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KÄHLER METRICS ON TORIC ORBIFOLDS

MIGUEL ABREU

Abstract
A theorem of E. Lerman and S. Tolman, generalizing a result of T. Delzant,
states that compact symplectic toric orbifolds are classified by their moment
polytopes, together with a positive integer label attached to each of their
facets. In this paper we use this result, and the existence of “global” action-
angle coordinates, to give an effective parametrization of all compatible toric
complex structures on a compact symplectic toric orbifold, by means of
smooth functions on the corresponding moment polytope. This is equivalent
to parametrizing all toric Kähler metrics and generalizes an analogous result
for toric manifolds.

A simple explicit description of interesting families of extremal Kähler
metrics, arising from recent work of R. Bryant, is given as an application of
the approach in this paper. The fact that in dimension four these metrics
are self-dual and conformally Einstein is also discussed. This gives rise in
particular to a one parameter family of self-dual Einstein metrics connecting
the well known Eguchi-Hanson and Taub-NUT metrics.

1. Introduction

The space of Kähler metrics on a Kähler manifold (or orbifold) can
be described in two equivalent ways, reflecting the fact that a Kähler
manifold is both a complex and a symplectic manifold.

From the complex point of view, one starts with a fixed complex
manifold (M,J0) and Kähler class Ω ∈ H1,1

J0
∩H2(M,R), and considers

the space S(J0,Ω) of all symplectic forms ω on M that are compatible

Partially supported by FCT (Portugal) through program POCTI and grant
POCTI/1999/MAT/33081. The author is a member of EDGE, Research Train-
ing Network HPRN-CT-2000-00101, supported by the European Human Potential
Programme.

Received July 13, 2001.

151



152 miguel abreu

with J0 and represent the class Ω. Any such form ω ∈ S(J0,Ω) gives
rise to a Kähler metric 〈·, ·〉 ≡ ω(·, J0·).

The symplectic point of view arises naturally from the observa-
tion that any two forms ω0, ω1 ∈ S(J0,Ω) define equivalent symplec-
tic structures on M . In fact, the family ωt = ω0 + t(ω1 − ω0), for
t ∈ [0, 1], is an isotopy of symplectic forms in the same cohomology
class Ω, and so Moser’s theorem [23] gives a family of diffeomorphisms
ϕt : M → M , t ∈ [0, 1], such that ϕ∗

t (ωt) = ω0. In particular, the
Kähler manifold (M,J0, ω1) is Kähler isomorphic to (M,J1, ω0), where
J1 = (ϕ1)−1∗ ◦ J0 ◦ (ϕ1)∗.

This means that one can also describe the space of Kähler metrics
starting with a fixed symplectic manifold (M,ω0) and considering the
space J (ω0, [J0]) of all complex structures J on M that are compatible
with ω0 and belong to some diffeomorphism class [J0], determined by a
particular compatible complex structure J0. Any such J ∈ J (ω0, [J0])
gives rise to a Kähler metric 〈·, ·〉 ≡ ω0(·, J ·).

The symplectic point of view fits into a general framework, pro-
posed by Donaldson in [13] and [14], involving the geometry of infinite
dimensional groups and spaces, and the relation between symplectic
and complex quotients. Although this framework can be useful as a
guiding principle, the symplectic point of view does not seem to be very
effective for solving specific problems in Kähler geometry, the reason be-
ing that the space J (ω0, [J0]) is non-linear and difficult to parametrize.
The complex point of view fairs much better in this regard, since the
space S(J0,Ω) can be identified with an open convex subset of the lin-
ear space of smooth functions on M . Indeed, the ∂∂-lemma asserts that
given ω0 ∈ S(J0,Ω) any other ω ∈ S(J0,Ω) can be written as

ω = ω0 + 2i∂∂f , for some f ∈ C∞(M) .(1.1)

Moreover, the set of functions f ∈ C∞(M) for which the form ω defined
by (1.1) is in S(J0,Ω) is open and convex.

There are however particular situations in which the space J (ω0,
[J0]) admits a parametrization similar to the one just described for
S(J0,Ω), and the symplectic point of view can then be used very effec-
tively. In [2] this was shown to be the case for Kähler toric manifolds.
In this paper we show that this can also be done for all Kähler toric orb-
ifolds, and describe an application of the effectiveness of the symplectic
approach in this context.

Let (M,ω) be a symplectic toric orbifold of dimension 2n, equipped
with an effective Hamiltonian action τ : Tn → Diff(M,ω) of the stan-
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dard (real) n-torus Tn = Rn/2πZn, i.e., (M,ω, τ) is a symplectic toric
orbifold. Denote by φ : M → (Rn)∗ the moment map of such an action.
The image P ≡ φ(M) ⊂ (Rn)∗ is a convex rational simple polytope (see
Definition 2.3). When M is a manifold, a theorem of Delzant [11] says
that, up to equivariant symplectomorphism, the polytope P completely
determines the symplectic toric manifold (M,ω, τ). In [22] Lerman and
Tolman generalize Delzant’s theorem to orbifolds. The result is that
the polytope P , together with a positive integer label attached to each
of its facets, completely determines the symplectic toric orbifold (see
Theorem 2.5).

The proof, in both manifold and orbifold cases, gives an explicit
construction of a canonical model for each symplectic toric orbifold,
i.e., it associates to each labeled polytope P an explicit symplectic toric
orbifold (MP , ωP , τP ) with moment map φP : MP → P (see §2.2).
Moreover, it follows from the construction that MP has a canonical Tn-
invariant complex structure JP compatible with ωP (see Remark 2.7).
In other words, associated to each labeled polytope P ⊂ (Rn)∗ one has
a canonical Kähler toric orbifold (MP , ωP , JP , τP ) with moment map
φP : MP → P .

The symplectic description of compatible toric complex structures
and Kähler metrics is based on the following set-up (see [2] for details).
Let P̆ denote the interior of P , and consider M̆P ⊂ MP defined by
M̆P = φ−1

P (P̆ ). One can easily check that M̆P is a smooth open dense
subset of MP , consisting of all the points where the Tn-action is free.
It can be described as

M̆P
∼= P̆ × Tn =

{
(x, θ) : x ∈ P̆ ⊂ (Rn)∗ , θ ∈ Rn/2πZn

}
,

where (x, θ) are symplectic (or action-angle) coordinates for ωP , i.e.,

ωP = dx ∧ dθ =
n∑
j=1

dxj ∧ dθj .

If J is any ωP -compatible toric complex structure on MP , the sym-
plectic (x, θ)-coordinates on M̆P can be chosen so that the matrix that
represents J in these coordinates has the form


0

... −G−1

. . . . . . . . . . . . . . .

G
... 0


(1.2)
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where G = G(x) = [gjk(x)]
n,n
j,k=1 is a symmetric and positive-definite

real matrix. The integrability condition for the complex structure J is
equivalent to G being the Hessian of a smooth function g ∈ C∞(P̆ ), i.e.,

G = Hessx(g) , gjk(x) =
∂2g

∂xj∂xk
(x) , 1 ≤ j, k ≤ n .(1.3)

Holomorphic coordinates for J are given in this case by

z(x, θ) = u(x, θ) + iv(x, θ) =
∂g

∂x
(x) + iθ .

We will call g the potential of the compatible toric complex structure
J . Note that the Kähler metric 〈·, ·〉 = ωP (·, J ·) is given in these (x, θ)-
coordinates by the matrix




G
... 0

. . . . . . . . . . . .

0
... G−1


 .(1.4)

In particular, the induced metric on any slice of the form P̆ ×{point} ⊂
M̆P is given by the matrix G.

Every convex rational simple polytope P ⊂ (Rn)∗ can be described
by a set of inequalities of the form

〈x, µr〉 ≥ ρr , r = 1, . . . , d,

where d is the number of facets of P , each µr is a primitive element of
the lattice Zn ⊂ Rn (the inward-pointing normal to the r-th facet of P),
and each ρr is a real number. The labels mr ∈ N attached to the facets
can be incorporated in the description of P by considering the affine
functions 	r : (Rn)∗ → R defined by

	r(x) = 〈x,mrµr〉 − λr where λr = mrρr and r = 1, . . . , d .

Then x belongs to the r-th facet of P iff 	r(x) = 0, and x ∈ P̆ iff
	r(x) > 0 for all r = 1, . . . , d.

We are now ready to state the main results of this paper. The
first is a straightforward generalization to toric orbifolds of a result of
Guillemin [18].
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Theorem 1. Let (MP , ωP , τP ) be the symplectic toric orbifold as-
sociated to a labeled polytope P ⊂ (Rn)∗. Then, in suitable symplectic
(x, θ)-coordinates on M̆P

∼= P̆ ×Tn, the canonical compatible toric com-
plex structure JP is of the form (1.2)–(1.3) for a potential gP ∈ C∞(P̆ )
given by

gP (x) =
1
2

d∑
r=1

	r(x) log 	r(x) .

