian varieties, and a first application of Proposition
4. At this stage we will also discuss the relation between our approach
and the one of Moonen in [Mo98]. Moreover, we will outline a possible
approach towards a generalization of Theorem 6 allowing factors Ωi of
the third type, i.e., with Sm(Ωi) non-stable for some i.

As indicated in Proposition 4, things are nicer if one assumes that all
the direct factors Ωi of Ω1

Y (log S) are invertible. In this case, one obtains
a numerical characterization of generalized Hilbert modular varieties,
stated and discussed in Section 8. We will show in this section as well
that for i ≤ s′′ the condition b) in Theorem 5 is a consequence of a).

As a first step towards Theorem 5 for s′′ < i ≤ s′ we will show in
Section 5 that the condition δ(V) = 0 implies that the factor of the

universal covering Ũ of U , corresponding to Ωi, is a complex ball.
At this stage we do not know the existence of an invertible sheaf of

the form Li = det(Ωi)
1

ni+1 , asked for in 5, a). If S = ∅, knowing that
Y is a quotient of products of balls will allow us in Lemma 7.2 to apply
the Simpson correspondence, and to construct the sheaf Li. At the end
of Section 7 we finish the proof of 5.

Beforehand, in Section 6 we consider the case S 6= ∅, or more precisely
the one where S meets the leaves of the foliation defined by the direct
factor Ωi of Ω1

Y (log S). As it will turn out, in this case the unitary
bundle in 5, b), is trivial and one obtains the existence of Li “for free”.

The last step is to show that the quotient of products of complex
balls in Theorem 5 is a rigid Shimura variety. The rigidity is shown in
Section 9. There we study the decomposition of R1f∗RV or R1f∗CV in
R and C irreducible direct factors in more detail. In particular the first
one can be realized over a totally real number field. We calculate the
possible bidegrees of global sections of the wedge products of R1f∗CV .
This will imply in Section 10 finally that U is a Shimura variety, and
allow to end the proof of Theorem 6.

This article relies on C. Simpson’s correspondence between Higgs bun-
dles and local systems ([S88], [S90], [S92] and [S93]). The second main
ingredient is S.T. Yau’s uniformization theorem, recalled in Section 1.
It is based on the existence of Kähler-Einstein metrics, due to Yau in
the projective case, and extended to the quasi-projective case jointly
with G. Tian. We thank both of them for explaining how to use their
results to study the uniformization of manifolds.
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Thanks also to Y.-H. Yang, who clarified and verified several argu-
ments from differential geometry, to F. Bogomolov who explained the
first named author his view of ball quotients, and who told us Lemma
7.1, as well as its proof, and to Martin Möller who helped to decrease
the number of misprints.

We are grateful to the referee for pointing out several mistakes and
ambiguities in the first version of this article, and for suggestions on
how to improve the presentation of our results.

The first steps towards Arakelov inequalities over higher dimensional
bases were done when the first named author visited the Courant In-
stitute, New York; the final version of this article was written during
his stay at the IAS, Princeton. He would like to thank the members of
both Institutes for their hospitality.

Notations. As in the introduction we will consider up to Section 10
C-sub-variations of Hodge structures V in R1f∗CV . We will say that V
is defined over some subfield K ⊂ C, if there exists a K-sub-variation
of Hodge structures VK ⊂ R1f∗KV with VK ⊗ C = V.

If (E, θ) is a Higgs bundle, and G ⊂ E a subsheaf, we call G a Higgs
subsheaf, if θ(G) ⊂ G ⊗ Ω1

Y (log S). We will call G a saturated Higgs
subsheaf if in addition E/G is torsion free. If G is a saturated Higgs
subsheaf E/G will be called a quotient Higgs sheaf.

The dual of Ω1
Y (log S) will be denoted by T 1

Y (− log S).
As in the introduction, µ and δ usually stand for the slope and dis-

criminant with respect to the invertible sheaf ωY (S). However, in parts
of the article we will allow µ = µN and δ = δN , for ample invertible
sheaves (or R-divisors) N , provided the assumptions made in 2.5 hold
true.

Stability, semi-stability and poly-stability will always be for the slope
µ. Just in case we want to underline that we allow different polarization,
we write µN , δN and we will talk about µN -stability.

1. Stability and locally Hermitian symmetric spaces

Let us recall some properties of locally free sheaves F on a manifold
Y of dimension n.

Definition 1.1. Let H be an ample invertible sheaf on Y .

i. F is numerically effective (nef), if for all curves τ : C → Y and
for all invertible quotient sheaves L of τ∗F one has deg(L) ≥ 0.

ii. F is ample with respect to an open subscheme U ′ of Y , if for some
ν ≫ 0 there exists a morphism ⊕H → Sν(F), which is surjective
on U ′. If F is invertible, this is equivalent to:
For some η > 0 the sheaf Fη is generated by H0(Y,Fη) in all
points u ∈ U ′, and the induced morphism U ′ → P(H0(Y,Fη) is
an embedding.
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iii. F is big, if it is ample with respect to some open dense subscheme.

Let us also recall the notion of stability for a torsion free coherent
sheaf F with respect to an invertible sheaf or an R-divisor N .

iv. F is µN -stable, if µN (G) < µN (F) for all subsheaves G of F with
rk(G) < rk(F).

v. F is µN -semi-stable, if µN (G) ≤ µN (F) for all subsheaves G of F .
vi. A µN -semi-stable sheaf F is µN -poly-stable, if it is the direct sum

of µN -stable sheaves.

In iv), v) and vi) we will assume that N is nef and big. If N is not
ample, and if F is a locally free µN -stable sheaf it might happen that
F contains a stable locally free subsheaf G Ã F with µN (G) = µN (F).
By definition this is only possible if rk(G) = rk(F) and if the cokernel
of G →֒ F is supported on divisors D with D.c1(N )n−1 = 0.

Recall that the slope is µN (F) = Υ(F).c1(N )n−1. So the standard
properties of the slope follow from:

Lemma 1.2. Let F and G be torsion free coherent sheaves on Y .

Υ(F ⊗ G) =
rk(G) · c1(F) + rk(F) · c1(G)

rk(F) · rk(G)
= Υ(F) + Υ(G),

Υ(Sm(F)) = m · Υ(F), Υ(
m
∧

(F)) = m · Υ(F)

where for the third equality one assumes m ≤ rk(F). If

0 −→ F −→ K −→ G −→ 0

is an exact sequence, Υ(K) is equal to

c1(F) + c1(G)

rk(F) + rk(G)
=

rk(F)

rk(F) + rk(G)
Υ(F) +

rk(G)

rk(F) + rk(G)
Υ(G).

Lemma 1.3.

a. There exists the Harder-Narasimhan filtration for all torsion free

coherent sheaves F , i.e., a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm

with Fℓ/Fℓ−1 torsion free, µN -semi-stable and with

µmax,N (F) = µN (F1) > µN (F2/F1) >

· · · > µN (Fm/Fm−1) = µmin,N (F).

b. The tensor product of µN -semi-stable sheaves is again µN -semi-

stable.

c. If N is ample, the tensor product of µN -poly-stable sheaves is again

µN -poly-stable, as well as the pullback under finite morphisms.

d. If N is ample and if F is a locally free sheaf, µN -poly-stable of

slope µN (F) = and with δN (F) = 0, then F is unitary, i.e., there

exists a unitary local system U on Y with F = U ⊗OY .
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Proof. If N is ample, the existence of the Harder-Narasimhan filtra-
tion is well known (see [H-L97, 1.6.7]), and the proof carries over to
the case N nef and big. c) is shown in [H-L97, 3.2.3 and 3.2.11], for
example, and d) in [U-Y86] and [Do87].

For N ample, b) is well known (see [H-L97, 3.1.4]). In general one
can use the following argument. Given an ample invertible sheaf H,
consider the Harder-Narasimhan filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm

with respect to c1(N ⊗Hǫ). By [L04, p. 263] for ǫ > 0 and sufficiently
small, this filtration is independent of ǫ. One has

µN (F1) = lim
ǫ→0

µN⊗Hǫ(F1) ≥ lim
ǫ→0

µN⊗Hǫ(F) = µN (F).

If F is µN -stable, one knows that µN (F1) ≤ µN (F) with equality if
and only if F1 = F . So F is µN⊗Hǫ-semi-stable. Applying this to the
graded sheaf with respect to a Jordan-Hölder filtration, one finds that
a µN semistable sheaf F is also µN⊗Hǫ-semi-stable.

So if G is a second µN -semi-stable sheaf, for ǫ small enough, F and
G are both µN⊗Hǫ-semi-stable, hence F ⊗ G as well. Taking the limit
ǫ → 0 one finds F ⊗ G to be µN -semi-stable. q.e.d.

Besides Simpson’s correspondence the main technical tool used in this
article is Yau’s uniformization theorem, explained in [Y93] and [Y88].
So for the rest of this section, if not stated otherwise, we will choose
N = ωY (S) and µ = µN .

Theorem 1.4. Let Y be a complex projective manifold and S ⊂ Y a

reduced normal crossing divisor. Assume that ωY (S) is nef and ample

with respect to Y \ S. Then:

a. For all m ≥ 0 the sheaves Sm(Ω1
Y (log S)) are poly-stable.

b. Let

Ω1
Y (log S) = Ω1 ⊕ · · · ⊕ Ωs

be the decomposition of Ω1
Y (log S) in stable direct factors of the

same slope and ni = rk(Ωi). Then for i = 1, . . . , s the (ni, ni)
current

2(ni + 1) · c2(Ωi).c1(Ωi)
ni−2 − ni · c1(Ωi)

ni

is semi-positive.

c. Choose in b) 0 ≤ s′′ ≤ s′ ≤ s with:

i. For 1 ≤ i ≤ s′′ the sheaf Ωi is of rank one.

ii. For s′′ < i ≤ s′ the rank ni of Ωi is larger than one and for all

m > 0 the sheaf Sm(Ωi) is stable.

iii. For s′ < i ≤ s and for some mi > 0 the sheaf Smi(Ωi) is not

stable.
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Then Mi is a one dimensional ball for i = 1, . . . , s′′ and a a

bounded symmetric domain of rank > 1 for i = s′ + 1, . . . , s.
For i = s′′ + 1, . . . , s′ one has the equality

2(ni + 1) · c2(Ωi).c1(Ωi)
ni−2.c1(ωY (S))n−ni(1.1)

= ni · c1(Ωi)
ni .c1(ωY (S))n−ni

if and only if Mi is an ni-dimensional complex ball.

d. In particular, if in c) the equation (1.1) holds for i = s′′+1, . . . , s′,
then U = Y \ S is a quotient of a bounded symmetric domain by

a discrete group with finite volume.

In [Y93] the assumptions i) and iii) in c) are expressed differently.

There it is required that Sm′

i(Ωi) contains a direct factor of rank one

of the same slope as Sm′

i(Ωi). Obviously this condition holds true if
ni = 1. For ni > 1 it is equivalent to iii).

The proof of Theorem 1.4 in fact gives additional information.

Addendum 1.5. Let Ωi be one of the stable factors in 1.4, b), and let
U be an irreducible unitary local system on Y . Assume that U⊗CSm(Ωi)
is not µ-stable for some m > 0. Then for some mi > 0 the sheaf Smi(Ωi)
is not µ-stable, hence s′ < i ≤ s.

Some notations from the proof of 1.4. Let Ũ = M1 × · · · × Ms be the
decomposition of the universal covering of U which corresponds to the
decomposition in 1.4, b). In particular, dimMi = ni for all i (see [Y88,
p. 272]). The holonomy group Hi of Ti = Ω∨

i with respect to the Kähler-
Einstein metric (more precisely, the projection of the Kähler-Einstein
metric on T 1

Y (− log S) to Ti) is contained in U(ni).
As explained in [Y93, p. 479], the condition in 1.4, c), iii) on the

non-stability of Sm(Ωi) is equivalent to the condition that Hi 6= U(ni).
The latter holds if and only if Mi is a Hermitian symmetric space of
rank > 1.

If Hi = U(ni), by [Y88, p. 272] (with some misprint in the sign),

2 · (ni + 1) · c2(Ti) − ni · c1(Ti)
2

is a semi-positive (2, 2) form, hence

(1.2) 2 · (ni + 1) · c2(Ωi) − ni · c1(Ωi)
2,

as well. Then, for ni ≥ 2,

(1.3) 2 · (ni + 1) · c2(Ωi).c1(Ωi)
ni−2 − ni · c1(Ωi)

ni

is a semi-positive (ni, ni) current. It is zero if and only if Mi has constant
negative holomorphic sectional curvature, hence if it is isomorphic to the
complex ball. q.e.d.
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Proof of Addendum 1.5. Assume Sm′

(Ωi) is stable, for all m′ > 0. If
ni = 1, there is nothing to show. For ni > 1 we have just seen that the
holonomy group of Ti is U(ni), hence the one of Sm(Ti) is Sm(U(ni)).

The holonomy group of U with respect to a locally constant metric is
trivial, hence {Idℓ}, the identity of Glℓ. By functoriality the holonomy
group of U⊗Sm(Ti) with respect to the product of the locally constant
metric and the Kähler Einstein metric is

{Idℓ} ⊗ Sm(U(ni)) = Sm(U(ni)) × · · · × Sm(U(ni)).

Suppose U⊗Sm(Ti) is not stable. Using again the Kḧler-Einstein prop-
erty, a decomposition of the bundle in stable factors gives rise to a
splitting of the product metric, hence to a splitting of the holonomy
group {Idℓ} ⊗ Sm(U(ni)).

Since U is irreducible, such a splitting of U⊗Sm(Ti) can not arise from
the natural splitting Sm(U(ni)) × · · · × Sm(U(ni)). Thus, it forces one
of the factors Sm(U(ni)) to split. As in [Y88, p. 272] this contradicts

the irreducibility of Sm′

(Ti) for all m′ > 0. q.e.d.

For the next Lemma we need more than the positivity of ωY (S).

Lemma 1.6. Assume that ωY (S) is ample with respect to U , and

that the sheaf Ω1
Y (log S) is nef.

i. Then all the stable direct factors Ωi in 1.4, b), and their determi-

nants det(Ωi) are nef, and c1(Ωj)
nj+1 is numerically trivial.

ii. For ν1, . . . , νs with ν1 + · · · + νs = n the product

c1(Ω1)
ν1 . · · · .c1(Ωs)

νs

is a positive multiple of c1(ωY (S))n, if νι = nι for ι = 1, . . . , s,
and zero otherwise.

iii. c1(Ω1)
n1 . · · · .c1(Ωs)

ns > 0.
iv. If D is an effective Q divisor with D.c1(ωY (S))n−1 = 0, then

D.c1(Ω1)
ν1 . · · · .c1(Ωs)

νs = 0 for all ν1, . . . , νs with ν1 + · · ·+ νs =
n − 1.

v. Let NS0 denote the subspace of the Neron-Severi group NS(Y )Q

of Y which is generated by all effective divisors D satisfying the

condition in iv). If for some α ∈ Q one has c1(Ωi) − α · c1(Ωj) ∈
NS0 then i = j.

vi. If for some m > 0 there is an injection ρ : Sm(Ωi) →֒ Sm(Ωj),
then i = j.

vii. The equality (1.1) in Theorem 1.4, c), holds if and only if

2(ni + 1) · c2(Ωi).c1(ωY (S))n−2 = ni · c1(Ωi)
2.c1(ωY (S))n−2.

Proof. In Theorem 1.4 the sheaf Ω1
Y (log S) is poly-stable, and the

assumption obviously implies that all the Ωi are nef, hence det(Ωj) as
well. The Bogomolov-Sommese vanishing theorem (see [E-V92, 6.9])
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implies that κ(det(Ωj)) ≤ nj , hence c1(Ωj)
nj+1 is numerically trivial

and i) holds true.
The cycle c1(ωY (S))η is a linear combination of expressions of the

form

c1(Ω1)
ν1 . · · · .c1(Ωs)

νs with ν1 + · · · + νs = η,

with non-negative coefficients. For η = n all those intersection cycles
are zero, except the one with νj = nj , for all j. Since ωY (S) is big, one
finds for some positive rational number α

c1(Ω1)
n1 . · · · .c1(Ωs)

ns = α · c1(ωY (S))n > 0,

hence ii) and iii) hold true.
By i) for ν = (ν1, . . . , νs) with ν1 + · · ·+νs = η = n−1 one finds that

D.c1(Ω1)
ν1 . · · · .c1(Ωs)

νs ≥ 0.

So D.c1(ωY (S))n−1 = 0 implies that all those numbers must be zero, as
claimed in iv).

The equality c1(Ωi) = α · c1(Ωj) + D for i < j and D ∈ NS0 implies
that

c1(Ω1)
n1 . · · · .c1(Ωi)

ni . · · · .c1(Ωj)
nj . · · · .c1(Ωs)

ns

is a multiple of an intersection number containing c1(Ωj)
nj+1 = 0.

Hence by part i) it is zero, contradicting iii).
Assume there is an injection ρ in vi). The poly-stability of the two

sheaves implies that Sm(Ωj) ∼= Sm(Ωi) ⊕ R. So for some α > 0 one
finds c1(Ωj) = c1(Ωi) + α · c1(R). The sheaf R as a quotient of a nef
sheaf has to be nef, and

c1(Ωj)
nj+1.c1(ωY (S))n−1−nj ≥ c1(Ωj)

nj .c1(Ωi).c1(ωY (S))n−1−nj

is positive, in contradiction to part i).
For vii) write γ for the semi-positive (2, 2) form in (1.2), i.e.,

γ = 2(ni + 1) · c2(Ωi) − ni · c1(Ωi)
2.

Since γ.c1(Ω1)
ν1 . · · · .c1(Ωs)

νs ≥ 0, for all tuples ν with ν1 + · · · + νs =
η = n−2, the equality in vii) implies that all those intersection numbers
are zero, in particular the equation (1.1) holds. On the other hand, the
equation (1.1) implies that Mi is a complex ball, hence the (ni, ni)
current (1.3) is zero.

Then γ.c1(Ω1)
ν1 . · · · .c1(Ωs)

νs = 0 whenever νi ≥ ni−2. For the other
tuples ν there is some νj > nj , hence again the intersection number is
zero, and the equation in vii) holds true. q.e.d.

We will consider in this article stable and semi-stable sheaves with
respect to slopes defined by non-ample invertible sheaves N .

