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Abstract

Let X be a compact connected strongly pseudoconvex CR Man-
ifold of real dimension 2n− 1 in C

n+1. Tanaka introduced a spec-

tral sequence E
(p,q)
r (X) with E

(p,q)
1 (X) being the Kohn-Rossi co-

homology group and E
(k,0)
2 (X) being the holomorphic De Rham

cohomology denoted by Hk
h(X). We study the holomorphic De

Rham cohomology in terms of the s-invariant of the isolated sin-
gularities of the variety V bounded by X. We give a characteri-
zation of the singularities with vanishing s-invariants. For n ≥ 3,
Yau used the Kohn-Rossi cohomology groups to solve the classical
complex Plateau problem in 1981. For n = 2, the problem has re-
mained unsolved for over a quarter of a century. In this paper, we
make progress in this direction by putting some conditions on X
so that V will have very mild singularities. Specifically, we prove
that if dimX = 3 and H2

h(X) = 0, then X is a boundary of com-
plex variety V with only isolated quasi-homogeneous singularities
such that the dual graphs of the exceptional sets in the resolution
are star shaped and all curves are rational.

1. Introduction

One of the natural fundamental questions of complex geometry is
to study the boundaries of complex varieties. For example, the famous
classical complex Plateau problem asks which odd dimensional real sub-
manifolds of C

N are boundaries of complex submanifolds in C
N . In

1975, Harvey and Lawson [Ha-La] showed that for any compact con-
nected CR manifold X in C

N , there is a unique complex variety V in C
N

such that the boundary of V is X. Therefore a natural and important
question is to study V in terms of X explicitly.
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If X is a strongly pseudoconvex CR manifold of dimension 2n − 1,
n ≥ 2, contained in the boundary of a bounded strongly pseudoconvex
domain D in C

N , then V has boundary regularity at every point of X
and V has only isolated singularities in V −X (cf. [Lu-Ya]). The next
fundamental question is to determine when X is a boundary of a com-
plex submanifold in C

N , i.e., when V is smooth. In [Do], Donnelly first
found a necessary condition depending on eta invariants of Atiyah and
Singer. In 1963, J.J. Kohn [Ko] solved the famous ∂-Neumann problem.
Based on this work, Kohn and Rossi [Ko-Ro] introduced the fundamen-
tal CR-invariant, the Kohn-Rossi cohomology groups Hpq

KR(X). They
proved the finite dimensionality of their cohomology groups. A strongly
pseudoconvex manifold M is a modification of a Stein space V with
isolated singularities. In [Ko-Ro], Kohn and Rossi conjectured that in
general, either there is no boundary cohomology of the boundary X in
degree (p, q) for q 6= 0, n − 1, or it must result from the interior singu-
larities of V . Yau [Ya1] solved the Kohn-Rossi conjecture affirmatively.

Theorem 1. Let M be a strongly pseudoconvex manifold of dimen-

sion n(n ≥ 3) which is a modification of a Stein space V at the isolated

singularities x1, . . . , xm. Then dimHp,q
KR(X) =

m∑
i=1

bp,q+1
xi

for 1 ≤ q ≤

n− 2, where bp,q+1
xi

= dim Hq+1
{xi}

(V, Ωp
V ) is a local invariant of the singu-

larity xi. Suppose that x1, . . . , xm are hypersurface singularities. Then

for 1 ≤ q ≤ n − 2,

dim Hp,q
KR(X) =

{
0 if p + q ≤ n − 2 or p + q ≥ n + 1

τ1 + · · · + τm if p + q = n − 1 or p + q = n

where τi is the number of moduli of V at xi and can be computed ex-

plicitly.

As a result of the above theorem, Yau [Ya1] answers the classical
complex Plateau problem for some cases.

Theorem 2. Let X be a compact connected strongly pseudoconvex

CR-manifold of real dimension 2n − 1, n ≥ 3, in the boundary of a

bounded strongly pseudoconvex domain D in C
n+1. Then X is a bound-

ary of the complex submanifold V ⊂ D − X if and only if Kohn-Rossi

cohomology groups Hp,q
KR(X) are zero for 1 ≤ q ≤ n − 2.