The second result provides the symplectic version of (1.1) in this
toric orbifold context, generalizing an analogous result for toric mani-
folds proved in [2].

Theorem 2. Let J be any compatible toric complex structure on
the symplectic toric orbifold (MP , ωP , τP ). Then, in suitable symplectic
(x, θ)-coordinates on M̆P

∼= P̆ × Tn, J is given by (1.2)–(1.3) for a
potential g ∈ C∞(P̆ ) of the form

g(x) = gP (x) + h(x) ,

where gP is given by Theorem 1, h is smooth on the whole P , and the
matrix G = Hess(g) is positive definite on P̆ and has determinant of
the form

Det(G) =

(
δ

d∏
r=1

	r

)−1

,

with δ being a smooth and strictly positive function on the whole P .
Conversely, any such potential g determines by (1.2)–(1.3) a complex

structure on M̆P
∼= P̆×Tn, that compactifies to a well-defined compatible

toric complex structure J on the symplectic toric orbifold (MP , ωP , τP ).

Note that there is no imposed condition of J being in the same
diffeomorphism class as JP . The reason is that, by Theorem 9.4 in [22],
any compatible toric J on (MP , ωP , τP ) is equivariantly biholomorphic
to JP .

Our next results describe an application of the parametrization of
compatible toric complex structures given by Theorem 2. In a recent
paper [8] R. Bryant studies and classifies Bochner-Kähler metrics, i.e.,
Kähler metrics with vanishing Bochner curvature. He shows in particu-
lar that these metrics always have a very high degree of symmetry, the
least symmetric ones being of toric type. It turns out that the models
for these least symmetric Bochner-Kähler metrics, given by Theorem 9
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in [8], have a very simple explicit description in the above symplectic
framework.

For us, the most relevant geometric property of these metrics is
that of being extremal in the sense of Calabi (see §4.1), and we will
construct them only as such. However, the reader should keep in mind
that these are indeed the same metrics given by Theorem 9 in [8], and
hence the word “extremal” can be replaced by “Bochner-Kähler” in the
statements that follow.

Let Pnm denote the labeled simplex in (Rn)∗ defined by the affine
functions

	r(x) = mr(1 + xr), r = 1, . . . , n ,(1.5)

	n+1(x) = mn+1(1 − ψ) , ψ =
n∑
j=1

xj ,

where m = (m1, . . . ,mn+1) ∈ Nn+1 is a vector of positive integer la-
bels. The associated symplectic toric orbifold will be called a labeled
projective space and denoted by (SPnm, ωm, τm) (the “S” is supposed
to emphasize its Symplectic nature).

Theorem 3. For any vector of labels m ∈ Nn+1, the potential
g ∈ C∞(P̆nm) defined by

g(x) =
1
2

(
n+1∑
r=1

	r(x) log 	r(x) − 	Σ(x) log 	Σ(x)

)
,

where the 	r’s are given by (1.5) and

	Σ(x) =
n+1∑
r=1

	r(x) ,

gives rise to an extremal compatible toric complex structure on (SPnm,
ωm, τm). In other words, the metric defined by (1.4) is an extremal
Kähler metric.

As we will see in §2.3, there is a close relation between labeled pro-
jective spaces SPnm and the more common weighted projective spaces
CPna. These are defined for a given vector of positive integer weights
a = (a1, . . . , an+1) ∈ Nn+1 as

CPna ≡ (
Cn+1 \ {0}) /C∗ ,
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where the action of C∗ = C \ {0} on Cn+1 is given by

(z1, . . . , zn+1)
t
→ (ta1z1, . . . , t

an+1zn+1) , t ∈ C∗ .

The relation between SPnm and CPnm implies the following corollary to
Theorem 3 (see also Theorem 11 in [8]).

Corollary 1. Every weighted projective space CPna has an extremal
Kähler metric.

The potential g of Theorem 3 defines an extremal Kähler metric on
P̆nm×Tn for any positive real vector of labels m ∈ Rn+1

+ . Although these
do not correspond in general to compact orbifold metrics, they do admit
a natural compactification as metrics with simple conical singularities.

Theorem 4. Consider the smooth symplectic toric manifold (SPn1∼= CPn, ω1, τ1) associated to the simplex Pn1 ⊂ (Rn)∗. Denote by φ1 :
SPn1 → Pn1 the corresponding moment map. Then, for any m ∈ Rn+1

+ ,
the extremal Kähler metric (1.4) defined on P̆n1 ×Tn by the potential g of
Theorem 3, corresponds to an extremal Kähler metric on SPn1 with coni-
cal singularities of angles 2π/mr around the pre-images Nr ≡ φ−1

1 (Fr) of
each facet Fr ⊂ Pn1 , r = 1, . . . , n+1 (note that Nr

∼= SPn−1
1

∼= CPn−1).

As noted before, all extremal Kähler metrics of Theorem 4 are in
fact Bochner-Kähler. In dimension four (n = 2) the Bochner tensor is
the same as the anti-self-dual part of the Weyl tensor, and so in this case
“Bochner-Kähler” is the same as “self-dual Kähler”. A local study and
classification of these metrics in this later context was also obtained in
recent work of Apostolov and Gauduchon [4]. They show in particular
that, whenever the scalar curvature S is nonzero, a self-dual Kähler
metric is conformally Einstein with conformal factor given by S−2. In
Section 5 we consider a particularly interesting family of such metrics
provided by Theorem 4 when n = 2 and m = (1, 1,m) , m ∈ R+. We
will see in particular that this family gives rise to a one-parameter family
of U(2)-invariant self-dual Einstein metrics of positive scalar curvature,
with end points the Ricci-flat Eguchi-Hanson metric on T CP1 (m =
1/2) and the also Ricci-flat Taub-NUT metric on R4 (m = +∞). We will
also point out how, for a particular discrete set of values of the parameter
m, these metrics are related to the ones constructed by Galicki-Lawson
in [17] using quaternionic reduction.

A general discussion of the usefulness of the symplectic approach
to the construction of U(n)-invariant extremal Kähler metrics will be
given in [3].
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The rest of the paper is organized as follows. In Section 2, after some
necessary preliminaries on orbifolds, we give the definition and combi-
natorial characterization of symplectic toric orbifolds in terms of labeled
polytopes, due to Lerman and Tolman. Labeled projective spaces and
their relation to weighted projective spaces is discussed in §2.3. Theo-
rems 1 and 2 are proved in Section 3, while Theorems 3 and 4 are proved
in Section 4.

2. Symplectic toric orbifolds

In this section, after some necessary preliminaries on orbifolds, we
give the definition and combinatorial characterization of a symplectic
toric orbifold, and discuss the family of examples given by weighted
and labeled projective spaces. Good references for this material are Sa-
take [24] (for general orbifolds) and Lerman-Tolman [22] (for symplectic
orbifolds).

2.1 Preliminaries on orbifolds

Definition 2.1. An orbifold M is a singular real manifold of
dimension n, whose singularities are locally isomorphic to quotient sin-
gularities of the form Rn/Γ, where Γ is a finite subgroup of GL(n,R)
such that, for any 1 �= γ ∈ Γ, the subspace Vγ ⊂ Rn fixed by γ has
dimVγ ≤ n− 2.

For each singular point p ∈ M there is a finite subgroup Γp ⊂
GL(n,R), unique up to conjugation, such that open neighborhoods of
p in M and 0 in Rn/Γp are homeomorphic. Such a point p is called an
orbifold point of M , and Γp the orbifold structure group of p.

The condition on each nontrivial γ ∈ Γ means that the singularities
of the orbifold have codimension at least two, and this makes it behave
much like a manifold. The usual definitions of vector fields, differen-
tial forms, metrics, group actions, etc, extend naturally to orbifolds.
In particular, a symplectic orbifold can be defined as an orbifold
M equipped with a closed nondegenerate 2-form ω, while a complex
orbifold can be defined as an orbifold M equipped with an integrable
complex structure J . A Kähler orbifold (M,ω, J) is a symplectic and
complex orbifold, with ω and J compatible in the sense that the bilin-
ear form 〈·, ·〉 ≡ ω(·, J ·) is symmetric and positive definite, thus defining
a Kähler metric on M .
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All orbifolds we will consider in this paper (underlying a symplectic
toric orbifold) arise through the following natural construction. Let
Z be an oriented manifold and K an abelian group acting smoothly,
properly and effectively on Z, preserving the orientation and such that
the stabilizers of points in Z are always finite subgroups of K. Then the
quotient M = Z/K is an orbifold (the orientation preserving condition
eliminates the possibility of codimension one singularities). Its orbifold
points [p] ∈ M correspond to points p ∈ Z with nontrivial stabilizer
Γp ⊂ K, and Γp is then the orbifold structure group of [p].