Definition 1.7. Assume that N is nef and big.
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a. Let F be a coherent torsion free sheaf, and G a subsheaf. We call
F and G equivalent (or µN -equivalent) to F , if F/G is a torsion
sheaf and if c1(F)−c1(G) is the class of an effective divisor D with
D.c1(N )n−1 = 0.

b. If θ : F → E is a morphism between coherent torsion free sheaves,
the saturated image Im′(θ) is the kernel of the map

E → (E/Im(θ))/torsion.

c. If in b) θ is injective, we call Im′(θ) the saturated hull of F in E .
d. We call a coherent torsion free sheaf F weakly poly-stable, if it is

equivalent to a poly-stable subsheaf.

Lemma 1.8. Assume that N is nef and big.

1) If F is µN -stable and if G ⊂ F is a subsheaf with µN (G) = µN (F)
then F and G are µN -equivalent.

2) A µN -stable sheaf F is µN -semi-stable.

3) If θ : F → E is a morphism between torsion free µN -semi-stable

sheaves of the same slope µ0, then the saturated image Im′(θ) is

a µN -semi-stable subsheaf of slope µ0, and Im(θ) and Im′(θ) are

µN -equivalent.

4) If in 3) the sheaf F is weakly poly-stable, then the saturated image

is weakly poly-stable.

Proof. Let F be a coherent torsion free sheaf, and let G be a subsheaf
with rk(G) = rk(F). Then the cokernel of G →֒ F is supported on an
effective divisor D and c1(F) − c1(G) is an effective Q-divisor D. Since
N is nef, one finds D.c1(N )n−1 ≥ 0 and µN (G) ≤ µN (F). In particular
2) holds true.

If G is a subsheaf of a stable sheaf F with µN (G) = µN (F), then by
definition rk(F) = rk(G), hence D.c1(N )n−1 = 0 as claimed in 1).

In 3) write G = Im(θ) and G′ = Im′(θ). Then

µ0 ≤ µN (G) ≤ µN (G′) ≤ µN (E) = µ0,

and G′ is a µN -semi-stable subsheaf of slope µ0.
In d) we may replace F by the equivalent poly-stable subsheaf. Then

G is poly-stable, hence G′ by definition weakly poly-stable. q.e.d.

Later N will either be ample, hence in 1.7, a), the divisor D will be
zero, or N = ωY (S). In the second case we can make a more precise
statement.

Lemma 1.9. Let µ = µωY (S), and let G →֒ F be an inclusion of

semi-stable sheaves of the same slope and rank. Then c1(F)− c1(G) lies

in the subspace NS0 defined in 1.6, v).

Proof. This follows from part 3) of 1.8 and from 1.6, iv). q.e.d.
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We will write C ≡ C ′ for two classes C, C ′ ∈ NS(Y ) with C − C ′ ∈
NS0.

2. The slope of a Higgs bundle

Let V be a polarized C-variation of Hodge structures on U = Y \ S
with uni-potent local monodromies and with logarithmic Higgs bundle

(E = E1,0 ⊕ E0,1, θ : E1,0 → E0,1 ⊗ Ω1
Y (log S)).

We may choose in the first part of this section µ = µN , where N is a
nef invertible sheaf (or an R-divisor) on Y , ample with respect to U .
Later we will use the assumptions stated in 2.5.

Since (E, θ) is the Higgs bundle of a local system with unipotent local
monodromy, c1(E) = c1(E

1,0)+ c1(E
0,1) = 0, hence µ(det(E)) = 0. We

will need two slightly different results on the behavior of slopes under
filtrations of Higgs bundles.

Lemma 2.1. Let 0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Eℓ = E be a filtration

of E by saturated sub-Higgs sheaves, and write Fi = Ei/Ei−1.

a. If µ(det(Fi)) = 0 for all i then

µ(E•,•) ≤ Max{µ(F •,•

i ); i = 1, . . . , ℓ},
with equality if and only if

µ(F •,•

1 ) = µ(F •,•

2 ) = · · · = µ(F •,•

ℓ ) and

rk(F 1,0
i ) · rk(F 0,1

1 ) = rk(F 0,1
i ) · rk(F 1,0

1 ).

b. Assume that µ(det(E)) = 0, that µ(det(Ei)) ≤ 0 and that F 0,1
i 6=

0, for i = 1, . . . , ℓ. If

0 > µ(E0,1
1 ) > µ(F 0,1

2 ) > . . . > µ(F 0,1
ℓ )

one has µ(E•,•) ≤ Max{µ(F •,•

i ); i = 1, . . . , ℓ}, and the equality

implies that µ(det(Ei)) = 0, for i = 1, . . . , ℓ.

Proof. Let us write sl(E) and sl(Fi) for µ(E•,•) and µ(F •,•

i ). Part a)
can be easily shown by induction on ℓ, whereas the assumptions made
in b) prevent a similar argument. We first introduce some correction
terms allowing to handle both parts at once.

• ci = µ(det(Fi)) (hence ci = 0 in a) and c1 + · · · + cℓ = 0 in b)).

• µp,q
i = µ(F p,q

i ), for (p, q) = (1, 0) or (0, 1).

• r1,0
i = rk(F 1,0

i ).

• r0,1
i = rk(F 0,1

i ) − ci

µ0,1
i

in b) and r0,1
i = rk(F 0,1

i ) in a).

Claim 2.2. One has
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I. µ0,1
i · r0,1

i = −µ1,0
i · r1,0

i , and in particular r0,1
i > 0.

II. r0,1
1 + · · · + r0,1

ℓ ≤ rk(E0,1).

III. µ(E0,1) ≥
∑ℓ

i=1 µ0,1
i · r0,1

i
∑ℓ

i=1 r0,1
i

.

IV. sl(E) ≤
∑ℓ

i=1 µ1,0
i · r1,0

i
∑ℓ

i=1 r1,0
i

−
∑ℓ

i=1 µ0,1
i · r0,1

i
∑ℓ

i=1 r0,1
i

with equality if and only if c1 = c2 = · · · = cℓ = 0.

Proof. All this is obvious under the assumption a). For example, I is

just saying that ci = µ1,0
i · r1,0

i + µ0,1
i · r0,1

i . and IV is the definition of
sl(E).

Under the assumptions made in b), part I follows from

ci = µ1,0
1 · r1,0

i + µ0,1
i · rk(F 0,1

i )

and from the choice of r0,1
i . By assumption, for all r > 0

µ(det(Er)) =
r

∑

i=1

ci ≤ 0

with equality for r = ℓ. Since
−1

µ0,1
ℓ

> 0 and
µ0,1

i − µ0,1
i+1

µ0,1
i · µ0,1

i+1

> 0 one finds

(

ℓ
∑

i=1

r0,1
i

)

− rk(E0,1)(2.1)

=

(

ℓ
∑

i=1

r0,1
i − rk(F 0,1

i )

)

=
ℓ

∑

i=1

−ci

µ0,1
i

=
−1

µ0,1
ℓ

·





ℓ
∑

j=1

ci



 +
ℓ−1
∑

i=1

µ0,1
i − µ0,1

i+1

µ0,1
i · µ0,1

i+1

·





i
∑

j=1

ci



 ≤ 0,

as claimed in II. Finally,

µ(E0,1) =
1

rk(E0,1)
·

ℓ
∑

i=1

µ0,1
i · rk(F 0,1

i ) < 0.

Using II one finds

µ(E0,1) ≥
∑ℓ

i=1 µ0,1
i · rk(F 0,1

i )
∑ℓ

i=1 r0,1
i

(2.2)

=

∑ℓ
i=1 µ0,1

i · r0,1
i

∑ℓ
i=1 r0,1

i

+

∑ℓ
i=1 ci

∑ℓ
i=1 r0,1

i

=

∑ℓ
i=1 µ0,1

i · r0,1
i

∑ℓ
i=1 r0,1

i

,
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hence III and IV. If IV or equivalently III are equalities, the same holds
true for (2.2) and hence for (2.1). Obviously the latter implies that
∑i

j=1 cj = 0 for all i. q.e.d.

Let us write

sr =

∑r
i=1 µ1,0

i · r1,0
i

∑r
i=1 r1,0

i

−
∑r

i=1 µ0,1
i · r0,1

i
∑r

i=1 r0,1
i

.

Claim 2.3. One has

sm ≤ Max{sm−1, µ
1,0
m − µ0,1

m } = Max{sm−1, sl(Fm)},
with equality if and only if sm−1 = sl(Fm) and

r1,0
m ·

m
∑

i=1

r0,1
i = r0,1

m ·
m

∑

i=1

r1,0
i .

Obviously 2.3 implies Lemma 2.1 a) and b). In fact,

sl(E) ≤ sℓ ≤ Max{sℓ−1, sl(Fℓ)} ≤ Max{sℓ−2, sl(Fℓ−1), sl(Fℓ)} ≤
· · · ≤ Max{sl(Fi); i = 1, . . . , ℓ}.

The equality implies sl(Fℓ) = sℓ−1 = sl(Fℓ−1) = sℓ−2 = · · · = sl(F1),
and

r1,0
ℓ · r0,1

ℓ−1 ·
ℓ

∑

i=1

r0,1
i

r0,1
ℓ−1

= r1,0
ℓ ·

ℓ
∑

i=1

r0,1
i

= r0,1
ℓ ·

ℓ
∑

i=1

r1,0
i = r1,0

ℓ ·
ℓ

∑

i=1

r0,1
i = r0,1

ℓ · r1,0
ℓ−1

ℓ
∑

i=1

r1,0
i

r1,0
ℓ−1

· · · · · · · · ·
· · · · · · · · ·

r1,0
3 · r0,1

2 (1 +
r0,1
1

r0,1
2

) = r1,0
3 · (r0,1

2 + r0,1
1 )

= r0,1
3 · (r1,0

2 + r1,0
1 ) = r0,1

3 · r1,0
2

(

1 +
r1,0
1

r1,0
2

)

and r1,0
2 · r0,1

1 = r0,1
2 · r1,0

1 .

One finds the last condition stated in a). In case b) we have seen already
in 2.2, IV), that the equality sl(E) = sℓ implies c1 = c2 = · · · = cℓ = 0,
as claimed in 2.1, b).

Proof of Claim 2.3. Let us first handle the case m = 2. We write
sl1 = sl(F1), sl2 = sl(F2) and s = Max{s1, sl(F2)} = Max{sl1, sl2}. Let
us choose

h = (r1,0
1 + r1,0

2 ) · (r1,0
1 + r0,1

1 ) · (r1,0
2 + r0,1

2 ) · (r0,1
1 + r0,1

2 ) > 0
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and

f =
(

r1,0
1 ·r0,1

1 ·(r1,0
2 +r0,1

2 )+r1,0
2 ·r0,1

2 ·(r1,0
1 +r0,1

1 )
)

·
(

r1,0
1 +r1,0

2 +r0,1
1 +r0,1

2

)

.

It is an easy exercise (by hand or using any computer algebra program)

to see that f = h − g2 for g =
(

r1,0
1 · r0,1

2 − r1,0
2 · r0,1

1

)

.
The Property I) implies that

µ1,0
i = (µ1,0

i − µ0,1
i ) · r0,1

i

r1,0
i + r0,1

i

= sl(Fi) ·
r0,1
i

r1,0
i + r0,1

i

and −µ0,1
i · r0,1

i = µ1,0
i · r1,0

i . Then

s2 =
µ1,0

1 · r1,0
1 + µ1,0

2 · r1,0
2

r1,0
1 + r1,0

2

+
µ1,0

1 · r1,0
1 + µ1,0

2 · r1,0
2

r0,1
1 + r0,1

2

=
sl1 · r1,0

1 ·r0,1
1

r1,0
1 +r0,1

1

+ sl2 · r1,0
2 ·r0,1

2

r1,0
2 +r0,1

2

r1,0
1 + r1,0

2

+
sl1 · r1,0

1 ·r0,1
1

r1,0
1 +r0,1

1

+ sl2 · r1,0
2 ·r0,1

2

r1,0
2 +r0,1

2

r0,1
1 + r0,1

2

=

(

sl1 · r1,0
1 · r0,1

1

(r1,0
1 + r1,0

2 ) · (r1,0
1 + r0,1

1 )
+

sl2 · r1,0
2 · r0,1

2

(r1,0
1 + r1,0

2 ) · (r1,0
2 + r0,1

2 )

)

· r1,0
1 + r1,0

2 + r0,1
1 + r0,1

2

r0,1
1 + r0,1

2

,

and s2 ≤ s · f
h = s · (1 − g2

h ) ≤ s. If s2 = s the polynomial g must be
zero, and sl(F1) = sl(F2).

For m > 2 we argue by induction. By definition one can write sr as
(
∑r−1

i=1 µ1,0
i · r1,0

i

)

+ µ1,0
r · r1,0

r
∑r

i=1 r1,0
i

−
(
∑r−1

i=1 µ0,1
i · r0,1

i

)

+ µ0,1
r · r0,1

r
∑r

i=1 r0,1
i

.

So writing r′2
p,q = rp,q

m , µ′
2
p,q = µp,q

m , sl′2 = sl(Fm),

r′1
p,q

=
m−1
∑

i=1

rp,q
i , and µ′

1
p,q

=

∑r−1
i=1 µp,q

i · rp,q
i

∑r−1
i=1 rp,q

i

one gets

s′2 = sm =
µ′1,0

1 · r′1,0
1 + µ′1,0

2 · r′1,0
2

r′1,0
1 + r′1,0

2

+
µ′1,0

1 · r′1,0
1 + µ′1,0

2 · r′1,0
2

r′0,1
1 + r′0,1

2

.

So repeating the argument for m = 2 with ′ added, we obtain 2.3 for all
m. q.e.d.

We will frequently use Simpson’s correspondence for sub-Higgs bun-
dles of a given Higgs bundle of a variation of Hodge structures. Since
we do not require N to be ample, we have to work with saturated sub-
sheaves G ⊂ E, i.e., with subsheaves such that E/G is torsion free.
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Proposition 2.4. Let N be nef and ample with respect to U . Let E be

a logarithmic Higgs bundle induced by a C-variation of Hodge structures

V on U with uni-potent local monodromy. If G ⊂ E is a sub-Higgs sheaf

then for all n− 1 ≥ m ≥ 0 and for all ample invertible sheaves H on Y
one has

(2.3) c1(G).c1(N )n−m−1.c1(H)m ≤ 0.

Moreover, if G ⊂ E is saturated the following conditions are equivalent:

1) For some m ≥ 0 and for all ample invertible sheaves H the equality

holds in (2.3).
2) For all m and for all ample invertible sheaves H the equality holds

in (2.3).
3) G is induced by a local sub-system of V.

In particular, if one of the conditions 1)–3) holds true, G is a logarithmic

Higgs bundle and a direct factor of E.

Proof. Consider for r = rkG the rank one sub-Higgs sheaf

(det G, 0) =
r

∧

(G, θ) ⊂
r

∧

(E, θ).

The curvature of the Hodge metric h on detG is negative semi-definite,
and the Chern form c1(G, h) represents the Chern class of det(G). So
one obtains (2.3) for m = n− 1. Since N is in the closure of the ample
cone, one obtains (2.3) for all m.

Assume now that G ⊂ E is saturated. Obviously 3) implies 2) and
2) implies 1). If (2.3) is an equality for some m ≤ n − 1 and for all
H, then it is an equality for m = 0, since N lies in the closure of
the ample cone. The invertible sheaf detG is a saturated subsheaf of
∧r(E). Replacing Y by some blowing up with centers outside of U ,
the polarization N by its pullback and G by the saturated hull of the
pullback, the equality (2.3) remains true. Hence we may assume that
the inclusion det(G) →֒ ∧r(E) splits locally. Moreover, since c1(N ) is
ample with respect to U , one can choose the blowing up such that c1(N )
is the sum α · c1(H) + β · D, where α and β are positive real numbers,
where D is an effective Q-divisor, and where H is ample.

We will show by induction on m that (2.3) holds for H and for all m.
For 0 ≤ m0 ≤ n − 2 write c1(G).c1(N )n−m0−1.c1(H)m0 as

α · c1(G).c1(N )n−m0−2.c1(H)m0+1 + β · c1(G).c1(N )n−m0−2.c1(H)m0 .D.

By [Z00] none of the terms can be positive. If (2.3) is an equality for
m = m0 both terms must be zero, and one obtains (2.3) for m = m0+1.
By induction (2.3) holds for all m, in particular for m = n − 1. [S88]
implies that G is induced by a local system on U . q.e.d.

In the sequel we will need the compatibility of “poly-stability” with
tensor products, as stated in condition (∗) in Set-up 3.
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Assumption 2.5. Either µ = µωY (S) and δ = δωY (S) or µ = µN and
δ = δN for an ample invertible sheaf (or an ample R-divisor). In the
first case we assume that the assumptions made in Set-up 3 hold. In
the second case we assume that ωY (S) is nef and ample with respect to
U and that Sm(Ω1

Y (log S)) is µN -poly-stable for all m > 0, a condition
which automatically holds in the first case by Theorem 1.4.

Note that under those assumptions µ(Ω1
Y (log S)) > 0.

Proposition 2.6. Assume that 2.5 holds. Let (E = E1,0 ⊕ E0,1, θ)
be the logarithmic Higgs bundle of a C-variation of Hodge structures V
on U = Y \ S of weight one, and assume that V has no unitary direct

factor. Then:

a. µ(V) ≤ µ(Ω1
Y (log S)).

b. The equality µ(V) = µ(Ω1
Y (log S)) implies that E1,0 and E0,1 are

both semi-stable.

Proof. 2.1, a), allows us to assume that V is irreducible. Let

0 = E1,0
0 ⊂ E1,0

1 ⊂ · · · ⊂ E1,0
ℓ = E1,0

and 0 = E0,1
0 ⊂ E0,1

1 ⊂ · · · ⊂ E0,1
ℓ′ = E0,1

be the saturated Harder-Narasimhan filtrations of E1,0 and E0,1, re-
spectively. Replacing V by its dual, if necessary, we may assume that
ℓ ≤ ℓ′. Since (E0,1

1 , 0) is a sub-Higgs sheaf, and since (E1,0
ℓ /E1,0

ℓ−1, 0) a

quotient Higgs sheaf one finds µ(E0,1
1 ) < 0 < µ(E1,0

ℓ /E1,0
ℓ−1) and

µ(E1,0
1 ) > · · · > µ(E1,0

ℓ /E1,0
ℓ−1) > 0 > µ(E0,1

1 ) > · · · > µ(E0,1
ℓ′ /E0,1

ℓ′−1).

In particular, by Proposition 2.4 (E1,0
1 , 0) can not occur as a sub-Higgs

sheaf and θ(E1,0
1 ) 6= 0. The morphism

E1,0 ⊗ T 1
Y (− log S) −→ E0,1

ℓ′ /E0,1
ℓ′−1,

induced by θ is non zero; otherwise (E0,1
ℓ′ /E0,1

ℓ′−1, 0) would be a quotient
Higgs sheaf of negative degree, contradicting again the inequality (2.3)
in Proposition 2.4.

