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SYSTOLIC VOLUME AND MINIMAL ENTROPY OF

ASPHERICAL MANIFOLDS

Stéphane Sabourau

Abstract

We establish isosystolic inequalities for a class of manifolds
which includes the aspherical manifolds. In particular, we relate
the systolic volume of aspherical manifolds first to their minimal
entropy, then to the algebraic entropy of their fundamental groups.

1. Introduction

Let M be a nonsimply connected closed n-manifold endowed with
a Riemannian metric g. The (homotopy) systole of (M, g), denoted
sys (M, g), is defined as the length of the shortest noncontractible loop
in M . The optimal systolic volume of M , denoted σ(M), is defined as

(1.1) σ(M) = inf
g

vol (M, g)

sys (M, g)n

where g runs over the space of all metrics on M .
The study of the optimal systolic volume constitutes the heart of

systolic geometry. We refer the reader to the expository texts [12],
[20], [21] and [15] and the references therein for an account on the
subject.

In 1983, M. Gromov proved the following fundamental systolic in-
equality whose converse for orientable manifolds was established by
I. Babenko in [1].

Theorem 1.1 ([19]). There exists a positive constant Cn such that

every n-dimensional essential manifold M satisfies

(1.2) σ(M) ≥ Cn.

Recall that a closed manifold M is said to be essential if there is a
map f from M into a K(π, 1) such that f∗([M ]k) 6= 0 in Hn(π; k) where
k = Z if M is orientable or Z2 otherwise. In particular, aspherical
manifolds are essential.

This result extends earlier works on surfaces (see the references men-
tioned above). Note that the precise value of the optimal systolic volume
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of essential manifolds is known only for the 2-torus (C. Loewner, unpub-
lished, [21]), the projective plane (P.M. Pu, [35]) and the Klein bottle
(C. Bavard, [10], [36], [11]).

The systolic inequality (1.2) can be improved by taking into account
the topology of the manifold. For instance, closed surfaces of large
genus have a large systolic volume (see [19, 5.3]). More generally,
M. Gromov showed that the systolic volume of a closed manifold M is
bounded from below in terms of its simplicial volume ||M ||, its simplicial
height h(M) and, in the aspherical case, the sum of its Betti numbers
b(M) =

∑

i bi(M) (see [20, 3.C] for precise definitions). Specifically, we
have

Theorem 1.2 ([19, 6.4.C”’ & D’], [20, 3.C] and also [21, 4.46]).
Every n-dimensional closed manifold M satisfies

σ(M) ≥ Cn
||M ||

logn(1 + ||M ||) ,(1.3)

σ(M) ≥ Cn
h(M)

exp(C ′
n

√

log h(M))
.(1.4)

Furthermore, if M is aspherical, we have

(1.5) σ(M) ≥ Cn
b(M)

exp(C ′
n

√

log b(M))
.

Here, the positive constants Cn and C ′
n depend only on the dimension

of M .

Note that inequality (1.5) is a consequence of (1.4) since h(M)≤b(M)
for aspherical manifolds.

In [1], [3] and [4], I. Babenko compared the optimal systolic volumes
of the manifolds with the same fundamental group. Namely, he proved
that the optimal systolic volume is a homotopy invariant (see [1]). He
also showed that in a large number of cases, the optimal systolic volume
of a manifold depends only on its homology class in the corresponding
Eilenberg-MacLane space (see [3] and [4] for a more precise statement).

In this article, we prove two other systolic inequalities for aspherical
manifolds using, on the one hand, the minimal entropy and, on the other
hand, the algebraic entropy of the fundamental groups. Loosely speak-
ing, we show that aspherical manifolds with “complicated” fundamental
groups have large systolic volume.

In order to state our first result, we need to introduce some definitions.
Given a closed n-dimensional manifold (M, g), denote by (M̃, g̃) the

universal Riemannian covering. Fix x0 ∈ M and a lift x̃0 ∈ M̃ of x0.
The volume entropy (or asymptotic volume) of (M, g) is defined as

(1.6) Ent (M, g) = lim
R→+∞

log(vol g̃ B(x̃0, R))

R
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where vol g̃ B(x̃0, R) is the volume of the ball centered at x̃0 with ra-

dius R in M̃ . Since M is compact, the limit in (1.6) exists and does

not depend on the point x̃0 ∈ M̃ (see [34]). This asymptotic invariant
describes the exponential growth rate of the volume on the universal
covering.

Define the minimal entropy of M as

(1.7) MinEnt (M) = inf
g

Ent (M, g) vol (M, g)
1
n

where g runs over the space of all metrics on M .
M. Gromov showed in [18] that the simplicial volume is related to

the minimal entropy. More precisely, there exists a positive constant Cn

such that every closed n-manifold M with simplicial volume ||M || sat-
isfies

(1.8) MinEnt (M)n ≥ Cn||M ||.
When M admits a negatively curved locally symmetric metric g0, it
has been proved by A. Katok in [24] (for n = 2) and by G. Besson,
G. Courtois and S. Gallot in [13] (for n ≥ 3) that

(1.9) MinEnt (M)n = Ent (g0)
n vol (g0).

I. Babenko showed in [1] that both the optimal systolic volume and
the minimal volume entropy are homotopy invariants of manifolds.

The first result of this article shows how these two invariants are
related. More precisely, we prove the following partial generalization of
inequality (1.3) in Theorem 1.2.

Theorem 1.3. Let Φ : M −→ K be a degree 1 map between two

oriented closed manifolds of the same dimension n 6= 3 such that K is a

K(π1(M), 1)-space. Then, there exists a positive constant Cn depending

only on n such that

(1.10) σ(M) ≥ Cn
MinEnt (M)n

logn(1 + MinEnt (M))
.

If M is aspherical, we can take the identity map for Φ. This imme-
diately leads to the following result.

Corollary 1.4. Every orientable aspherical closed manifold of di-

mension n different from 3 satisfies the systolic inequality (1.10).

Theorem 1.3 is more general than Corollary 1.4. Indeed, the con-
nected sum of an aspherical manifold satisfying the hypothesis of Theo-
rem 1.3 with a simply connected orientable closed manifold nonhomeo-
morphic to the sphere again satisfies the hypothesis of Theorem 1.3 but
is not aspherical.