Let (M,ω) be a symplectic orbifold, and G a Lie group acting
smoothly on M . This group action induces an infinitesimal action of
the Lie algebra g on M , and for each ξ ∈ g we denote by ξM the induced
vector field on M . The G-action is said to be symplectic if it preserves
ω, and Hamiltonian if it has a moment map φ : M → g∗, i.e., a
G-equivariant map from M to the dual of the Lie algebra of G such
that

ι(ξM )ω = d〈ξ, φ〉, for all ξ ∈ g .

When G = S1 = R/2πZ, a moment map is simply given by a Hamil-
tonian function H : M → R∗ ∼= g∗, whose Hamiltonian vector field
XH , defined by ι(XH)ω = dH, generates the S1-action. Note that H is
uniquely defined up to addition by a constant.

2.2 Symplectic toric orbifolds

Definition 2.2. A symplectic toric orbifold is a connected
2n-dimensional symplectic orbifold (M,ω) equipped with an effective
Hamiltonian action τ : Tn → Diff(M,ω) of the standard (real) n-torus
Tn = Rn/2πZn.

Denote by φ : M → (Rn)∗ the moment map of such an action
(well-defined up to addition by a constant). When M is a compact
smooth manifold, the convexity theorem of Atiyah [5] and Guillemin-
Sternberg [20] states that the image P = φ(M) ⊂ (Rn)∗ of the moment
map φ is the convex hull of the image of the points inM fixed by Tn, i.e.,
a convex polytope in (Rn)∗. A theorem of Delzant [11] then says that
the convex polytope P ⊂ (Rn)∗ completely determines the symplectic
toric manifold, up to equivariant symplectomorphisms.

In [22] Lerman and Tolman generalize these two theorems to orb-
ifolds. While the convexity theorem generalizes word for word, one
needs more information than just the convex polytope P to generalize



160 miguel abreu

Delzant’s classification theorem.

Definition 2.3. A convex polytope P in (Rn)∗ is called simple
and rational if:

(1) There are n edges meeting at each vertex p.

(2) The edges meeting at the vertex p are rational, i.e., each edge is
of the form p+ tvi, 0 ≤ t ≤ ∞, where vi ∈ (Zn)∗.

(3) The v1, . . . , vn in (2) can be chosen to be a Q-basis of the lattice
(Zn)∗.

A facet is a face of P of codimension one. Following Lerman-Tolman, we
will say that a labeled polytope is a rational simple convex polytope
P ⊂ (Rn)∗, plus a positive integer (label) attached to each of its facets.

Two labeled polytopes are isomorphic if one can be mapped to
the other by a translation, and the corresponding facets have the same
integer labels.

Remark 2.4. In Delzant’s classification theorem for compact sym-
plectic toric manifolds, there are no labels (or equivalently, all labels
are equal to 1) and the polytopes that arise are slightly more restric-
tive: The “Q” in (3) is replaced by “Z”.

Theorem 2.5 (Lerman-Tolman). Let (M,ω, τ) be a compact
symplectic toric orbifold, with moment map φ : M → (Rn)∗. Then
P ≡ φ(M) is a rational simple convex polytope. For every facet F of P ,
there exists a positive integer mF , the label of F , such that the structure
group of every p ∈ φ−1(F̆ ) is Z/mFZ (here F̆ is the relative interior of
F ).

Two compact symplectic toric orbifolds are equivariant symplecto-
morphic (with respect to a fixed torus acting on both) if and only if
their associated labeled polytopes are isomorphic. Moreover, every la-
beled polytope arises from some compact symplectic toric orbifold.

The proof of the last claim of this theorem is important for our pur-
poses. It associates to every labeled polytope P a compact symplectic
toric orbifold (MP , ωP , τP ), with moment map φP : MP → P ⊂ (Rn)∗.
The construction, generalizing Delzant’s for the case of symplectic toric
manifolds, consists of a very explicit symplectic reduction.
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Every labeled polytope P ⊂ (Rn)∗ can be written uniquely as

P =
d⋂
r=1

{
x ∈ (Rn)∗ : 	r(x)

def= 〈x,mrµr〉 − λr ≥ 0
}
,(2.1)

where d is the number of facets, each µr is a primitive element of the
lattice Zn ⊂ Rn (the inward-pointing normal to the r-th facet of P ),
each mr ∈ N is the label attached to the r-th facet of P , and each λr is
a real number.

Let (e1, . . . , ed) denote the standard basis of Rd, and define a linear
map

β : Rd → Rn by β(er) = mrµr , r = 1, . . . , d .(2.2)

Condition (3) of Definition 2.3 implies that β is surjective. Denoting by
k its kernel, we have short exact sequences

0 → k
ι→ Rd β→ Rn → 0 and its dual 0 → (Rn)∗ β∗

→ (Rd)∗ ι∗→ k∗ → 0 .

Let K denote the kernel of the map from Td = Rd/2πZd to Tn =
Rn/2πZn induced by β. More precisely,

K =

{
[θ] ∈ Td :

d∑
r=1

θrmrµr ∈ 2πZn

}
.(2.3)

The Lie algebra of K is k = Ker(β).
Consider R2d with its standard symplectic form

ω0 = du ∧ dv =
d∑
r=1

dur ∧ dvr .

We identify R2d with Cd via zr = ur + ivr , r = 1, . . . , d. The standard
action of Td on R2d ∼= Cd is given by

θ · z =
(
eiθ1z1, . . . , e

iθdzd

)
and has moment map

φTd(z1, . . . , zd) =
d∑
r=1

|zr|2
2

e∗r + λ ∈ (Rd)∗ ,
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where λ ∈ (Rd)∗ is an arbitrary constant. We set λ =
∑

r λre
∗
r and so

φTd(z1, . . . , zd) =
d∑
r=1

( |zr|2
2

+ λr

)
e∗r ∈ (Rd)∗ .(2.4)

Since K is a subgroup of Td, K acts on Cd with moment map

φK = ι∗ ◦ φTd =
d∑
r=1

( |zr|2
2

+ λr

)
ι∗(e∗r) ∈ k∗ .(2.5)

The symplectic toric orbifold (MP , ωP ) associated to the labeled
polytope P is the symplectic reduction of Cd with respect to the K-
action. As an orbifold it is

MP = Z/K where Z = φ−1
K (0) ≡ zero level set of moment map,

(2.6)

the symplectic structure comes from the standard one in R2d (via sym-
plectic reduction), while the action of Tn ∼= Td/K comes from from the
reduction of the action of T d on Z.

In order to verify these claims, several things need to be checked
(see §8 of [22]):

(i) Zero is a regular value of φK and so Z is a smooth submanifold of
R2d of dimension 2d− (d− n) = d+ n.

(ii) With respect to the action of K on Z, the isotropy of any z ∈ Z is
a discrete subroup Γz of K. Hence the reduced space MP = Z/K
is a symplectic orbifold of dimension d+ n− (d− n) = 2n.

(iii) The action of Td on Z induces an effective Hamiltonian action of
Tn ∼= Td/K on MP , whose moment map φTn ≡ φP : MP → (Rn)∗

has image precisely P .

(iv) The orbifold structure group Γ[z], for any point [z] ∈MP that gets
mapped by φP to the interior of the r-th facet of P (cut out by
the hyperplane {x ∈ (Rn)∗ : 	r(x) = 0}), is precisely Z/mrZ.

Regarding (iii) above, recall that the moment map is apriori only defined
up to a constant. In this construction we can characterize φP uniquely
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by requiring that it fits in the commutative diagram

Z
φ

Td−−−→ (Rd)∗

π

� �β∗

MP
φP−−−→ (Rn)∗

(2.7)

where π : Z →MP = Z/K is the quotient map. It is with this normal-
ization that φP (MP ) = P .

Remark 2.6. The isotropy and orbifold structure groups of (MP ,
ωP , τP ) can be determined directly from the labeled polytope P (Lemma
6.6 in [22]). Given p ∈ MP , let F(p) be the set of facets that contain
φP (p), i.e.,

F(p) = {r ∈ {1, . . . , d} : 	r(φP (p)) = 0} .

The isotropy group of p is the subtorus Hp ⊂ Tn whose Lie algebra hp
is the linear span of the normals µr ∈ Rn, for r ∈ F(p). The orbifold
structure group Γp is isomorphic to Λp/Λ̂p, where Λp ⊂ hp is the lat-
tice of circle subgroups of Hp, and Λ̂p is the sublattice generated by
{mrµr}r∈F(p).

Remark 2.7. Note that because (MP , ωP ) is the reduction of a
Kähler manifold (Cd with its standard complex structure and symplectic
form) by a group action that preserves the Kähler structure (K ⊂ U(d)),
it follows that MP comes equipped with an invariant complex structure
JP compatible with its symplectic form ωP (see Theorem 3.5 in [21]).
In other words, (MP , ωP , JP ) is a Kähler toric orbifold.

2.3 Weighted and labeled projective spaces

We will now discuss the family of examples of symplectic toric manifolds
given by weighted and labeled projective spaces. As we will see, these
are closely related to each other.