Choose two sequences

0 = j0 < j1 < · · · < jr = ℓ and 0 = j′0 < j′1 < · · · < j′r = ℓ′

in the following way:

Assume one has defined jm−1 and j′m−1. Then j′m is the minimal number

with θ(E1,0
jm−1+1) ⊂ E0,1

j′m
⊗ Ω1

Y (log S), and jm is the maximum of all j

with θ(E1,0
j ) ⊂ E0,1

j′m
⊗ Ω1

Y (log S).
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In different terms, one has

θ(E1,0
jm

) ⊂ E0,1
j′m

⊗ Ω1
Y (log S), θ(E1,0

jm
) 6⊂ E0,1

j′m−1 ⊗ Ω1
Y (log S)

and θ(E1,0
jm−1+1) 6⊂ E0,1

j′m−1 ⊗ Ω1
Y (log S).

One has non-trivial morphisms

E1,0
jm−1+1/E1,0

jm−1
−→ E0,1

j′m
/E0,1

j′m−1 ⊗ Ω1
Y (log S) and

E1,0
jm−1+1/E1,0

jm−1
⊗ T 1

Y (− log S) −→ E0,1
j′m

/E0,1
j′m−1.

Hence for a stable sheaf C with µ(C) = µ(E1,0
jm−1+1/E1,0

jm−1
) one obtains

a non-zero morphism

C ⊗ T 1
Y (− log S) −→ E0,1

j′m
/E0,1

j′m−1.

Since C ⊗ T 1
Y (− log S) is semi-stable, this implies that

µ(C) = µ(E1,0
jm−1+1/E1,0

jm−1
) − µ(Ω1

Y (log S)) ≤ µ(E0,1
j′m

/E0,1
j′m−1).

Consider the filtration of E by saturated sub-Higgs sheaves

E1 = E1,0
j1

⊕ E0,1
j′1

⊂ E2 = E1,0
j2

⊕ E0,1
j′2

⊂ · · · ⊂ Er = E1,0
jr

⊕ E0,1
j′r

= E,

with successive quotients Fm = F 1,0
m ⊕ F 0,1

m for

F 1,0
m = E1,0

jm
/E1,0

jm−1
and F 0,1

m = E0,1
j′m

/E0,1
j′m−1

.

Of course, µ(Ei) ≤ 0, and

µ(E1,0
jm−1+1/E1,0

jm−1
) ≥ µ(F 1,0

m ) > 0 > µ(F 0,1
m ) ≥ µ(E0,1

j′m
/E0,1

j′m−1).

Hence
0 > µ(F 0,1

1 ) > µ(F 0,1
2 ) > · · · > µ(F 0,1

r ),

and

(2.4) µ(F 1,0
m ) ≤ µ(E1,0

jm−1+1/E1,0
jm−1

) − µ(E0,1
j′m

/E0,1
j′m−1) ≤ µ(Ω1

Y (log S)).

Lemma 2.1, b), implies that

(2.5) µ(E•,•) ≤ µ(Ω1
Y (log S)).

If (2.5) is an equality, then µ(det(E1)) = 0, and by Proposition 2.4
E1 must correspond to a local sub-system. Since we assumed V to be
irreducible one finds r = 1. Moreover, (2.4) must be an equality, which
implies that ℓ = ℓ′ = 1, and both E1,0 and E0,1 are semi-stable. q.e.d.

Proof of Theorem 1. Let Y be a projective manifold, S a reduced nor-
mal crossing divisor and let f : V → U be a smooth family of Abelian
varieties, satisfying the assumptions made in Theorem 1. Let V be a
C-sub-variation of Hodge structures of R1f∗CV without a unitary lo-
cal sub-system. Then the Higgs field θ : E1,0 → E0,1 ⊗ Ω1

Y (log S) is
injective and the Arakelov inequality (2) in Theorem 1, as well as the
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interpretation of the equality (3), follow directly from 1.4, a) and 2.6.
q.e.d.

Let us verify what we stated in Remark 2. Consider a real sub-
variation V′ of Hodge structures and the largest unitary sub-system U
of V′. Let us write V′ = V⊕U, and (E′1,0⊕E′0,1, θ′) and (E1,0⊕E0,1, θ)
for the Higgs bundles of V′ and V. Since U is invariant under complex
conjugation, the same holds true for V. Then rk(E′1,0) = rk(E′0,1)
and rk(E1,0) = rk(E0,1). Since c1(E

′p,1−p) = c1(E
p,1−p) one obtains by

Theorem 1

µ(V′) =
c1(E

′1,0) − c1(E
′0,1)

rk(E′1,0)
.c1(ωY (S))n−1

≤ c1(E
1,0) − c1(E

0,1)

rk(E1,0)
.c1(ωY (S))n−1

= µ(V) ≤ µ(Ω1
Y (log S)),

and the Arakelov inequality holds for V′. It can only be an equality if
V = V′, hence if U = 0.

Recall that the socle S ′
1(E) of a semi-stable sheaf E is the unique

largest poly-stable subsheaf of slope µ(E) (see [H-L97, 1.5.5]). If µ is
the slope with respect to an ample invertible sheaf, S ′

1(E) is saturated in
E. In general one chooses S1(E) as the saturated hull of S ′

1(E). Doing
so, one perhaps loses the poly-stability, but one still has the weak poly-
stability, as defined in 1.7.

So S1(E) is a maximal weakly poly-stable subsheaf of E. Applying
the same construction to E/S1(E) one finds the socle-filtration

0 = S0(E) & S1(E) & · · · & Sρ(E)(E) = E

such that Si(E)/Si−1(E) is the saturation of the socle of E/Si−1(E).
In particular the graded sheaf grS(E) with respect to this filtration is
weakly poly-stable with slope µ(E).

Lemma 2.7. Keeping the assumptions made in 2.5, let Ω be a poly-

stable sheaf and let E and F be semi-stable locally free sheaves, of slopes

µ(Ω), µ(E), and µ(F ), respectively. Assume that µ(E) = µ(F ) + µ(Ω),
and consider a morphism θ : E → F ⊗ Ω. Then:

a. If θ is injective, it respects the socle filtration, i.e., for all i

θ(Si(E)) ⊂ Si(F ) ⊗ Ω and θ−1(Si(F ) ⊗ Ω) = Si(E)).

b. In a) the induced morphism grSE → (grSF )⊗Ω is again injective.

c. If E and F are weakly poly-stable for T = Ω∨ the saturated image

of

θ′ : E ⊗ T
θ⊗id−−−−→ F ⊗ Ω ⊗ T

id⊗tr−−−−→ F

is a weakly poly-stable subsheaf of F of slope µ(F ).
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Proof. For c) consider a poly-stable subsheaf E′ of E of slope µ(E) of
maximal rank. Then E′⊗T is poly-stable of slope µ(E)−µ(Ω) = µ(F ),
hence its image in F as well. Then by definition the saturated image is
weakly poly-stable.

To prove a) we proceed by induction on the length of the socle filtra-
tion ρ(E). For i = 0, in particular for ρ(E) = 0, the first inclusion is
obvious and the second equality is just the injectivity of θ.

The sheaf S1(E) is weakly poly-stable, and θ′ is a morphism between
semi-stable sheaves of the same slope. Then θ′(S1(E) ⊗ T ) is weakly
poly-stable by part c), hence contained in S1(F ) . This implies that
θ(S1(E)) ⊂ S1(F ) ⊗ Ω and that S1(E) ⊂ θ−1(S1(F ) ⊗ Ω).

The injectivity of θ implies that θ−1(S1(F )⊗Ω) is weakly poly-stable,
hence contained in S1(E).

The first inclusion shows that E → (F/S1(F )) ⊗ Ω factors through

θ̃ : E/S1(E) −→ (F/S1(F )) ⊗ Ω

and the second equality says that θ̃ is again injective. Since ρ(E/S1(E)) =
ρ(E) − 1, we obtain a). Part b) follows directly from a). q.e.d.

Corollary 2.8. Under the assumptions made in 2.6, assume that

µ(E•,•) = µ(Ω1
Y (log S)). Then there is a filtration

0 = F p,1−p
0 ⊂ F p,1−p

1 ⊂ · · · ⊂ F p,1−p
ν = Ep,1−p

with

i. θ(F 1,0
η ) ⊂ F 0,1

η ⊗ Ω1
Y (log S) and θ−1(F 0,1

η ⊗ Ω1
Y (log S)) = F 1,0

η .

ii. Ep,1−p
η+1 = F p,1−p

η+1 /F p,1−p
η is weakly poly-stable of slope µ(Ep,1−p).

Proof. Since we assumed that the local system has no unitary factor,
θ must be injective, and 2.7 applies. q.e.d.

3. Stability of Hodge bundles

Before stating the main result of this section in 3.4, let us recall some
facts about Chern classes.

Lemma 3.1. There exist non-negative rational numbers a1 and a2,

depending on m, r and on n = dim(Y ), such that for all locally free

sheaves F on Y of rank r one has

(3.1) c2(S
m(F)) ≡ a1 · c2(F) + a2 · (c1(F)2 − c2(F)).

Moreover, if m > 1, r > 1 and n > 1 one has a2 > 0 and a1 − a2 > 0.

Proof. Recall that in degree 2 there are two Schur polynomials,

s(2,0) = c2 and s(1,1) = c2
1 − c2,

and, as explained in [Lz04, II, Chapter 8], they generate the cone of
degree 2 positive polynomials. Since c2(S

m) is a positive polynomial,
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i.e., since c2(S
m(F)) is positive for F an ample locally free sheaf, one

finds a1, a2 ≥ 0 for which (3.1) holds.
On the other hand, the equation (3.1) is a very special case of univer-

sal relations between Schur polynomials of tensor bundles, studied by
Pragacz (see for example [Lz04, II. p. 121]). In particular the constants
occurring can be chosen to be independent of the bundle F . To verify
a2 > 0 and a1 − a2 > 0 we can consider special bundles.

For example, if m, n and r are strictly larger than one, for

F = H⊕
r−1
⊕

OY

one finds c2(F) = 0, c2(S
m(F)) > 0, hence a2 > 0.

Consider next the bundle

F = H⊕H−1 ⊕
r−2
⊕

OY .

One has c1(F) ≡ 0 and c2(F).c1(H)n−2 < 0, hence in order to show
that a1 − a2 > 0, it suffices to show that

(a1 − a2)c2(F).c1(H)n−2 = c2(S
m(F)).c1(H)n−2 < 0.

The sheaf Sm(F) is equal to

m
⊕

i=0

Sm−i(H⊕H−1) ⊗ Si(
r−2
⊕

OY ) =

(r+i−2
i )

⊕

(

m
⊕

i=0

Sm−i(H⊕H−1)
)

.

Since for a direct sum of sheaves with zero first Chern class the second
Chern class is additive, c2(S

m(F)).c1(H)n−2 < 0 follows from

c2(S
m(H⊕H−1)).c1(H)n−2 =

[m
2

]
∑

j=0

c2(Hm−j ⊕H−m+j)).c1(H)n−2

= c1(H)n ·
[m

2
]

∑

j=0

−(m − j)2 < 0.

q.e.d.

Recall that in Section 2 we considered for a semi-stable sheaf F of
slope µ0 the socle filtration S•(F), and that the direct factors of the
corresponding graded sheaf grSF are all torsion free and weakly poly-
stable of slope µ0. Obviously one can refine the filtration S•(F) to obtain
a Jordan-Hölder filtration JH•(F). By definition the direct factors of
the graded sheaf grJHF are all stable of slope µ0. One can be more
precise:

Lemma 3.2. Let B be a stable saturated subsheaf of grSF of slope

µ0. There exists a Jordan-Hölder filtration JH•(F) of F , refining S•(F),
such that B is a direct factor of grJHF .
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Note that grSF contains a poly-stable subsheaf P of slope µ0, such
that the cokernel is a torsion sheaf. If B′ is one of the stable direct
factors of P we may choose in Lemma 3.2 for B the saturated hull of B′.

Lemma 3.3. Let µ = µN with N nef and big, and let F and F ′ be

two locally free sheaves.

a. Then
∆(F ⊗ F ′)

rk(F)2 · rk(F ′)2
=

∆(F)

rk(F)2
+

∆(F ′)

rk(F ′)2
.

In particular, if L is invertible,

∆(F) = ∆(F ⊗ L) hence δ(F) = δ(F ⊗ L).

b. For m > 0 one has ∆(Sm(F)) = 0 if and only if ∆(F) = 0.
c. For m > 0 one has δ(Sm(F)) = 0 if and only if δ(F) = 0.
d. If F is semi-stable of slope µ0, then the following conditions are

equivalent:

1) δ(F) = 0.
2) δ(grJHF) = 0, where JH is a Jordan-Hölder filtration.

3) For all stable direct factors G of grJHF one has δ(G) = 0.
4) δ(grSF) = 0, where S is the socle filtration.

5) For all i one has δ(Si−1(F)/Si(F)) = 0.
6) For all stable subsheaves G of Si−1(F)/Si(F) of slope µ0 one

has δ(G) = 0.

Proof. a) is well known and shown in [H-L97, p. 72], for example.
In order to prove 3.3, b) and c), we may replace Y by a finite covering,
hence assume that det(F) = Lr for some invertible sheaf L and for
r = rk(F). Obviously c1(F ⊗ L−1) = 0 and ∆(F) = 0 if and only if
c2(F ⊗ L−1) = 0. By 3.1 the latter is equivalent to

∆(Sm(F)) = c2(S
m(F ⊗ L−1)) = 0.

For c) we use the same argument: δ(F) = 0 if and only if

c2(F ⊗ L−1).c1(N )n−2 = 0,

and this is equivalent to δ(Sm(F)) = c2(S
m(F ⊗ L−1)).c1(N )n−2 = 0.

If F in d) is semi-stable but not stable consider a stable subsheaf G1

of slope µ(F) and the exact sequence

0 −→ G1 −→ F −→ G2 −→ 0.

One may assume again that c1(G2) = 0. Then c1(F) = c1(G1) and
c2(F) = c2(G1) + c2(G2). Writing r = rk(F) and ri = rk(Gi), one finds

1

r
· ∆(F) =

1

r1
· ∆(G1) +

1

r2
· ∆(G2) −

r − 1

r
· c1(F)2 +

r1 − 1

r1
· c1(G1)

2

=
1

r1
· ∆(G1) +

1

r2
· ∆(G2) −

r2 · r1

r
·
(

c1(G1)

r1

)2

.
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The generalized Hodge index formula (see for example [Lz04, Variant
1.6.2]) implies that

(

c1(G1)

r1
.c1(N )n−1

)2

≥
(

(

c1(G1)

r1

)2

.c1(N )n−2

)

· c1(N )n.

Since µ(F) = µ(G1) = µ(G2) = 0, the left hand side is zero, hence
(

c1(G1)

r1

)2

.c1(N )n−2 = 0,

and
1

r
· δ(F) =

1

r1
· δ(G1) +

1

r2
· δ(G2).

By Bogomolov’s inequality (see for example [H-L97, 7.3.1]) δ(F) and
δ(Gi) are non-negative, hence δ(F) = 0 if and only if both δ(G1) and
δ(G2) are zero. So the equivalence of the first three conditions in d)
follows by induction on the number of stable direct factors in grJHF .

The equivalence of 1) and 4) follows in the same way by induction on
the length of the socle filtration. Finally the equivalence of 4), 5) and
6) is just a special case of the equivalence of 1), 2) and 3), applied to
Si−1(F)/Si(F). q.e.d.

Proposition 3.4. Under the assumptions made in 2.5 let V be an

irreducible C variation of Hodge structures whose logarithmic Higgs field

factors through

θ : E1,0 −→ E0,1 ⊗ Ω −→ E0,1 ⊗ Ω1
Y (log S),

for a poly-stable subsheaf Ω of Ω1
Y (log S) of slope µ(Ω1

Y (log S)). Let

Ω = Ω1 ⊕ · · · ⊕ Ωs

be the decomposition in a direct sum of stable sheaves, and assume that

Sm(Ωi) remains stable for i = 1, . . . , s and for all m > 0. Assume that

µ(V) = µ(E1,0) − µ(E0,1) = µ(Ω1
Y (log S))

and that either one of the following conditions holds true:

i. δ(E1,0) = 0.
ii. Ωi is invertible for i = 1, . . . , s.

Then for some ι ∈ {1, . . . , s} the Higgs field factors through

θ : E1,0 −→ E0,1 ⊗ Ωι −→ E0,1 ⊗ Ω −→ E0,1 ⊗ Ω1
Y (log S),

and the sheaves E1,0 and E0,1 are stable. For Tι = Ω∨
ι the Higgs field θ

induces an injection θ′ι : E1,0 ⊗ Tι → E0,1 of stable sheaves of the same

rank and slope. Writing ℓ = rk(E1,0), the sheaves

Sℓ(E1,0) ⊗ det(E1,0)−1 and E1,0 ⊗ E1,0∨

are unitary.
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If the assumption δ(V) = Min{δ(E1,0), δ(E0,1)} = 0 in Proposition
4, i), holds true, either V or V∨ satisfies the assumption i) in 3.4. So
Proposition 4 follows immediately from Proposition 3.4.

In case there exists an invertible sheaf L on Y with Lℓ = det(E1,0)
one also finds that E1,0 ⊗ L is unitary. At the moment we are unable
to verify the existence of such an invertible sheaf. Nevertheless, 3.4 is
sufficient to show that in Theorem 5 the factor Mi of Ũ corresponding
to Ωi is a ball, and this will allow us in Sections 6 and 7 to get hold of
L on some étale covering of U .

Proof of Proposition 3.4, i). Consider the socle filtrations S•(E
1,0) and

S•(E
0,1) and a stable saturated subsheaf F of grS(E1,0) of slope µ0 =

µ(E1,0). By 3.2 one can refine S•(E
1,0) to obtain a Jordan-Hölder fil-

tration JH•(E
1,0) such that F is a direct factor of the corresponding

graded sheaf.
By 3.3, c) and d), for all ν > 0

δ(Sν·ℓ(grJH(E1,0)) ⊗ det(E1,0)−ν) = δ(Sν·ℓ(grJH(E1,0))) = 0.

Moreover by 1.2 one has µ(Sν·ℓ(grJH(E1,0))⊗det(E1,0)−ν) = 0, and the
condition (∗∗) in 3, or Lemma 1.3, d), imply that the sheaf

Sν·ℓ(grJH(E1,0)) ⊗ det(E1,0)−ν

is unitary. So all direct factors of Sℓ(grJH(E1,0)) ⊗ det(E1,0)−1 have a
trivial first Chern class, hence

Υ(E1,0) =
c1(E

1,0)

ℓ
=

c1(S
ℓ(F))

ℓ · rk(Sℓ(F))
=

c1(F)

rk(F)
= Υ(F).