Inequality (1.10) combined with (1.8) implies inequality (1.3). Thus,
Theorem 1.3 sharpens Theorem 1.2 (1.3) for aspherical manifolds of
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dimension different from 3, but it does not apply to arbitrary closed
manifolds as Theorem 1.2 (1.3) does. It is an open question whether
inequality (1.10) holds for every closed manifold.

The restriction on the dimension of M in Theorem 1.3 is due to
technical reasons: in the proof, we use a construction of I. Babenko [4]
which relies on obstruction theory and requires that n is different from 3
(see Section 3 for further explanation).

Let us now introduce the algebraic entropy of a finitely generated
group.

Let Σ be a finite generating set of a group Γ. The algebraic (or word)
length of an element α ∈ Γ with respect to Σ is noted |α|Σ. It is defined
as the smallest integer k ≥ 0 such that α = α1 . . . αk where αi ∈ Σ∪Σ−1.
By definition, the neutral element e is the only element of Γ with null
algebraic length.

The algebraic entropy of Γ with respect to Σ is defined as

(1.11) Ent alg(Γ, Σ) = lim sup
R→+∞

log(NΣ(R))

R
.

where NΣ(R) = card {α ∈ Γ | |α|Σ ≤ R} is the cardinal of the R-ball
of (Γ, |.|Σ) centered at its origin. If Γ is the fundamental group of a
closed polyhedron, then the sup-limit is a limit (see [34]).

Define the minimal algebraic entropy of Γ as

(1.12) Ent alg(Γ) = inf
Σ

Ent alg(Γ, Σ)

where Σ runs over the space of all generating sets of Γ.
The second result of this article shows how the systolic volume of

some manifolds is related to the algebraic entropy of their fundamental
groups. More precisely, we have

Theorem 1.5. Let Φ : M −→ K be a degree 1 map between two

n-dimensional oriented closed manifolds such that K is a K(π1(M), 1)-
space. Then, there exists a positive constant Cn depending only on n
such that

(1.13) σ(M) ≥ Cn
Ent alg(π1(M))

log(1 + Ent alg(π1(M)))
.

Note that the dimension n can be equal to 3 in this result. As previ-
ously, we have the following particular result.

Corollary 1.6. Every n-dimensional orientable aspherical closed

manifold satisfies the systolic inequality (1.13).

As shown in Example 6.5, inequality (1.13) does not hold for every
orientable closed manifold: extra topological conditions are required, as
in Theorem 1.5.

The constants Cn we obtain in inequalities (1.10) and (1.13) can be
explicitly computed. Theorems 1.3 and 1.5 are consequences of more
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general results - namely, Theorems 5.1 and 6.1 - stated in terms of
relative systole and relative entropy (see Section 2 for a definition of
these notions). Note that their proofs are not based on filling invariant
estimates.

Let us now mention some other related works, though of a quite
different nature, on universal systolic inequalities.

Upper bounds on the optimal systolic volume of the connected sums
and the coverings of manifolds can be found in [14] for surfaces and
in [5], [32] in higher dimensions.

The (homotopy) systole can be replaced by stable or conformal sys-
toles of any dimension. In this case, multiplicative relations in the
cohomology ring lead to systolic inequalities (see [19], [21], [8], [9],
[26], [22], [25], [7], [29], [30], [28], [27] for more precise statements
and related results). Note that some of these stable/conformal systolic
inequalities are sharp.

In contrast with these results, unstable higher dimensional systoles
typically satisfy no nontrivial systolic inequalities (see [17], [33] and [2]
for the most general and recent results).

This article is organized as follows. The definition of pseudomanifolds
and the notions of relative systole and relative entropy are presented in
Section 2. In Section 3, we show that under some topological conditions,
the relative minimal entropy of geometric cycles representing a manifold
is not less than the relative minimal entropy of this manifold. The proof
of this comparison result makes use of surgery and extension procedures
and relies on I. Babenko’s constructions. In Section 4, we introduce
regular geometric cycles whose existence and main properties have been
established by M. Gromov. Then, we bound from above their relative
minimal entropy in terms of their relative systolic volume. Combining
the results of Sections 3 and 4, we derive in Section 5 a lower bound on
the relative systolic volume of some manifolds in terms of their relative
minimal entropy. In Section 6, we show that under some topological
conditions, the relative systolic volume of manifolds can be bounded
from below in terms of the algebraic entropy of their fundamental group.

2. Pseudomanifolds, relative systole and relative entropy

In this section, we recall the definition of pseudomanifolds and intro-
duce the notions of relative systole and relative entropy.

The definition of manifolds appears too restrictive in the study of
the systolic volume. Instead, we will consider Riemannian polyhe-
dra, i.e., polyhedra endowed with a piecewise linear Riemannian metric
(see [1, §2] for a more precise definition). Unless stated otherwise, all
polyhedra will be finite. By definition, a finite n-dimensional polyhe-
dron X is said to be orientable if Hn(X; Z) ≃ Z.
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The class of closed orientable n-dimensional pseudomanifolds plays an
important role in our study, especially in relation to inequalities (4.3)
and (4.4).

Definition 2.1 ([37]). A closed n-dimensional pseudomanifold is a
finite simplicial complex X such that

1) every simplex of X is a face of some n-simplex of X;
2) every (n − 1)-simplex of X is the face of exactly two n-simplices

of X;
3) given two n-simplices s and s′ of X, there exists a finite sequence

s = s1, s2, . . . , sm = s′ of n-simplices of X such that si and si+1

have an (n − 1)-face in common.

The nth homology group Hn(X; Z) of a closed n-dimensional pseudo-
manifold is either isomorphic to Z or trivial (see [37]).

Lemma 2.2. Every closed n-dimensional pseudomanifold admits a

cellular decomposition with exactly one n-cell.

Proof. Consider a closed n-pseudomanifold X with its simplicial
structure. There exists a tree T in X whose vertices agree with the
barycenters of the n-simplices of X and edges are segments joining the
barycenters of adjacent n-simplices. Here, we say that two n-simplices
are adjacent if they have an (n − 1)-face in common. The (n − 1)-
simplices of X which do not intersect T form an (n − 1)-dimensional
complex X ′. It is possible to define a cellular complex homeomorphic
to X by gluing an n-cell to X ′. q.e.d.

Let us now extend the classical definitions of the systole and the
entropy.

Let X be a finite n-dimensional polyhedron endowed with a piecewise
Riemannian metric g. Let ψ : π1(X) −→ π be a group homomorphism
with kernel H ⊳ π1(X). Denote by ψ♯ the map induced by ψ between
the conjugacy classes.

