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LOGARITHMIC GROWTH OF SYSTOLE OF

ARITHMETIC RIEMANN SURFACES ALONG

CONGRUENCE SUBGROUPS

Mikhail G. Katz, Mary Schaps & Uzi Vishne

Abstract

We apply a study of orders in quaternion algebras, to the
differential geometry of Riemann surfaces. The least length of
a closed geodesic on a hyperbolic surface is called its systole,
and denoted sysπ1. P. Buser and P. Sarnak constructed Rie-
mann surfaces X whose systole behaves logarithmically in the
genus g(X). The Fuchsian groups in their examples are principal
congruence subgroups of a fixed arithmetic group with rational
trace field. We generalize their construction to principal congru-
ence subgroups of arbitrary arithmetic surfaces. The key tool is
a new trace estimate valid for an arbitrary ideal in a quaternion
algebra. We obtain a particularly sharp bound for a principal
congruence tower of Hurwitz surfaces (PCH), namely the 4/3-
bound sysπ1(XPCH) ≥ 4

3
log(g(XPCH)). Similar results are ob-

tained for the systole of hyperbolic 3-manifolds, relative to their
simplicial volume.

1. Orders in quaternion algebras and Riemann surfaces

Arithmetic lattices, besides their own intrinsic interest, have tradi-
tionally provided a rich source of examples in geometry. One striking
application is the construction of isospectral, non-isometric hyperbolic
surfaces by M.-F. Vigneras [Vig80]. A survey of arithmeticity as ap-
plied in geometry and dynamics may be found in [Pa95]. See [Lub94]
for an application of congruence subgroups and the literature on girth
in graph theory initiated by W. Tutte [Tu47]. See also [ChW06] for a
recent geometric application of congruence subgroups.

While the simplest definition of arithmeticity, in analogy with SL2(Z),
can be presented in terms of n-dimensional representations by matrices
defined over the integers, for many purposes it is convenient to work with
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a definition in terms of quaternion algebras. The latter is equivalent to
the former; cf. Definition 1.3. We start by recalling the relevant material
on quaternion algebras.

Let a, b ∈ Q, and let

(1.1) D = Q[i, j | i2 = a, j2 = b, ji = −ij]

be an (associative) division algebra. If a and b are positive integers, we
have D⊗R ∼= M2(R), cf. [K92, Theorem 5.2.1(i)]. Consider the group Γ,
by definition composed of the elements of norm one in Z[i, j] ⊆ D.
Then Γ is a co-compact lattice in SL2(R), see [PR94, Theorem 5.5].

P. Buser and P. Sarnak [BS94, p. 44] showed that in such a case,
the principal congruence subgroups of the Fuchsian group Γ exhibit
near-optimal asymptotic behavior with regard to their systole. (A more
general construction, but still over Z, was briefly described by M. Gro-
mov [Gr96, 3.C.6].) Namely, there is a constant c independent of m
such that the compact hyperbolic Riemann surfaces defined as the quo-
tients Xm = Γ(m)\H2 satisfy the bound

sysπ1(Xm) ≥
4

3
log g(Xm) − c,

where H2 is the Poincaré upper half plane, Γ(m) are the principal con-
gruence subgroups of Γ, g(X) denotes the genus of X, and the systole
(or girth) sysπ1(X) is defined as follows.

Definition 1.1. The homotopy 1-systole, denoted sysπ1(G), of a Rie-
mannian manifold (X,G) is the least length of a noncontractible loop
for the metric G.

Remark 1.2. The calculation of [BS94] relies upon a lower bound
for the (integer) trace resulting from a congruence relation modulo a ra-
tional prime p. Such a congruence argument does not go over directly to
a case when the structure constants a, b of the quaternion algebra (1.1)
are algebraic integers of a proper extension of Q, since the latter are
dense in R. In particular, the results of [BS94] do not apply to Hurwitz
surfaces. Thus a new type of trace estimate is needed, see Theorem 2.3
below.

Riemann surfaces with such logarithmic asymptotic behavior of the
systole were exploited by M. Freedman in his construction of (1, 2)-
systolic freedom, in the context of quantum computer error correc-
tion [Fr99]. For additional background on quaternion algebras and
arithmetic Fuchsian groups, see [GP69, Appendix to chapter 1], [K92,
Section 5.2] and [MR03]. See also the recent monograph [Ka07] for an
overview of systolic problems, as well as [CrK03].

Definition 1.3. Let F denote one of the fields R or C. An arithmetic

lattice G ⊂ SL2(F ) is a finite co-volume discrete subgroup, which is
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commensurable with the group of elements of norm one in an order of
a central quaternion division algebra D over a number field K (which
has at least one dense embedding in F ).

Remark 1.4. By a result of K. Takeuchi [Ta75], a lattice G is arith-

metic if and only if the lattice G(2) (the subgroup generated by the
squares in G) is contained in an order of a division algebra.

Such a lattice Γ ⊂ D is cocompact if and only if the algebra D as
in (1.1) splits in a single Archimedean place of the center K of D (real
or complex depending on F ), and remains a division algebra in all other
Archimedean places.

In particular if F = R then K is totally real, and if F = C then K has
one complex place and [K :Q]− 2 real ones. Denote by OK ⊂ K its ring
of algebraic integers. Given an ideal I ⊂ OK , consider the associated
congruence subgroup Γ(I) ⊂ Γ (see Definition 2.1 for more details).

In the Fuchsian case, we have the following theorem.

Theorem 1.5. Let Γ be an arithmetic cocompact subgroup of SL2(R).
Then for a suitable constant c = c(Γ), the principal congruence sub-

groups of Γ satisfy

sysπ1(XI) ≥
4

3
log g(XI) − c,

for every ideal I⊳OK , where XI = Γ(I)\H2 is the associated hyperbolic

Riemann surface.

The Buser-Sarnak result mentioned above corresponds to the case
where D is a division algebra defined over Q, while I = 〈m〉⊳Z.

The proof of Theorem 1.5 is given in Section 6, where we provide
additional details concerning the constant c, cf. Theorem 6.1.

When Γ(I) is torsion free, the area of XI is equal to 4π(g(XI) − 1).
We can therefore rephrase the bound in terms of the systolic ratio, as
follows.