Repeating this for all the stable saturated subsheaves one gets:

Claim 3.5. For saturated stable subsheaves F1 and F2 of grS(E1,0)
of slope µ(E1,0) one has Υ(F1) = Υ(F2).

Claim 3.6. Let F be a saturated subsheaf of grS(E1,0), stable of
slope µ0. Then for all stable direct factors Ti = Ω∨

i of T = Ω∨ the sheaf
F ⊗ Ti is stable.

Proof. Let us choose again a Jordan-Hölder filtration refining S•(E
1,0)

such that F occurs as a direct factor of grJH(E1,0).
The condition (∗), or Lemma 1.3, c), imply that F⊗Ti is poly-stable.

Let B be one of its direct factors. We have inclusions P(B) → P(F ⊗Ti)
and P(F) × P(Ti) → P(F ⊗ Ti). Let us write π : P(F) × P(Ti) → P(Ti)
for the projection and

Z = P(B) ∩ P(F) × P(Ti).

Let F ′ be any stable direct factor of Sν·ℓ(F), of slope ν · ℓ · µ(E1,0).
Since Sν·ℓ(grJH(E1,0)) ⊗ det(E1,0)−ν is unitary, F ′ ⊗ det(E1,0)−ν is

unitary and by assumption irreducible.
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Addendum 1.5 forces the sheaf F ′⊗det(E1,0)−ν⊗Sν·ℓ(Ti) to be stable.
Hence the composite

F ′ ⊗ Sν·ℓ(Ti) −→ Sν·ℓ(F) ⊗ Sν·ℓ(Ti) −→ Sν·ℓ(B)

is either injective or zero. In different terms, the bihomogeneous ideal
of Z, regarded as a subscheme of P(F) × P(Ti), is generated by

I(ν · ℓ) ⊗ π∗(OP(Ti)(ν · ℓ))
for some ν > 0, and some sheaf of ideals I on P(F). Then Z must be
of the form Z ′ × P(Ti) for some Z ′ ⊂ P(F).

Let us restrict everything to a general point η = Spec(C(Y )) of Y .
The embedding P(B)η → P(F ⊗ Ti)η is linear, and if p is a point in
P(Ti)η the same holds true for

P(F)η × {p} −→ P(F ⊗ Ti)η.

Then Z ′
η = P(F)η ×{p}∩P(B)η is a linear subspace, and the projection

Fη ⊗ Tiη
τ−−−−→ Bη

must have a kernel of the form Kη ⊗ Tiη. If Kη 6= 0 the non-zero
morphism F → B⊗Ωi has a non-trivial kernel K. Since F is stable and
B ⊗ Ωi poly-stable, both of the same slope, one finds K = F , obviously
a contradiction. q.e.d.

Let grSθ : grSE1,0 → grSE0,1 ⊗ Ω denote the Higgs field, and let

grSθ′ : grSE1,0 ⊗ T −→ grSE0,1 ⊗ Ω ⊗ T −→ grSE0,1

be induced by the trace Ω⊗T → OY . For a stable subsheaf F of grSE1,0

of slope µ0 we write θF ,i for the restriction of grSθ′ to F⊗Ti. The image
of grSθ′ is not necessarily saturated. As in 1.7 we define Im′θF ,i to be
the saturated hull of the image.

Claim 3.7. Let F and F ′ be stable subsheaves of grSE1,0 of slope
µ0. Then for i 6= j one has Im′θF ,i ∩ Im′θF ′,j = 0.

Proof. Otherwise Claim 3.6 implies that Im′θF ,i = Im′θF ′,j . Then

F ⊗ Ti ⊕F ′ ⊗ Tj

contains a direct factor K whose image under grSθ′ is zero. By 3.6 both
F ⊗Ti and F ′⊗Tj are stable, hence the saturated image Kι of K under
the projections is F ⊗ Ti for ι = i and F ⊗ Tj for ι = j.

If µ = µN for an ample invertible sheaf, ≡ will stand for the equality
in NS(Y ). If µ = µωY (S), then ≡ stands for the equality in NS(Y )/NS0,
for the subspace NS0, introduced in Lemma 1.6, v).

Since Υ(F) = Υ(F ′) (using Lemma 1.9 if µ = µωY (S)) one finds that

c1(K) ≡ c1(Kι) and Υ(K) ≡ Υ(Kι) = Υ(F) − Υ(Ωι).
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So c1(Ωi) is a rational multiple of c1(Ωj), up to classes in NS0, contra-
dicting Lemma 2.5, v). q.e.d.

Claim 3.8. For i 6= j the saturated images Bi of E1,0 ⊗ Ti and Bj of
E1,0 ⊗ Tj are disjoint in E0,1.

Proof. By Lemma 2.7 the Higgs field θ respects the socle filtration.
Hence if for some i 6= j Claim 3.8 is wrong, the intersection of the satu-
rated images of grS(E1,0)⊗Ti and of grS(E1,0)⊗Tj in grS(E0,1) contains
a stable subsheaf C of slope µ0. So one finds two stable subsheaves F
and F ′ of grS(E1,0) which violate Claim 3.7. q.e.d.

Claim 3.9. There exists some ι such that the Higgs field θ factors
through E1,0 → E0,1 ⊗ Ωι.

Proof. By Claim 3.8 the Higgs field θ′ : E1,0 ⊗ T → E0,1 decomposes
as a direct sum of morphisms

θ′ :
s

⊕

i=1

(E1,0 ⊗ Ti) −→
s

⊕

i=1

Bi
⊂−−−−→ E0,1.

Since θ′ : E1,0⊗T → E0,1 is a morphism between semi-stable sheaves of
the same slope, the cokernel C of Im′(θ′) →֒ E0,1 has to be zero. Other-
wise it would be a semi-stable sheaf of slope µ(E0,1) < 0, contradicting
Proposition 2.4.

As at the end of the proof of Claim 3.7 we choose for NS0 the subspace
of NS(Y ) introduced in Lemma 2.5, v), if µ = µωY (S), and NS0 = 0 if
µ = µN for N ample. In both cases ≡ stand for the equality of Chern
classes in NS(Y )/NS0.

Since B1 ⊕ · · · ⊕ Bs is a subsheaf of E0,1 with a torsion cokernel and
since both have the same slope their first Chern classes are equal in
NS(Y )/NS0.

The morphism θ factors through

θ : E1,0 ⊂−−−−→
s

⊕

i=1

Bi ⊗ Ωi
⊂−−−−→ E0,1 ⊗ Ω1

Y (log S).

The sheaf grSE0,1 contains the direct sum of the sheaves grSBi, and
again both have the same rank and slope, hence the same first Chern
class in NS(Y )/NS0.

We choose an index set I, consisting of pairs (F , i) with F a sta-
ble subsheaf of grSE1,0 of slope µ0 and with i ∈ {1, . . . , s} such that
Im′θF ,i = grSθ′(F ⊗ Ti) 6= 0.

At present we do not know whether Im′θF ,i = Im′θF ′,i implies that
F = F ′. So if this is not the case, we include one (F , i) in I, but not
the other. So writing Ij for the set of tuples of the form (F , j) ∈ I one
has an inclusion

⊕

Ij

F ⊗ Tj −→ grSBj .
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Again both sides have the same rank and slope, hence

c1(E
1,0) = −c1(E

0,1) ≡ −
s

∑

i=1

c1(Bi)(3.2)

≡ −
∑

I

(

rk(Ti) · c1(F) − rk(F) · c1(Ωi)
)

.

Recall that rk(F) · c1(E
1,0) = rk(E1,0) · c1(F), hence (3.2) implies that

(

1 +
∑

I

rk(Ti) · rk(F)

rk(E1,0)

)

· c1(E
1,0) ≡

∑

I

rk(F) · c1(Ωi).

Let us assume that for some stable saturated subsheaf F ′ of E1,0 the
sheaf B′ = θ′(F ′⊗T1) is non zero. By definition, the index set I contains
a tuple (F ′′, 1) with Im′θ′F ′,1 = Im′θ′F ′′,1, hence with c1(F ′) ≡ c1(F ′′).
One obtains

c1(B′) ≡ −rk(F ′) · c1(Ω1) + rk(T1) · c1(F ′)(3.3)

≡ −rk(F ′) · c1(Ω1) +
rk(T1) · rk(F ′)

rk(E1,0)
· c1(E

1,0)

≡ −rk(F ′) · c1(Ω1) + β ·
∑

I

rk(F) · c1(Ωi),

where β is a positive rational number.
If Claim 3.9 is wrong, for some i > 1 there exists a direct factor F

of grSE1,0 with grSθ′(F ⊗ Ti) 6= 0, say for i = 2. Then rk(F) · c1(Ω2)
occurs on the right hand side of (3.3). So we may write

c1(B′) ≡
s

∑

i=1

βi · c1(Ωi),

with β2 > 0 and with βi ≥ 0 for i = 3, . . . , s. Recall that

ωY (S) =
s

⊗

i=1

det(Ωi) and that

c1(Ω1)
γ1 . · · · .c1(Ωs)

γs =

{

α · c1(ωY (S))n > 0 if for all i γi = ni

0 otherwise

for some α > 0. Hence (using the definition of NS0 if µ = µωY (S)) the
degree of the intersection

c1(B′).c1(ωY (S) ⊗ det(Ω1)
ν)n−1

=
s

∑

i=1

βi · c1(Ωi).c1(ωY (S) ⊗ det(Ω1)
ν)n−1

=
s

∑

i=1

βi · c1(Ωi).(c1(ωY (S)) + νc1(Ω1))
n−1,
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as a polynomial in ν is n1 with highest coefficient
s

∑

i=2

βi · c1(ωY (S))n > 0.

On the other hand, the sheaf ωY (S)⊗ det(Ω1)
ν is nef for all ν > 0, and

since B′ is a subbundle of E0,1, the intersection number

c1(B′).c1(ωY (S) ⊗ det(Ω1)
ν)n−1

can not be positive. q.e.d.

To end the proof of 3.4, i), let us assume that in 3.9 one has ι = 1.
Let R be a stable unitary subsheaf of T1 ⊗ Ω1. By Addendum 1.5

R⊗ T1 is stable, hence the composite

R⊗ T1 −→ T1 ⊗ Ω1 ⊗ T1
tr⊗Id−−−−→ T1

must be an isomorphism and R has to be invertible with Rn1 = OY .
Since T1 is stable and since by Theorem 1.4 it remains stable on all étale
coverings of Y , the subsheaf R has to be the subsheaf OY ⊂ T1 ⊗ Ω1,
given by the homotheties.

Consider two stable subsheaves F and F ′ of slope µ0 in grSE1,0. The
assumption made in 3.4, i), and Lemma 3.3, d), imply that δ(F) =
δ(F ′) = 0. Since δ(F) = δ(F∨) one obtains by Lemma 3.3, a), that
δ(F∨ ⊗F ′) = 0.

If Im′θF ,1 = Im′θF ′,1, then rk(F) = rk(F ′) and µ(F∨ ⊗ F ′) = 0.
Hence the conditions (∗) and (∗∗) in Set-up 3 or Lemma 1.3, c) and d),
imply that F∨ ⊗F ′ is unitary. Then the image of

F∨ ⊗F ′ −→ T1 ⊗ Ω1

has to be the factor OY , hence F ∼= F ′. Altogether, if Im′θF ,1 = Im′θF ′,1

and if F 6= F ′, one can change the decomposition of grSE1,0 in such a
way that F lies in the kernel of

grSθ : grSE1,0 −→ grSE0,1 ⊗ Ω1,

contradicting the injectivity of grSθ.
Therefore the injectivity of θF ,1, for all F , implies the injectivity of

grSθ′1 : grSE1,0 ⊗ T1 −→ grSE0,1,

hence of θ′1. One obtains rk(E0,1) = ℓ′ = ℓ · n1.
Since ℓ · µ(E1,0) = −ℓ′ · µ(E0,1) the Arakelov equality says that

µ(Ωi) = µ(E1,0) − µ(E0,1) =
ℓ + ℓ′

ℓ′
µ(E1,0) =

n1 + 1

n1
µ(E1,0).

Let F be a stable subsheaf of E1,0 of slope µ(E1,0). One obtains for
F ⊗ T1

µ(F ⊗ T1) = µ(F) − µ(Ω) =
−1

n1
µ(E1,0) =

−1

n1
µ(F).
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The sheaf F ⊗ T1 is stable, and we choose B to be its saturated hull in
E0,1. Then µ(B) = µ(F ⊗ T1) and F ⊕B defines a saturated sub-Higgs
sheaf of E with

(

c1(F) + c1(B)
)

.c1(ωY (S))n1−1 = rk(F) · µ(F) + n1 · rk(F) · µ(B)

= rk(F) · µ(F) − rk(F) · µ(F) = 0.

By Proposition 2.4 it gives rise to a local sub-system of V. Since we
assumed the latter to be irreducible, F = E1,0 and E0,1 = B. By Claim
3.6 B contains E1,0 ⊗ T1 as a subsheaf with torsion cokernel. q.e.d.

Proof of Proposition 3.4, ii). Note that Claim 3.6 is obviously true in
this case, but we have to replace 3.5 by a different argument. Let us
assume that ℓ = rk(E1,0) ≤ ℓ′ = rk(E0,1).

By assumption, Ω is the direct sum of invertible sheaves Ω1⊕· · ·⊕Ωs.
Let us write

c1(ωY (S)) = L1 + · · · + Ls + R

where Li = c1(Ωi) and where R is the first Chern class of the direct
factor of Ω1

Y (log S) complementary to Ω. Consider

θ′i : E1,0 ⊗ Ti −→ E0,1

with saturated image Bi. The kernel of θ′i is a semi-stable subsheaf, and
since Ti is invertible, we can write it as Ki ⊗ Ti. So we find a quotient
Fi of E1,0 such that θ′i factors through

E1,0 ⊗ Ti −→ Fi ⊗ Ti
⊂−−−−→ Bi.

Let us assume that there is a stable subsheaf F of E1,0 of slope µ(E1,0)
which is not contained in K1. Then the saturated hull B of F ⊗ T1 is a
stable subsheaf of B1 of slope µ(E0,1) and

c1(F).L1.c1(ωY (S))n−2 = (c1(F) − L1).L1.c1(ωY (S))n−2

= c1(B).L1.c1(ωY (S))n−2.

Since the right hand side is non-positive, c1(F).L1.c1(ωY (S))n−2 ≤ 0.
For some α, β > 0 one can write

c1(ωY (S))n−1 = α · L1.c1(ωY (S))n−2 + β · C1

where C1 = L2. · · · .Ls.R
n−s. If F 6⊂ K2 the same argument shows that

for the saturated hull B′ of F ⊗ T2

c1(F).C1 = (c1(F) − L2).C1 = c1(B′).C1 ≤ 0,

hence c1(F).c1(ωY (S))n−1 ≤ 0 and µ(F) ≤ 0. On the other hand, the
µ-semi-stability implies that µ(F) = µ(E1,0) and the Arakelov equality
implies that µ(E1,0) is a positive multiple of c1(ωY (S))n, a contradiction.
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Therefore F has to lie in the kernels Ki for i 6= 1 and one has a
factorization of the restriction of θ′ to F like

F ⊗ T −→ F ⊗ T1 −→ B ⊂ E0,1.

Then F ⊕ B is a sub-Higgs sheaf. Since both sheaves have the same
rank

µ(E1,0) + µ(E0,1) = µ(F) + µ(B) =
1

rk(F)
(c1(F) + c1(B)) ≤ 0.

The equality

0 = ℓ · µ(E1,0) + ℓ′ · µ(E0,1) = ℓ′(µ(E1,0) + µ(E0,1)) − (ℓ′ − ℓ)µ(E1,0),

together with the positivity of µ(E1,0) imply that ℓ = ℓ′ and that

µ(F) + µ(B) = 0.

By Proposition 2.4 F⊕B is induced by a local sub-system of V. Since we
assumed the latter to be irreducible, one finds F = E1,0 and B = E0,1.
So both are stable, and the Higgs field is of the form asked for in 3.4.

It remains to verify that Sℓ(E1,0)⊗ det(E1,0)−1 and E1,0 ⊗E1,0∨ are
unitary, or equivalently that

δ(Sℓ(E1,0)) = δ(E1,0 ⊗ E1,0∨) = 0.

By 3.3, a) and c), it is sufficient to show that δ(E1,0) = 0. Since E is
the Higgs bundle of a local system, cι(E

1,0 ⊕ E0,1) = 0 for ι = 1, 2.
This implies

c1(E
1,0) = −c1(E

0,1) = −ℓ · c1(T1) + c1(E
1,0),

hence c1(E
1,0) and c1(E

0,1) are both rational multiples of c1(T1). By
1.6 c1(T1)

2 is numerically trivial, and therefore

c1(E
1,0)2 = c1(E

0,1)2 = c1(E
1,0).c1(E

0,1) ≡ 0.

The last equality implies that

0 ≡ c2(E
1,0 ⊕ E0,1) = c2(E

1,0) + c2(E
0,1) = c2(E

1,0) + c2(E
1,0 ⊗ T1).

Since T1 is invertible and c1(T1)
2 ≡ 0 one finds c2(E

1,0⊗T1) ≡ c2(E
1,0),

hence c2(E
1,0) ≡ 0 and δ(E1,0) = 0. q.e.d.

4. Families of Abelian varieties

For a smooth family f : V → U of Abelian varieties consider the vari-
ation of Hodge structures R1f∗CV , with Higgs bundle (F 1,0 ⊕ F 0,1, τ).
If the local monodromies are uni-potent, the Kodaira-Spencer map in-
duces a morphism

(4.1) T 1
Y (− log S) −→ F 0,1 ⊗ F 1,0∨ = F 0,1⊗2

.
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As well known, it factors through S2(F 0,1). If ϕ : U → Ag denotes
the morphism to the moduli stack, induced by f : V → U , the sheaf
S2(F 0,1)|U is nothing but the pullback ϕ∗(T 1

Ag
).

Lemma 4.1. Let f : X → Y be a smooth family of Abelian varieties,

and assume that for some N ≥ 3 and for some étale covering Y ′ → Y

the morphism ϕ : Y → Ag lifts to an embedding ϕ′ : Y ′ → A(N)
g ,

where A(N)
g denotes the moduli scheme of Abelian varieties with a level

N -structure. Then Ω1
Y is nef and ωY is ample.