For n = 2 in Theorem 2, X is a 3-dimensional CR manifold. The
classical complex Plateau problem remains unsolved for over a quarter
of a century. The main difficulty is that the Kohn-Rossi cohomology
groups are infinite dimensional in this case. Let V be the complex
variety with X as its boundary. Then the singularities of V are surface
singularities. In order to solve the classical complex Plateau problem for
n = 2, one would like to ask under what kind of condition on X will V
have only very mild singularities. This paper solves the problem and is
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a natural continuation of [Ya1]. Our basic observation is the following.
Although Kohn-Rossi cohomology groups are infinite dimensional, we
can derive from them the holomorphic De Rham cohomology. In fact, in
[Ta], Tanaka introduced a spectral sequence Ep,q

r (X) with Ep,q
1 (X) being

the Kohn-Rossi cohomology group and Ek,0
2 (X) being the holomorphic

De Rham cohomology denoted by Hk
h(X). It is this holomorphic De

Rham cohomology which plays a central role in the above problem.
Let M be a n-dimensional complex manifold. The q-th holomorphic

De-Rham cohomology Hq
h(M) of M is defined to be the d-closed holo-

morphic q-forms quotient by the d-exact holomorphic q-forms. Holo-
morphic De-Rham cohomology was studied by Hörmander [Hö]. It is
well known that if M is a Stein manifold, then the holomorphic De-
Rham cohomology coincides with the ordinary De-Rham cohomology
[Hö]. Let X be a compact connected strongly pseudoconvex CR mani-
fold. Suppose that X is the boundary of a strongly pseudoconvex man-
ifold M which is a modification of a Stein space V with only isolated
singularities. Let A be the maximal compact analytic set in M . One
natural question is to find the relationship between Hq

h(X), Hq
h(M \ A)

and Hq
h(M).

Let (V, x) be an isolated singularity of dimension n. Let π : (M, A) →
(V, x) be a resolution of singularity with A as exceptional set. The
number

s = dim Γ(M \ A, Ωn)
/
(dΓ(M \ A, Ωn−1) + Γ(M, Ωn))

is an invariant of the singularity (V, x). It turns out that the s-invariant
plays an important role in the relationship between Hn

h (M \ A) and
Hn

h (M).

Theorem A. Let X be a compact connected (2n − 1)-dimensional

(n > 2) strongly pseudoconvex CR manifold. Suppose that X is the

boundary of a n-dimensional strongly pseudoconvex manifold M which

is a modification of a Stein space V with only isolated singularities

{x1, . . . , xm}. Let A be the maximal compact analytic set in M which

can be blown down to {x1, . . . , xm}. Then

(1) Hq
h(X) ∼= Hq

h(M \ A) ∼= Hq
h(M) for 1 6 q 6 n − 1

(2) Hn
h (X) ∼= Hn

h (M \A), dim Hn
h (M \A) = dim Hn

h (M) + s, where

s = s1 + · · · + sm, si is the s-invariant of the singularity (V, xi).

Remark 1.1. The above theorem in particular asserts that up to
degree n− 1, the holomorphic De-Rham cohomology can extend across
the maximal compact analytic set.

A normal surface singularity (V, 0) is Gorenstein if there exists a
nowhere vanishing holomorphic 2-form on V \{0}. Recall that isolated
hypersurface or complete intersection singularities are Gorenstein.
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It is a natural question to ask for a characterization of Gorenstein
surface singularities with vanishing s-invariant.

Theorem B. Let (V, 0) be a Gorenstein surface singularity. Let

π : M → V be a good resolution with A = π−1(0) as exceptional set.

Assume that M is contractible to A. If s = 0, then (V, 0) is a quasi-

homogeneous singularity, H1(A, C)=0, dimH1(M, Ω1)=dimH2(A, C)
+ dimH1(M,O), and H1

h(M) = H2
h(M) = 0.

Conversely, if (V, 0) is a two dimensional quasi-homogeneous Goren-

stein singularity and H1(A, C) = 0, then the s-invariant vanishes.

Remark 1.2.

(a) H1(A, C) = 0 is equivalent to the fact that all the curves in A are
rational and the first betti number of the dual graph of A is zero
(i.e., there are no loops in the dual graph of A).