Definition 1.6. The systolic ratio, SR(X,G), of a metric G on an n-
manifold X is

SR(X,G) =
sysπ1(G)n

voln(G)
.

Corollary 1.7. The hyperbolic surfaces XI = Γ(I)\H2 satisfy the

bound

SR(XI) ≥
4

9π

(log g(XI) − c)2

g(XI)
,

where c only depends on Γ.

Note that an asymptotic upper bound of 1
π

(log g)2

g
was obtained by the

first author in collaboration with S. Sabourau in [KS05], for the sys-
tolic ratio of arbitrary (not necessarily hyperbolic) metrics on a genus g
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surface. The asymptotic multiplicative constant therefore lies in the
interval

(1.2) lim sup
g→∞

g SR(Σg)

log(g)2
∈

[

4
9π , 1

π

]

,

where Σg denotes a surface of genus g. The question of the precise
asymptotic constant in (1.2) remains open. Note that R. Brooks and
E. Makover [BrM04, p. 124] opine that the Platonic surfaces of [Br99]
have systole on the order of C log g. However, the text of [Br99] seems
to contain no explicit statement to that effect. The result may be obtain-
able by applying the techniques of [Br99] so as to compare the systole
of compact Platonic surfaces, and the systole of their noncompact pro-
totypes, namely the finite area surfaces of the congruence subgroups of
the modular group, studied by P. Schmutz [Sc94].

The expected value of the systole of a random Riemann surface turns
out to be independent of the genus [MM05] (in particular, it does not
increase with the genus), indicating that one does not often come across
surfaces constructed in the present paper.

Another asymptotic problem associated with surfaces is Gromov’s fill-
ing area conjecture, when the circle is filled by a surface of an arbitrary
genus g. The case g = 1 was recently settled [BCIK05].

Similarly, in the Kleinian case we have the following. The simpli-
cial volume ‖X‖, a topological invariant of a manifold X, was defined
in [Gr81].

Theorem 1.8. Let Γ be an arithmetic cocompact torsion free sub-

group of SL2(C). Then for a suitable constant c = c(Γ), the congruence

subgroups of Γ satisfy

sysπ1(XI) ≥
2

3
log ‖XI‖ − c

for every ideal I⊳OK , where XI = Γ(I)\H3, while H3 is the hyper-

bolic 3-space.

As a consequence, we obtain the following lower bound for the systolic
ratio of the hyperbolic 3-manifolds XI . This bound should be compared
to Gromov’s similar upper bound, cf. [Gr83, 6.4.D′′] (note the missing
exponent n over the log), [Gr96, 3.C.3(1)], [Gr99, p. 269].

Corollary 1.9. Let Γ be an arithmetic cocompact subgroup of SL2(C).
The 3-manifolds XI = Γ(I)\H3 satisfy the bound

SR(XI) ≥ C1
(log ‖XI‖ − c)3

‖XI‖
,

where c and C1 only depend on Γ. In fact, if Γ is torsion free, then one

can take C1 = 8
27v−1

3 , where v3 is the volume of a regular ideal 3-simplex

in H3.
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Theorem 1.8 and Corollary 1.9 are proved in Section 6. These bounds
are shown in [Vis07] to be exact if K has only one Archimedean place.

Asymptotic lower bounds for the systolic ratio in terms of the Betti
number are studied in [BB05]. Analogous asymptotic estimates for the
conformal 2-systole of 4-manifolds are studied in [Ka03, Ha06]. See
[BKSS06] for a recent study of the 4-systole.

In a direction somewhat opposite to ours, hyperbolic 4-manifolds of
arbitrarily short 1-systole are constructed by I. Agol [Ag06].

Returning the the 2-dimensional case, recall that the order of the
automorphism group of a Riemann surface of genus g cannot exceed
the bound 84(g − 1). Of particular interest are surfaces attaining this
bound, which are termed Hurwitz surfaces, cf. [El98, El99]. Consider
the geodesic triangle with angles π

2 , π
3 , π

7 , which is the least area triangle
capable of tiling the hyperbolic plane. Let ∆H be the group of even
products of reflections in the sides of this triangle. The area of ∆H\H2,
namely π/21, is the smallest possible for any Fuchsian group. The
Fuchsian group N of a Hurwitz surface is a normal torsion free sub-
group of ∆H . The automorphism group of the surface is the quotient
group ∆H/N . The geometry of Hurwitz surfaces was recently studied
in [Vo04].

We specialize to Hurwitz surfaces in Section 7. Following N. Elkies
[El98], we choose an order in a suitable quaternion algebra, as well as a

realization of the Z/2Z-central extension ∆̃H of ∆H as a group of 2× 2
matrices. We then obtain the following sharpening of Theorem 1.5.

Theorem 1.10. For infinitely many congruence subgroups ∆H(I)⊳

∆̃H , the Hurwitz surfaces XI = ∆H(I)\H2 satisfy the bound

sysπ1(XI) ≥
4

3
log g(XI).

With the explicit realization of ∆̃H described in Section 7, the bound

holds for all the principal congruence subgroups.

Riemannian geometers have long felt that surfaces which are optimal
for the systolic problem should have the highest degree of symmetry; see,
for example, the last paragraph of the introduction to [HK02, p. 250].
This sentiment is indeed borne out by our Theorem 1.10 (though in
principle there could exist surfaces with even better asymptotic systolic
behavior).

In Section 2, we present the key trace estimate which allows us to
generalize the results of Buser and Sarnak to quaternion algebras over
an arbitrary number field. In Section 3, we prove the trace estimate.
Section 4 contains a detailed study of congruence subgroups. We com-
ment on torsion elements in Section 5. Section 6 contains the proofs of
the main theorems. Section 7 focuses on the Hurwitz case.
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2. Trace estimate

Fix F = R or F = C, and let K be a number field of dimension d
over Q, as in Definition 1.3. Namely, K is a totally real field in the for-
mer case, or a field with exactly one complex Archimedean place, in the
latter. We view K as a subfield of F , where the other real embeddings
are denoted by σ : K →֒R for σ 6= 1. Let D be a quaternion division
algebra with center K. We assume that D is split by the distinguished
embedding K ⊆ F , and remains a division algebra under any other
embedding.