Proof. One may assume that Y = Y ′. Recall that the bundle F 1,0 is
nef. Then the sheaf ϕ∗Ω1

A
(N)
g

= S2(F 1,0) is nef, hence the same holds

true for the image of ρ : ϕ∗Ω1
Ag

→ Ω1
Y . Since we assumed that ϕ is an

embedding, the restriction map ρ is surjective, and Ω1
Y is nef.

A similar result for submanifolds of arbitrary period domains can be
found in [Z00]. There, in the proof of Lemma 2.2, one also finds the
necessary calculations for the ampleness of ωY . One knows already that
the Chern form of T 1

Y is negative semi-definite. Hence in order to see
that det(Ω1

Y ) is ample, one just has to show that in each point y ∈ Y this
Chern form is strictly negative. This is shown in [Z00, 2.2], provided
the differential of the period map is injective in y, a condition which is

satisfied for all y ∈ Y ⊂ A(N)
g . q.e.d.

Let us return to Set-up 3, hence U ⊂ Y is the complement of a normal
crossing divisor. Consider the decomposition of the variation of Hodge
structures R1f∗CV in irreducible C-sub-variations of Hodge structures.
If one of the factors, say Vi, is not defined over R, we write V̄i for its
conjugate. Hence numbering the factors such that the Vi for r′ < i ≤ r
are exactly the ones which are defined over R and irreducible over C we
may write

R1f∗CV = V1 ⊕ V̄1 ⊕ · · · ⊕ Vr′ ⊕ V̄r′ ⊕ Vr′+1 ⊕ Vr′+2 ⊕ · · · ⊕ Vr.

Let (E1,0
i ⊕ E0,1

i , θi) denote the logarithmic Higgs bundle of Vi. For

i ≤ r′ the sheaf E1,0∨

i ⊂ ϕ∗(E0,1
Ag

) intersects E0,1
i in 0. Renumbering, we

may assume that

ℓi = rk(E1,0
i ) ≤ ℓ′i = rk(E0,1

i ) for i = 1, . . . , r′

and, of course, ℓi = rk(E1,0
i ) = rk(E0,1

i ) for i = r′ + 1, . . . , r. The sheaf
H =

⊕r
i=1 Hi with

Hi = E0,1
i ⊗ E1,0

i

∨
if i ∈ {1, . . . , r′}

Hi = S2(E0,1
i ) if i ∈ {r′ + 1, . . . , r}

is a direct factor of S2(F 0,1), and the image of the Kodaira-Spencer map
(4.1) lies in H.
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Assume that ωY (S) is nef and ample with respect to U , and let
T1, . . . , Ts be the stable direct factors of T 1

Y (− log S). If the map ϕ :
U → Ag, induced by the smooth family f : V → U , is generically finite,
the Higgs field induces an injection T 1

Y (− log S) → H. Hence for each
Tj there is some i such that the composite

Tj
⊂−−−−→ T 1

Y (− log S) −→ H =

r
⊕

i=1

Hi
pri−−−−→ Hi

is non-zero. On the other hand, if Vi is not unitary, there exists some j
such that Tj → Hi is non-zero. So we can restate Proposition 4 in the
following form:

Proposition 4.2. Assume that ϕ : U → Ag is generically finite and

that Y , U and f satisfy the assumptions made in Set-up 3. Assume

moreover that Sm(Tj) is stable for all m > 0 and all j. If Vi is not

unitary there exists a unique j with Tj → Hi non-zero. Moreover, Tj is

a direct factor of Hi.

Proof. We can apply Proposition 3.4 to Vi, hence we know that the
sheaves Hi are poly-stable and that there exists exactly one j with
Tj → Hi non-zero. By the Arakelov equality for Vi the slope of the
sheaves Tj and Hi coincide, hence Tj → Hi has to be injective with a
splitting image. q.e.d.

Remark 4.3. The dual of the Higgs field of VAg is given by a tau-
tological map

θ∨Ag
: E1,0

Ag
⊗ S2(E0,1

Ag
) −→ E0,1

Ag
.

For its description recall that E0,1
Ag

is dual to E1,0
Ag

, so locally we may

choose a basis e1, . . . , eg of E1,0
Ag

and for E0,1
Ag

a dual basis e∨1 , . . . , e∨g .

Then

(4.2) θ∨Ag
(ei ⊗ e∨j · e∨k ) =

1

2
(e∨j (ei)e

∨
k + e∨k (ei)e

∨
j ) = δi,je

∨
k + δi,ke

∨
j .

Returning to the decomposition of ϕ∗VAg , choose some i > r′. Then
θ∨Ag

induces

θ∨i : E1,0
i ⊗ S2(E0,1

i ) −→ E0,1
i

again of the form in (4.2), with g replaced by ℓi = rk(E1,0
i ).

For i ≤ r′ remark that a basis of E1,0
0 ⊗ (E1,0∨

0 ⊗ E0,1
0 ) is given by

ei ⊗ e∨j · e∨k = ei ⊗ e∨j ⊗ e∨k with 1 ≤ i, j ≤ ℓi and ℓi < k ≤ ℓi + ℓ′i. The

image of such an element is δi,je
∨
k .

Remark 4.4. Under the assumption made in Theorem 6 assume
that ϕ : U → Ag is generically finite. By Lemma 4.2 the tangent sheaf
T 1

Y (− log S) is a direct factor of H, hence

T 1
Y (− log S) −→ ϕ∗(T 1

Ag
(− log(Ag \ Ag)))|Y
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splits and U → Ag is étale. Moreover U is totally geodesic in Ag,
and we can apply B. Moonen’s characterization of bounded symmetric
domains in Ag [Mo98]. So we see already that the Arakelov equality (3)
forces U to be a bounded symmetric domain. However, in order to see
that U is a Shimura subvariety one needs in [Mo98] the existence of a
CM-point. This condition enters the scene, since it forces by [A92] the
monodromy group to coincide with the derived Mumford-Tate group
(see Section 10).

So we will argue in a different way in the next sections. We first verify
the explicit description of the variation of Hodge structures, stated in
Theorem 5. It will allow in Section 9 to determine the possible Hodge
cycles, and in Section 10 to describe the Mumford-Tate group. As it will
turn out, this description implies that the monodromy group is equal
to the derived Mumford-Tate group, and U must be a Shimura variety.
So finally we will obtain the existence of CM points as a corollary.

Remark 4.5. Assume that a variant of Proposition 4 holds true,
which does not require the conditions i) and ii) and which allows direct
factors Ωi with Sm(Ωi) non-stable for some m > 1. Then for each
irreducible C-sub-variation V of Hodge structures in R1f∗CV one would
obtain exactly one direct factor Ωj of Ω1

Y (log S), as in Lemma 4.2.
If Ωj is invertible or if Sm(Ωj) remains stable and if δ(V) = 0 one

can apply the methods of the next sections to describe V. It remains to
study the case, where for some stable direct factor Ωj of Ω1

Y (log S) there
is some m > 1 with Sm(Ωj) non-stable. Then the corresponding factor

Mj of Ũ is a locally Hermitian symmetric domain of rk > 1 and the
Superrigidity Theorem of Margulis applies. So in this case, one should
be able to understand the corresponding variation of Hodge structure
by different methods.

5. The structure of Ũ in Theorem 5

In this section we will show that the assumptions of Theorem 5 imply
that Mi is a complex ball. Although this is obvious if Ωi is invertible,
we will not exclude this case in the beginning, and we will allow that
the slope and the discriminant are chosen according to Assumption 2.5.

So we will use the following set-up. The sheaf Ω = Ωi is a stable direct
factor of Ω1

Y (log S) of rank n′, and T = Ω∨. Let V be a sub-variation
of Hodge structures in R1f∗CV , with Higgs bundle

(E1,0 ⊕ E0,1, θ : E1,0 → E1,0 ⊗ Ω → E1,0 ⊗ Ω1
Y (log S)).

Assume that E1,0 and E0,1 are both stable. Writing ℓ = rk(E1,0) and
ℓ′ = rk(E0,1) one may assume by the condition c) in 4 that ℓ′ = n′ · ℓ.

Assume moreover, that Sm(Ω) remains stable for all m > 0, hence
that in 1.4 one has i ≤ s′. We will use the condition δ(V) = 0, to show



326 E. VIEHWEG & K. ZUO

that if Ω is not invertible the equation (1.1) in Theorem 1.4, c), holds
true.

Note that

ℓ · Υ(E1,0) + ℓ · n′ · Υ(E0,1) = c1(E) = 0.

Hence µ(E1,0) − µ(E0,1) =
n′ + 1

n′
· µ(E1,0) and the Arakelov equality

says that

µ(E1,0) =
n′

n′ + 1
· µ(Ω) and µ(E0,1) =

−1

n′ + 1
· µ(Ω).

The local system V induces local systems
⊗ℓ V and

∧ℓ V. In [S92, p.
40-43] one finds the construction of the corresponding Higgs bundle and
Higgs fields. In particular for some θ obtained as the direct sum of

θm :
ℓ−m
∧

(E1,0) ⊗
m
∧

(E0,1) −→
ℓ−m−1

∧

(E1,0) ⊗
m+1
∧

(E0,1) ⊗ Ω,

the Higgs bundle of
∧ℓ V is

(E(ℓ), θ) =
(

ℓ
⊕

m=0

Eℓ−m,m,⊕ℓ−1
m=0θm

)

with Eℓ−m,m =
∧ℓ−m(E1,0) ⊗ ∧m E0,1. Define G =

⊕ℓ
m=0 Gℓ−m,m as

the saturated image

Gℓ−m,m = Im′
(

det(E1,0) ⊗ Sm(T ) −→
ℓ−m
∧

(E1,0) ⊗
m
∧

(E0,1)
)

.

Since

det(E1,0) ⊗ Sm(T ) −→
ℓ−m
∧

(E1,0) ⊗
m
∧

(E0,1)

is a morphism between semi-stable sheaves of the same slope, and since
Sm(T ) is stable, the sheaves Gℓ−m,m are either 0 or isomorphic to
det(E1,0) ⊗ Sm(T ). Obviously

θ(Gℓ−m,m) ⊂
ℓ−m−1

∧

(E1,0) ⊗
m+1
∧

(E0,1) ⊗ Ω,

must be contained in Gℓ−m−1,m+1 ⊗ Ω and we obtain:

Claim 5.1. G is a saturated sub-Higgs sheaf of E(ℓ).

Claim 5.2. The sheaf Gℓ−m,m is a direct factor of
ℓ−m
∧

(E1,0) ⊗
m
∧

(E0,1).

Proof.
∧ℓ−m(E1,0) ⊗ ∧m(E0,1) is poly-stable, Gℓ−m,m is stable, and

both have the same slope. q.e.d.
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Claim 5.3. G is a direct factor of the Higgs bundle E(ℓ). In partic-
ular, c1(G) and c2(G) are both zero.

Proof. As we have just seen, Gℓ−m,m is a direct factor E(ℓ). It remains
to show that the projections

Φm :
ℓ−m
∧

(E1,0) ⊗
m
∧

(E0,1) −→ Gℓ−m,m

to Gℓ−m,m can be chosen such that G = Gℓ,0 ⊕ Gℓ−1,1 ⊕ · · ·Gℓ−r,r is a
quotient Higgs bundle. We will construct the splittings by descending
induction in such a way that the diagram

ℓ−m
∧

(E1,0) ⊗
m
∧

(E0,1)
θℓ−m,m

−−−−−→
ℓ−m−1

∧

(E1,0) ⊗
m+1
∧

(E0,1) ⊗ Ω

Φm





y





y

Φm+1

Gℓ−m,m −−−−→ Gℓ−m−1,m+1 ⊗ Ω

commutes. As long as Gℓ−m−1,m+1 = 0 there is nothing to construct,
and we can choose Φm to be any splitting, existing by 5.2.

If r is the largest integer with Gℓ−r,r 6= 0, assume by induction that
we found the Φm′ for all m′ > m and that m < r.

So θℓ−m,m|Gℓ−m,m is non-zero. Since Gℓ−m,m is stable and since
θℓ−m,m is a morphism between poly-stable sheaves of the same slope,
one finds

Gℓ−m,m θℓ−m,m

−−−−−→
⊂

Gℓ−m−1,m+1 ⊗ Ω ⊂
ℓ−m−1

∧

(E1,0) ⊗
m+1
∧

(E0,1) ⊗ Ω.

So the saturated image of Gℓ−m,m under Φm+1 ◦ θℓ−m,m is isomorphic
to Gℓ−m,m, and

Gℓ−m,m ⊂−−−−→
ℓ−m
∧

(E1,0) ⊗
m
∧

(E0,1)
Φm+1◦θℓ−m,m

−−−−−−−−−→ Gℓ−m,m

defines a splitting Φm with the desired properties.
So G splits as a sub-Higgs bundle of E(ℓ), hence it is itself a Higgs

bundle arising from a local system. Then all the Chern classes ci(G)
are zero. q.e.d.

Proposition 5.4. One has G0,ℓ 6= 0.

Proof. Let us write again r for the largest integer with Gℓ−r,r 6= 0.
For 0 ≤ m ≤ r the sheaf Gℓ−m,m is a stable sheaf of slope

(ℓ − m) · µ(E1,0) + m · µ(E0,1) = ℓ · µ(E1,0) − m · µ(Ω1
Y (log S))

=

(

ℓ · ℓ′
ℓ + ℓ′

− m

)

· µ(Ω1
Y (log S)),
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and of rank gℓ−m,m =
(

n′+m−1
m

)

. By 5.3 the first Chern class of G is
zero, hence

0 =
µ(det(G))

µ(Ω1
Y (log S))

=
r

∑

m=0

(

n′ + m − 1

m

)

·
( ℓ · ℓ′
ℓ + ℓ′

− m
)

=

(

ℓ · ℓ′
n′ · (ℓ + ℓ′)

− r

n′ + 1

)

· (r + 1) ·
(

r + n′

r + 1

)

.

Since ℓ′ = n′ · ℓ one finds that

0 =
ℓ · ℓ′

n′ · (ℓ + ℓ′)
− r

n′ + 1
=

ℓ

n′ + 1
− r

n′ + 1
,

and r = ℓ. q.e.d.

Finally, we will show that the factor M in the universal covering Ũ
corresponding to Ω is a complex ball. This is obvious if n′ = 1. For
n′ > 1 we just have to verify the condition (1.1) in 1.4, c). This is done
in the next proposition.

Claim 5.5. Assume that rk(Ω) > 1. Then the condition c2(G) = 0
implies that 2 · (n′ + 1) · c2(Ω) − n′ · c1(Ω)2 = 0.

Proof. The claim follows by a formal calculation of Chern numbers.
Hence we may replace Y by any finite covering, and assume that there
exists an invertible sheaf L with det(E1,0) = Lℓ. Or we may calculate
with Q-Chern classes. Consider the sheaf

F = F 1,0 ⊕ F 0,1 with F 1,0 = L, F 1,0 = L ⊗ T.

Then Sℓ(F ) is a Higgs bundle with Lℓ ⊗ Sm(T ) in bidegree (ℓ−m, m),
hence isomorphic to G. By 5.3 the first Chern class of G is zero, hence
c1(F ) as well. On the other hand,

c1(F ) = c1(L) + n′ · c1(L) − c1(Ω) =
n′ + 1

ℓ
c1(E

1,0) − c1(Ω),

and c1(L) = 1
n′+1c1(Ω). For the second Chern class it is easier to calcu-

late the discriminant

∆(F) = 2 · rk(F) · c2(F) − (rk(F) − 1) · c1(F)2.

By 3.3, a), the discriminant is invariant under tensor products with
invertible sheaves, hence ∆(L ⊕ L⊗ T ) = ∆(OY ⊕ T ).

Claim 5.3 implies that c1(G)2 = c2(G) = 0, hence ∆(G) = 0, and
from 3.3, b), one obtains ∆(F ) = 0. Then

0 = ∆(OY ⊕ T ) = 2 · (n′ + 1) · c2(T ) − n′ · c1(T )2,

as claimed. q.e.d.
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6. Higgs bundles in the non-compact case

Consider a family of Abelian varieties f : V → U and an irreducible
C-sub-variation of Hodge structures V of R1f∗QV . We will assume that
the assumptions made in Theorem 5 hold true for V, in particular the
conditions a)–c) in Proposition 4. Lemma [V-Z04, 3.2] allows us to
find a finite Galois extension K of Q with Galois group Γ, and a K-sub-
variation of Hodge structures VK in R1f∗KV such that V = VK ⊗K C.

We will assume that ℓ = rk(E1,0) ≤ rk(E0,1), so by assumption there
exists a unique ι = ι(V) ∈ {1, . . . , s} with E0,1 = E1,0 ⊗ Tι, and the
Higgs field θ is given by the natural embedding

E1,0 −→ E1,0 ⊗ End(Ωι) = E1,0 ⊗ Tι ⊗ Ωι.

Assumption 6.1. Let S = S1 ∪ . . . ∪ Sη be the decomposition of
S in irreducible components and let γj ∈ π1(U, ∗) be the image of a
generator of the local fundamental group of a small neighborhood of a
general point of Sj . Assume that the image of 〈γ1, . . . , γη〉 under the
representation corresponding to V is non-trivial.

Let us remark, that the local monodromies of V are uni-potent. Hence
if the image of γj under the representation is non-trivial, it has to have
infinite order.

Note that Assumption 6.1 and the description of the Higgs field of V
given above remain true if one replaces Y by an étale covering and V
by an irreducible direct factor of its pullback. So by abuse of notations
we will assume that the pullback of V remains irreducible on all étale
coverings.

Let us consider the C-variation of Hodge structures End(V) with
Higgs bundle

(End =
1

⊕

p=−1

End−p,p, ρ =
1

⊕

p=−1

ρ−p,p).

Then End1,−1 = E1,0 ⊗ E1,0∨ ⊗ Ωι,

End0,0 = E1,0 ⊗ E1,0∨ ⊕ E1,0 ⊗ E1,0 ⊗ Tι ⊗ Ωι,

and End−1,1 = E1,0 ⊗ E1,0∨ ⊗ Tι. Again the Higgs field is induced by
the tautological maps on Tι and Ωι. In particular, the kernel K of

ρ0,0 : End0,0 −→ End−1,1 ⊗ Ωι

is isomorphic to E1,0 ⊗E1,0∨, diagonally embedded into End0,0, and we
obtain the first part of:

Lemma 6.2. End(V) contains a unitary local sub-system U of rank

ℓ2. It is the largest unitary local sub-system. Moreover U is defined over

some number field, as well as the decomposition End(V) = U ⊕ M.
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Proof. The explicit description of the Higgs field given above shows
that End(V) = U ⊕ M where the Higgs field of the Higgs bundle for M
is given by

(6.1) E1,0⊗E1,0∨⊗Ωι −→ (E1,0⊗E1,0∨⊕E1,0⊗E1,0⊗Tι⊗Ωι)/K⊗Ωι

and by

(6.2) (E1,0⊗E1,0∨⊕E1,0⊗E1,0⊗Tι⊗Ωι)/K −→ E1,0⊗E1,0∨⊗Tι⊗Ωι.