(b) Quasi-homogeneity of (V, 0) plus H1(A, C) = 0 imply the dual
graph of A is star-shaped and all the curves are rational.

Definition 1.3. Let X be a CR manifold of real dimension 2n−1; X
is said to be a Calabi-Yau CR manifold if there exists a nowhere vanish-
ing holomorphic section in Γ(ΛnT̂ (X)∗) where T̂ (X) is the holomorphic
tangent bundle of X (cf. Remark 2.4 and the paragraph above it).

Remark 1.4.

(a) Let X be a CR manifold of real dimension 2n− 1 in C
n. Then X

is a Calabi-Yau CR manifold.
(b) Let X be a strongly pseudoconvex CR manifold of real dimension

2n−1 contained in the boundary of bounded strongly pseudocon-
vex domain in C

n+1. Then X is a Calabi-Yau CR manifold.

The following theorem is a fundamental theorem toward the com-
plete solution of the classical complex Plateau problem for 3-dimensional
strongly pseudoconvex Calabi-Yau CR manifold in C

n. The theorem is
interesting in its own right.

Theorem C. Let X be a strongly pseudoconvex compact Calabi-Yau

CR manifold of dimension 3. Suppose that X is contained in the bound-

ary of a strongly pseudoconvex bounded domain D in C
n. If the holo-

morphic De Rham cohomology H2
h(X) = 0, then X is a boundary of a

complex variety V in D with boundary regularity and V has only isolated

singularities in the interior and the normalizations of these singularities

are Gorenstein surface singularities with vanishing s-invariant.

Corollary D. Let X be a strongly pseudoconvex compact CR man-

ifold of dimension 3. Suppose that X is contained in the boundary of

a strongly pseudoconvex bounded domain D in C
3. If the holomorphic

DeRham cohomology H2
h(X) = 0, then X is a boundary of a complex
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variety V in D with boundary regularity and V has only isolated quasi-

homogeneous singularities such that the dual graphs of the exceptional

sets in the resolution are star shaped and all the curves are rational.

In Section 2, we shall recall the definition of holomorphic De-Rham
cohomology for a CR manifold. In Section 3, we shall recall the Siu
complex and prove that the s-invariant is indeed an invariant of the
singularity. Theorem A is also proved in this section. In Section 4,
we give a characterization for a two dimensional isolated Gorenstein
singularity to be a singularity with vanishing s-invariant. In particular,
we prove Theorem B and Theorem C.

2. Holomorphic De-Rham Cohomology of CR Manifolds

Kohn-Rossi cohomology was first introduced by Kohn-Rossi. Follow-
ing Tanaka [Ta], we reformulate the definition in a way independent of
the interior manifold.

Definition 2.1. Let X be a connected orientable manifold of real
dimension 2n − 1. A CR structure on X is an (n − 1)-dimensional
subbundle S of CT (X) (complexified tangent bundle) such that

(1) S ∩ S = {0}.
(2) If L, L′ are local sections of S, then so is [L, L′].

Such a manifold with a CR structure is called a CR manifold. There is
a unique subbundle H of T (X) such that CH = S ⊕ S. Furthermore,
there is a unique homomorphism J : H → H such that J2 = −1 and
S = {v − iJv : v ∈ H}. The pair (H, J) is called the real expression of
the CR structure.

Let X be a CR manifold with structure S. For a complex valued C∞

function u defined on X, the section ∂bu ∈ Γ(S
∗
) is defined by

(∂bu)(L) = L(u) , L ∈ S.

The differential operator ∂b is called the (tangential) Cauchy-Riemann
operator, and a solution u of the equation ∂bu = 0 is called a holomor-
phic function.

Definition 2.2. A complex vector bundle E over X is said to be
holomorphic if there is a differential operator

∂E : Γ(E) −→ Γ(E ⊗ S
∗
)

satisfying the following conditions:

(a) ∂E(fu)(L1) = (∂bf)(L1)u + f(∂Eu)(L1)

= (L1f)u + f(∂Eu)(L1)

(b) (∂Eu)[L1, L2] = ∂E(∂Eu(L2))(L1) − ∂E(∂Eu(L1))(L2) ,

where u ∈ Γ(E), f ∈ C∞(X) and L1, L2 ∈ Γ(S).
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The operator ∂E is called the Cauchy-Riemann operator and a solu-

tion u of the equation ∂Eu = 0 is called a holomorphic cross section.