Recall that an order Q of D is a subring (with unit), which is a
finite module over Z, and such that its (central) ring of fractions is D.
Every maximal order contains OK , the ring of algebraic integers in K
(since OK · Q is an order), so in the sequel we will only deal with orders
containing OK .

Let D1 ⊆ D× denote the group of elements of norm 1 in D. Similarly,
for an order Q ⊂ D, let Q1 denote the group of elements of norm one
in Q. By assumption the inclusion K ⊆ F splits D, so we have the
natural inclusion

(2.1) Q ⊆ D ⊆ D⊗KF ∼= M2(F ).

Thus Q1 is a subgroup of (D⊗F )1 = SL2(F ).
Since Q is an order over OK , in particular it contains OK (as its

center). An ideal I of the center defines an ideal IQ of Q, yielding
a finite quotient ring Q/IQ. The principal congruence subgroup of Q1

with respect to an ideal I⊳OK is by definition the kernel of the homo-
morphism Q1→(Q/IQ)× induced by the natural projection Q→Q/IQ.
A congruence subgroup is any subgroup of Q1 containing a principal
congruence subgroup.

Definition 2.1. The kernel of Q1→(Q/IQ)× induced by the natural
projection Q→Q/IQ, will be denoted by Γ(I) = Q1(I), where

(2.2) Q1(I) = ker
(

Q1→(Q/IQ)×
)

.

Since D⊗σR is, by hypothesis, a division algebra for σ 6= 1, the asso-
ciated groups (D⊗σR)1 are compact. Moreover, the ring OK is discrete
in the product F ×

∏

σ 6=1 σ(R), making Q1 discrete in the product

(D⊗F )1 ×
∏

(D⊗σR)1,

and therefore discrete in (D⊗F )1 = SL2(F ). In fact Q1 is cocompact
there, by [PR94, Theorem 5.5].
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Since all orders of D are commensurable, the groups of elements of
norm 1 in orders are commensurable to each other, i.e., the intersection
of two such groups is of finite index in each of the groups [MR03, p. 56].
Our computations are based on a specific order, arising naturally from
the presentation of D.

A quaternion algebra can always be presented in the form

(2.3) D = (a, b)K = K[i, j | i2 = a, j2 = b, ji = −ij]

for suitable elements a, b ∈ K. If σ : K →֒R is an embedding, then with
this presentation, the algebra D⊗σR is a division algebra if and only
if we have both σ(a) < 0 and σ(b) < 0. Another convenient feature
is that the matrix trace in the embedding D ⊆ M2(F ) is equal to the
reduced trace TrD, which for non-central elements is the negative of the
linear coefficient in the minimal polynomial. This can be read off the
presentation of an element:

TrD(x0 + x1i + x2j + x3ij) = 2x0

for any x0, x1, x2, x3 ∈ K.

Lemma 2.2. The defining constants a and b of the algebra D can be

taken to be algebraic integers in K.

Proof. It is clear from the presentation (2.3) that the isomorphism

class of D depends only the class of a and b in K×/K×2
. q.e.d.

Let OK be the ring of algebraic integers in K, and fix the order

(2.4) O = OK ⊕ OKi ⊕ OKj ⊕ OKij.

Since all elements of an order are algebraic integers, Q is contained
in 1

κO for a suitable κ ∈ OK (in fact one can take κ | 2ab, cf. Lemma 2.2).
Denote by N(k) the number field norm of k ∈ K along the exten-
sion K/Q. Similarly, we denote by N(I) the norm of an ideal I⊳OK ,
namely the cardinality of the quotient ring OK/I. The two norms coin-

cide for principal ideals, so in particular, we have N(m) = md for m ∈ Z.

Theorem 2.3. Let I⊳OK be an ideal. If F = R then for every x 6=
±1 in Q1(I), we have the following estimates:

(2.5)
∣

∣TrD(x)
∣

∣ >
1

2d−2N(〈2〉 + κI)
N(I)2 − 2

and therefore

(2.6)
∣

∣TrD(x)
∣

∣ >
1

22d−2
N(I)2 − 2.
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If F = C, then

∣

∣TrD(x)
∣

∣ >
1

2d/2−2N(〈2〉 + κI)1/2
N(I) − 2

≥
1

2d−2
|N(I)| − 2.

The estimates are proved in the next section.

3. Proof of trace estimate

The first step towards a proof of Theorem 2.3 is a bound on σ(x0)
for σ 6= 1, where x ∈ D is an arbitrary element of norm 1.

Proposition 3.1. Let x = x0 + x1i + x2j + x3ij, where x 6= ±1, be

any element of norm one in D. Then |σ(x0)| < 1 for every non-trivial

embedding σ :K →֒R. Writing x0 = 1 + y0, we obtain

(3.1) −2 < σ(y0) < 0.

Proof. The norm condition is that

(3.2) x2
0 − ax2

1 − bx2
2 + abx2

3 = 1

in K, where a, b are the structure constants from (2.3). Applying
any σ 6= 1, we obtain

σ(x0)
2 ≤ σ(x0)

2 + σ(−a)σ(x1)
2 + σ(−b)σ(x2)

2 + σ(ab)σ(x3)
2(3.3)

= 1,

since σ(a) < 0 and σ(b) < 0 by assumption. In particular, equality
in (3.3) implies that x1 = x2 = x3 = 0. Writing x0 = 1 + y0, we obtain
the inequality |1 + σ(y0)| < 1, proving (3.1). q.e.d.

Recall that for any ideal J⊳OK , the fractional ideal

J−1 = {u ∈ K : uJ ⊆ OK}

is the inverse of J in the group of fractional ideals of K.
Recall that the symplectic involution on D is, by definition, the

unique involution under which only central elements are symmetric. It
is often called the ‘standard’ involution.

Lemma 3.2. The symplectic involution preserves any order in D.