The ψ-systole of (X, g), denoted sys ψ(X, g), is defined as the length
of the shortest loop of X whose image by ψ♯ is nontrivial.

The ψ-systolic volume of (X, g) is defined as

(2.1) σψ(X, g) =
vol (X, g)

sys ψ(X, g)n

and the optimal ψ-systolic volume of X is defined as

(2.2) σψ(X) = inf
g

σψ(X, g)

where g runs over the space of all piecewise linear Riemannian met-
rics on X. Here, the volume of an n-dimensional Riemannian polyhe-
dron (X, g) is defined as the sum of the n-volumes of all the n-simplices
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of X. Thus, the n-volume agrees with the n-dimensional Hausdorff mea-
sure. Note that the optimal ψ-systolic volume of X depends rather on
the kernel H of ψ than on the homomorphism ψ itself. We clearly have

(2.3) σψ(X) ≤ σ(X).

Let p : XH −→ X be the covering corresponding to the normal
subgroup H ⊳ π1(X). By definition, the deck transformation group
of XH , noted Aut (XH), agrees with π1(X)/H and π1(XH) is isomorphic
to H. The lift of g to XH is noted g. Fix x0 in X and a lift x0 in XH .

The volume entropy of X relative to H (or H-entropy) is defined as

(2.4) Ent H(X, g) = lim
R→+∞

1

R
log(vol g B(x0, R))

where vol g B(x0, R) is the volume of the g-ball centered at x0 of ra-
dius R in XH . Since X is compact, the limit in (2.4) exists and does
not depend on the point x0 ∈ XH (see [34]). When H is trivial, the
H-entropy agrees with the classical volume entropy. Furthermore, if
H1 ⊳ H2 ⊳ π1(M), then Ent H1(X, g) ≥ Ent H2(X, g). In particular, one
has Ent H(X, g) ≤ Ent (X, g).

The minimal H-entropy of X is defined as

(2.5) MinEnt H(X) = inf
g

Ent H(X, g) vol (X, g)
1
n

where g runs over the space of all piecewise linear Riemannian met-
rics on X. When H is trivial, the minimal H-entropy agrees with the
classical minimal entropy.

The H-entropy can also be defined by using the following result.

Lemma 2.3. Let X be a closed polyhedron endowed with a piecewise

linear Riemannian metric g and ψ : π1(X) −→ π be a group homomor-

phism with kernel H. Then,

(2.6) Ent H(X, g) = lim
T→+∞

log(PH(T ))

T

where PH(T ) is the number of classes in Aut (XH) ≃ π1(X, x0)/H which

can be represented by loops of length at most T based at some fixed

point x0.

Proof. The group Γ := Aut (XH) ≃ π1(X, x0)/H acts on XH by
isometries. The orbit of x0 by Γ is noted Γ.x0 where x0 is a lift of x0

in XH . Consider a fundamental domain ∆ for the action of Γ contain-
ing x0. Denote by D the diameter of ∆. The cardinal of Γ.x0∩B(x0, R)
is bounded from above by the number of translated fundamental do-
mains γ.∆ contained in B(x0, R + D) and bounded from below by the
number of translated fundamental domains γ.∆ contained in B(x0, R).
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Therefore, we have

(2.7)
vol (B(x0, R))

vol (X, g)
≤ card (Γ.x0 ∩ B(x0, R)) ≤ vol (B(x0, R + D))

vol (X, g)
.

Take the log of these terms, multiply them by 1
R

and let R go to infinity.
The left-hand term and the right-hand term both yield Ent H(X, g). The
result follows since P ′

H(R) = card (Γ.x0 ∩ B(x0, R)). q.e.d.

3. Minimal entropy of geometric cycles representing

aspherical manifolds

In this section, we compare the relative minimal entropy of some man-
ifolds with the relative minimal entropy of their representing geometric
cycles.

Let π be a discrete group and K(π, 1) be an Eilenberg-MacLane space.
Let h be a homology class in Hn(π; Z) := Hn(K(π, 1); Z). A geometric
cycle representing the homology class h is a map Ψ : X −→ K(π, 1) from
a closed oriented n-dimensional Riemannian pseudomanifold (X, g) such
that Ψ∗[X] = h where [X] is the fundamental class of X. The map Ψ
induces a homomorphism ψ : π1(X) −→ π between the fundamental
groups, whose kernel is noted H.

The minimal entropy of h ∈ Hn(π; Z) is defined as

(3.1) MinEnt (h) = inf
X

MinEnt H(X)

where X = (X, Ψ, g) runs over all the geometric cycles representing h.

Theorem 3.1. Let π be a discrete group. Let Φ : M −→ K be a

degree 1 map between two oriented closed manifolds of the same dimen-

sion n 6= 3 such that K is a K(π, 1)-space. Then,

(3.2) MinEnt G(M) = MinEnt (Φ∗[M ])

where G is the kernel of the homomorphism φ : π1(M) −→ π induced

by Φ and [K] is the fundamental class of K.

Remark 3.2. Under the assumptions of Theorem 3.1, we have Φ∗[M ]
= [K]. We can apply again Theorem 3.1 to the identity map of K. This
yields

(3.3) MinEnt G(M) = MinEnt (K).

Remark 3.3. Every homomorphism φ : π1(M) −→ π induces a map
Φ : M −→ K (uniquely defined up to homotopy) whose homomorphism
induced between the fundamental groups agrees with φ. Thus, if M is
aspherical, we can take π = π1(M), K = K(π1(M), 1) = M and Φ the
map induced by the identity homomorphism on π1(M). In this case, we
obtain

(3.4) MinEnt (M) = MinEnt ([M ]).
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Remark 3.4. Under the hypotheses of Theorem 3.1, the group π is
necessarily a quotient of π1(M) (see Lemma 3.7).

Let X be a closed n-dimensional polyhedron and ψ : π1(X) −→ π
be a group homomorphism with kernel H. An H-extension of X is
a closed n-dimensional polyhedron X ′ obtained by attaching to X a
finite number of k-cells with 2 ≤ k ≤ n − 1 along simplicial maps
h : Sk−1 −→ X ′(k−1) into the (k − 1)-skeleton of X ′, with [h] ∈ H when
k = 2. In particular, an H-extension X ′ of X contains X and may be
written as

(3.5) X ′ = X
n−1
⋃

k=2

pk
⋃

ik=1

Bk
ik

.