Remark 2.3.

(a) The trivial bundle X × C is holomorphic with respect to the op-
erator ∂b defined above.

(b) In the case where X is a complex manifold, the above definition
of a holomorphic vector bundle is equivalent to the usual one in
terms of holomorphic transition functions, as can be verified by
standard application of Newlander-Nirenberg’s theorem.

A basic holomorphic vector bundle over a CR manifold X is the vector

bundle T̂ (X) = CT (X)/S. The corresponding operator ∂ = ∂ bT (X)
is

defined as follows. Let p be the projection from CT (X) to T̂ (X). Take

any u ∈ Γ(T̂ (X)) and express it as u = p(Z), Z ∈ Γ(CT (X)). For any

L ∈ Γ(S), define a cross section (∂u)(L) of T̂ (X) by

(∂u)(L) = p([L, Z]).

One can show that (∂u)(L) does not depend on the choice of Z and that

∂u gives a cross section of T̂ (X) ⊗ S
∗
. Furthermore one can show that

the operator u 7−→ ∂u satisfies (a) and (b) of Definition 2.2, using the
Jacobi identity in the Lie algebra Γ(CT (X)). The resulting holomorphic

vector bundle T̂ (X) is called the holomorphic tangent bundle of X.

Remark 2.4. If X is a real hypersurface in a complex manifold M ,

we may identify T̂ (M) with the holomorphic vector bundle of all (1,0)

tangent vectors to M and T̂ (X) with the restriction of T̂ (M) to X.
In fact, since the structure S of X is the bundle of all (1,0) tangent
vectors to X, the inclusion map CT (X) −→ CT (M) induces a natu-

ral map T̂ (X)
φ

−→ T̂ (M)|X which is a bundle isomorphism satisfying

∂(φ(u))(L) = φ(∂u(L)), u ∈ Γ(T̂ (X)), L ∈ S.

For a holomorphic vector bundle E over X, set

Cq(X, E) = E ⊗ ∧qS
∗

, C
q(X, E) = Γ(Cq(X, E))

and define a differential operator

∂
q

E : C
q(X, E) −→ C

q+1(X, E)

by

(∂
q

Eφ)(L1, . . . , Lq+1)

=
∑

i

(−1)i+1∂E(φ(L1, . . . , L̂i, . . . , Lq+1))(Li)

+
∑

i<j

(−1)i+jφ([Li, Lj ] , L1, . . . , L̂i, . . . , L̂j , . . . , Lq+1)
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for all φ ∈ C
q(X, E) and L1, . . . , Lq+1 ∈ Γ(S). One shows by standard

arguments that ∂
q

Eφ gives an element of C
q+1(X, E) and that ∂

q+1
E ∂

q

E =

0. The cohomology groups of the resulting complex {Cq(X, E), ∂
q

E} is
denoted by Hq(X, E).

Let {Ak(X), d} be the De-Rham complex of X with complex coeffi-
cients, and let Hk(X) be the De-Rham cohomology groups. There is
a natural filtration of the De-Rham complex, as follows. For any in-
teger p and k, put Ak(X) = ∧k(CT (X)∗) and denote by F p(Ak(X))
the subbundle of Ak(X) consisting of all φ ∈ Ak(X) which satisfy the
equality

φ(Y1, . . . , Yp−1, Z1, . . . , Zk−p+1) = 0

for all Y1, . . . , Yp−1 ∈ CT (X)x and Z1, . . . , Zk−p+1 ∈ Sx, x being the
origin of φ. Then

Ak(X) = F 0(Ak(X)) ⊃ F 1(Ak(X)) ⊃ · · ·

⊃ F k(Ak(X)) ⊃ F k+1(Ak(X)) = 0.

Setting F p(Ak(X)) = Γ(F p(Ak(X))), we have

A
k(X) = F 0(Ak(X)) ⊃ F 1(Ak(X)) ⊃ · · ·

⊃ F k(Ak(X)) ⊃ F k+1(Ak(X)) = 0.

Since clearly dF p(Ak(X)) ⊆ F p(Ak+1(X)), the collection {F p(Ak(X))}
gives a filtration of the De-Rham complex.