Consider Cn+1 with complex coordinates (z1, . . . , zn+1), and define
an action of the complex Lie group C∗ = C \ {0} by

(z1, . . . , zn+1)
t
→ (ta1z1, . . . , t

an+1zn+1) , t ∈ C∗ ,(2.8)

where a1, . . . , an+1 are positive integers with highest common divisor
1. The weighted projective space CPna is defined as the complex
quotient

CPna =
(
Cn+1 \ {0}) /C∗ ,
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where a denotes the vector of weights: a = (a1, . . . , an+1). One checks
that CPna is a compact complex orbifold, whose orbifold structure groups
are determined in the following way. Let [z]a = [z1, . . . , zn+1]a be a
point in CPna, and let m be the highest common divisor of the set of
those aj for which zj �= 0. The orbifold structure group Γ[z]a of [z]a is
isomorphic to Z/mZ. In particular, [z]a is a smooth point of CPna if and
only if m = 1. Since we assumed that the highest common divisor of
all the aj ’s is 1, this means that any point [z]a = [z1, . . . , zn+1]a ∈ CPna,
with all zj �= 0, is a smooth point. Note also that CPn1 is the usual
complex projective space CPn, and we will omit the subscript 1 when
referring to it.

There is a natural holomorphic map πa : CPna → CPn defined by

πa ([z1, . . . , zn+1]a) 
→ [zâ1
1 , . . . , z

ân+1

n+1 ] ,

where âj denotes the product of all the weights except the j-th one:

âr =
n+1∏

k=1,k �=r
ak .

The map πa factors through the quotient of CPna by the following finite
group action. Let â =

∏n+1
k=1 ak and consider the finite group Γa defined

by
Γa =

(
Zâ1 × · · · × Zân+1

)
/Zâ ,

where

Zâ ↪→ Zâ1 × · · · × Zân+1

ζ 
→ (ζa1 , . . . , ζan+1)

(here Zq ≡ Z/qZ is identified with the group of q-th roots of unity in
C). Γa acts on CPna via

[η] · [z]a = [η1z1, . . . , ηn+1zn+1]a , for all [η] ∈ Γa , [z]a ∈ CPna ,

and one checks easily that

πa([z]a) = πa([z′]a) iff [z′]a = [η] · [z]a for some [η] ∈ Γa .

Hence we have the following commutative diagram:

CPna
πa−→ CPn

↘ ↗[πa](2.9)
CPna/Γa
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The action of Γa is free on C̆P
n
a = {[z1, . . . , zn+1]a ∈ CPna : zj �= 0 for

all j}. In particular, πa has degree |Γa| = (â)n−1. It is also clear that, if
a is a nontrivial weight vector, the Γa-action has nontrivial isotropy at
some points in CPna\C̆P

n
a, and so CPna/Γa has a nontrivial orbifold struc-

ture. The bijection [πa], although a biholomorphism between CPna/Γa

and the standard CPn, is obviously not an orbifold isomorphism be-
tween CPna/Γa and the smooth CPn. We will look at [πa] as inducing
an orbifold structure on CPn isomorphic to CPna/Γa.

Definition 2.8. The orbifold projective space CPn[a] is defined
as the finite quotient

CPn[a]
def= CPna/Γa

[πa]
= “orbifold” CPn .

Remark 2.9. Once the orbifold structures are taken into account,
the map πa : CPna → CPn[a] is an orbifold covering map of degree (â)n−1.
In particular, any orbifold geometric structure (symplectic, Kähler, etc)
on CPn[a] lifts through πa to an orbifold geometric structure on CPna. For
our purposes it is then enough, and, as we will see, also more convenient,
to work with CPn[a].

In order to better understand CPn[a], in particular its orbifold struc-
ture groups and symplectic description in terms of labeled polytopes,
it is useful to go back to Cn+1 and consider a finite extension of the
C∗-action defined by (2.8).

Let KC
a be the complex Lie group defined by

KC
a =

(
Zâ1 × · · · × Zân+1 × C∗) /Zâ(2.10)

where

Zâ ↪→ Zâ1 × · · · × Zân+1 × C∗

ζ 
→ (
ζa1 , . . . , ζan+1 , ζ−1

)
.

KC
a acts effectively on Cn+1 via

(2.11) [(η, t)] · z = (η1t
a1z1, . . . , ηn+1t

an+1zn+1) ,

for all [(η, t)] ∈ KC
a , z ∈ Cn+1 .

Because of the exact sequence

1 → C∗ ↪→ KC
a → Γa → 1

t 
→ [(1, t)]
[(η, t)] 
→ [η]
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we have that

(
Cn+1 \ {0}) /KC

a
∼= [(

Cn+1 \ {0}) /C∗] /Γa = CPna/Γa = CPn[a] .

(2.12)

Hence, the orbifold structure of CPn[a] can be described directly from the
different isotropy subgroups of the KC

a -action on Cn+1 (see Lemma 2.10
below).

We will now give the symplectic description, in terms of labeled poly-
topes, for the orbifold projective spaces CPn[a]. Recall that the polytope
corresponding to CPn, with symplectic (Kähler) form in the same coho-
mology class as the first Chern class, is the simplex Pn1 in (Rn)∗ defined
by

Pn1 =
n+1⋂
r=1

{x ∈ (Rn)∗ : 	r(x) ≡ 〈x,mrµr〉 − λr ≥ 0} ,(2.13)

where: mr = 1 = −λr , r = 1, . . . , n + 1; µr = er , r = 1, . . . , n, and
µn+1 = −∑n

j=1 ej . Here (e1, . . . , en) denotes the standard basis of Rn.

m
2
= 1

m
3
= 1m = 1

1

−1

 1

1

−1

Figure 1: The polytope P 2
1 corresponding to CP2.

From §2.2 we know that a facet of a labeled polytope has labelm ∈ N

if and only if the orbifold structure group of the points that are mapped
to its relative interior, via the moment map, is Zm ≡ Z/mZ. In the case
of CPn, the pre-image of the r-th facet

Fr = {x ∈ Pn1 : 	r(x) = 0}
is

Nr = {[z1, . . . , zn+1] ∈ CPn : zr = 0} ,
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while the pre-image of its interior F̆r is

N̆r = {[z1, . . . , zn+1] ∈ Nr : zk �= 0 for all k �= r} .

In CPn[a] this corresponds to

N̆[a],r =
{

[z1, . . . , zn+1][a] ∈ CPn[a] : zr = 0 and zk �= 0 for all k �= r
}
.

Lemma 2.10. The orbifold structure group Γ[z][a]
of any point

[z][a] ∈ N̆[a],r ⊂ CPn[a] is isomorphic to Zmr where

mr = âr =
n+1∏

k=1,k �=r
ak .

Proof. Because of (2.12), the orbifold structure group Γ[z][a]
of

any point [z][a] ∈ N̆[a],r is the isotropy of the KC
a -action at any point

z = (z1, . . . , zn+1) ∈ Cn+1 with zr = 0, and zk �= 0 for all k �= r.
It follows from (2.11) that such an isotropy subgroup is given by the
elements [(η, t)] ∈ KC

a such that ηk = t−ak , for all k �= r. Since ηk ∈ Zâk
,

this implies that t ∈ Zâ ⊂ C∗, and so

Γ[z][a]
∼= (Zâr × Zâ) /

(
(ζar , ζ−1) , ζ ∈ Zâ

)
.

The right-hand side is isomorphic to Zâr via the map

[(ηr, ζ)] 
→ ηr · ζar , ηr ∈ Zâr , ζ ∈ Zâ .

q.e.d.

The natural candidate for labeled polytope corresponding to CPn[a]

is then the labeled simplex Pn[a] in (Rn)∗ defined by

Pn[a] =
n+1⋂
r=1

{x ∈ (Rn)∗ : 	r(x) ≡ 〈x,mrµr〉 − λr ≥ 0} ,(2.14)

where mr = âr = −λr , r = 1, . . . , n+ 1, and the µr’s are as in (2.13).

Proposition 2.11. The compact Kähler toric orbifold (M[a], ω[a],
J[a]), associated to the labeled polytope Pn[a] via the construction of §2.2,
is isomorphic as a complex toric orbifold to CPn[a].
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1
m = a

2
a

3

m = a
1
a

32

m
3
= a

1
a

2

−1

 1

1

−1

Figure 2: The labeled simplex P 2
[a] corresponding to CP2

[a].

Proof. With respect to the standard basis of Rn+1 and Rn, the
linear map β : Rn+1 → Rn defined by (2.2) is given by the matrix


m1 0 . . . 0 −mn+1

0
. . . . . .

...
...

...
. . . . . . 0

...
0 . . . 0 mn −mn+1


 =



â1 0 . . . 0 −ân+1

0
. . . . . .

...
...

...
. . . . . . 0

...
0 . . . 0 ân −ân+1




Using multiplicative notation, the kernel Ka ⊂ Tn+1 of the induced map
β : Tn+1 → Tn is then given by

Ka =
{

(eiθ1 , . . . , eiθn+1) ∈ Tn+1 : eiâ1θ1 = · · · = eiân+1θn+1

}
.