The group π1(X
′) is isomorphic to a quotient of π1(X) by a normal sub-

group of H. Thus, the map ψ induces a homomorphism ψ′ : π1(X
′) −→

π whose kernel H ′ is a quotient of H.
The inclusion map i : X →֒ X ′ induces an isomorphism between

Hn(X; Z) and Hn(X ′; Z). In particular, if X is an orientable poly-
hedron, then the same holds for X ′. In this case, the degree of the
inclusion map i : X →֒ X ′ equals 1 (i.e., i∗[X] = [X ′] in Hn(X ′; Z) for
corresponding orientations). Recall that the degree of a map f between
two oriented n-dimensional polyhedra X and X ′ is defined as the unique
integer p such that f∗[X] = p[X ′] in Hn(X ′; Z). When H is trivial, the
space X ′ is simply called an extension of X.

A simplicial map f : X −→ Y between two finite simplicial polyhedra
is said to be n-monotone if the preimage of every open n-simplex of Y
is either an open n-simplex of X or an empty set.

The following result is due to I. Babenko (see [1, §2]).

Lemma 3.5. Let Xi, i = 1, 2, be two closed n-dimensional polyhedra

and ψi : π1(Xi) −→ π be two group homomorphisms with kernel Hi.

Assume that there exists an n-monotone map f : X1 −→ X2 such that

ψ1 = ψ2 ◦ f∗. Then,

(3.6) MinEnt H1(X1) ≤ MinEnt H2(X2).

Proof. Fix ε > 0 and a metric g on X2. From [1, §2] (see also [4,
Lemme 3.1]), there exists a metric gε on X1 such that f : (X1, gε) −→
(X2, g) is nonexpanding and vol (X1, gε) ≤ vol (X2, g) + ε. Since ψ1 =
ψ2 ◦ f∗, we have f−1

∗ (H2) = H1. Thus, f∗ induces an injective ho-
momorphism between π1(X1)/H1 and π1(X2)/H2. Moreover, if γ is
a loop of X1 based at some fixed point x0, its image f(γ) is a loop
of X2 based at f(x0) such that length (f(γ)) ≤ length (γ). Therefore,
PH1(T ) ≤ PH2(T ). This implies that Ent H1(X1, gε) ≤ Ent H2(X2, g)
from Lemma 2.3. The result follows. q.e.d.

The following result is an immediate consequence of Lemma 3.5.
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Lemma 3.6. Every H-extension X ′ of X satisfies

(3.7) MinEnt H′(X ′) = MinEnt H(X).

Proof. The inclusion map i : X →֒ X ′ is n-monotone and ψ = ψ′ ◦ i∗.
Therefore, from Lemma 3.5, we have MinEnt H(X) ≤ MinEnt H′(X ′).

Given a metric g on X, we extend g to the H-extension X ′ of X
by induction on k so that each cell Bk

ik
has the geometry of a long

cylinder over its basis capped on its top (see [4, Lemma 3.5] for a more
precise construction). Denote by g′ the metric on X ′ so-obtained. If
the cylinders defining the geometry of the Bk

ik
’s are long enough, every

loop γ′ of X ′ based at some fixed point x0 of X can be homotoped in X ′

into a loop γ of X with the same based point such that length (γ) ≤
length (γ′). Since the inclusion map induces an isomorphism between
π1(X)/H and π1(X

′)/H ′, we have PH′(T ) ≤ PH(T ). We deduce from
Lemma 2.3 that Ent H′(X ′, g′) ≤ Ent H(X, g). Hence, MinEnt H′(X ′) ≤
MinEnt H(X) since the n-volume of the cells attached to X is null.

q.e.d.

We can now prove Theorem 3.1 when n ≥ 4. The case n = 2 is
treated at the end of this section.

Let Φ : M −→ K be a degree 1 map between two oriented closed
manifolds of the same dimension n ≥ 4 such that K is a K(π, 1)-space.
Denote by φ : π1(M) −→ π the homomorphism induced by Φ between
the fundamental groups. Let Ψ : X −→ K be a geometric cycle rep-
resenting Φ∗[M ] = [K] in homology. By definition, the map Ψ is of
degree 1. Denote by ψ : π1(X) −→ π the homomorphism induced
by Ψ. The fundamental groups of M and X are related to π as follows.

Lemma 3.7. The homomorphisms φ : π1(M) −→ π and ψ : π1(X)
−→ π are epimorphisms.

Proof. Let p : K −→ K be the covering corresponding to the sub-
group ψ(π1(X)) of π1(K) ≃ π. By definition, the fundamental group
of K is isomorphic to ψ(π1(X)). The map Ψ : X −→ K lifts to a map
Ψ : X −→ K uniquely defined up to deck transformations such that
Ψ = p ◦ Ψ. The index [π : ψ(π1(X))] of ψ(π1(X)) in π is finite, oth-
erwise K is noncompact. In this case, the homology group Hn(K; Z)
vanishes and Ψ∗[X] = p∗(Ψ∗[X]) is trivial in homology, hence a contra-
diction. Thus, |deg p| = [π : ψ(π1(X))]. Since deg Ψ = deg p·deg Ψ = 1,
the index of ψ(π1(X)) in π equals 1. Therefore, ψ(π1(X)) = π. Hence
ψ is surjective and the same goes for φ. q.e.d.

The following example shows that the surjectivity of ψ does not hold
anymore when K is not an n-dimensional manifold (of course, here, we
replace [K] by Φ∗[M ]).
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Example 3.8. Consider the connected sum M = (S1 × Sn−1)#T
n

with n ≥ 3 (we can replace the n-torus T
n by any essential manifold)

and a K(π1(M), 1)-space K. Here, π1(M) ≃ Z ∗ π1(T
n) ≃ Z ∗ Z

n

from Van Kampen’s theorem. Since K is aspherical, the canonical map
Φ : M −→ K induced by the identity homomorphism on π1(M) factor-

izes through Φ : M −→ (S1×Sn−1)∨T
n i∨j−→ K. Furthermore, the map

j : T
n −→ K represents Φ∗[M ] and j∗ : π1(T

n) −→ Z ∗ π1(T
n) is not

surjective.

One can kill the kernel of ψ by attaching 2-cells at X. More precisely,
we have the following.