We denote by Hp,q
KR(X) the groups Ep,q

1 (X) of the spectral sequence

{Ep,q
r (X)} associated with the filtration {F p(Ak(X))}. We call Hp,q

KR(X)
the Kohn-Rossi cohomology group of type (p, q). More explicitly, let

Ap,q(X) = F p(Ap+q(X)), A
p,q(X) = Γ(Ap,q(X))

Cp,q(X) = Ap,q(X)/Ap+1,q−1(X), Cp,q(X) = Γ(Cp,q(X)).

Since d : A
p,q(X) −→ A

p,q+1(X) maps A
p+1,q−1(X) into A

p+1,q(X), it
induces an operator d′′ : C

p,q(X) −→ C
p,q+1(X). Hp,q

KR(X) are then the
cohomology groups of the complex {Cp,q(X), d′′}.

Alternatively Hp,q
KR(X) may be described in terms of the vector bundle

Ep = ∧p(T̂ (X)∗). If for φ ∈ Γ(Ep), u1, . . . , up ∈ Γ(T̂ (X)), Y ∈ S, we

define (∂Epφ)(Y ) = Y φ by

(Y φ)(u1, . . . , up)

= Y (φ(u1, . . . , up)) +
∑

i

(−1)iφ(Y ui, u1, . . . , ûi, . . . , up)

where Y ui = (∂ bT (X)
ui)(Y ), then we easily verify that Ep with ∂Ep is a

holomorphic vector bundle. Tanaka [Ta] proves that Cp,q(X) may be
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identified with Cq(X, Ep) in a natural manner such that

d′′φ = (−1)p∂Epφ, φ ∈ C
p,q(X).

Thus, Hp,q
KR(X) may be identified with Hq(X, Ep).

We denote by Hk
h(X) the groups Ek,0

2 (X) of the spectral sequence

{Ep,q
r (X)} associated with the filtration {F p(Ak(X))}. We call Hk

h(X)

the holomorphic De-Rham cohomology groups. The groups Hk
h(X)

are the cohomology groups of the complex {Sk(X), d}, where we put

S
k(X) = Ek,0

1 (X) and d = d1 : Ek,0
1 −→ Ek+1,0

1 . Recall that S
k(X) is

the kernel of the following mapping:

d0 : Ek,0
0 = F k

A
k = A

k,0(X) → Ek,1
0 = F k

A
k+1/F k+1

A
k+1

= A
k,1(X)/A

k+1,0.

Note that S
k(X) may be characterized as the space of holomorphic k-

forms, namely holomorphic cross sections of Ek. Thus the complex
{Sk(X), d} (respectively, the groups Hk

h(X)) will be called the holomor-
phic De-Rham complex (respectively, the holomorphic De-Rham coho-
mology groups).

Definition 2.5. Let L1, . . . , Ln−1 be a local frame of the CR struc-
ture S on X so that L1, . . . , Ln−1 is a local frame of S. Since S ⊕ S
has complex codimension one in CT (X), we may choose a local section
N of CT (X) such that L1, . . . , Ln−1, L1, . . . , Ln−1, N span CT (X). We
may assume that N is purely imaginary. Then the matrix (cij) defined
by

[Li, Lj ] =
∑

k

ak
ijLk +

∑

k

bk
ijLk + cijN

is Hermitian, and is called the Levi form of X.

The Levi form is noninvariant; however, its essential features are
invariant.

Proposition 2.6. The number of non-zero eigenvalues and the ab-

solute value of the signature of (cij) at each point are independent of the

choice of L1, . . . , Ln−1, N .

Definition 2.7. X is said to be strongly pseudoconvex if the Levi
form is positive definite at each point of X.

3. Siu complex, s-invariant and holomorphic De-Rham

cohomology

Let V be a n-dimensional complex analytic subvariety in C
N with

only isolated singularities. In [Ya2], Yau considered two kinds of sheaves
of germs of holomorphic p-forms
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(i) Ω
p

V := R0π∗Ω
p
M , where π: M −→ V is a resolution of singularities

of V ,

(ii) Ω
p

V := θ∗Ω
p

V \Sing V
, where θ : V \Sing V −→ V is the inclusion

map and Sing V is the singular set of V .