Ka acts on Cn+1 as a subgroup of Tn+1, and from (2.6) and Remark 2.7
we have that (M[a], ω[a], J[a]) is the Kähler reduction

M[a] = φ−1
Ka

(0)/Ka ,(2.15)

where φ−1
Ka

is the moment map defined by (2.5).
One easily checks that Ka is isomorphic to the Lie group(

Zâ1 × · · · × Zân+1 × T1
)
/Zâ

where

Zâ ↪→ Zâ1 × · · · × Zân+1 × T1

ζ 
→ (
ζa1 , . . . , ζan+1 , ζ−1

)
,
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the isomorphism being given explicitly by[
(η, eiθ)

]

→ (η1e

ia1θ, . . . , ηn+1e
ian+1θ) ∈ Ka ⊂ Tn+1 .

This means that the complex Lie group KC
a defined by (2.10) is the

complexification of Ka, and by (2.12) we know that

CPn[a]
∼= (Cn+1 \ {0})/KC

a .(2.16)

The statement of the proposition now follows from a general prin-
ciple that gives an identification between the Kähler reduction (2.15)
and the complex quotient (2.16). A good reference in our context is the
appendix to [19]. q.e.d.

The construction of §2.2 applies of course to any labeled polytope,
and hence to any labeled simplex

Pnm =
n+1⋂
r=1

{x ∈ (Rn)∗ : 	r(x) ≡ 〈x,mrµr〉 − λr ≥ 0} ,(2.17)

with arbitrary mr = −λr ∈ N , r = 1, . . . , n+ 1, and the µr’s again as
in (2.13).

Definition 2.12. Given an arbitrary vector m = (m1, . . . ,mn+1)
of positive integer labels, we define the labeled projective space
(SPnm, ωm, τm) as the symplectic toric orbifold associated to the labeled
simplex Pnm ⊂ (Rn)∗ defined by (2.17).

Remark 2.13. It follows from Remark 2.7 that any labeled projec-
tive space (SPnm, ωm, τm) comes equipped with a “canonical” compatible
toric complex structure Jm. Theorem 9.4 in [22] implies that as a com-
plex toric variety, not only with respect to Jm but also with respect to
any toric complex structure J compatible with ωm, SPnm is equivariantly
biholomorphic to CPn. The biholomorphism [πa] : CPn[a] → CPn defined
by (2.9) is just a particular explicit instance of this more general fact.

Remark 2.14. In Definition 2.12 we have normalized all labeled
simplices Pnm by the conditions mr = −λr , r = 1, . . . , n + 1, which
amounts to the fact that the underlying simplex is always the same
Pn1 ⊂ (Rn)∗. This also means that the cohomology class of ωm in
H2(SPnm) is apriori fixed. One can allow for an arbitrary positive scaling
of this cohomology class by scaling the λr’s in the same way.



170 miguel abreu

Remark 2.15. Although labeled projective spaces might seem
to be a more general class of toric orbifolds than orbifold projective
spaces, that is not really the case. In fact one can easily check that, up
to scaling, global coverings and/or finite quotients, the classes of labeled,
orbifold and weighted projective spaces consist of the same Kähler toric
orbifolds.

3. Toric Kähler metrics

Let (MP , ωP , τP ) be the symplectic toric orbifold associated to a
labeled polytope P . In this section we describe how all ωP -compatible
toric complex structures onMP (in other words, all toric Kähler metrics)
can be effectively parametrized by smooth functions on P , according to
the statements of Theorems 1 and 2.

3.1 The “canonical” toric Kähler metric

Recall from the construction of §2.2 that (MP , ωP , τP ) comes equipped
with a “canonical” ωP -compatible toric complex structure JP , induced
from the standard one on Cd through symplectic reduction. Following
Guillemin [18], we will now prove Theorem 1, which states that the
potential gP of JP is given by

gP (x) =
1
2

d∑
r=1

	r(x) log 	r(x) ,(3.1)

where 	r, r = 1, . . . , d, are the affine functions on (Rn)∗ defining the
polytope P as in (2.1).

It is enough to show that the Kähler metric given in symplectic
(x, θ)-coordinates by (1.4), with G ≡ GP = Hessx(gP ), corresponds
to the Kähler metric 〈·, ·〉P = ωP (·, JP ·) on MP . Because both these
metrics are invariant under the Tn-action and M̆P is open and dense in
MP , one just needs to find a suitable slice, orthogonal to the orbits of
the Tn-action on M̆P , and isometric to P̆ via the moment map φP . Here
the word “isometric” is with respect to the metric on the slice induced
by 〈·, ·〉P , and the metric on P̆ given by GP .

Such a slice arises naturally as the fixed point set of an anti-holomor-
phic involution, induced from complex conjugation in Cd:

σ : Cd → Cd , σ(z) = z , Fix(σ) = Rd ⊂ Cd .(3.2)
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The construction of §2.2 is invariant (or equivariant) with respect to
σ. In particular, the submanifold Z = φ−1

K (0) ⊂ Cd, with φK defined
by (2.5), is stable under σ. The K-action on Z commutes with σ, and
so σ descends to give an involution on MP .

Let Zσ ⊂ Rd and Mσ
P denote the fixed point sets of σ on Z and MP .

Define
Z̆σ = Zσ ∩ R̆d and M̆σ

P = Mσ
P ∩ M̆P ,

where R̆d =
{
(u1, . . . , ud) ∈ Rd : ur �= 0 for all r = 1, . . . , d

}
. The fol-

lowing can be easily checked from the construction in §2.2:

- The quotient map π : Z →MP induces a covering map π̆σ : Z̆σ →
M̆σ
P , with group of deck transformations given by {α ∈ K : α2 =

1}.
- π̆σ is an isometry with respect to the metric on Z̆σ induced by the

Euclidean metric on Rd, and the metric on M̆σ
P induced by the

metric 〈·, ·〉P on MP .

- The moment map φP : MP → P ⊂ (Rn)∗ induces a covering
map φ̆σP : M̆σ

P → P̆ , with group of deck transformations given
by {θ ∈ Tn : θ2 = 1}. Moreover, M̆σ

P is 〈·, ·〉P -orthogonal to the
orbits of the Tn-action on M̆P .

Hence, any connected component of M̆σ
P can be taken to be the slice we

were looking for. It is isometric via π̆σ to any connected component of
Z̆σ ⊂ Rd.

Let Z̆σ+ = Z̆σ ∩ Rd
+, where Rd

+ = {(u1, . . . , ud) ∈ Rd : ur > 0
for all r = 1, . . . , d}. From (2.5) we have that Z̆σ+ is the subset of Rd

+

defined by the quadratic equation

d∑
r=1

(
u2
r

2
+ λr

)
ι∗(e∗r) = 0 .

Consider the change of coordinates in Rd
+ given by

sr =
u2
r

2
, r = 1, . . . , d .

Z̆σ+ is now defined by the linear equation

d∑
r=1

(sr + λr) ι∗(e∗r) = 0 ,
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and the Euclidean metric
∑

r(dur)
2 becomes

1
2

d∑
r=1

(dsr)2

sr
.(3.3)

The commutative diagram (2.7) can be written here as

Z̆σ+
φ̆σ

Td−−−→ (Rd)∗

π̆σ

� �β∗

M̆σ
P

φ̆σ
P−−−→ P̆ ⊂ (Rn)∗

(3.4)

and we want to determine the form of the metric (3.3) on P̆ . The
map β∗, being dual to the surjective linear map defined by (2.2), is an
injective linear map given by

β∗(x) =
d∑
r=1

〈x,mrµr〉 e∗r .(3.5)

The map φ̆σ
Td , being the restriction of φTd defined by (2.4), is given in

the s-coordinates by

φ̆σ
Td(s) =

d∑
r=1

(sr + λr) e∗r .(3.6)

From (3.5) and (3.6) we conclude that

(sr + λr) = 〈x,mrµr〉 ⇒ sr = 〈x,mrµr〉 − λr ≡ 	r(x) ,
for all r = 1, . . . , d .

Hence the metric (3.3) can be written in the x-coordinates of the poly-
tope P as

1
2

d∑
r=1

(dsr)2

sr
=

1
2

d∑
r=1

(d	r)2

	r
=

n∑
i,j=1

∂2gP (x)
∂xi∂xj

dxidxj ,

where gP is given by (3.1) and the last equality is a trivial exercise.
This completes the proof of Theorem 1.
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3.2 General toric Kähler metrics

We will now prove Theorem 2, which states that on a symplectic toric
orbifold (MP , ωP , τP ), associated to a labeled polytope P , compatible
toric complex structures J are in one to one correspondence with po-
tentials g ∈ C∞(P̆ ) of the form

g = gP + h ,(3.7)

where gP is given by (3.1), h is smooth on the whole P , and the matrix
G = Hess(g) is positive definite on P̆ and has determinant of the form

Det(G) =

[
δ

d∏
r=1

	r

]−1

,(3.8)

with δ being a smooth and strictly positive function on the whole P .
The proof of this theorem for symplectic toric orbifolds given in

the Appendix of [2], generalizes with very minor modifications to our
orbifold context.