Lemma 3.9. There exists an H-extension X ′ of X and a map Ψ′ :
X ′ −→ K of degree 1 such that the homomorphism Ψ′

∗ : π1(X
′) −→ π

induced by Ψ′ is an isomorphism which agrees with ψ′ defined after (3.5).
Further, since X ′ is an H-extension of X,

MinEnt (X ′) = MinEnt H(X).

Proof. Note that the groups π1(X) and π have finite presentations.
The kernel H of the epimorphism ψ : π1(X) −→ π is generated by a
finite number of elements. Define an H-extension X ′ of X by attaching
2-cells along a finite number of (simplicial) loops representing a finite
generating set of H. By construction, the map Ψ extends into a map
Ψ′ : X ′ −→ K of degree 1 such that the homomorphism induced be-
tween the fundamental groups is an isomorphism which agrees with ψ′.

q.e.d.

Similar arguments lead to the following (see also [4, Lemme 3.11]).

Lemma 3.10. There exists an oriented closed n-dimensional man-

ifold M ′ and a map Φ′ : M ′ −→ K of degree 1 such that the homo-

morphism φ′ : π1(M
′) −→ π induced by Φ′ is an isomorphism and

MinEnt (M ′) = MinEnt G(M).

Proof. The kernel G of the epimorphism φ : π1(M) −→ π is gener-
ated by a finite number of elements represented by disjoint simple loops
γ1, . . . , γk of M . Consider disjoint tubular neighborhoods of the γi’s
homeomorphic to S1×Bn−1. Remove these neighborhoods from M and
glue D2

i × Sn−2 along their boundaries S1
i × Sn−2 where D2

i is a disk
bounding S1

i . The oriented closed n-manifold so-obtained is noted M ′.
Since K is aspherical and the images by Φ of the loops γi are con-

tractible, the map Φ induces a map Φ′ : M ′ −→ K which repre-
sents the fundamental class of K. By construction, the homomorphism
φ′ : π1(M

′) −→ K induced by Φ′ is an isomorphism.
Let Y be the extension of M ′ obtained by attaching an (n − 1)-cell

Bn−1
i along a copy Sn−2 of D2

i × Sn−2 for every 1 ≤ i ≤ k. This
ensures us that the spheres Sn−2 of D2

i × Sn−2 are contractible in Y .
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Therefore, there exists an n-monotone map f : M −→ Y of degree 1
such that φ = φ′ ◦ f∗. From Lemma 3.5 and Lemma 3.6, we have
MinEnt G(M) ≤ MinEnt (Y ) = MinEnt (M ′).

The reverse inequality, which will not be used in the sequel, can
be obtained as follows. Let Z be the G-extension of M obtained by
attaching 2-cells D2

i along the γi’s. The projections of the second factor
of D2

i × Sn−2 onto D2
i give rise to an n-monotone map of degree 1

from M ′ onto Z which induces an isomorphism between the fundamental
groups. As previously, from Lemma 3.5 and Lemma 3.6, we obtain
MinEnt (M ′) ≤ MinEnt (Z) = MinEnt G(M). q.e.d.

The following result rests on a construction of [4, Théorème 3.7].
The restriction on the dimension, i.e., n 6= 3, is required at this point
precisely (see Remark 3.12).

Lemma 3.11. There exists an extension X ′′ of X ′ and a degree 1
map Φ′′ : M ′ −→ X ′′ such that the homomorphism φ′′ : π1(M

′) −→
π1(X

′′) induced by Φ′′ is an isomorphism which agrees with ψ′−1 ◦ φ′

and

(3.8) MinEnt (X ′′) ≥ MinEnt (M ′).

Further, since X ′′ is an extension of X ′, MinEnt (X ′′)=MinEnt (X ′).

Proof. By assumption, ψ′ : π1(X
′) −→ π and φ′ : π1(M

′) −→ π are
isomorphisms and Ψ′

∗[X
′] = Φ′

∗[M
′] = [K] in Hn(K; Z) ≃ Hn(π; Z).

We can apply the theorem 3.7 of [4] which yields an extension X ′′

of X ′ and a map Φ′′ : M ′ −→ X ′′ such that the homomorphism
φ′′ : π1(M

′) −→ π1(X
′′) induced by Φ′′ satisfies φ′′ = ψ′−1 ◦ φ′.

Remark 3.12. Strictly speaking, this result has been stated for two
manifolds M1 and M2 (see [4, Théorème 3.7] for the notations). Further-
more, it does not hold anymore when M2 is replaced by a polyhedron
(see [4] for a counterexample). However, when M1 is a pseudomani-
fold and M2 is a manifold, the proof still applies which permits us to
conclude.

Let us develop this point by recalling the steps of the construction
of [4, Théorème 3.7]:

1) The homotopy groups of M1 of dimension i with 2 ≤ i ≤ n−1 can
be successively killed by attaching cells of dimensions i + 1. The
resulting spaces are CW-complexes noted M1(i + 1) with M1(n)

homotopically equivalent to the n-skeleton K(π, 1)(n) of K(π, 1).
2) The cellular approximation theorem applied to the classifying map

of M2 yields a map g : M2 −→ M1(n). Note that M1(n) is not an
extension of M1.

3) The map g is not uniquely defined up to homotopy. However, it
may be chosen so that it can be deformed into a map ĝ : M2 −→
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M1(n − 1) inducing the same homomorphism as g between the
fundamental groups.

4) By compactness, the map ĝ can be deformed into a map whose
image is a finite subcomplex of M1(n − 1) and so an extension
of M1.

Step 3) is the main step of the construction. It relies on the obstruc-
tion to extend a map inducing a fundamental group isomorphism. When
such an obstruction is trivial, the extension can be performed without
modifying the original map on its 2-codimensional skeleton and, in par-
ticular, on its 2-skeleton when n ≥ 4. This ensures that the extension
still induces an isomorphism between the fundamental groups.

The proof of 3) requires that M2 is a manifold to apply the Poincaré
duality. However, the assumption that M1 is a manifold plays no role
in any of the four steps of the construction (M1 is turned into a CW-
complex from the first step by attaching cells to it). For the purpose of
the proof, it is enough that M1 is a pseudomanifold.