Proof. Let w 7→ w∗ denote the involution. The reduced trace and
norm may be defined by TrD(w) = w + w∗ and ND(w) = ww∗, which
implies the characteristic equation

w2 − TrD(w)w + ND(w) = 0

for every w ∈ D. Moreover, if Q is an order and we have w ∈ Q, it
follows that TrD(w), ND(w) ∈ OK , as OK [w] ⊆ Q is a finite module. In

particular, we have w∗ = TrD(w) − w ∈ Q for every w ∈ Q. q.e.d.
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Lemma 3.3. Let I⊳OK . If z ∈ IQ then TrD(z) ∈ I and ND(z) ∈ I2.

Proof. Let α1, . . . , αt ∈ I be generators of I as an OK-module (in
fact we may assume t ≤ 2, as OK is a Dedekind domain [Coh61, Sec-
tion VII.10]).

Let z =
∑

αrwr, wr ∈ Q, be an arbitrary element of IQ. Then we
have wrw

∗
s ∈ Q by Lemma 3.2, so that

TrD(z) =
∑

αr TrD(wr) ∈ I

since TrD(wr) ∈ OK , and

ND(z) = zz∗ =
∑

r,s

αrαswrw
∗
s

=
∑

r

α2
rwrw

∗
r +

∑

r<s

αrαs(wrw
∗
s + wsw

∗
r)

=
∑

r

α2
rND(wr) +

∑

r<s

αrαs TrD(wrw
∗
s) ∈ I2

since ND(wr), TrD(wrw
∗
s) ∈ OK . q.e.d.

Lemma 3.4. Let x = x0 +x1i+x2j +x3ij ∈ Q1(I), where Q ⊆ 1
κO,

and O is the standard order of (2.4). Then

(3.4) x0 − 1 ∈ (〈2〉 + κI)−1I2.

Proof. By assumption, we have x−1 ∈ IQ ⊆ 1
κIO. In particular, the

element y0 = x0 − 1 satisfies y0 ∈ 1
κI. Substituting x0 = 1 + y0 in (3.2),

we obtain

(3.5) 2y0 = −(y2
0 − ax2

1 − bx2
2 + abx2

3) = −ND(x − 1) ∈ I2,

by the previous lemma. Using the decomposition of fractional ideals in
the Dedekind domain OK , which implies that (J1 +J2)(J1 ∩J2) = J1J2,
we obtain

(3.6) y0 ∈
1

κ
I ∩

1

2
I2 =

1

2κ
(2OK ∩ κI)I = (2OK + κI)−1I2,

proving the lemma. q.e.d.

Proof of Theorem 2.3. We write x = x0 + x1i + x2j + x3ij, and we

set y0 = x0 − 1. By the lemma, we have N(y0) ∈ N(I)2

N(〈2〉+κI)Z, but we

also have y0 6= 0 (Proposition 3.1). When F = R, this shows

N(I)2

N(〈2〉 + κI)
≤ |N(y0)| = |y0|

∏

σ 6=1

|σ(y0)| < 2d−1 |y0| ,

by inequality (3.1). The inclusion 〈2〉 ⊆ 〈2〉 + κI implies

N(〈2〉 + κI) ≤ N(〈2〉) = N(2) = 2d.
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Plugging the norm bound on y0 back in x0 = y0 + 1, we obtain

|x0| = |1 + y0|

≥ |y0| − 1

>
1

2d−1N(〈2〉 + κI)
N(I)2 − 1,

≥
1

22d−1
N(I)2 − 1,

from which the case F = R of Theorem 2.3 follows immediately in view
of the fact that TrD(x) = 2x0.

In the case F = C, we repeat the same argument, noting that

|N(y0)| = |y0|
2 ∏

σ 6=1 |σ(y0)| so that
|N(I)|2

N(〈2〉+κI) < 2d−2 |y0|
2 . q.e.d.

4. Congruence subgroups of Q1 in the prime power case

Some of the calculations in this section are related to A. Borel’s vol-
ume formula [Bo81]; see also [Jo98, Be04].

Let F be R or C as above, and let Γ = Q1 be the group defined by
an order Q in a division quaternion algebra D over a number field K,
as in Sections 2 and 3.

Let I⊳OK be an arbitrary ideal. In order to estimate the topological
invariants of Γ(I)\H2 or Γ(I)\H3 (namely, the genus and simplicial
volume, respectively), we need to bound the index [Γ:Γ(I)] in terms
of I. We will construct below a norm map

(4.1) ν : (Q/IQ)×→(OK/I)×.

Let (Q/IQ)1 = ν−1(1), where 1 denotes the multiplicative neutral ele-
ment in the finite ring OK/I.

Lemma 4.1. We have the bound

(4.2) [Γ:Γ(I)] ≤ (Q/IQ)1.

Proof. The reduced norm ND on D may be defined by setting N(x) =
xx∗, where x 7→ x∗ is the unique symplectic involution of D. Note that
every element with zero trace is anti-symmetric under the involution.
After tensoring with a splitting field, the involution becomes the familiar
adjoint map, which exchanges the two diagonal elements and multiplies
the off diagonal elements by −1. Note that orders are closed under
involution, as x∗ = tr(x) − x.

Note that the symplectic involution descends to the quotient Q/IQ.
Indeed, the involution acts trivially on I⊳OK and preserves the or-
der Q ⊂ D by Lemma 3.2. Hence an ideal of the form IQ is also
closed under the involution. Thus we may define the involution on
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a coset (x + IQ) by setting (x + IQ)∗ = x∗ + IQ, which is indepen-
dent of the representative. The involution can then be used to define a
norm map ν of (4.1). Let π :Q→Q/IQ and π0 : OK→OK/I denote the
natural projections; then π0N(x) = π0(xx∗) = ν(π(x)), and in particu-
lar π(x) ∈ (Q/IQ)1 for every x ∈ Q1 = Γ.

By definition, Ker(π) ∩ Γ = Γ(I) = Q1(I), and so

Γ/Γ(I) ∼= π(Q1) ≤ (Q/IQ)1,

proving the claim. q.e.d.

Since K is an algebraic number field, OK is a Dedekind domain, so
that every ideal factors as an intersection of powers of prime ideals.
Suppose I = pt where p⊳OK is a prime ideal. To find an upper bound for
the right-hand side of (4.2), we pass to the local situation, via standard
techniques in algebraic number theory, as follows.