Obviously both morphisms are injective, hence U is maximal.
To find the field of definition, we argue as in the proof of [V-Z04,

3.3]. Consider a family {Mt}t∈∆ of local sub-systems of End(V) defined
over a small disk ∆, with M0 = M. For t ∈ ∆ let (Ft, θt) denote the
Higgs bundle of an irreducible direct factor of Mt. Then

F 1,−1
t −→ F 0,0

t ⊗ Ωι and F 0,0
t −→ F−1,1

t ⊗ Ωι

are both injective for t sufficiently small. If the composite

ρ : Mt
⊂−−−−→ End(V) −→ U

is non-zero, the complete reducibility of local systems coming from vari-
ations of Hodge structures implies that Mt and U contain a common
direct factor. Since the Higgs field of U is trivial, one obtains a contra-
diction.

So M is rigid as a local sub-system, hence it can be defined over some
number field K. As in the proof of [V-Z04, 3.3] this implies that U is
also defined over a number field. q.e.d.

Lemma 6.3. Let us keep the notations and assumptions from 6.1.
Let S be an irreducible direct factor of End(V). Then the image of

〈γ1, . . . , γη〉 under the representation corresponding to S is trivial, if

and only if S ⊂ U.

Proof. If S ⊂ U then “unitary and uni-potent” implies that the image
of each γj is trivial.

On the other hand, Assumption 6.1 implies that the local system V
can not be extended as a local system to Y . This implies in particular,
that Ωι ⊂ Ω1

Y (log S) does not factor through an inclusion Ωι ⊂ Ω1
Y .

The components of the Higgs field of M in (6.1) and (6.2) are in-
jective morphisms between semi-stable sheaves of the same slope, and
the second one is an isomorphism. Those two properties carry over to
all direct factors F of the Higgs bundle. In fact, if F is non-zero, the
injectivity implies that F−p,p 6= 0 for p = −1, 0, 1. The surjectivity of
F 0,0 → F−1,1⊗Ωι implies that the Higgs field has non-trivial poles along
at least one component of S. Otherwise one would obtain an inclusion

F−1,1 ⊗ Ωι
⊂−−−−→ F−1,1 ⊗ Ω1

Y ,

contradicting Assumption 6.1. q.e.d.
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Recall that V = VK ⊗K C for K a number field. Let WQ be the Weil
restriction of V, and W = W ⊗Q C. Writing V = V1, V2, . . . , Vr for
the different conjugates of V under the Galois group Γ the local system
End(W) contains

E = End(V) ⊕ End(V2) ⊕ · · · ⊕ End(Vr)

as a local sub-system, obviously invariant under conjugation by Γ, and
hence defined over Q. Since the characterization of the maximal unitary
direct factor in Lemma 6.3 is invariant under conjugation, one finds
that each Vi contains a maximal unitary direct factor Ui of rank ℓ2,
and that those are conjugate under conjugation by Γ. The local system
T = U ⊕ U2 ⊕ · · · ⊕ Ur is invariant under Γ, hence defined over Q.

Corollary 6.4. Over some étale covering φ : Y ′ → Y , one has

φ∗T ∼=
⊕

OY ′ .

Proof. The proof of [V-Z04, 4.1] does not use the fact that the base
is a curve. One just needs that for each irreducible local sub-system
of the non-unitary part of a local system, there is some Sj ⊂ S such
that the image of γj in the corresponding representation of π1(U, ∗) is
non-trivial. This holds true for the complement of T in E. One finds
that T is defined over Q, and that it extends to a unitary local system
on Y .

Since T is a local sub-system of a Q-local system, as in [V-Z04, 4.3]
one can define a Z-structure on T. A unitary local system on Y with a
Z structure will be trivial over some étale covering. q.e.d.

Remark that the maximal unitary part U of End(V) is a direct factor
of T, hence its pullback to Y ′ is trivial. Then End(φ∗V) has ℓ2 linear
independent global sections, one of them given by homotheties. Since
we required V to remain irreducible under étale coverings of Y , the
local system φ∗V is irreducible. If ℓ > 1, one finds one section with
a non-trivial kernel. So ℓ = 1 and E1,0 is invertible. By 3.4 one has
E0,1 = E1,0 ⊗ Tι. Then

det(E1,0)n1+1 ⊗ det(OY ⊕ Tι) = det(E1,0)n1+1 ⊗ det(Tι)

is equal to det(E1,0 ⊕ E0,1). This is the determinant of a local system
with uni-potent local monodromy around the components of S, hence
an element of Pic0(Y ). The later is divisible, and we found the sheaf
Lι, asked for in Theorem 5, a):

Proposition 6.5. Under the assumptions made in Theorem 5, as-

sume that 6.1 holds true for V. Then, replacing Y by an étale covering,

there exists an invertible sheaf Lι with Lnι+1
ι = detΩι. Moreover the

Higgs bundle Lnι+1
ι ⊕ Lnι+1

ι ⊗ Tι with Higgs field

Lnι+1
ι −→ Lnι+1

ι ⊗ Tι ⊗ Ωι



332 E. VIEHWEG & K. ZUO

induced by the homotheties, is the Higgs field of a variation of Hodge

structures Lι. For some rank one local system Uι on Y one has V =
Uι ⊗ Lι.

It remains to consider irreducible Q-sub-variations of Hodge struc-
tures which violate 6.1.

Proposition 6.6. Let V be an irreducible C-sub-variation of Hodge

structure in R1f∗CV , not satisfying Assumption 6.1. Then, replacing

Y by an étale covering there exists a morphism ψ : Y → Y1, such that

Y1 is a projective manifold, and V = ψ∗V1 for a C-variation of Hodge

structures V1 satisfying again the assumptions made in Theorem 5.

Proof. Again we may assume that V is defined over a number field,
and we consider the Weil restriction WQ of V. If V violates Assumption
6.1, all the conjugates of V violate 6.1 and the local system WQ extends
to a local system on Y . Moreover, since WQ is a local sub-system of the
variation of Hodge structures of a family of Abelian varieties, WQ has
a Z structure. Then WQ is induced by a family g : Z → Y of Abelian
varieties.

One obtains a morphism ψ : Y → Y1 for Y1 a closed subscheme of a
suitable moduli space of polarized Abelian varieties.

Replacing Y by an étale covering we may assume that ψ lifts to a
fine moduli space, hence that g : Z → Y is the pullback of a family
f1 : X1 → Y1. Let us write (G, ̺) for the Higgs bundle of g : Z → Y .

By construction of Y1 the Kodaira-Spencer map for f1 is injective
and an isomorphism in a general point of Y1. Proposition 3.4 applied to
the original family implies that the Kodaira-Spencer map of WQ factors
through

G1,0 −→ G0,1 ⊗
⊕

Ωj
⊂−−−−→ G0,1 ⊗ ψ∗Ω1

Y1

⊂−−−−→ Ω1
Y (log S),

where the direct sum in the middle is over some subset of {1, . . . , s},
say over {1, . . . , m}.

The sheaves
⊕m

j=1 Ωj and ψ∗Ω1
Y1

have the same rank. On the other

hand, the first one is a direct factor of Ω1
Y (log S), so both sheaves are

isomorphic.
This implies that Y1 is non-singular. Since Ω1

Y (log S) is nef, the direct
factor ψ∗Ω1

Y1
is nef, hence Ω1

Y1
, as well. The universal covering of Y1

has to be the product M1 × · · · × Mm, where the Mi are factors of the
universal covering of U . By Proposition 4.1 ωY1 must be ample.

Let V1 be the direct factor of R1f1∗CX1 whose pullback is V. Lemma
1.6 implies that V1 satisfies again the numerical properties asked for in
Theorem 5. In fact,

c1(Ωm+1)
nm+1 . · · · .c1(Ωs)

ns
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restricted to a fibre of ψ is an effective zero cycle, and any (in)equality for
µωY1

or δωY1
applied to bundles on Y1 is equivalent to the corresponding

(in)equality for µωY (S) or δωY (S) applied to the pullback of the bundles.
Obviously the conditions a)–c) in Proposition 3 remain true for V1, if
they hold for V. q.e.d.

The local system V1 in 6.6 will be studied in the next section.

Corollary 6.7. Assume in Theorem 5 that there is no étale covering

of U with a surjective morphism to a projective manifold of dimension

larger than zero. Then V′ = φ∗V or its dual has the Higgs bundle

φ∗ det(Ωi)
1

ni+1 ⊕
(

φ∗ det(Ωi)
1

ni+1 ⊗ φ∗Ω∨
i , τ

)

.

Proof. Since we excluded the existence of a non-trivial morphism
U → Y1, each irreducible C-sub-variation of Hodge structures V in
R1f∗CV satisfies Assumption 6.1, and 6.7 follows from 6.5. q.e.d.

7. Higgs bundles in the compact case

If in Theorem 5 U = Y is a compact ball quotient, by [S88, 9.1]
there is a uniformizing projective variation of Hodge structures. As in
[Lo03, 4.1] one can replace Y by an étale covering, such that the natural
invertible bundle L on the ball descends to Y , giving an invertible sheaf
L with Ln+1 = ωY . Then the uniformizing variation of Hodge structures
has a Higgs bundle of the form

(L ⊕ T 1
Y ⊗ L) or (Ω1

Y ⊗ L ⊕ L).

We will extend this result below to the case s > 1, keeping the assump-
tion S = ∅. The next lemma and its proof are due to F. Bogomolov.

Lemma 7.1. Let φ : G′ → G be a finite surjective morphism between

Q-algebraic groups, where G′ is an algebraic subgroup of Gl(ν, Q), for

some ν. Let Γ ⊂ G be a finitely generated subgroup. Then there exists

a subgroup Γ′ ⊂ Γ of finite index, such that the inclusion Γ′ ⊂ G lifts to

Γ′ ⊂ G′.

Proof. Since Γ ⊂ G is finitely generated and since φ : G′ → G is sur-
jective with finite kernel K, the pre-image φ−1(Γ) is finitely generated.
For example, it is generated by K and by the pre-image of any system
of generators of Γ. Since φ−1(Γ) is a finitely generated subgroup in a
matrix group G′, it is well known that φ−1(Γ) is residue finite, i.e., that
there exists a sequence φ−1(Γ) = Γ1 ⊃ Γ2 ⊃ . . . ⊃ Γi ⊃ . . . of subgroups
of finite index with

∞
⋂

i=0

Γi = {e}



334 E. VIEHWEG & K. ZUO

(see for example [S93, Proof of Lemma 6.4]). Since K is finite, there
must exist some i with Γi ∩K = {e}. Then one may choose Γ′ = φ(Γi),
and Γi lifts Γ′ to G′. q.e.d.

Lemma 7.2. Let U be a smooth manifold such that the universal

covering Ũ is a product M1 × · · · × Ms. Assume that for some i the

factor Mi is an ni-dimensional complex ball. Let Ω1 ⊕ · · · ⊕ Ωs be the

corresponding decomposition of the cotangent bundle of U . Then, re-

placing U by an étale covering, there exists an invertible sheaf Li on U
with Lni+1

i = det(Ωi), for ni = dim(Mi) = rk(Ωi).

Proof. Let us assume that i = 1. Recall the description of the com-
plex ball M1 in [Lo03, 1.8]. Consider a C vector space W1 of dimension
n1 + 1, equipped with a Hermitian form ψ1 of signature (1, n1). Then
M1 ⊂ P(W1) is the open subset defined by ψ1(w, w) > 1. The action of
π1(U, ∗) on M1 × · · · × Ms is given by

ρ : π1(U, ∗) −→ Aut(M1) × · · · × Aut(Ms)

and the first factor of the right hand side is PU(ψ1) →֒ PSl(n1 + 1).
Replacing π1(U, ∗) by a subgroup of finite index, hence replacing U

by some étale covering, Lemma 7.1 allows to lift ρ to

ρ′ : π1(U, ∗) −→ Sl(n1 + 1) × Aut(M2) × · · · × Aut(Ms).

For γ ∈ π1(U, ∗) let γ1 denote the first component of ρ′(γ). Then up to
the multiplication with a constant γ1 lies in the unitary group for ψ1.
Since it lies in Sl(n1 + 1) the constant has to have absolute value one.
Hence γ1 lies in SU(n1 + 1). As in [Lo03, 4.1] we may replace U again
by an étale covering, and assume that the subgroup of C∗, generated
by the eigenvalues of ρ′(π1(U, ∗)) is torsion free. The group ρ′(π1(U, ∗))
acts on the line bundle N1 = pr∗1OP(W1)(−1)M1 and it descends to a

line bundle L−1
1 on the quotient. By [Lo03, 4.1] the canonical sheaf

pr∗1ωP(W1)|M1 is SU(ψ1)-equivariantly isomorphic to N n1+1
1 . The latter

descends to det(Ω1) on U . q.e.d.

Corollary 7.3. In 7.2 assume that S = ∅, hence U = Y projective.

Then the Higgs bundle

F = (L−1
i ⊗ Ωi ⊕ L−1

i , id
L
−1
i ⊗Ωi

)

is the Higgs bundle of a complex variation of Hodge structures Li.

Proof. Obviously the first Chern class of F is zero, and as in the proof
of 5.5 one sees that

∆(F ) = ∆(Ωi ⊕OU ) = 2 · (ni + 1)c2(Ωi) − nic1(Ωi)
2.

If ni = 1 one has ∆(F ) = 0, hence δ(F) = 0, as well. For ni > 0 one
finds by Theorem 1.4 and Lemma 1.6, vii), that δ(F ) = 0. Then 7.3
follows from [S92]. q.e.d.
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Corollary 7.4. Under the assumptions made in Theorem 5 assume

that S = ∅, hence that f : X → Y is smooth. Replacing Y by an étale

covering, there exists a unitary local system Ui, regarded as a variation

of Hodge structures of bidegree (0, 0) such that V or its dual is isomor-

phic to Ui ⊗ Li.

Proof. We may assume that ℓ = rk(E1,0) ≤ rk(E0,1). Then

c1(E
1,0) = −c1(E

0,1) = −ni · c1(E
1,0) + ℓ · c1(Ωi),

hence c1(E
1,0) =

ℓ

ni + 1
·c1(Ωi) = ℓ·c1(Li). One finds c1(E

1,0⊗L−1
i ) = 0

and δ(E1,0 ⊗ L−1
i ) = 0.

Then U = E1,0 ⊗ L−1
i together with the trivial Higgs field must be

the Higgs bundle of a unitary bundle Ui. The explicit descriptions of
the Higgs fields of Li ⊗Ui and V in 7.3 and 3 show that the Higgs fields
of

(U , 0) ⊗ (Li ⊕ Li ⊗ Ti, ρ) and (E1,0 ⊕ E0,1 = E1,0 ⊗ Ti, θ)

coincide, so Li ⊗ Ui
∼= V. q.e.d.

Proof of Theorem 5. We have shown already in Section 5 that the as-
sumptions made in Theorem 5 imply that Mi is a complex ball. If
Assumption 6.1 holds true, we verified the conditions a) and b) in 5 in
Corollary 6.5.

Otherwise, we know by Proposition 6.6 that V is the pullback of a
variation of Hodge structures V1 under a surjection ψ : U → Y1 with
Y1 a projective manifold. Moreover Y1 satisfies again the assumptions
made in Theorem 5. So Corollary 7.3 applies to V1 and Y1, and the
conditions a) and b) hold on Y1. Obviously they are compatible with
pullback. q.e.d.

In fact, we did not use up to now that µ = µωY (S), we used just the
assumptions stated in 2.5. So we obtained:

Variant 7.5. The Theorem 5 remains true for µ = µN and δ = δN ,
provided N is an ample invertible sheaf and Ω1

Y (log S) is µN -poly-stable.

8. Generalized Hilbert modular varieties and surfaces

We will call U in Set-up 3 a generalized Hilbert modular variety if the
universal covering Ũ is the product of complex one dimensional balls.
We allow U to be a product U1×U2 of two generalized Hilbert modular
surfaces, for example U could be the product of curves of genus g > 1.

Corollary 8.1. Assume that µ is chosen according to Assumption

2.5. Assume that

µ(R1f∗CV ) = µ(Ω1
Y (log S)) and δ(R1f∗CV ) = 0.
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Then U is a generalized Hilbert modular variety, i.e., its universal cov-

ering is isomorphic to the product of one dimensional complex balls.

Proof. Let V1⊕· · ·⊕Vν be the decomposition of R1f∗CV in irreducible
C-sub-variations of Hodge structures, and let Ei be the Higgs bundle of
Vi. Hence F = E1 ⊕ · · · ⊕ Eν is the Higgs bundle of R1f∗CV . Lemma
2.1, a), and Proposition 2.6 imply that

µ(Ω1
Y (log S)) = µ(F •,•) ≤ Max{µ(E•,•

i ); i = 1, . . . , ν} ≤ µ(Ω1
Y (log S)).

So these are equalities, and applying 2.1, a), again, one finds that each
of the Ei satisfies the Arakelov equality, hence they are all semi-stable
of the same slope. Moreover, for all i

(8.1)
rk(E1,0

i )

rk(E0,1
i )

=
rk(E1,0

1 )

rk(E0,1
1 )

.

By assumption δ(F •,•) = 0 and Lemma 3.3, d) implies that δ(E•,•

i ) = 0.
So Theorem 5 or its variant 7.5 applies. By the explicit description of the
irreducible direct factors Vi given there, (8.1) can only hold for Vi and

for its complex conjugate, if both are isomorphic. So rk(E1,0
i ) = rk(E0,1

i )
and U is a generalized Hilbert modular variety. q.e.d.

Note that this result as well as Theorems 5 and 6 rely on the con-
ditions (∗) and (∗∗) hidden in Set-up 3. So strictly speaking, as long
as the announced article by Sun and Yau does not exist, the results
only apply if ωY (S) is ample. This condition excludes in particular all
generalized Hilbert modular varieties with U 6= Y . For surfaces one can
replace the polarization µ by µN , for some small twist N of ωY (S).

Set-up 8.2. Y is a surface, U ⊂ Y the complement of a normal
crossing divisor. Ω1

Y (log S) is nef, and ωY (S) is ample with respect to
U . Let H be an ample invertible sheaf,

N = c1(ωY (S)) + ǫ · c1(H)

and µǫ = µN . Assume that there exists some ǫ0 > 0 such that for all
ǫ0 ≥ ǫ ≥ 0 and for all m > 0 the sheaf Sm(Ω1

Y (log S)) is µǫ-poly-stable.
Let f : V → U be a smooth family of polarized g-dimensional Abelian

varieties with uni-potent local monodromy around the components of
S, such that the induced morphism ϕ : U → Ag is generically finite.