Let us now conclude the proof of Lemma 3.11. Since K is aspher-
ical, the map Ψ′ extends to X ′′ into a degree 1 map. This map,
still denoted Ψ′, induces a homomorphism between the fundamental
groups which agrees with ψ′ : π1(X

′′) ≃ π1(X
′) −→ π. The homo-

morphism ψ′ ◦ φ′′ agrees with φ′. Therefore, since K is aspherical, the
map Ψ′ ◦ Φ′′ is homotopic to the degree 1 map Φ′. This shows that
deg Ψ′ ◦ Φ′′ = deg Ψ′ · deg Φ′′ = 1. Thus, the degree of Φ′′ is equal to 1.

The polyhedron X ′′ is an H-extension of the closed n-pseudomanifold
X. Therefore, it admits a cellular decomposition with exactly one
n-cell (see Lemma 2.2). As noticed in [4, Propriété 3.12], the proof
of [16, Theorem 4.1] still applies in this case. This implies from [4,
Propriété 3.12] that the map Φ′′ : M ′ −→ X ′′ of degree 1 is homotopic

to an n-monotone map Φ
′′

: M ′ −→ X ′′. We deduce from Lemma 3.5
that MinEnt (X ′′) ≥ MinEnt (M ′). q.e.d.

The three previous lemmas show that every geometric cycle X rep-
resenting Φ∗[M ] satisfies

(3.9) MinEnt G(M) ≤ MinEnt H(X).

Thus, MinEnt G(M) ≤ MinEnt (Φ∗[M ]).
The reverse inequality is obvious. Therefore, Theorem 3.1 is proved

for n ≥ 4.

When n = 2, M is a surface of genus γ ≥ 1. In this case, K is
homeomorphic to a surface of genus at most γ. Let Ψ : X −→ K
be a geometric cycle representing Φ∗[M ] = [K] in homology. From
the definition of pseudomanifolds, there exists a finite number of points
x1, . . . , xk of X such that X \ {x1, . . . , xk} is a two-dimensional mani-
fold and every point xi admits a neighborhood homeomorphic to a cone
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over a finite number of circles. The completed space of X \ {x1, . . . , xk}
is a closed orientable surface N . The inclusion X \ {x1, . . . , xk} →֒ X
extends into a 2-monotone map j : N −→ X such that j∗[N ] = [X].
Thus, the map Ψ0 = Ψ ◦ j : N −→ K represents Φ∗[M ] = [K]. We
can assume that the genus of K is greater than one, otherwise the
result is obvious since π1(M)/G is isomorphic to Z

2 and the minimal
G-entropy of M is then zero. The degree 1 map Ψ0 induces a homomor-
phism ψ0 : π1(N) −→ π between the fundamental groups, whose kernel
is noted H0. Arguing as in [13, Théorème 8.1], one can show that
MinEnt H0(N) = MinEnt (M). Since j is 2-monotone and ψ0 = ψ ◦ j∗,
we deduce that MinEnt H0(N) ≤ MinEnt H(X) from Lemma 3.5. There-
fore, MinEnt (M) ≤ MinEnt H(X). As previously, Theorem 3.1 imme-
diately follows when n = 2.

4. Entropy of extremal geometric cycles

We introduce in this section the notion of regular geometric cycles
and bound from above their relative entropy in terms of their relative
systolic volume.

In dimension greater than two, we do not know whether the infimum
in inequality (1.1) is achieved by any metric. The likely absence of ex-
tremal metrics in general makes the study of systolic geometry delicate.
In order to get around this difficulty M. Gromov proved that every es-
sential manifold can be represented by a regular geometric cycle (see
below). These regular geometric cycles share enough patterns we ex-
pect from possible extremal metrics to play the role of substitute in
their absence. Note however that regular geometric cycles are not nec-
essarily homeomorphic to the manifold they represent, neither do they
necessarily have the same fundamental group.

Given a discrete group π, the optimal systolic volume of a homology
class h ∈ Hn(π; Z) is defined as

(4.1) σ(h) = inf
X

σψ(X)

where X = (X, Ψ, g) runs over all the geometric cycles representing h.
M. Gromov showed in [19, §6] that there exists a positive constant cn

such that every nontrivial homology class h ∈ Hn(π; Z) satisfies

(4.2) σ(h) ≥ cn

Furthermore, he proved in [19, p. 71] that there exists cn > 0 such that,
for every ε > 0, every nontrivial homology class h ∈ Hn(π; Z) can be
represented by a geometric cycle X = (X, Ψ, g) such that

(4.3) σψ(X, g) ≤ (1 + ε)σ(h)

and

(4.4) vol g(B(x, R)) ≥ cnRn
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for every x ∈ X and ε ≤ R/ sys ψ(X, g) ≤ 1
2 , where vol g(B(x, R)) is the

volume of the g-ball centered at x with radius R in X. In (4.4), we can

take cn = n−n+2((n − 1)!
√

n!)−n+1.
Such geometric cycles are said to be ε-regular.

Arguing as in [31] (see also [24]), we show the following.

Proposition 4.1. Every ε-regular geometric cycle (X, Ψ, g) repre-

senting a nontrivial homology class h ∈ Hn(π; Z) satisfies

(4.5) Ent H(X, g) ≤ 1

β sys ψ(X, g)
log

(

σψ(X, g)

cnαn

)

,

whenever α ≥ ε, β > 0 and 4α + β < 1
2 , where cn is given by (4.4).

Proof. Let x0 ∈ X be a fixed basepoint. Consider a maximal system
of disjoint balls

(4.6) Bi = B(xi, R) ⊂ X

of radius R = α sys ψ(X, g) and centers xi with i ∈ I, including x0.
Since the geometric cycle (X, Ψ, g) is ε-regular, we have

(4.7) vol Bi ≥ cnαn sys ψ(X, g)n ∀i ∈ I.

Therefore, this system admits at most vol (X,g)
cnαn sys ψ(X,g)n balls. Thus,

(4.8) |I| ≤ σψ(X, g)

cnαn
.