Let Kp be the completion of K with respect to the p-adic valuation,
and Op the valuation ring. We consider an Op-order in Dp = D⊗KKp,
defined by setting Qp = Q⊗O

K
Op.

Lemma 4.2. We have an isomorphism Q/IQ = Qp/ptQp.

Proof. Let S = OK−p, the complement of p in OK . Since p is a
maximal ideal, localization (in which elements of S are forced into being
invertible) gives

Q/p
tQ ∼= S−1Q/p

tS−1Q,

which is isomorphic to Qp/ptQp [Re75, Exercise 5.7]. q.e.d.

It follows that

(4.3) [Γ:Γ(pt)] ≤
∣

∣(Qp/p
tQp)

1
∣

∣.

In one common situation, we can compute
∣

∣(Qp/ptQp)
1
∣

∣ explicitly.
To put things in perspective, it is worth noting that for all but finitely
many primes p, the algebra Dp is a matrix algebra, and Qp is maximal,
i.e., not contained in a larger order. Let q = N(p) =

∣

∣OK/p
∣

∣.

Lemma 4.3. Suppose Qp is a maximal order of Dp. If Dp is a

division algebra, then Q/ptQ is a local (non-commutative) ring with

residue field of order q2 and radical whose nilpotency index is 2t; in

such a case, we have
∣

∣(Q/ptQ)1
∣

∣ = q3t(1 + 1
q ). Otherwise, we have

Q/ptQ ∼= M2(Op /pt), and
∣

∣(Q/ptQ)1
∣

∣ = q3t(1 − 1
q2 ).

Proof. Let ̟ ∈ Op be a uniformizer (i.e., generator of the unique max-
imal ideal). Central simple algebras over local fields are cyclic [Pi82,
Chapter 17]. Therefore, there is an unramified maximal subfield L,
satisfying

(4.4) Kp ⊆ L ⊆ Dp,
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and an element z ∈ Dp, such that zℓz−1 = σ(ℓ) for ℓ ∈ L (where σ
is the non-trivial automorphism of L/Kp), and moreover Dp = L[z].
Furthermore if Dp is a division algebra then we may assume z2 = ̟.
If Dp splits, then being a matrix algebra it can be presented in a similar
manner, with z2 = 1.

In both cases, Dp has, up to conjugation, a unique maximal order
[Re75, Section 17], namely OL[z] where OL is the valuation ring of L.
We may therefore assume Qp = OL[z].

To finish the proof, we note that OL[z]/̟tOL[z] is a local ring, so its
invertible elements are those invertible modulo the maximal ideal. First
assume Dp is split, so that z2 = 1. Then

OL[z]/̟tOL[z] = (OL/̟tOL)[z̄ | z̄2 = 1]

is isomorphic to M2(Op/̟tOp), noting that OL/̟tOL is a finite local
ring, which modulo the maximal ideal is the residue field Op/̟Op =
K̄, of order q. The group of elements of norm 1 is SL2(Op/̟tOp), of

order (q3 − q)q3(t−1).
Finally, assume Dp does not split, so z2 = ̟. Then the ring

OL[z]/̟tOL[z] = OL[z]/z2tOL[z]

is a local (non-commutative) ring, which modulo the maximal ideal is

OL[z]/zOL[z] ∼= L̄,

the residue field of L, of order q2. Thus there are (q2−1)q2(2t−1) invert-
ible elements. The norm map

(OL[z]/z2tOL[z])×→(Op/̟t)×

is onto (since the norm O×
L→O×

p is), and since
∣

∣(Op/̟t)×
∣

∣ = (q−1)qt−1,
there are precisely

(q2 − 1)q2(2t−1)

(q − 1)qt−1
= (q + 1)q3t−1

elements of norm 1. q.e.d.

Our next goal is to bound (Qp/ptQp)
1 in the general case. Consider

the exact sequence induced by the norm map, namely

(4.5) (Qp/p
tQp)

1 →֒ (Qp/p
tQp)

× N
−→ (OK/p

t)×,

which shows that

(4.6)
∣

∣(Qp/p
tQp)

1
∣

∣ ≤

∣

∣(Qp/ptQp)
×
∣

∣

|Im(N)|
.

Here, Im(N) stands for the image of the norm map in (4.5). We will
first treat the numerator, then the denominator.
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Since pQp/ptQp is a nilpotent ideal of Qp/ptQp, the invertible ele-
ments in this finite ring are those invertible modulo pQp/ptQp; namely,
in the quotient ring Qp/pQp. Let u = |(Qp/pQp)

×|, then

∣

∣(Qp/p
tQp)

×
∣

∣ =
∣

∣pQp/p
tQp

∣

∣u ≤ q4(t−1)u.

By Wedderburn’s decomposition theorem, we can decompose the OK/p-
algebra Qp/pQp as T ⊕ J , where T is a semisimple algebra and J is the
radical. Again, the invertible elements are those invertible modulo J ,
namely in T .

Proposition 4.4. Let Fq and Fq2 denote the finite fields of orders q

and q2, respectively. Then T is isomorphic to one of the following six

algebras:

Fq, Fq2 , M2(Fq), Fq × Fq, Fq × Fq2 , or Fq2 × Fq2 .

Furthermore, only the first three options are possible if Dp is a division

algebra.

Proof. By construction, T is a semisimple algebra over Fq. The clas-
sification follows from two facts: every element satisfies a quadratic
equation; and the maximal number of mutually orthogonal idempotents
is no larger than the corresponding number for Qp (as Hensel’s lemma
allows lifting idempotents from Q/pQ to Q). q.e.d.

By inspection of the various cases, the number u of invertible elements
satisfies

(4.7) u ≤

{

q(q − 1)(q2 − 1) if Dp is a division algebra,

q2(q − 1)2 otherwise.

It remains to give a lower bound for the size of Im(N). Since Op ⊆ Q,

every square in (Op /pt)× is a norm.

Lemma 4.5. If p is non-diadic (namely p is prime to 2, and q is

odd ), then
∣

∣

∣
(OK/pt)×

2
∣

∣

∣
= q−1

2 qt−1.