Clearly Ω
p

V is a coherent sheaf because π is a proper map. Ω
p

V is also a
coherent sheaf by a Theorem of Siu [Si]. In case V is a normal variety,

the dualizing sheaf ωV of Grothendieck is actually the sheaf Ω
n

V .

Definition 3.1. The Siu complex is a complex of coherent sheaves J•

supported on the singular points of V which is defined by the following
exact sequence

(3.1) 0 → Ω
•
V → Ω

•

V → J• → 0.

Definition 3.2. Let V be a n-dimensional Stein space with x as
its only singular point. Let π : (M, A) → (V, x) be a resolution of
the singularity with A as exceptional set. The geometric genus pg and
the irregularity q of the singularity are defined as follows (cf. [Ya2],
[St-St]):

pg : = dim Γ(M \ A, Ωn)
/
Γ(M, Ωn)(3.2)

q : = dim Γ(M \ A, Ωn−1)
/
Γ(M, Ωn−1).(3.3)

The s-invariant of the singularity is defined as follows

(3.4) s := dim Γ(M \ A, Ωn)
/
[Γ(M, Ωn) + dΓ(M \ A, Ωn−1)].

The following Lemma follows from a deep theorem of Straten and
Steenbrink [St-St].

Lemma 3.3. Let V be a n-dimensional Stein space with x as its only

singular point. Let π : (M, A) → (V, x) be a resolution of the singularity

with A as exceptional set. Let J• be the Siu complex of coherent sheaves

supported on x. Then

(i) dim Jn = pg

(ii) dimJn−1 = q
(iii) dimJ i = 0 for 1 6 i 6 n − 2.

Proof. By Cartan Theorem A, the long cohomology exact sequence
of (3.1) at i level gives

(3.5) 0 → Γ(V, Ω
i

V ) → Γ(V, Ω
i

V ) → Γ(V, J i) → 0.

Therefore

dimJ i = dim Γ(V, Ω
i

V )/Γ(V, Ω
i

V )

= dim Γ(M \ A, Ωi)/Γ(M, Ωi)(3.6)

(i) and (ii) of the Lemma follow immediately from (3.6) while (iii) of
the Lemma is a consequence of Theorem 1.3 in [St-St]. q.e.d.
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Proposition 3.4. Let V be a n-dimensional Stein space with x as

its only singular point. Let π : (M, A) → (V, x) be a resolution of the

singularity with A as exceptional set. Let J• be the Siu complex of

coherent sheaves supported on x. Then the s-invariant is given by

(3.7) s = dimHn(J•) = pg − q

and

(3.8) dimHn−1(J•) = 0

where pg and q are respectively the geometric genus and the irregularity

of the singularity.

Proof. The proof of Lemma 3.3 gives the following exact sequence of
complexes:

(3.9) 0 → Γ(V, Ω
•
V ) → Γ(V, Ω

•

V ) → Γ(V, J•) → 0.

In view of Lemma 3.3, the cohomology exact sequence of (3.9) gives

0 → Hn−1(Γ(V, Ω
•
V )) → Hn−1(Γ(V, Ω

•

V )) → Hn−1(Γ(V, J•))(3.10)

→ Hn(Γ(V, Ω
•
V )) → Hn(Γ(V, Ω

•

V )) → Hn(Γ(V, J•)) → 0.

Since J• is supported on x, we have

(3.11) Hn−1(J•) = Hn−1(Γ(V, J•)), Hn(J•) = Hn(Γ(V, J•)).

In view of (3.6) and Lemma 3.3, J• is a complex with only possibly two
nonzero terms on n − 1 and n levels

0 → Γ(M \ A,Ωn−1)
/
Γ(M,Ωn−1))

d
→ Γ(M \ A,Ωn)

/
Γ(M,Ωn) → 0

|| ||
Jn−1 Jn

By Corollary 1.4 of [St-St], we know that the composition of the above
map d with the natural map

Γ(M \ A, Ωn)
/
Γ(M, Ωn) −→ Γ(M \ A, Ωn)

/
Γ(M, Ωn(log A))

is injective. Therefore d is injective. It follows that Hn−1(J•) = 0 and

dim Hn(J•) = dim Γ(M \ A, Ωn)
/
[Γ(M, Ωn) + dΓ(M\A, Ωn−1)]

= s.