Let c : [0, T ] → X be a geodesic loop of length T based at x0 whose
image by Ψ is noncontractible. Let

(4.9) m =

[

T

β sys ψ(X, g)

]

be the integer part. The point p0 = x0, together with the points

pk = c(kβ sys ψ(X, g)), k = 1, . . . , m

and the point pm+1 = x0, partition the loop c into m + 1 segments of
length at most β sys ψ(X, g). Since the system of balls Bi is maximal, the
disks of radius 2R = 2α sys ψ(X, g) centered at xi cover X. Therefore,
for every pk, a nearest point qk among the centers xi, is at distance at
most 2R from pk. Consider the loop

αk = ck ∪ [pk+1, qk+1] ∪ [qk+1, qk] ∪ [qk, pk],

where ck is the arc of c joining pk to pk+1, while [x, y] denotes a mini-
mizing path joining x to y. Then

length (αk) ≤ 2(4α + β) sys ψ(X, g) < sys ψ(X, g),

by our hypothesis on α, β. Thus the image by Ψ of the loops αk is
contractible. The same is true for the loops c0 ∪ [p1, q1] ∪ [q1, x0] and
cm ∪ [xm, qm] ∪ [qm, pm].
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Therefore, the image by Ψ of the geodesic loop c is homotopic to
the image by Ψ of a piecewise geodesic loop c′ = (x0, q1, . . . , qm, x0).
Note that since the length of minimizing paths from pk to qk is at most
(4α + β) sys ψ(X, g) < 1

2 sys ψ(X, g), their images by Ψ are homotopic
with fixed endpoints. Thus, the choice of a minimizing path between pk

and qk does not matter.
Thus, c and c′ represent the same class in Aut (XH) ≃ π1(X)/H

where H = kerψ. Furthermore, two closed geodesics c1 and c2 which
induce two distinct classes in Aut (XH) give rise to two loops c′1 and c′2
with the same property. Thus, the number PH(T ) of classes in Aut (XH)
which can be represented by loops of length at most T based at x0

satisfies

PH(T ) ≤ |I|m(4.10)

≤ |I|
T

β sys ψ(X,g)

≤
(

σψ(X, g)

cnαn

)
T

β sys ψ(X,g)

,

and the proposition now follows from Lemma 2.3. q.e.d.

5. Relative systolic volume and relative minimal entropy

Using the results established in the previous sections, we show that
under some topological conditions, the relative systolic volume of man-
ifolds is bounded from below in terms of their relative minimal entropy.
More precisely, we have the following.

Theorem 5.1. Let π be a discrete group. Let Φ : M −→ K be a

degree 1 map between two oriented closed manifolds of the same dimen-

sion n 6= 3 such that K is a K(π, 1)-space. Then, there exists a positive

constant Cn depending only on n such that

(5.1) σφ(M) ≥ Cn
MinEnt G(M)n

logn(1 + MinEnt G(M))
.

where G is the kernel of the homomorphism φ : π1(M) −→ π induced

by Φ.

Remark 5.2. Since σ(M) ≥ σφ(M), we can replace σφ(M) by σ(M)
in inequality (5.1).

Example 5.3. Recall M. Gromov’s isosystolic inequality for surfaces
of large genus (see [19, 6.4.D’], [31] and [6]): there exists a positive
constant c such that every closed surface Σγ of genus γ > 1 satisfies

σ(Σγ) ≥ c
γ

(log γ)2
.

Theorem 5.1 generalizes this result for surfaces of large genus with few
small handles. More precisely, consider a degree 1 map Φ : Σγ −→ Σγ′
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between two closed surfaces of genus γ and γ′ > 1. From Remark 3.2
and inequality (1.9), we have

MinEnt G(Σγ) = MinEnt (Σγ′) = 4π(γ′ − 1).

This implies that

σφ(Σγ) ≥ c′
γ′

(log γ′)2

for some c′ > 0. Thus, the area of a closed Riemannian surface of large
genus with, let’s say, a single “small” handle is still large.

Proof of Theorem 5.1. We will use the same notations as in the previous
sections. From Proposition 4.1, every ε-regular cycle (X, Ψ, g) repre-
senting the image Φ∗[M ] of the fundamental class of M in Hn(K; Z) ≃
Hn(π; Z) satisfies

(5.2) Ent H(X, g)n vol (X, g) ≤ σψ(X, g)

βn
logn

(

σψ(X, g)

cnαn

)

whenever α ≥ ε, β > 0 and 4α + β < 1
2 , with σψ(X, g) ≤ (1 + ε)σφ(M).

From Theorem 3.1, we have

(5.3) MinEnt G(M)n = MinEnt (Φ∗[M ])n ≤ Ent H(X, g)n vol (X, g).

Therefore, we deduce that

(5.4) MinEnt G(M)n ≤ σφ(M)

βn
logn

(

σφ(M)

cnαn

)

whenever α, β > 0 and 4α + β ≤ 1
2 .

Define

α =

{

1
10 if nncn ≤ 1

1
10n n

√
cn

otherwise
and β =

{

1
10n n

√
cn if nncn ≤ 1

1
10 otherwise.

In both cases, we have 4α + β ≤ 1
2 and β = nα n

√
cn.

Let ρ =
(

σφ(M)
cnαn

)
1
n

and δ = β
nα n

√
cn

MinEnt G(M). For our choices

of α and β, we have δ = MinEnt G(M). Note also that ρ ≥ 1 since
σφ(M) ≥ cn

2n from inequality (4.4).
For δ ≥ e, inequality (5.4) yields the following estimate:

ρ log ρ ≥ δ

≥ δ − δ log log δ

log δ

=
δ

log δ
log

(

δ

log δ

)

.

The function x log x is increasing for x ≥ 1
e
. Thus, since ρ ≥ 1 and

δ
log δ

≥ e for δ ≥ e, we deduce that ρ ≥ δ
log δ

≥ δ
log(1+δ) for δ ≥ e.
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For δ ≤ e, we have 0 ≤ δ
log(1+δ) ≤ e

log(1+e) . Therefore, we obtain

ρ ≥ 1 ≥ log(1+e)
e

δ
log(1+δ) for δ ≤ e.

In conclusion, for every δ ≥ 0, the following holds:

(5.5) ρ ≥ log(1 + e)

e

δ

log(1 + δ)
.

Hence,

(5.6) σφ(M) ≥ cnαn logn(1 + e)

en

MinEnt G(M)n

logn(1 + MinEnt G(M))
.

Therefore, inequality (5.1) holds with Cn = cnαn logn(1+e)
en . q.e.d.

6. Relative systolic volume and algebraic entropy

In this section, we show how the relative entropy of a polyhedron is
related to the algebraic entropy of a quotient of its fundamental group.
Then, we derive a lower bound on the relative systolic volume of some
manifolds in terms of the algebraic entropy of some groups. Specifically,
we prove the following.