On the other hand if p is diadic and 2Op = pe for e ≥ 1, then we

have the bound
∣

∣

∣
(OK/pt)×

2
∣

∣

∣
≥ 1

2qt−e (with equality if t ≥ 2e + 1).

Proof. Note that an element a ∈ Op

×
is a square if and only if a is a

square modulo 4p [OM62, Chapter 63]. Furthermore, we have y2 ≡ x2

(mod 4p) if and only if y ≡ ±x (mod 2p), proving the lemma. q.e.d.



412 M. KATZ, M. SCHAPS & U. VISHNE

Combining Equations (4.6) and (4.7) with Lemma 4.5, we have the
following bounds for non-maximal orders:

(Q/ptQ)1

q3t

(4.8)

≤



















2(1 − q−2) if Dp is a division algebra, p non-diadic,

2(1 − q−1)(1 − q−2)qe if Dp is a division algebra, p diadic,

2(1 − q−1) if Dp is a matrix algebra, p non-diadic,

2(1 − q−1)2qe if Dp is a matrix algebra, p diadic,

where

(4.9) 2Op = p
e

in the diadic cases.

Given an order Q of a quaternion algebra D over K, let T1 denote
the set of finite primes p for which Dp is a division algebra, and let T2

denote the set of finite primes for which Qp is non-maximal. It is well
known that T1 and T2 are finite.

We denote

(4.10) λD,Q =
∏

p∈T1−T2

(

1 +
1

N(p)

)

·
∏

p∈T2

2 ·
∏

p∈T2,p | 2

N(p)e(p),

where for a diadic prime, e(p) denotes the ramification index of 2, as
defined in (4.9). The third product is bounded from above by

∏

p | 2

N(p)e(p) = N(2) = 2d.

Factoring an arbitrary ideal I⊳OK into prime factors I =
∏

p
ti
i , we have

by the Chinese remainder theorem that Q/IQ ∼=
∏

Q/p
ti
i Q, where the

projection onto each component preserves the norm (as the norm can
be defined in terms of the involution). The results of Lemma 4.3 and
(4.10) imply the bound

∣

∣(Q/IQ)1
∣

∣ ≤ λD,Q

∏

N(pti
i )3 = λD,QN(I)3.

Together with Equation (4.3), we obtain the following corollary.

Corollary 4.6. We have the bound [Γ :Γ(I)] ≤
∣

∣(Q/IQ)1
∣

∣ ≤
λD,QN(I)3. In fact, the products in (4.10) can be taken over the primes

p | I; in particular if Q is maximal and no ramification primes of D
divide I, then [Γ :Γ(I)] < N(I)3.
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5. Torsion elements

A comment about torsion elements in Q1 is in order. If x ∈ D is a
root of unity, then K[x] is a quadratic field extension of K, and with K
fixed, there are of course only finitely many roots of unity with this
property. Moreover if x ∈ Q1 then N(x) = 1 forces x + x−1 ∈ K. Now,
if x ∈ Q1(I) for an ideal I⊳OK , then we have

0 = x2 − (x + x−1)x + 1 ≡ 2 − (x + x−1) = −x−1(x − 1)2 (mod I),

so I ⊇
〈

x−1(x − 1)2
〉

. These are the ideals to be avoided if we want

Q1(I) to be torsion free:

Corollary 5.1. If Q1(I) is not torsion free, then I divides an ideal

of the form
〈

x−1(x − 1)2
〉

=
〈

x + x−1 − 2
〉

,

when x a root of unity for which K[x]/K is a quadratic extension. More-

over if I contains a principal ideal I0, then I2
0 |

〈

x−1(x − 1)2
〉

.

Proof. Only the final statement was not proved. Suppose x ∈ Q1(I)
is a root of unity; then K[x]/K is a quadratic extension, and x2 − (x +
x−1)x + 1 = 0. Thus TrD(x) = x + x−1 ∈ OK , and N(x) = 1.

Suppose I0 ⊆ I and I0 = 〈i〉 is principal. Write x = 1 + ia for a ∈ Q.
Then

x + x−1 = TrD(x) = 2 + iTrD(a),

so that TrD(a) = x+x−1−2
i , and

1 = N(x) = (1 + ia)(1 + ia∗) = 1 + i(a + a∗) + i2aa∗,

where a∗ is the quaternion conjugate. Therefore,

N(a) = aa∗ = −
1

i
(a + a∗) =

2 − x + x−1

i2
.

But as an element of an order, the norm of a is an algebraic integer,
implying that i2 divides (x + x−1) − 2. q.e.d.

6. Proof of the main theorems

In this section we prove Theorems 1.5 and 1.8. First, we recall the
relation between the length of closed geodesics and traces. Let Γ ≤
SL2(F ) be an arbitrary discrete subgroup, and set X = Γ\H2 (or X =
Γ\H3 when F = C). Let x ∈ Γ be a semisimple element. Then x is

conjugate (in SL2(F )) to a matrix of the form

(

λ 0
0 λ−1

)

, and

|λ| = eℓx/2,

where ℓx > 0 is the translation length of x, which is the length of
the closed geodesic corresponding to x on the manifold X. Note that
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if F = R, then in fact λ = eℓx/2. In the Kleinian case F = C, there is a
rotation of the loxodromic element, as well. In either case, we have

∣

∣

∣
TrM2(F )(x)

∣

∣

∣
=

∣

∣λ + λ−1
∣

∣ ≤ |λ| + |λ|−1 < |λ| + 1,

and

(6.1) ℓx > 2 log(
∣

∣

∣
TrM2(F )(x)

∣

∣

∣
− 1).

Because of the undetermined constant in Theorems 1.5 and 1.8, it is
enough to treat the co-compact lattice Γ of SL2(F ) up to commensura-
bility. However, since subgroups defined by orders form an important
class of examples, we do give an explicit bound for the principal con-
gruence subgroups of Γ, depending on the volume of the cocompact
quotient, as well as some numerical characteristics of the order defin-
ing Γ. Therefore, assume Γ = Q1 where Q is an order in a division
algebra D over K, as before.

Now assume F = R, and let XI = Γ(I)\H2 where I⊳OK is a given
ideal. Let µ denote the hyperbolic measure on H2.