We first prove that any potential g ∈ C∞(P̆ ) of the form (3.7)
and satisfying (3.8), defines through (1.2) a compatible toric complex
structure J on (MP , ωP , τP ). It is clear that J is well defined on M̆P

∼=
P̆ × Tn. To see that it extends to the whole MP one has to check that
the singular behaviour of J near the boundary of P is the same as the
singular behaviour of JP , which we know extends to the whole MP .

This singular behaviour is best described in terms of the Hessians
GP = Hess(gP ) and G = Hess(g). Explicit calculations show that
although GP is singular on the boundary of the polytope P , G−1

P is
smooth on the whole P and its determinant has the form

Det(G−1
P ) = δP

d∏
r=1

	r ,

where δP is a smooth and strictly positive function on the whole P . This
formula captures the relevant singular behaviour and has the following
geometric interpretation. Given x ∈ P , let F(x) be the set of facets of
P that contain x, i.e.,

F(x) = {r ∈ {1, . . . , d} : 	r(x) = 0} .

The kernel of G−1
P (x) is precisely the linear span of the normals µr ∈ Rn

for r ∈ F(x). Due to Remark 2.6, this kernel is also the Lie algebra of
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the isotropy group Γp ⊂ Tn of any p ∈ MP such that φP (p) = x. Con-
ditions (3.7) and (3.8) guarantee that G−1 has these same degeneracy
properties, and that is enough for the corresponding J to extend to a
compatible toric complex structure well defined on the whole MP .

We now prove that any compatible toric complex structure J on
(MP , ωP , τP ) corresponds, in suitable symplectic coordinates on M̆P

∼=
P̆ × Tn, to a potential g ∈ C∞(P̆ ) of the form (3.7). Because J is
apriori defined on the whole MP , the matrix G = Hess(g) will automat-
ically satisfy (3.8). The idea of the proof is to translate to symplectic
coordinates some well known facts from Kähler geometry.

It follows from Theorem 9.4 in [22] that there is an equivariant bi-
holomorphism

ϕJ : (MP , JP , τP ) → (MP , J, τP ) ,

with ϕJ acting as the identity in cohomology. This means that (MP ,
ωP , J) is equivariantly Kähler isomorphic to (MP , ωJ , JP ), where ωJ =
(ϕJ)∗(ωP ) and [ωJ ] = [ωP ] ∈ H2(MP ). It follows from [6] that the ∂∂-
lemma is valid on Kähler orbifolds, and hence there exists a Tn-invariant
smooth function fJ ∈ C∞(MP ) such that

ωJ = ωP + 2i∂∂fJ ,

where the ∂- and ∂-operators are defined with respect to the complex
structure JP .

In the symplectic (x, θ)-coordinates on M̆P
∼= P̆ × Tn, obtained via

the “canonical” moment map φP : MP → P ⊂ (Rn)∗, we then have a
function fJ ≡ fJ(x), smooth on the whole polytope P , and such that

ωJ = dx ∧ dθ + 2i∂∂fJ .

The rest of the proof consists of the following three steps:

(i) Write down on P the change of coordinates ϕ̃J : P → P that cor-
responds to the equivariant biholomorphism ϕJ : MP → MP and
transforms the symplectic (x, θ)-coordinates for ωP into symplec-
tic (x̃ = ϕ̃J(x), θ)-coordinates for ωJ . These (x̃, θ)-coordinates are
the suitable symplectic coordinates we were looking for.

(ii) Find the potential g = g(x̃) for the transformed J = (ϕ̃J)∗(JP ) in
these (x̃, θ)-coordinates.

(iii) Check that the function h : P̆ → R given by h(x̃) = g(x̃)− gP (x̃),
with gP (x̃) = 1

2

∑
r 	r(x̃) log 	r(x̃), is actually defined and smooth
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on the whole P . Here, as always, 	r(x̃) ≡ 〈x̃,mrµr〉 − λr , r =
1, . . . , d, are the defining functions of the polytope P .

All these steps can be done in a completely explicit way. We refer
the reader to the Appendix in [2] for details. The change of coordinates
in Step (i) is given in vector form by

x̃ = ϕ̃J(x) = x+G−1
P · ∂fJ

∂x
,

where ∂fJ/∂x = (∂fJ/∂x1, . . . , ∂fJ/∂xn)t ≡ column vector. ϕ̃J is a
diffeomorphism of the whole P and, due to the degeneracy behaviour of
the matrix G−1

P on the boundary of P , preserves each of its faces (i.e.,
each vertex, edge, . . . ,facet and interior P̆ ). In Step (ii) one finds that

g(x̃) =
〈
x̃− ϕ̃−1

J (x̃),
(
∂gP
∂x

◦ ϕ̃−1
J

)
(x̃)

〉
+(gP ◦ ϕ̃−1

J )(x̃)−(fJ ◦ ϕ̃−1
J )(x̃).

Since (fJ ◦ ϕ̃−1
J ) ∈ C∞(P ) and ϕ̃J is a smooth diffeomorphism of the

whole P , Step (iii) reduces to checking that〈
ϕ̃J(x) − x,

∂gP
∂x

(x)
〉

+ gP (x) − gP (ϕ̃J(x)) ∈ C∞(P ) .

Simple explicit computations show that this is true provided

	r(x)
	r(ϕ̃J(x))

∈ C∞(P ) for all r = 1, . . . , d ,

and this follows from the fact that ϕ̃J preserves the combinatorial struc-
ture of P .

The proof of Theorem 2 is completed.

4. Extremal metrics

In this section, after some preliminaries on extremal Kähler metrics,
we use the framework of Sections 2 and 3 to prove Theorem 3, i.e.,
we give a simple description of a toric extremal Kähler metric on any
labeled projective space. Due to Proposition 2.11 and Remark 2.9, this
gives rise in particular to a toric extremal Kähler metric on any weighted
projective space, as stated in Corollary 1. Theorem 4 is proved in the
last subsection.
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4.1 Preliminaries on extremal metrics

In [9] and [10], Calabi introduced the notion of extremal Kähler met-
rics. These are defined, for a fixed closed complex manifold (M,J0),
as critical points of the square of the L2-norm of the scalar curvature,
considered as a functional on the space of all symplectic Kähler forms
ω in a fixed Kähler class Ω ∈ H2(M,R). The extremal Euler-Lagrange
equation is equivalent to the gradient of the scalar curvature being an
holomorphic vector field (see [9]), and so these metrics generalize con-
stant scalar curvature Kähler metrics. Calabi illustrated this in [9] by
constructing families of extremal Kähler metrics of nonconstant scalar
curvature. Moreover, Calabi showed in [10] that extremal Kähler met-
rics are always invariant under a maximal compact subgroup of the
group of holomorphic transformations of (M,J0). Hence, on a complex
toric manifold or orbifold, extremal Kähler metrics are automatically
toric Kähler metrics, and one should be able to write them down using
the framework of Section 3. This was carried out in [1] for Calabi’s
simplest family, having CP# CP2 as underlying toric manifold.

We now recall from [1] some relevant differential-geometric formulas
in symplectic (x, θ)-coordinates. A Kähler metric of the form (1.4) has
scalar curvature S given by1

S = −
∑
j,k

∂

∂xj

(
gjk

∂ log Det(G)
∂xk

)
,(4.1)

which after some algebraic manipulations becomes the more compact

S = −
∑
j,k

∂2gjk

∂xj∂xk
,(4.2)

where the gjk, 1 ≤ j, k ≤ n, are the entries of the inverse of the matrix
G = Hessx(g), g ≡ potential. The Euler-Lagrange equation defining an
extremal Kähler metric can be shown to be equivalent to

∂S

∂xj
≡ constant, j = 1, . . . , n,(4.3)

i.e., the metric is extremal if and only if its scalar curvature S is an
affine function of x. One can express (4.3) in more invariant terms,
giving a symplectic analogue of the complex extremal condition saying
that the gradient of the scalar curvature is an holomorphic vector field.

1The normalization for the value of the scalar curvature we are using here is the
same as in [7]. It differs from the one used in [1, 2] by a factor of 1/2.
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Proposition 4.1. Let (MP , ωP , τP ) be a compact symplectic toric
orbifold with moment map φP : MP → P ⊂ (Rn)∗. A toric compatible
complex structure J gives rise to an extremal Kähler metric 〈·, ·〉 =
ωP (·, J ·) if and only if its scalar curvature S is a constant plus a linear
combination of the components of the moment map φP .

In other words, the metric is extremal if and only if there exists
ξ ∈ Rn ≡ Lie algebra of Tn, such that

dS = d〈ξ, φP 〉 .