Finally, since the Euler characteristic of a complex is equal to the Euler
characteristic of its cohomology, we have s = pg − q. q.e.d.

We are now ready to prove Theorem A of Section 1.

Proof of Theorem A. Recall that Hq
h(X) is the q-th homology group

of the complex {S•(X), d}, where Sp(X) may be characterized as the
space of holomorphic p-forms (i.e., holomorphic cross sections of Ep =

∧p(T̂ (X)∗), cf. §2 above). Let π : M −→ V be a resolution of sin-
gularities of V with π−1({x1, . . . , xm}) = A as exceptional set. Take
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a one-convex exhaustion function φ on M such that φ > 0 on M and
φ(y) = 0 if and only if y ∈ A. Set Mr = {y ∈ M : φ(y) > r}. Since
X = ∂M is strictly pseudoconvex, any holomorphic p-form θ ∈ S

p(X)
can be extended to a one sided neighborhood of X in M . Hence, θ
can be thought of as holomorphic p-form on Mr, i.e., an element in
Γ(Mr, Ω

p
Mr

). By Andreotti and Grauert (Théorème 15 of [An-Gr]),

Γ(Mr, Ω
p
Mr

) is isomorphic to Γ(M \ A, Ωp), which is equal to Γ(V, Ω
p

V ).

We have shown that S
p(X) can be identified with Γ(V, Ω

p

V ) which is
equal to Γ(M \ A, Ωp). Therefore

Hp
h(X) = Hp(S•(X)) = Hp(Γ(M \ A, Ω•))

= Hp
h(M \ A) for 1 6 p 6 n.

For 1 6 p 6 n − 2, Hp
h(M \ A) ∼= Hp

h(M) by Lemma 3.3 (iii) and
(3.6). (3.8) and (3.10) imply

Hn−1
h (M) ∼= Hn−1

h (M \ A) and

(3.12) 0 → Hn(Γ(V, Ω
•
V )) → Hn(Γ(V, Ω

•

V )) → Hn(Γ(V, J•)) → 0.

Observe that Hn(Γ(V, Ω
•
V )) = Hn(Γ(M, Ω•)) = Hn

h (M). Hn(Γ(V, Ω
•

V ))
= Hn(Γ(M \ A, Ω•)) = Hn

h (M \ A). By (3.11) and (3.7), we have
s = dim Hn(Γ(V, J•)). It follows from (3.12) that

dim Hn
h (M \ A) = dimHn

h (M) + s.

This completes the proof of our Theorem A in §1. q.e.d.

4. Complex Plateau problem for 3-dimensional CR manifolds

In this section, we shall prove Theorem B. To begin with, let us
recall some basic notions and a deep result of Steenbrink on surface
singularities which can be found in [Wa]. Let (V, 0) be a normal surface
singularity. Let π : M → V be a good resolution of singularity. Let
π−1(0) = A = ∪Ai, 1 ≤ i ≤ n, be the irreducible decomposition of the
exceptional set A into irreducible components. Let gi = genus of Ai,

g = Σgi, and denote by Ã the disjoint union of the Ai. Let Γ be the
dual graph of A. Define b = first betti number of Γ, i.e., b = number of
loops in Γ. Then dimH1(A, C) = 2g + b.

The sheaf of germs of logarithmic 1-forms Ω1
M (log A) is defined by

the kernel of the restriction map

(4.1) 0 → Ω1
M (log A)(−A) → Ω1

M → Ω1
eA
→ 0.

It follows that ∧2Ω1
M (log A) = Ω2

M (A), and there is an exact sequence

(4.2) 0 → Ω1
M → Ω1

M (log A) → O eA
→ 0

where the map on the right is the residue map. The following Lemma
can be found in [Wa].
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Lemma 4.1.

(a) The composition H0(O eA
) → H1(Ω1

M ) → H1(Ω1
eA
) is an isomor-

phism.

(b) H0(Ω1
M )

∼
→ H0

(
Ω1

M (log A)
)
.

Recall that n is the number of components of A. We define

(4.3) γ = rk
(
H1

A(Ω1
M ) → H1(Ω1

M )
)
− n.