Theorem 6.1. Let K be a totally real number field of dimension d
over Q, and let D be a quaternion division algebra as in (2.3). Let Γ =
Q1 where Q is an order in D. Let ν = µ(X1) where X1 = Γ\H2. Then

the surfaces XI = Γ(I)\H2, where I⊳OK , satisfy

sysπ1(XI) ≥
4

3

[

log(g(XI)) −
(

log(23d−5π−1νλD,Q) + o(1)
)]

,

where λD,Q is defined as in (4.10), ranging over the primes of T1 ∪ T2

which divide I.

Let R(D,Q) = 8dν(Q)λD,Q, where d = [K : Q]. Theorem 6.1 can be
restated as follows.

Corollary 6.2. We have

sysπ1(XI) ≥
4
3 log(g(XI)) + 4

3 log(32π) − 4
3 log R(D,Q) + o(1).

Thus, finding a family of principal congruence subgroups with the
best systolic lower bound amounts to minimizing the expression R(D,Q)
over all orders.

Proof of Theorem 6.1. Clearly XI is a cover of degree [Γ:Γ(I)] of X1,
hence we have from Corollary 4.6 that

4π(g(XI) − 1) ≤ µ(Γ(I)\H2)

= [Γ:Γ(I)] · ν(6.2)

≤ νλD,Q · N(I)3

and so N(I) ≥
(

4π(g−1)
νλD,Q

)1/3
where g = g(XI) is the genus. Note that the

first line in (6.2) is an equality if Γ(I) is torsion free. Let ±1 6= x ∈ Γ(I).
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By (6.1) and Theorem 2.3, we have

ℓx > 2 log
(∣

∣

∣
TrM2(R)

∣

∣

∣
(x) − 1

)

> 2 log

(

1

22d−2
N(I)2 − 3

)

> 2 log

(

1

22d−2

(

4π(g − 1)

νλD,Q

)2/3

− 3

)

> 2 log

(

1

22d−2

(

4πg

νλD,Q

)2/3
)

+ o(1)

=
4

3

[

log(g) −
(

log(23d−5π−1νλD,Q) + o(1)
)]

.

The constant can be somewhat improved by taking the stronger version
of Theorem 2.3 into account. q.e.d.

Theorem 1.5 now follows immediately, since every arithmetic co-
compact lattice of SL2(R) is by definition commensurable to one of
the lattices treated in Theorem 6.1.

To prove Theorem 1.8, let F = C. Let K be a number field with one
complex embedding and d − 2 real ones, where d = [K :Q]. As before,
let

D = (a, b)2,K

be a quaternion division algebra over K, and define O, Q and κ as in
Theorem 6.1. Let Γ = Q1, and set X1 = Γ\H3.

Theorem 6.3. Let K be a number field of dimension d over Q with

a single complex place, and let D, O, Q and κ be as in Theorem 6.1.
As before, let Γ = Q1. Let I0⊳OK be an ideal such that Γ(I0) is torsion

free (see Corollary 5.1), and set X1 = Γ(I0)\H
3.

Then, the 3-manifolds XI = Γ(I)\H3, where I ⊆ I0, satisfy

sysπ1(XI) ≥
2

3

[

log(‖XI‖)) −
(

log(23d−6‖X1‖λD,Q) + o(1)
)]

,

where λD,Q are defined as in (4.10), ranging over the primes of T1 ∪ T2

which divide I.

Proof. We proceed as in the proof of Theorem 6.1. Since the simplicial
volume is multiplicative under covers where the covered space is smooth,
we have from Corollary 4.6 that

‖XI‖ = [Γ(I0) :Γ(I)] · ‖X1‖

≤ [Γ :Γ(I)] · ‖X1‖

≤ ‖X1‖λD,Q · N(I)3
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and so N(I) ≥
(

‖XI‖
‖X1‖λD,Q

)1/3
. Let ±1 6= x ∈ Γ(I). By (6.1) and

Theorem 2.3, we have

ℓx > 2 log
(
∣

∣

∣
TrM2(C)

∣

∣

∣
(x) − 1

)

> 2 log

(

1

2d−2
N(I) − 3

)

> 2 log

(

1

2d−2

(

‖XI‖

‖X1‖λD,Q

)1/3

− 3

)

> 2 log

(

1

2d−2

(

‖XI‖

‖X1‖λD,Q

)1/3
)

+ o(1)

=
2

3

[

log(‖XI‖) −
(

log(23d−6‖X1‖λD,Q) + o(1)
)]

,

and again the constant may be improved by taking the stronger version
of Theorem 2.3 into account. q.e.d.

Theorem 1.8 now follows, by the same argument as for Theorem 1.5.
Corollary 1.9 follows from the fact that for a closed hyperbolic 3-man-

ifold M , we have ‖M‖ = vol(M)
v3

where v3 is the volume of a regular ideal

simplex in H3.

7. The systole of Hurwitz surfaces

In this section, we specialize the results of Section 2 to the lat-
tice ∆H , defined as the even part of the group of reflections in the
sides of the (2, 3, 7) hyperbolic triangle. We follow the concrete real-

ization of the Z/2Z-central extension ∆̃H of ∆H as the group of norm
one elements in an order of a quaternion algebra, given by N. Elkies in
[El98, p. 39] and in [El99, Subsection 4.4]. The (2, 3, 7) case is is also
considered in detail in [MR03, pp. 159–160].

Let K denote the real subfield of Q[ρ], where ρ is a primitive 7th root
of unity. Thus K = Q[η], where η = ρ+ρ−1 has minimal polynomial η3+
η2 − 2η − 1 = 0. There are three embeddings of K into R, defined by
sending η to any of the numbers

2 cos
(

2π
7

)

, 2 cos
(

4π
7

)

, 2 cos
(

6π
7

)

.

We view the first embedding as the ‘natural’ one, and denote the others
by σ1, σ2 : K→R.

Now let D denote the quaternion K-algebra

(η, η)K = K[i, j | i2 = j2 = η, ji = −ij].

The ring of integers of K is OK = Z[η], and so this presentation satisfies
the condition of Lemma 2.2.
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Proposition 7.1. The only two ramification places of D are the real

embeddings σ1 and σ2.