4.2 Extremal orbifold metrics on S2

Here we prove Theorem 3 when n = 1. This very simple case is already
interesting and motivates well the formula for the potential g in the
general case.

Consider the one dimensional labeled polytope defined by

	1(x) = m1(1 + x) and 	2(x) = m2(1 − x) , with m1,m2 ∈ N .

The corresponding labeled projective space SP2
m is homeomorphic to the

2-sphere S2, and the orbifold structure at each pole can be geometrically
interpreted as a conical singularity with angle 2π/mr , r = 1, 2. We look
for an extremal metric generated by a potential g ∈ C∞(−1, 1) of the
form

g(x) =
1
2
(
m1(1 + x) log(m1(1 + x))

+m2(1 − x) log(m2(1 − x)) + h(x)
)
,

with h ∈ C∞[−1, 1]. Formula (4.2) for the scalar curvature becomes

S(x) = −
(

1
g′′(x)

)′′
=
(−(1 − x2)h(x)

)′′
where

h(x) =
2

m1(1 − x) +m2(1 + x) + (1 − x2)h′′(x)
∈ C∞[−1, 1] .

Equation (4.3) says that the metric is extremal if and only if S is a first
degree polynomial, hence if and only if h is a first degree polynomial.
Since h(−1) = 1/m1 and h(1) = 1/m2 we must have

h(x) =
1

2m2
(1 + x) +

1
2m1

(1 − x) =
	1(x) + 	2(x)

2m1m2
.
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Solving for h′′(x) and integrating one gets

h(x) = −(m1(1 + x) +m2(1 − x)) log(m1(1 + x) +m2(1 − x)) ,

i.e.,
h = −	Σ log 	Σ with 	Σ = 	1 + 	2 .

Note that, because 	Σ is strictly positive on [−1, 1], h is defined and
smooth on [−1, 1]. Moreover,

G−1 =
1
g′′

=
	1 	2 	Σ
2m2

1m
2
2

is strictly positive on (−1, 1) and has the degeneracy behaviour at the
boundary points −1 and 1 required by (3.8).

Hence the potential

g =
1
2

(	1 log 	1 + 	2 log 	2 − 	Σ log 	Σ)(4.4)

defines a toric extremal Kähler metric on SP2
m. Its scalar curvature is

given by

S(x) =
(m1 +m2) + 3x(m1 −m2)

m1m2
.

As a function on SP2
m it can be written as

S =
(

1
m1

+
1
m2

)
+ 3

(
1
m2

− 1
m1

)
φm ,

where φm : SP2
m → [−1, 1] ⊂ R∗ is the moment map. Hence

dS = d〈ξm, φm〉 for ξm = 3
(

1
m2

− 1
m1

)
∈ R ∼= Lie algebra of T1 .

4.3 Extremal metrics on SPnm

We now consider a general labeled simplex Pnm ⊂ (Rn)∗ defined by

	r(x) = mr(1 + x) , r = 1, . . . , n , 	n+1(x) = mn+1(1−ψ) , ψ =
n∑
j=1

xj ,

with mr ∈ N, for all r = 1, . . . , n + 1. The corresponding labeled pro-
jective space SPnm is homeomorphic to CPn (see Remark 2.13). Under
this homeomorphism the pre-image of the r-th facet

Fr = {x ∈ Pnm : 	r(x) = 0}
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by the moment map φm : SPnm → Pnm corresponds to

Nr = {[z1, . . . , zn+1] ∈ CPn : zr = 0} ∼= CPn−1 .

The orbifold structure of SPnm can be geometrically interpreted on CPn

as a conical singularity with angle 2π/mr around each Nr
∼= CPn−1, for

r = 1, . . . , n+ 1.
Motivated by the form of the potential (4.4) for the toric extremal

Kähler metric on SP2
m, we consider now the potential g ∈ C∞(P̆nm)

given by

g =
1
2

(
n+1∑
r=1

	r log 	r − 	Σ log 	Σ

)
with 	Σ =

n+1∑
r=1

	r .(4.5)

Note that since 	Σ is strictly positive on Pnm, this potential g is of the
general form (3.7).

The entries of the matrix G = Hess(g) are easily computed from
(4.5):

gjk =
∂2g

∂xj∂xk
=

1
2

(
δjk

m2
j

	j
+
m2
n+1

	n+1
− (mj −mn+1)(mk −mn+1)

	Σ

)
,

(4.6)

where δjk is equal to 1 if j = k and equal to 0 otherwise. The proof of
the following lemma is left as an exercise to the reader.

Lemma 4.2. The matrix G = Hess(g) = (gjk)
n,n
j.k=1 is positive

definite on P̆nm with determinant given by

Det(G) =

[(
n+1∏
r=1

	r

)
2n	Σ

(n+ 1)2
∏n+1
r=1 m

2
r

]−1

.(4.7)

The entries of the matrix G−1 = (gjk)n,nj,k=1 are given by

gjk = 2

(
δjk

	j
m2
j

− mj +mk

n+ 1
	j 	k
m2
j m

2
k

+
1

(n+ 1)2
	j 	k
mjmk

(
n+1∑
r=1

	r
m2
r

))
.

(4.8)

It follows that the potential g defined by (4.5) satisfies the conditions
of Theorem 2, and hence defines a toric Kähler metric on SPnm. More-
over, since each gjk is a third degree polynomial, it is clear from (4.2)
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that the scalar curvature S is a first degree polynomial. By (4.3) this
means that the metric defined by g is indeed extremal, thus finishing
the proof of Theorem 3.

More explicitly, we have that the scalar curvature is given by

S(x) =
2n
n+ 1

(
n+1∑
r=1

1
mr

)
+

2(n+ 2)
n+ 1

n∑
j=1

(
1

mn+1
− 1
mj

)
xj .

As a function on SPnm it can be written as

S =
2n
n+ 1

(
n+1∑
r=1

1
mr

)
+ 〈ξm, φm〉 ,

where φm is the moment map and

ξm =
2(n+ 2)
n+ 1

(
1

mn+1
− 1
m1

, . . . ,
1

mn+1
− 1
mn

)
∈ Rn.

4.4 Conical extremal metrics on SPn1

The purpose of this subsection is to prove Theorem 4, i.e., we will de-
scribe natural “conical” compactifications of extremal Kähler metrics
defined by potentials g of the form (4.5), for any positive real vector of
labels m ∈ Rn+1

+ .
The symplectic toric orbifold where this compactification takes place

is obtained by forgetting the labels. Hence we consider the standard
smooth symplectic toric manifold (SPn1, ω1, τ1) associated to the simplex
Pn1 ⊂ (Rn)∗, and denote by φ1 : SPn1 → Pn1 the corresponding moment
map. Note that (SPn1, ω1, τ1) is equivariantly symplectomorphic to CPn

with a suitably normalized Fubini-Study symplectic form and standard
torus action.

For any m ∈ Rn+1
+ , the potential g ∈ C∞(P̆n1 ) given by (4.5) de-

fines an extremal Kähler metric 〈·, ·〉m on S̆P
n
1 = φ−1

1 (P̆n1 ) ∼= P̆n1 × Tn

given by (1.4). Consider the pre-image Nr ≡ φ−1
1 (Fr) of each facet

Fr ⊂ Pn1 , r = 1, . . . , n+ 1. Each Nr is a real codimension 2 symplectic
toric submanifold of SPn1, symplectomorphic to a suitably normalized
SPn−1

1
∼= CPn−1. The restriction φ1|Nr : Nr → Fr is a corresponding

moment map. We want to show that 〈·, ·〉m extends to an extremal met-
ric on the whole SPn1 with conical singularities of angles 2π/mr around
each Nr.
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The potential g, although only smooth on the interior P̆n1 , is a con-
tinuous function on the whole polytope Pn1 . Denote by gr ∈ C∞(F̆r) ∩
C0(Fr) the restriction of g to Fr (here F̆r denotes the relative interior of
Fr). Using the explicit form of the matrix G = Hess(g) given by (4.6),
one can easily check that the extremal metric 〈·, ·〉m, defined on S̆P

n
1, ex-

tends to a well defined smooth extremal metric on N̆r ≡ φ−1
1 (F̆r) whose

potential is exactly given by gr. Note that the hyperplane in (Rn)∗ that
contains Fr has an induced affine structure, and so it makes sense to
consider Gr = Hess(gr).

Because of the equivariant version of Darboux’s theorem, we can
understand what happens in the normal directions to each point p ∈ N̆r

by analysing a neighborhood of zero in R2. In (r, θ)-polar coordinates
the standard symplectic form is rdr ∧ dθ, and the moment map for the
standard circle action is given by x = r2/2. The moment polytope is
[0,+∞) defined by the single affine function 	(x) = x. The standard
smooth Kähler metric is defined by the potential g1 = 1

2x log x, hence
given by

〈·, ·〉1 = G′′
1 dx

2 +
1
g′′1
dθ2 =

1
2x

dx2 + 2x dθ2 ,

while the “orbifold” one is defined for any m ∈ R+ by the potential
gm = 1

2mx log(mx), and hence given by

〈·, ·〉m = g′′m dx
2 +

1
g′′m

dθ2 =
m

2x
dx2 +

2x
m
dθ2 .