Theorem 6.1. Let π be a discrete group. Let Φ : M −→ K be a

degree 1 map between two oriented closed manifolds of the same dimen-

sion n such that K is a K(π, 1)-space. Then, there exists a positive

constant Cn depending only on n such that

(6.1) σφ(M) ≥ Cn
Ent alg(π)

log(1 + Ent alg(π))

where φ : π1(M) −→ π is the homomorphism induced by Φ.

Remark 6.2. We can replace σφ(M) by σ(M) in inequality (6.1).
Furthermore, the integer n can be equal to 3.

Remark 6.3. Let Fk be the free group with k generators, π1(Σγ) be
the fundamental group of a closed surface of genus γ and π be a discrete
group with k generators and p relations. Then, we have

• Ent alg(Fk) ≥ log(2k − 1) (see [21, 5.13] or [23, VII.B]);
• Ent alg(π1(Σγ)) ≥ log(4γ − 3) (see [23, VII.B]);
• Ent alg(π) ≥ c log(2(k − p) − 1) for some c > 0 (see [21, 5.14]

and [18, p. 82-83]).

As shown in the following example, Theorem 6.1 may yield nontrivial
lower bounds on the systolic volume when the contents of Theorem 1.2
and Theorem 1.3 are trivial.

Example 6.4. Consider the closed aspherical manifolds

Mγ = Σγ × T
n−2
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of dimension n ≥ 3, where Σγ is the closed surface of genus γ and T
n−2 is

the (n− 2)-torus. The group π1(Σγ) is a quotient of π1(M). Therefore,

Ent alg(π1(Mγ)) ≥ Ent alg(Σγ) ≥ log(4γ − 3).

From Theorem 6.1, we obtain

σ(Mγ) &
log γ

log log γ
,

which goes to infinity as γ → ∞. Such an estimate follows neither from
Theorem 1.2 nor from Theorem 1.3 since MinEnt (Mγ) = ||Mγ || = 0.

In this second example, we show that the conclusion of Theorem 6.1
does not hold without some topological conditions on M .

Example 6.5. Fix a closed aspherical manifold M of dimension n≥3.
Consider the sequence of essential manifolds

Mk = M#S1 × Sn−1# . . .#S1 × Sn−1

where we take the connected sum of M with k copies of S1 × Sn−1. As
shown in [5], adding handles to a manifold does change the value of the
optimal systolic volume. Thus, for every k, we have

σ(Mk) = σ(M).

On the other hand, the difference between the number of generators and
the number of relations of π1(Mk) is equivalent to k. Therefore,

Ent alg(π1(Mk)) & log k.

This shows that inequality (6.1) does not hold in general: some topo-
logical condition must be satisfied as in Theorem 6.1.

The following result is a relative version of [21, Theorem 5.16] (which
is incorrectly stated).

Lemma 6.6. Let X be a closed polyhedron and H be a normal sub-

group of the fundamental group π1(X) of X. Then, every piecewise

linear Riemannian metric g on X satisfies

(6.2) Ent alg(π1(X)/H) ≤ 2 Diam (X, g) Ent H(X, g).

Proof. Fix x0 in X. The fundamental group π1(X, x0) of X is gen-
erated by a finite set Σ formed of classes represented by loops based
at x0 of length at most 2 Diam (X, g) (see [21, 3.22]). Denote by Σ
the generating set of Γ := π1(X, x0)/H induced by Σ. Every class of
|.|Σ-length at most k can be represented by a loop based at x0 of length
at most 2k Diam (X, g). Therefore, NΣ(k) ≤ PH(2k Diam (X, g)) where
NΣ and PH are defined in (1.11) and Lemma 2.3. Thus,

(6.3)
log(NΣ(k))

k
≤ 2 Diam (X, g)

log(PH(2k Diam (X, g)))

2k Diam (X, g)
.
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From Lemma 2.3, we obtain

(6.4) Ent alg(Γ) ≤ Ent alg(Γ, Σ) ≤ 2 Diam (X, g) Ent H(X, g).

when k goes to infinity. q.e.d.

We can now prove the main result of this section.

Proof of Theorem 6.1. Every ε-regular geometric cycle (X, Ψ, g) repre-
senting the image Φ∗[M ] of the fundamental class of M admits at least
[

Diam (X,g)
sys ψ(X,g)

]

disjoint balls of radius 1
2 sys ψ(X, g). Combined with the

inequality (4.4), this yields

(6.5) vol (X, g) ≥
[

Diam (X, g)

sys ψ(X, g)

]

cn

2n
sys ψ(X, g)n.

Hence,

(6.6)

[

Diam (X, g)

sys ψ(X, g)

]

≤ 2n

cn
σψ(X, g)

From Lemma 3.7 (which holds for every integer n), we have π1(X)/H ≃
π. Now, Lemma 6.6 and Proposition 4.1 imply that

Ent alg(π) ≤ 2 Diam (X, g) Ent H(X, g)(6.7)

≤ 2 Diam (X, g)

β sys ψ(X, g)
log

(

σψ(X, g)

cnαn

)

(6.8)

whenever α, β > 0 and 4α + β < 1
2 .

If Diam (X,g)
sys ψ(X,g) ≥ 2, then Diam (X,g)

sys ψ(X,g) ≤ 2
[

Diam (X,g)
sys ψ(X,g)

]

.

Otherwise, Diam (X,g)
sys ψ(X,g) ≤ 2n+1

cn
σψ(X, g) since σψ(X, g) ≥ cn

2n from (4.4).

In both case, we deduce from (6.6) and (6.8) that

(6.9) Ent alg(π) ≤ 2n+1

βcn
σψ(X, g) log

(

σψ(X, g)

cnαn

)

whenever α, β > 0 and 4α + β < 1
2 , with σψ(X, g) ≤ (1 + ε)σφ(M).

Therefore, we have

(6.10) Ent alg(π) ≤ 2n+1

βcn
σφ(M) log

(

σφ(M)

cnαn

)

whenever α, β > 0 and 4α + β ≤ 1
2 .

Arguing as in the proof of Theorem 5.1, we obtain

(6.11) σφ(M) ≥ cnαn log(1 + e)

e

Ent alg(π)

log(1 + Ent alg(π))

with α = 1
10 . Therefore, inequality (6.1) holds with Cn = cnαn log(1+e)

e
.

q.e.d.
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[3] , Géométrie systolique des variétés de groupe fondamental Z2, Sémin.
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