Proof. This fact is mentioned without proof in [El99, p. 96], and we
provide the easy argument for the sake of completeness. The behavior
of D over a real place is determined by the sign of η. Since 2 cos(2π/7) is
positive, the algebra D⊗R is a matrix algebra. On the other hand, the
two conjugates σ1(η) = η2 − 2 = 2 cos(4π/7) and σ2(η) = 2 cos(8π/7)
are negative, and so D⊗σ1

R and D⊗σ2
R are division algebras.

Now let p be a prime of K. If p is odd, then the norm form

λ2
1 − ηλ2

2 − ηλ2
3 + η2λ2

4

is a four dimensional form over the field OK/p, so it represents zero
non-trivially over OK/p [Se73, Prop. IV.4]. By Hensel’s lemma, such a
representation can be lifted to a representation over the completion Kp,
and so D⊗Kp has elements of zero norm, which are clearly zero divisors;
thus D⊗Kp

∼= M2(Kp).
A similar argument works for p = 〈2〉. We note that the latter is the

only even prime, since OK/〈2〉 ∼= F8 is a field. The only refinement nec-
essary for Hensel’s lemma to apply is the fact that the form represents 0
modulo p3 = 8:

1 − η(1 + 3η + η2)2 − η(η)2 + η2(0)2 = −8(1 + 3η + η2) ≡ 0 (mod 8).

As an alternative to the computation modulo 8, one can deduce the
behavior at p = 2 from the other places, via the quadratic reciprocity,
which forces an even number of ramification places. q.e.d.

Let O ⊆ D be the order defined by (2.4), namely O = Z[η][i, j]. Fix
the element τ = 1 + η + η2, and let

j′ =
1

2
(1 + ηi + τj).

Notice that j′ is an algebraic integer of D, since the reduced trace is 1
while the reduced norm is

1

4
(1 − η · η2 − η · τ2 + η2 · 0) = −1 − 3η,

so that both are in OK . In particular

(7.1) j′
2

= j′ + (1 + 3η).

Definition 7.2. We define the Hurwitz quaternion order QHur by
setting

(7.2) QHur = Z[η][i, j, j′].

There is a discrepancy between the descriptions of a maximal order in
[El98, p. 39] and in [El99, Subsection 4.4]. The maximal order accord-
ing to [El98, p. 39] is Z[η][i, j, j′]. Meanwhile, in [El99, Subsection 4.4],
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the maximal order is claimed to be the order Z[η][i, j′], described as Z[η]-
linear combinations of the elements 1, i, j′, and ij′ on the last line of
page 94. The correct answer is the former, i.e., (7.2). More details may
be found in [KSV07].

Obviously QHur ⊆
1
2O. Moreover since TrD(j′) = 1, this is the best

possible choice for κ.

Lemma 7.3. In the Hurwitz case, one has λD,QHur
= 1.

Proof. Indeed, in (4.10), we have T1 = ∅ since D has no finite ram-
ification points by Proposition 7.1, while T2 = ∅ since the Hurwitz
order QHur is maximal. q.e.d.

Lemma 7.4. The group Q1
Hur(I) is torsion-free for every proper

ideal I⊳OK .

Proof. Let I⊳OK be a proper non-zero ideal, and assume Q1
Hur(I) is

not torsion free. Taking into account the fact that OK is a principal
ideal domain, we have by Corollary 5.1 that I2 divides an ideal of the
form

〈

x−1(x − 1)2
〉

=
〈

x + x−1 − 2
〉

,

where x a root of unity for which K[x]/K is a quadratic extension. For
our field K, we must have x14 = 1, namely x = ±ρj , j = 1, . . . , 6. Now,
the element

2 + (ρ + ρ−1) = 2 + η,

as well as its Galois conjugates, is invertible in Z[η] (as η(η−1)(η+2) =
1), ruling out the cases x = −ρj . In all the remaining cases I = 〈2 − η〉,
since this ideal is stable under the Galois action (as σ1 : 2 − η 7→ (2 −
η)(2+η)). However 〈2 − η〉 is prime (of norm 7), so it cannot be divisible
by I2. q.e.d.

Proof of Theorem 1.10. For low genus, e.g., g ≤ 100, one can verify di-
rectly that the Hurwitz surfaces satisfy the 4/3-bound. The Hurwitz
surfaces with automorphism group of order up to a million were clas-
sified by M. Conder [Con87] using group theoretic arguments. The
few surfaces of genus below 100 can be dealt with on a case by case
basis. We list them in Table 7.1, together with their systoles and the
bound 4

3 log g(X). Here a surface is called simple if its automorphism
group is. A surface is called real if it admits an antiholomorphic involu-
tion. Thus, if a surface is non-real, then there are two distinct Riemann
surfaces which are isometric as Riemannian manifolds. The systoles
given in the table were calculated by R. Vogeler [Vo03, Appendix C],
cf. [Vo04].

A comparison of the values in the last two columns, together with
Lemma 7.4, verifies the validity of the 4/3-bound for these surfaces.
The general case is treated below. q.e.d.
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g Automorphism Group Type Reality Systole Bound

3 PSL(2, 7) simple real 3.936 1.465

7 PSL(2, 8) simple real 5.796 2.595

14 PSL(2, 13) simple real 5.903 3.519

14 PSL(2, 13) simple real 6.887 3.519

14 PSL(2, 13) simple real 6.393 3.519

17 (C2)
3.PSL(2, 7) non-simple non-real 7.609 3.778

Table 7.1. Hurwitz surfaces of genus ≤ 65.

Theorem 2.3 specializes to the following result.

Theorem 7.5. Let I⊳Z[η]. For every x 6= ±1 in ∆H(I) we have

∣

∣TrD(x)
∣

∣ >
1

16
N(I)2 − 2.

To complete the proof of Theorem 1.10, we let XI = ∆H(I)\H2.
Combining this bound with (6.1) and (6.2), the fact that ν = π/21, and
applying Lemma 7.3, we obtain

sysπ1(XI) > 2 log

(

(

21(g−1)
16

)2/3
− 3

)

,

which implies

sysπ1(XI) ≥
4

3
log g(XI)

if g(XI) ≥ 65.
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