In (r, θ)-polar coordinates we get

〈·, ·〉1 = dr2 + r2dθ2 ≡ standard smooth flat metric ,

while

〈·, ·〉m = m

(
dr2 +

( r
m

)2
dθ2

)

which is the polar form of a metric with a conical singularity of angle
2π/m around the origin.

Hence we have an extension of each extremal Kähler metric 〈·, ·〉m ,

m ∈ Rn+1
+ , from S̆P

n
1 to S̆P

n
1 ∪

(
∪n+1
r=1 N̆r

)
, having normal conical singu-

larities around each N̆r. The same argument can be used to show that
the metric on each N̆r extends to the moment map pre-images of the
relative interior of each facet of Fr (an (n− 2)-dimensional simplex and
face of Pn1 ). One can continue this process until the metric is extended
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to the whole SPn1. For example, at the last step one extends the metric
to the fixed points of the Tn-action, corresponding to the vertices of Pn1 .
There the metric looks like the product of n cones of dimension two and
angles 2π/mri , where mr1 , . . . ,mrn are the positive real labels of the n
facets of Pn1 that meet at the relevant vertex.

5. A family of self-dual Einstein metrics

Recall from the introduction that the extremal Kähler metrics given
by Theorem 4 are actually Bochner-Kähler (see [8]). In dimension four
(n = 2) “Bochner-Kähler” is the same as “self-dual Kähler”. It follows
from the work of Derdzinski [12] and Apostolov-Gauduchon [4] that,
whenever its scalar curvature S is nonzero, a self-dual Kähler metric
is conformally Einstein, with conformal factor given by S−2. In this
section we explore this relation for a particular one-parameter family of
metrics arising from Theorem 4.

Consider the smooth symplectic toric manifold (SP2
1
∼= CP2, ω1, τ1)

associated to the simplex P 2
1 ⊂ (R2)∗. For any m = (1, 1,m) , m ∈ R+,

let 〈·, ·〉m be the extremal Kähler metric defined by the potential

gm(x) =
1
2

(
3∑
r=1

	r(x) log 	r(x) − 	Σ(x) log 	Σ(x)

)
,(5.1)

where 	1(x) = 1 + x1 , 	2(x) = 1 + x2 , 	3(x) = m(1 − ψ) and 	Σ(x) =
2+m− (m−1)ψ. Here and in the rest of this section ψ = x1 +x2. Note
that in (5.1) the two terms with 	1 and 	2 correspond to the standard
flat metric on R4, while the terms with 	3 and 	Σ only depend on the
“radial” coordinate ψ. This means that the metric 〈·, ·〉m defined by the
potential gm is U(2)-invariant (see [3] for a general discussion of this
type of metrics).

The scalar curvature Sm of 〈·, ·〉m is given by

Sm(x) =
4

3m
(2m+ 1 + 2(1 −m)ψ) ,(5.2)

which is strictly positive on SP2
1 if m > 1/2. Hence, for any 1/2 <

m < +∞, the metric 〈·, ·〉∗m ≡ S−2
m 〈·, ·〉m is a self-dual Einstein metric

on SP2
1
∼= CP2 with a normal conical singularity of angle 2π/m around

a SP1
1
∼= CP1.

In this simple case it is not hard to check explicitly that 〈·, ·〉∗m is
Einstein and compute its scalar curvature. A result of Derdzinski [12]
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(see also [7]) states that for any 4-dimensional extremal Kähler metric
〈·, ·〉 with non constant scalar curvature S, the metric 〈·, ·〉∗ ≡ S−2〈·, ·〉
is Einstein if and only if

S3 − 6S∆S − 12|dS|2 = constant .(5.3)

Moreover, a standard formula for the scalar curvatures of conformally
related metrics (see e.g. [7]) states that the scalar curvature S∗ of 〈·, ·〉∗
is given by

S∗ = S3(6∆(S−1) + 1) .(5.4)

In both these formulas ∆ is the Laplacian with respect to the metric
〈·, ·〉.

For any toric Kähler metric defined by a potential g ∈ C∞(P̆ ),
the Laplacian ∆ of a function f ∈ C∞(P ) (i.e., a smooth Tn-invariant
function on MP ) is given by

∆f = −(DetG)
n∑

j,k=1

gjk
∂

∂xj

(
1

DetG
∂f

∂xk

)
,

where G = Hess(g) = (gjk) and gjk are the entries of G−1. This formula,
together with the simple form of gm and Sm, makes the calculations
involved in (5.3) and (5.4) easy enough.

For example, one computes that the scalar curvature S∗
m of 〈·, ·〉∗m is

given by

S∗
m =

(
4
m

)3

(2m− 1) .

One sees that the self-dual Einstein metric 〈·, ·〉∗m has positive scalar
curvature when 1/2 < m < +∞, but is actually Ricci-flat whenm = 1/2
or m = +∞ provided we can make sense of it.

When m = 1/2 the extremal scalar curvature S1/2 is given by

S1/2(x) =
8
3
(2 + ψ) ,

and hence vanishes at the unique point of SP2
1
∼= CP2 corresponding

to the vertex (−1,−1) ∈ P 2
1 . The complement of this point in CP2

is just the normal bundle of the “opposite” CP1 (corresponding to the
facet F3 ⊂ P 2

1 ), i.e., a line bundle with first Chern class c1 = 1. The
label m = 1/2 means that the normal conical singularity can be re-
solved by passing to a Z2-quotient, i.e., to the line bundle with c1 = 2
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given by T CP1. This means that the self-dual Ricci-flat Einstein met-
ric 〈·, ·〉∗1/2 = S−2

1/2〈·, ·〉1/2 is smooth and complete when considered on
T CP1. Being U(2)-invariant, it must coincide with the well-known
Eguchi-Hanson metric [16].

When m→ ∞ the matrix Gm = Hess(gm) converges to the matrix

G∞(x) =
1
2




1
1+x1

+ 4−ψ
(1−ψ)2

4−ψ
(1−ψ)2

4−ψ
(1−ψ)2

1
1+x2

+ 4−ψ
(1−ψ)2


 .

One easily checks that G∞ = Hess(g∞) where

g∞(x) =
1
2

(
3∑
r=1

	r(x) log 	r(x) − 3 log(1 − ψ)

)
.

The metric 〈·, ·〉∞ defined by this potential does not extend to the whole
SP2

1
∼= CP2. However it is a well-defined smooth complete extremal

Kähler metric of finite volume on B = SP2
1 \ SP1

1, where the sphere
SP1

1
∼= CP1 corresponds to the facet F3 ⊂ P 2

1 . In the normal directions
to this sphere at infinity, the extremal metric 〈·, ·〉∞ looks like a complete
hyperbolic cusp (this can be seen by considering for example m1 = 1
and m2 → +∞ for the orbifold metrics on S2 discussed in §4.2). Note
that B is symplectomorphic to an open ball in R4 and, with respect to
the complex structure J∞ defined by g∞, biholomorphic to C2.

The scalar curvature of 〈·, ·〉∞ is given by

S∞(x) =
8
3
(1 − ψ) ,

which vanishes exactly at the sphere at infinity. Hence, the metric
〈·, ·〉∗∞ ≡ S−2∞ 〈·, ·〉∞ is a smooth complete self-dual Ricci-flat Einstein
metric on B, obviously with infinite volume. Being U(2)-invariant and
B being diffeomorphic to R4, it must coincide with the well-known Taub-
NUT metric [15].

As promised in the introduction, we get in this way a one parameter
family of U(2)-invariant self-dual Einstein metrics 〈·, ·〉∗m, 1/2 ≤ m ≤
+∞, having positive scalar curvature when 1/2 < m < +∞ and con-
necting the Ricci-flat Eguchi-Hanson metric on T CP1 (m = 1/2) with
the Ricci-flat Taub-NUT metric on R4 ∼= C2 (m = +∞). Note that one
of the metrics in between is the Kähler-Einstein Fubini-Study metric on
CP2 (m = 1).
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In [17] Galicki and Lawson use quaternionic reduction to produce
self-dual Einstein metrics on certain weighted projective spaces. These
include CP2

(p+q,p+q,2p), which up to covering/quotient correspond in the
above family to m = (p+ q)/2p. Galicki-Lawson assume that p, q ∈ N,
q ≤ p and (p, q) = 1. They point out that when q/p → 1 their metrics
converge to Fubini-Study on CP2, while when q/p → 0 they converge
to Eguchi-Hanson on T CP1. This is consistent with the m = 1 and
m = 1/2 cases in our family. In fact, it follows from the classification
results of [4] that the Galicki-Lawson metrics, whenever defined, are the
same as the ones constructed here for the corresponding value of the
parameter m.
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