Let us first verify that for each Y we can find an ample invertible
sheaf H as in Set-up 8.2.

By Theorem 1.4 we know that Sm(Ω1
Y (log S)) is µ0-poly-stable. Note

that the case c), iii), can not occur. In fact, by [Y93], if Sm(Ω1
Y (log S))

is not stable for some m > 0, then Ω1
Y (log S) = Ω1 ⊕Ω2 with Ωi invert-

ible.
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Assume first that Sm(Ω1
Y (log S)) is stable with respect to µ0. As

in the proof of b) in Lemma 1.3 one finds that Ω1
Y (log S) is µǫ-semi-

stable for ǫ sufficiently small. If Ω1
Y (log S) is not µǫ-stable, there exists

a subsheaf G of Sm(Ω1
Y (log S), with

µǫ(G) = µ0(G)+ǫ ·υ(G).c1(H) = µ0(Ω
1
Y (log S))+ǫ ·υ(Ω1

Y (log S)).c1(H).

By assumption µ0(G) < µ0(Ω
1
Y (log S)), hence for all ǫ sufficiently small

0 < µ0(Ω
1
Y (log S)) − µ0(G) = ǫ · (υ(G) − υ(Ω1

Y (log S))).c1(H),

a contradiction. So Sm(Ω1
Y (log S)) remains µǫ-stable.

Assume next that Ω1
Y (log S) = Ω1⊕Ω2. Let A be any ample invertible

sheaf on Y . We know by Lemma 1.6 that c1(Ω1)
2 = c1(Ω2)

2 = 0 and
β = c1(Ω1).c1(Ω2) > 0. If c1(A).c(Ω1) > c1(A).c(Ω2) choose

α = c1(A).c(Ω1) − c1(A).c(Ω2) + β.

Then H = Aβ ⊗ Ωα
1 ⊗ Ωβ

2 is ample and

c1(H).c1(Ω1) = c1(H).c1(Ω2) = β · c1(A).c1(Ω1) + β2.

So Sm(Ω1
Y (log S)) as the direct sum invertible sheaves of the same slope

is µǫ-poly-stable. So we obtained:

Lemma 8.3. Let Y be a non-singular projective surface and U the

complement of a normal crossing divisor S. If ωY (S) is nef and ample

with respect to U , than one can find an ample invertible sheaf H and

some ǫ0 > 0 such that for all m > 0 and for ǫ0 ≥ ǫ ≥ 0 the sheaf

Sm(Ω1
Y (log S)) is µǫ-poly-stable.

One obtains the following variant of Theorems 5 and 6:

Variant 8.4. In Set-up 8.2 one has for some ǫ0 > 0 and all ǫ0 ≥ ǫ ≥ 0
and all non-unitary irreducible C-sub variations of Hodge structures V
of R1f∗CV with Higgs bundle (E1,0 ⊕ E0,1, θ) the inequality µǫ(V) ≤
µǫ(Ω

1
Y (log S)). If equality holds, the sheaves E1,0 and E0,1 are both

semi-stable and δ(V) ≥ 0. In addition one has:

I. If for all V one has the equalities µǫ(V) = µǫ(Ω
1
Y (log S)) and if

δ(V) = 0 then U is either a ball quotient or a generalized Hilbert
modular surface.

II. Assume that Ω1
Y (log S) is the direct sum of two line bundles Ω1

and Ω2 with µǫ(V) = µǫ(Ω1) = µǫ(Ω2) for all C-sub variations
of Hodge structures in R1f∗CV . Then U is a generalized Hilbert
modular surface.

III. Assume that µǫ(R
1f∗CV ) = µǫ(Ω

1
Y (log S)) and δ(R1f∗CV ) = 0.

Then U is a generalized Hilbert modular surface and Ω1
Y (log S) is

the direct sum of two line bundles Ω1 and Ω2 of the same slope.
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IV. In II) or III), replacing U by an étale covering, there exist invertible

sheaves Ω
1
2
i , and

(8.2) R1f∗CV = WQ ⊗ C = L1 ⊗ U1 ⊕ L2 ⊗ U2,

where the Li are the uniformizing variations of Hodge structures
with Higgs bundle

(

Ω
1
2
i ⊕ Ω

−1
2

i , θ : Ω
1
2
i −→ Ω

−1
2

i ⊗ Ωi ⊂ Ω
−1
2

i ⊗ Ω1
Y (log S)

)

,

and where the Ui are unitary local systems.
V. If in I) Ω1

Y (log S) is µ0-stable, U is a ball quotient. Replacing U

by an étale covering, there exists an invertible sheaf ωY (S)
1
3 , and

R1f∗CV = L ⊗ U ⊕ L̄ ⊗ Ū

for a unitary local system U concentrated in bidegree (0, 0) and
for L with Higgs bundle

(ωY (S)−
1
3 ⊗ Ω1

Y (log S) ⊕ ωY (S)−
1
3 , id).

Proof. I) has been shown in Proposition 2.6 and II) is a special case
of 8.1. Using I), Part III) is obvious. The explicit form of the variation
of Hodge structures in IV) and V) follows from Proposition 3.4 and from
Variant 7.5. q.e.d.

Let us consider the sheaves in part IV) of 8.4 a bit closer.

Lemma 8.5. The decomposition (8.2) is defined over a finite Galois

extension K of Q with Galois group G; i.e., Li and Ui are defined over

K and the decomposition exists for WQ ⊗ K.

Proof. In order to see that Li ⊗ Ui is defined over Q̄, one just has to
repeat the argument used to prove 6.2 or [V-Z04, 3.3]. For the tensor
product decompositions one argues as in [V-Z04, 3.7, iii)]). q.e.d.

Lemma 8.6. Assume that for all τ ∈ G \ {id} the local system Lτ
1

is unitary. Then the representation ρ1 of L1 is discrete, and some étale

covering of U is a product of two curves.

Proof. Consider the adjoint representation End(WQ). Obviously it
has a Z-structure. Moreover End0(L1) is a direct factor of End(WQ)⊗Q̄.
Hence for the ring O of integers in some algebraic number field K the
system End0(L1) inherits an O-structure.

By assumption, the Weil restriction W(End0(L1)) contains only one
noncompact factor, End0(L1). Since W(End0(L1)) has a Z-structure
End0(L1) must be discrete.

Consider the adjoint representation Sl2 → Aut(sl2). Since its kernel
is finite, and since End0(L1) is discrete, one finds L1 to be discrete.

q.e.d.
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Corollary 8.7. If in the decomposition (8.2) rk(U1) 6= rk(U2), then

some étale covering of U is the product of two curves.

Proof. Assume that rkU1 = ν < rkU2 = g − ν. Consider the gth
wedge product

g
∧

(W) =

g
∧

(L1 ⊗ U1 ⊕ L2 ⊗ U2).

It has one direct factor Sν(L1)⊗Sn−ν(L2) and all other direct factors are
tensor products of Ss(L1), St(L2) and of unitary local systems, where
s ≤ ν and t ≤ g − ν.

For τ ∈ Gal(Q̄/Q), one has Lτ
2 6∼= L1. Otherwise, since

∧g(R1f∗Q̄X)
is defined over Q, it would have a direct factor of the form Sg−ν(L1)⊗U,
contradicting ν < g − ν.

Hence the local system Lτ
2 is either isomorphic to L2 or it is unitary.

The Weil scalar restriction W(L2) has a Q−structure, and it is the direct
sum over all local systems, conjugate to L2. Hence except of L2 all the
direct factors of W(L2) are unitary. By Lemma 8.6 some finite étale
covering of U is a product of two curves, contradicting the assumption
made. q.e.d.

Recall that a generalized Hilbert modular surface U is a Hilbert mod-
ular surface in the usual sense, if and only if the local system L1 ⊕ L2

in Lemma 8.5 is defined over Q, whereas each of the Lι is defined over
a real quadratic extension K of Q. Moreover L1 ⊕L2 has a Z structure,
hence it is the variation of Hodge structures of a family h : Z → U of
Abelian surfaces. As well known, for such a Hilbert modular surface
one has S = Y \ U 6= ∅.

Corollary 8.8. Assume that U is a generalized Hilbert modular sur-

face with S 6= ∅, and that no étale covering of U is the product of

two curves. Then, replacing U by an étale covering, the unitary local

systems Uι in (8.2) are trivial, and Lι is defined over a real quadratic

extension K of Q. In particular U is a Hilbert modular surface, and

f : V → U is isogenous to Z ×U · · · ×U Z. The fibres of g : Z → U have

real multiplication.

Proof. Since no finite étale covering of Y \S is a product of two curves,
the Galois group Gal(Q̄/Q) permutes L1 and L2. By Proposition 6.5,
we may assume that U1 and U2 are both trivial. Then L1 ⊕ L2 has a
Z structure, and V → U is isogenous to Z ×U · · · ×U Z for a family of
Abelian surfaces g : Z → U .

The general fibre Fη of g must be a simple Abelian surface, since
otherwise it would be isogenous to the product of elliptic curves and
the Li would be defined over Q. Moreover, since

End(L1 ⊕ L2) = C2 ⊕ L1 ⊗ L∨
2 ⊕ L∨

1 ⊗ L2,
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the dimension of End(Fη) ⊗ Q is two. By the well known classification
of endomorphisms of Abelian surfaces (see for example [B-L92, 5.5.7])
this implies that Fη either has real multiplication, or that End(Fη)⊗Q is
an imaginary quadratic extension of Q. However, by [B-L92, Example
6.6 in Chapter 9] there are only finitely many surfaces of the second
type. q.e.d.

Of course, there are generalized Hilbert modular surfaces with S = ∅
(see [Sh78] or [G02]), and for some of them the variation of Hodge
structures has rank bigger than two, hence the unitary systems Ui will
be non-trivial.

Variations of Hodge structures, uniformizing certain ball quotients
U = Y \ S, have been constructed in [D-M86] with S 6= ∅ and with
S = ∅. For example, the moduli scheme of 5 points in P1 is an example
of the second kind (in [D-M86, p. 86] there seems to be a misprint
in Example 5). In [V-Z05] it is shown that this example, a compact
two dimensional ball quotient in the moduli scheme of 4-dimensional
Jacobian varieties, is a Shimura variety. We will give a generalization
in the next two sections.

9. The decomposition of certain wedge products

In the next two sections we will use the assumptions made in The-
orem 6. To show that U is a Shimura variety we will determine the
possible Hodge cycles for self products of f : V → U , hence the possible
trivial (or unitary) local sub-systems in wedge products of the local sys-
tems described in Theorem 5, b). In this section we will just state one
application, the rigidity of the family of Abelian varieties in Theorem
6. Lemma 9.4 will be needed again in Section 10.

Let V be a variation of Hodge structures of weight k with Higgs
bundle

(

E =
⊕

p+q=k

Ep,q, θ =
⊕

p+q=k

θp,q

)

.

Let q0 be the smallest integer with Ek−q0,q0 6= 0. The i-th iterated
cup product with the Kodaira-Spencer map defines a morphism, the
Griffiths-Yukawa coupling,

θi : Ek−q0,q0
θk−q0,q0−−−−−→ Ek−q0−1,q0+1 ⊗ Ω1

S

θk−q0−1,q0+1−−−−−−−−→

Ek−q0−2,q0+2⊗S2(Ω1
S) −→ · · · θk−q0−i+1,q0+i−1−−−−−−−−−−−→ Ek−q0−i,q0+i⊗Si(Ω1

S).

We define its length or the length of V to be

ς(V) = Min{i ≥ 1; θi = 0} − 1.
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If V and W are two variations of Hodge structures, one has

ς(V ⊗ W) = ς(V) + ς(W).

Let Lj be one of the uniformizing variations of Hodge structures in
Addendum 5, say with Higgs bundle Lj ⊕ Lj ⊗ Tj , where Ωj is one of
the stable direct factors of Ω1

Y (log S), of rank nj , where Tj = Ω∨
j and

where Lnj+1
j = det(Ωj). The Higgs field is given by the homotheties

OY → End(Ωj), tensorized with idLj
.

Lemma 9.1. For 1 ≤ k ≤ nj, the variations of Hodge structures
∧k Lj and

∧k L∨
j are concentrated in two degrees, and the Higgs fields

of
∧k Lj and

∧k L∨
j are given by injections

Lk
j ⊗

k−1
∧

Tj −→ Lk
j ⊗

k
∧

Tj ⊗ Ωj and

L−k
j ⊗

k
∧

Ωj −→ L−k
j ⊗

k−1
∧

Ωj ⊗ Ωj

respectively. For k = nj +1 the local systems
∧k Lj and

∧k L∨
j are both

of rank one and of bidegree (1, nj) and (nj , 1).

Proof. The Higgs fields of
∧k Lj and

∧k′

L∨
j are induced by natural

direct factors
k−1
∧

Tj ⊂
k

∧

Tj ⊗ Ωj and
k′

∧

Ωj ⊂
k′−1
∧

Ωj ⊗ Ωj

(see for example [F-H91, (6.9), p. 79]) tensorized with Lk
j and L−k′

j ,
respectively. q.e.d.

Corollary 9.2. Let U be a unitary local system of rank ℓ. Then

ς(
k

∧

(Lj ⊗ U)) = ς(
k

∧

(Lj ⊗ U)∨) = ℓ

for ℓ ≤ k ≤ ℓ · nj whereas

1 ≤ ς(
k

∧

(Lj ⊗ U)) = ς(
k

∧

(Lj ⊗ U)∨) < ℓ

for 0 < k < ℓ and for ℓ · nj < k < ℓ · (nj + 1). For k = ℓ · (nj + 1) both,
∧k(Lj ⊗U) and

∧k(Lj ⊗U)∨ are unitary local systems, concentrated in

bidegree (ℓ, ℓ · nj) and (ℓ · nj , ℓ), respectively.

Proof. It is sufficient to consider
∧k(Lj ⊗ U). The length of a Higgs

field can be calculated in a general point, so by abuse of notations we
may assume that U = Cℓ, and

k
∧

(Lj ⊗ U) =
∑

k1+···+kℓ=k

ℓ
⊗

i=1

ki
∧

Lj .
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By 9.1

ς
(

ℓ
⊗

i=1

ki
∧

Lj

)

= ℓ

if and only if none of the ki is zero or equal to nj + 1. This will hold
true for at least one of the direct factors, whenever ℓ ≤ k ≤ ℓ ·nj . q.e.d.

Recall that by Proposition 4 each irreducible C-sub-variation of Hodge
structures in R1f∗CV has a Higgs field involving only one of the stable
direct factors of Ω1

Y (log S). Theorem 5 allows us to write for a Q-sub-
variation WQ of Hodge structures in R1f∗QV

W = WQ ⊗ C =
s

⊕

i=1

V̂i with(9.1)

V̂i =

{

Vi for i = 1, . . . , s′′

Vi ⊕ V∨
i , for i = s′′ + 1, . . . , s,

for the local systems Vi = Li ⊗ Ui with Li as in Theorem 5 and with
Ui unitary. We denote the natural antisymmetric form on R1f∗QV by
Q and we write ℓi = rk(Ui).

Lemma 9.3.

a. The local systems V̂i and the decomposition (9.1) are defined over

a totally real number field K and are orthogonal with respect to

the form Q. Moreover we may choose K such that W decomposes

as a direct sum of irreducible K-sub-variation of Hodge structures

Tj which remain irreducible over R.

b. In a) assume that Tj decomposes over C as the direct sum of two

non-trivial sub-variations of Hodge structures. Then this decom-

position is defined over K(
√

a) for some a ∈ K, totally negative.

c. For i = s′′ + 1, . . . , s there exist totally negative elements ai ∈ K
such that Vi is defined over K(

√
ai). The involution ιi of K(

√
ai)

over K interchanges Vi and V∨
i .

Proof. As in the proof of Lemma 6.2, we start by copying the argu-
ment from [V-Z04, 3.3].

Let W be any variation of Hodge structures defined over a totally real
number field K0, and allowing a decomposition as the one in (9.1) over
R. Consider a family {Mt}t∈∆ of local sub-systems of W defined over a

small disk ∆, with M0 = V̂s. Let us write

X =
s−1
⊕

i=1

V̂i.

For t ∈ ∆ let (Ft, θt) denote the Higgs bundle of an irreducible direct

factor of Mt. Then F 1,0
t → F 0,1

t ⊗Ωs is injective for t sufficiently small.
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If the composite

ρ : Mt
⊂−−−−→ W −→ X

is non-zero, the complete reducibility of local systems coming from vari-
ations of Hodge structures implies that Mt and X contain a common
direct factor. Since the Higgs field G1,0 → G0,1⊗Ω1

Y (log S) of X factors
through

G1,0 −→ G0,1 ⊗
s−1
⊕

i=1

Ωi −→ G0,1 ⊗ Ω1
Y (log S),

one obtains a contradiction.

So M0 is rigid as a local sub-system, hence it can be defined over Q̄.
The complex conjugation maps the local system Vs to its dual, hence
to Vs if s′′ = s or to V∨

s , otherwise. Then V̂s is invariant under complex
conjugation, hence it can be defined over L ⊂ R ∩ Q̄.

As in the proof of [V-Z04, 3.3] this implies that X is also defined over
L, and that the splitting W = Vs ⊕ X can be chosen to be orthogonal.
By induction we may assume that the decomposition (9.1) is defined
over L and orthogonal.

If V̂s decomposes as a direct sum of irreducible C-sub-variations of
Hodge structures, [V-Z04, 3.2] allows us to choose the decomposition
to be defined over Q̄.

Taking the sum over complex conjugates, we obtain a decomposition
over R∩ Q̄ in factors, which remain irreducible over R. Enlarging L we
will assume that this decomposition is defined over L.

Let T be an irreducible L-sub-variation of Hodge structures in Vs. So
T̄ = T. Since Q(v, v̄) 6= 0 for all local sections of W, one has T̄ = T∨,
and the restriction Q to T is non degenerate.

Let σ : L → C be any embedding, and σ̄ its conjugate. So Tσ̄ is equal
to Tσ. Since Q is defined over Q, one finds

Tσ̄ = (Tσ)∨ = (T∨)σ = Tσ

and Tσ is defined over σ(L) ∩ R. In different terms, if K ⊂ L is a
minimal field of definition of T, it must be totally real.

Again, [V-Z04, 3.3] allows to find a splitting of T in W which is
orthogonal and defined over K. By induction on the rank of W one
obtains 9.3, a).