Since H0
A(O eA

)
∼
→ H0(O eA

), the map H0(O eA
) → H1(Ω1

M ) factors via

H1
A(Ω1

M ). Therefore by Lemma 4.1(a), γ is a nonnegative integer. Be-
sides γ, Steenbrink introduces two other invariants

α := dimH0(Ω2
M )

/
dH0

(
Ω1

M (log A)(−A)
)

(4.4)

β := dimH0(Ω1
eA
)
/
Im H0(Ω1

M ).(4.5)

Theorem 4.2 (Steenbrink). Let π : (M, A) → (V, 0) be a good res-

olution of a normal surface singularity, with geometric genus pg and

irregularity q. Let g = Σgi, gi = genus of Ai, b = first betti number of

the dual graph of A, and α, β, γ ≥ 0 as in (4.3), (4.4) and (4.5). Then

(4.6) pg − q = g + b + α + β + γ.

We are now ready to give a characterization of Gorenstein surface
singularities with vanishing s-invariant.

Proof of Theorem B. As M is smooth, Hp(M, C) is the p-th hyperco-
homology of the De Rham complex Ω•

M . The spectral sequence Epq
1 =

Hq(M, Ωp) ⇒ Hp+q(M, C) induces an exact sequence of small order
terms

(4.7) 0 → H1
h(M) → H1(M, C) → E0,1

2 → H2
h(M).

Since s = 0, by Proposition 3.4, pg−q = 0. In view of Theorem 4.2, g =
b = 0 = α = β = γ. Hence dim H1(M, C) = dimH1(A, C) = 2g + b = 0.
By Theorem 3.2 of [Wa], (V, 0) is quasi-homogeneous. On the other
hand, it is easy to see that H0

(
Ω1

M (log A)(−A)
)
⊆ H0(Ω1

M ). Therefore

dim H2
h(M) = dimH0(Ω2

M )
/
dH0(Ω1

M )
≤ dimH0(Ω2

M )
/
dH0

(
Ω1

M (log A)(−A)
)

= α.

It follows that dimH2
h(M) = 0. In view of (4.7), we have dimH1

h(M)

= 0 and E0,1
2 = 0. Notice that E0,1

2 in (4.7) is the kernel of the map

H1(M,O) → H1(M, Ω1). E0,1
2 = 0 from (4.7) implies that H1(M,O) →

H1(M, Ω1) is injective. The cokernel of this map is exactly E1,1
2 . There-

fore dimE1,1
2 = dimH1(M, Ω1) − dimH1(M,O). Observe that E0,2

∞ =

E0,2
1 = H2(M,O) = 0, E1,1

2 = E1,1
∞ , E2,0

∞ = E2,0
2 = H2

h(M) = 0, and

dimH2(M, C) = dimE0,2
∞ + dimE1,1

∞ + dimE2,0
∞ . Hence dim H1(M, Ω1)

= dim H2(M, C) + dimH1(M,O).



KOHN-ROSSI COHOMOLOGY AND ITS APPLICATION 147

Conversely if (V, 0) is a quasi-homogeneous singularity, then α = β =
γ = 0 by Theorem 3.2 of [Wa]. H1(A, C) = 0 implies b = 0 = g. In view
of Theorem 4.2 pg − q = 0. By Proposition 3.4, s-invariant vanishes.

q.e.d.

Proof of Theorem C. It is well known that X is a boundary of V in D
with boundary regularity (see for example [Lu-Ya]). Let π : M → V
be a good resolution of singularities with exceptional set A.

Since X is a Calabi-Yau CR manifold, there exists a nowhere vanish-

ing holomorphic section ω of Λn(T̂ (X)∗). The same argument as in the
proof of Theorem A shows that ω can be extended as a holomorphic
section in Γ(M\A, Ωn) and as a meromorphic n-form on M . The zero
divisor of ω is a compact analytic set since it is disjoint from X. It
follows that the zero divisor of ω is contained in A as A is the maximal
compact analytic set. We have shown that ω as a holomorphic section
in Γ(M\A, Ωn) is nowhere vanishing. Thus the normalization of interior
singularities of V are Gorenstein. By Theorem A and Proposition 3.4,
we have s = pg − q = 0. q.e.d.
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