Assume now, that T = T′ ⊕ T′′ is a non-trivial decomposition over
C. Then T′ can be defined over some quadratic extension K(

√
a). It

remains to verify that a is totally negative. If not, there is an embedding
γ : K(

√
a) → R, and T′γ is defined over K(

√
a). The above argument

for this variation of Hodge structures tells us that it is defined over
a totally real subfield, hence over K. Then T′ is defined over R, a
contradiction.
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Finally part c) follows from a) and b). q.e.d.

The local system
∧k W decomposes over Q̄ as a direct sum of local

systems of the form

Wk =
(

s′′
⊗

i=1

ki
∧

Vi

)

⊗
(

s
⊗

i=s′′+1

ki
∧

Vi ⊗
k′

i
∧

V∨
i

)

for some tuple k = (k1, . . . , ks′′ , ks′′+1, k
′
s′′+1, . . . , ks, k

′
s), with

(9.2)
s′′
∑

i=1

ki +
s

∑

s′′+1

(ki + k′
i) = k.

Lemma 9.4. Assume that ̺ ∈ H0(Y, Wk) is non-zero. Then ̺ is

concentrated in one bidegree (p = p(̺), q = q(̺)). Moreover,

a. if ki = k′
i for s′′ < i ≤ s, then p = q.

b. Otherwise, p(̺) = q(¯̺) and q(̺) = p(¯̺), where ¯̺ is the complex

conjugate of ̺.

Proof. Let (Fi, τi) denote the Higgs bundle of
∧ki(Li ⊗ Ui), hence

Fmi,ki−mi

i =

mi
∧

(Li ⊗ Ui) ⊗
ki−mi
∧

(Li ⊗ Ti ⊗ Ui).

For s′′ < i ≤ s we write (F ′
i , τ

′
i) for the Higgs bundle of

∧k′

i(Li ⊗ Ui)
∨,

hence

F
m′

i,k
′

i−m′

i

i =

m′

i
∧

(L∨
i ⊗ U∨

i ⊗ Ωi) ⊗
k′

i−m′

i
∧

(L∨
i ⊗ U∨

i ).

The section ̺ defines a local sub-system C ⊂ Wk, hence a direct factor

OY of the Higgs bundle (Fk, τk). Remark that Fm,k−m
k decomposes in

a direct sum of factors

(

s
⊗

i=1

Fmi,ki−mi

i

)

⊗
(

s
⊗

i=s′′+1

F ′m
′

i,k
′

i−m′

i

i

)

(9.3)

with m =
s

∑

i=1

mi +
s

∑

i=s′′+1

m′
i and k =

s
∑

i=1

ki +
s

∑

i=s′′+1

k′
i.
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The sheaves in (9.3) are tensor products of poly-stable sheaves. One
finds for each direct factor F of the sheaf in (9.3)

µ(F) =
s

∑

i=1

(

mi · c1(Li) + (ki − mi) · (c1(Li) − Υ(Ωi))
)

.c1(ωY (S))

−
s

∑

i=s′′+1

(

(k′
i − m′

i) · c1(Li) + m′
i · (c1(Li) − Υ(Ωi))

)

.c1(ωY (S))

=
s

∑

i=1

((

ki − (ki − mi)
ni + 1

ni

)

· µ(Li)

)

−
s

∑

i=s′′+1

((

k′
i − m′

i

ni + 1

ni

)

· µ(Li)

)

.

Assume that F = OY . Since µ(Li) > 0 this implies for i = 1, . . . , s′′

that 0 = ki − 2(ki − mi), hence ki = 2mi. For s′′ < i ≤ s one finds

0 = niki−(ki−mi)(ni+1)−nik
′
i+m′

i(ni+1) = (mi+m′
i)(ni+1)−ki−nik

′
i.

If in either one of those cases one has ki = k′
i, then mi + m′

i = ki and
one finds k = 2m, as claimed in a). In general,

mi + m′
i =

1

ni + 1
(ki + nik

′
i)

is uniquely determined by k, hence m as well, and one obtains b). q.e.d.

If for a family of g-dimensional Abelian varieties f : V → U the length
of Rgf∗CV =

∧g R1f∗CV is g, then the family is rigid (see [V-Z05,
Section 3] and the references given there). This criterion will only apply
if in Theorem 5 all the stable direct factors of Ω1

Y (log S) are invertible,
hence if ni = 1 for all i.

Nevertheless the rigidity holds true, even if in Theorem 5 one has
direct factors Ωi with n1 > 0.

Lemma 9.5. All global endomorphisms End(R1f∗QV ) are pure of

bidegree (0, 0). In particular the family f : V → U is rigid.

Proof. By [F83] the second part follows from the first one. To keep
the notations consistent with those of the proof of 9.4 we will show
that each global section ̺ of

⊗2 W is of pure bidegree (1, 1), for W =
R1f∗CV . Assume that there is a section of a different bidegree, let us
say of bidegree (2, 0). Then ̺ gives rise to some trivial direct factor of

F1 = (Li ⊗ Ui) ⊗ (Lj ⊗ Uj),

of F2 = (L∨
i ⊗ U∨

i ⊗ Ωi) ⊗ (L∨
j ⊗ U∨

j ⊗ Ωj),

or of F3 = (Li ⊗ Ui) ⊗ (L∨
j ⊗ U∨

j ⊗ Ωj).
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One has Υ(F1) = c1(Li) + c1(Lj),

Υ(F2) = Υ(Ωi) − c1(Li) + Υ(Ωj) − c1(Lj) =
1

ni
c1(Li) +

1

nj
c1(Lj)

and Υ(F3) = c1(Li) + Υ(Ωj) − c1(Lj) = c1(Li) +
1

nj
c1(Lj).

Obviously, none of those poly-stable sheaves can have a trivial direct
factor. q.e.d.

10. Shimura varieties

Let F be an Abelian variety and let Q be the polarization, i.e., an
antisymmetric non-degenerate form on H1(F, Q). The Hodge group
Hg(F ) is defined in [M66] as the smallest Q-algebraic subgroup of
Sp(H1(F, Q), Q), whose extension to R contains the complex structure

u : S1 −→ Sp(H1(F, R), Q)

(see also [M69]), where z acts on (p, q) cycles by multiplication with
zp · z̄q.

In a similar way, one defines the Mumford-Tate group MT(F ). The
complex structure u extends to a morphism of real algebraic groups

h : ResC/RGm −→ Gl(H1(F, R)),

and MT(F ) is the smallest Q-algebraic subgroup of Gl(H1(F, Q)), whose
extension to R contains the image (see [D82], [D72], [Mo98] and
[Sc96]). Let us recall some of its properties, stated in [Mo98] and
[D82] with the necessary references. The group MT(F ) is reductive,
and it preserves the intersection form Q up to scalar multiplication.

Equivalently MT(F ) is the largest Q-algebraic subgroup of the lin-
ear group Gl(H1(F, Q)), which leaves all Hodge cycles of F × · · · × F
invariant, hence all elements

η ∈ H2p(F × · · · × F, Q)p,p =
[

2p
∧

(H1(F, Q) ⊕ · · · ⊕ H1(F, Q))
]p,p

.

For a smooth family of Abelian varieties f : V → U there exists a
union Σ of countably many proper closed subvarieties of Y such that
MT(f−1(y)) is independent of y for y ∈ U \ Σ (see [D72], [Mo98] or
[Sc96]). Let us fix such a very general point y ∈ U \ Σ in the sequel
and F = f−1(y). Then the Mumford-Tate group MT of R1f∗QV is the
Mumford-Tate group of F .

Consider Hodge cycles η on F which remain Hodge cycles under par-
allel transform. Then MT is the largest Q-subgroup of Gl(H1(F, Q))
which leaves all those Hodge cycles invariant ([D72, §7] or [Sc96, 2.2]).
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Let Mon0 be the algebraic monodromy group, i.e., the connected
component of the Zariski closure of the image of the monodromy repre-
sentation. Let us recall two results from [D72] and [A92] (see [Mo98,
1.4]).

Proposition 10.1.

a. Mon0 is a normal subgroup of the derived subgroup MTder of MT.

b. If for some y′ ∈ Y the fibre f−1(y′) has complex multiplication,

then Mon0 = MTder.

Lemma 10.2. Let K be a totally real Galois extension of Q with

Galois group Γ, and let R1f∗KV = W1 ⊕ · · · ⊕Wν be the decomposition

in irreducible K-sub-variations of Hodge structures. Then MT ⊗ K is

conjugate to a subgroup of Gl(W1)×· · ·×Gl(Wν) where Wi denotes the

fibre of Wi over y.

Proof. Since the decomposition W1⊕· · ·⊕Wν is defined over a subfield
of R, one can decompose the complex structure correspondingly as a
sum of hi : ResC/RGm → Gl(Wi ⊗K R). Then Gl(W1) × · · · × Gl(Wν),
extended to R, contains the image of h. q.e.d.

Proposition 10.3. If f : V → U satisfies the assumptions made in

Theorem 5 one has Mon0 = MTder.

Proof. Recall that MT = MT(F ) for a very general fibre F of f . By
[S92, 4.4] Mon0 is reductive. By [D82, 3.1 (c)] it is sufficient to show
that each tensor

η ∈
k

∧

(

H1(F, Q) ⊕ · · · ⊕ H1(F, Q)
)

= Hk(F × · · · × F, Q)

which is invariant under Mon0 is also invariant under MTder. By abuse
of notations, let us replace F × · · · × F by F .

So we will consider sections Hk(F, Q). Since each section which is
invariant under Mon0 is a sum of global sections

η ∈ H0
(

U,
k

∧

WQ

)

,

for Q-irreducible local sub-system WQ ⊂ R1f∗QV , it is sufficient to show

that such η are invariant under MTder.
Let L be a Galois extension of Q with Galois group Γ, containing all

the fields K(
√

ai) constructed in 9.3. Over L the section η decomposes
as

η =
∑

I

ηk
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where I is a set of tuples k = (k1, . . . , ks′′ , ks′′+1, k
′
s′′+1, . . . , ks, k

′
s), sat-

isfying the equation (9.2), and where

ηk ∈ Wk =
(

s′′
⊗

i=1

ki
∧

Vi

)

⊗
(

s
⊗

i=s′′+1

ki
∧

Vi ⊗
k′

i
∧

V∨
i

)

.

If in the decomposition (9.1) one has s = s′′, or more generally if ki = k′
i

for i = s′′ + 1, · · · , s and for all k with ηk 6= 0, then by 9.4 the section η
has bidegree (p(η), p(η)), hence it is a Hodge cycle and invariant under
MTder.

Otherwise choose some k(0), say with k
(0)
s 6= k′(0)

s , and ηk(0) 6= 0.

Consider the fix group Γ′ of Wk(0) . Replacing ηk(0) by the sum over its

conjugates under Γ, we may assume that Γ′ is also the fix group of ηk(0) .

Let η′ be the sum over all different conjugates of ηk(0) under the action

of Γ; then η = η′ + η′′, with η′ and η′′ defined over Q.
Hence it is sufficient to consider η = η′, hence to assume that η is

equal to the sum over all different conjugates of ηk(0) . Choosing the

index set I to be minimal, one has

I ≃ {ηk(0) , . . . , ηk(ν)},
hence a transitive action of Γ on I. We write this action as k 7→ γ(k).
So for each ι there is some γι ∈ Γ with ηk(ι) = γι(ηk(0)).

The section η gives rise to

σ′ =
ν

∧

ι=1

ηk(ι) .

The Galois group Γ permutes the different components of η and σ′γ =
±σ′. This defines homomorphism χ : Γ → {±1}. Choose a generator β
of the Galois extension of Q, defined by this homomorphism, such that
Γ acts on β by multiplication with χ. Then σ = β ·σ′ is invariant under
Γ.

By 9.4 each ηk is concentrated in a unique bidegree (p(ηk), q(ηk)).
Posing the conditions

p(ηk) − q(ηk) < 0 or p(ηk) − q(ηk) > 0

defines two disjoint subsets I+ and I− of I of the same cardinality. If
ηk ∈ I+, then its complex conjugate lies in I−, and vice versa. So 9.4
implies that the sum over all p(ηk) with ηk ∈ I+ coincides with the sum
over all q(ηk) with ηk ∈ I−.

Then σ is pure of bidegree (p, p) for some p. Finally remark that
σ is again a section of some tensor bundle, hence a Hodge cycle and
invariant under MT.

Let TL denote the Weil restriction of the one dimensional subspace

〈ηk(0)〉L of
∧k WL. So TL is generated by the ηγ(k) for γ ∈ Γ, and a basis
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of TL is given by the sections ηk(0) , . . . , ηk(ν) . The group MT leaves σ

invariant, hence the subspace TL as well.
By Lemma 9.3 and Lemma 10.2 the group MT respects the decom-

position of R1f∗KV in irreducible K-sub-variation of Hodge structures.
Hence if one considers the decomposition in L irreducible direct fac-
tors, it can for each i only permute Vi and V∨

i . Since MTder lies in the

kernel of the corresponding morphism MT → {±1}⊕s the group MTder

respects all the Vi and V∨
i , hence Wk(0) .

On the other hand, since the fix groups of Wk(0) and of ηk(0) in Γ

coincide, the intersection Wk(0) ∩TL is generated by ηk(0) . In particular

one finds for h ∈ MTder some α(0)(h) ∈ L with h(ηk(0)) = α(0)(h) · ηk(0) .

Then

h(η) =
ν

∑

ι=0

α(ι)(h) · ηk(ι) ,

where γ(α(0)(h)) = α(ι)(h) if and only if γ(k(0)) = k(ι). Obviously, for
g, h ∈ MTder,

α(0)(g ◦ h) = α(0)(g) ◦ α(0)(h),

and one obtains a homomorphism

Ψ : MTder −→ L∗ × · · · × L∗.

By definition of MTder such a morphism must be trivial, and

η = ηk(0) + · · · + ηk(ν)

is invariant under MTder, as claimed. q.e.d.

As mentioned in Remark 4.4, the poly-stability of E1,0 and E0,1 for
all direct factors of the variation of Hodge structures allows us to ap-
ply B. Moonen’s characterization of bounded symmetric domains in Ag

[Mo98]. There one uses the existence of at least one CM point in U .
Then 10.1, b), would imply the equality Mon0 = MTder.

After we established such an equality by different arguments, one
can use [Mo98, 3.8] to deduce that U is a Shimura subvariety of the
moduli stack Ag. Let us sketch the argument, using a slightly different
language.

The Hodge group Hg = Hg(F ) is contained in

MT ∩ Sp(H1(F, QF ), Q).

By 10.2 the induced real group HgR is conjugate to a subgroup of

Sp(V̂1, Q) × · · · × Sp(V̂s′′ , Q) × Sp(V̂s′′+1, Q) × · · · × Sp(V̂s, Q),

where again V̂i is the fibre of V̂i at y ∈ U .
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Mumford constructs in [M66] a Shimura variety X (Hg, u), as the
image of

Φ : HgR −→ Sp(H1(F, Q), Q)/
(

centralizer of the
complex structure u

)

= Ãg −→ Ag.

The morphism Φ factors through the quotient of HgR by a maximal
compact subgroup.

The monodromy group Mon0 is contained in Hg, hence equal to
Hgder = MTder. We may replace in Mumford’s construction Hg by the
isogenous group Hgder, and the dimension of X (Hg, u) is the dimension
of Φ(Hgder).

Corollary 10.4. dim(X (Hg, u)) ≤
s

∑

i=1

ni.

Proof. The variation of Hodge structures comes from a representation
with values in the real group

G = (U(1, 1) × U(ℓ1)) × · · · × (U(1, 1) × U(ℓs′′))

× (U(ns′′+1, 1) × U(ℓs′′+1)) × · · · × (U(ns, 1) × U(ℓs)).

Since Mon0 = Hgder is contained in G, the image of Φ lies in the quotient
of G by a maximal compact subgroup. Since U(ℓi) is compact, the latter
is isogenous to

U(1, 1)/K1 ×· · ·×U(1, 1)/Ks′′ ×U(ns′′+1, 1)/Ks′′+1 ×· · ·×U(ns, 1)/Ks

for maximal compact Ki ⊂ U(ni, 1). However, U(ni, 1)/Ki is a ball
quotient of dimension ni. q.e.d.

Proof of Theorem 6. By Proposition 4 we know that for each irreducible
C-sub-variation of Hodge structures the conditions a)–c), stated there,
hold true. So we can apply Theorem 5 and deduce that after replacing
Y by an étale covering, all such V are of the form Ui⊗Li with Ui unitary
and Li as in Theorem 5, b).

The structure of the irreducible components of the variation of Hodge
structures was used in Section 9 and in this section to show Corollary
10.4. The rigidity has been verified in Lemma 9.5. So it remains to
show that Corollary 10.4 together with Lemma 4.2 imply that U is a
Shimura variety.

Since X (Hg, u) is a moduli variety for Abelian varieties with Hodge
group contained in Hg, the morphism ϕ : U → Ag factors through

U
ϕ′

−−−−→ X (Hg, u)
⊂−−−−→ Ag.

By assumption, ϕ is generically finite, hence 10.4 implies that ϕ′ is
dominant. On the other hand, writing F 1,0 ⊕F 0,1 for the Higgs bundle
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of R1f∗CV , we had seen in Lemma 4.2 that the inclusion

T 1
U −→ ϕ∗T 1

Ag
= S2(F 0,1)|U

splits. So T 1
U → ϕ′∗T 1

X (Hg,u) splits as well, and ϕ is étale. q.e.d.

References

[A92] Y. André, Mumford-Tate groups of mixed Hodge structures and the the-

orem of the fixed part, Compositio Math. 82 (1992) 1–24, MR 1154159,
Zbl 0770.14003.

[B-L92] Ch. Birkenhage & H. Lange, Complex Abelian Varieties, Grundlehren d.
math. Wiss., 302, 1992, Springer-Verlag, Berlin-Heidelberg, MR 1217487,
Zbl 0779.14012.

[D72] P. Deligne, La conjecture de Weil pour les surfaces K3, Invent. Math. 15

(1972) 206–226, MR 0296076, Zbl 0219.14022.

[D82] , Hodge cycles on abelian varieties (Notes by J.S. Milne), Springer
Lecture Notes in Math. 900 (1982) 9–100, MR 0654325, Zbl 0537.14006.

[D-M86] P. Deligne & G. Mostow, Monodromy of hypergeometric functions and

non-lattice integral monodromy, IHES 63 (1986) 5–90, MR 0849651,
Zbl 0615.22008.

[Do87] S.K. Donaldson, Infinite determinants, stable bundles and curvature, Duke
Math. J. 54 (1987) 231–247, MR 0885784, Zbl 0627.53052.

[E-V92] H. Esnault & E. Viehweg, Lectures on Vanishing Theorems, DMV-Seminar,
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