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Exponential localization in 2D pure magnetic
wells

Y. Guedes Bonthonneau, N. Raymond and S. Vũ Ngo.c

Abstract. We establish a magnetic Agmon estimate in the case of a purely magnetic
single non-degenerate well, by means of the Fourier-Bros-Iagolnitzer transform and microlocal
exponential estimates à la Martinez-Sjöstrand.

1. Introduction

The question of proving the localization of a quantum state has many math-
ematical facets. In this article, we investigate the case of the magnetic Laplacian
and prove, under a geometric confinement property on the magnetic intensity, an
Agmon-type localization estimate for low-lying eigenfunctions of this operator.

The interest in the magnetic Laplacian has several origins. From a quantum
mechanical viewpoint, this operator is a simplified model for describing the motion
of an electron in a strong magnetic field, when the electrostatic interaction and the
relativistic effects are ignored; its construction is explained for instance [7]. In the
book [15], the authors recall that the same operator also appears in the linearization
of the Ginzburg-Landau functional in the domain of superconductors. In Spectral
Geometry, the magnetic Laplacian is often regarded as a natural variant of the
Laplace-Beltrami operator when the symplectic form of the cotangent bundle is
twisted by the pull-back of a closed 2-form from the base manifold, and has proved
important in the study of magnetic geodesics; see for instance [25], and references
therein. In the present study, we consider the magnetic Laplacian on the plane,
which can be defined as follows.

When B is a real function on R2, a semiclassical magnetic Laplacian associated
with B is a family of operators, depending on a parameter h>0, of the form

(1.1) Lh =(−ih∇−A)2 =(hD1−A1(x))2+(hD2−A2(x))2 , D=−i∂ .
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Here, A=(A1, A2) is a potential vector associated with B, i.e B=∂1A2−∂2A1.
Notice that the semiclassical limit h→0 is related to the limit of strong magnetic
field (1/h)B.

The spectral theory of Lh has received the attention of several authors; in par-
ticular, it follows from [19] that if B is smooth and admits a global non-degenerate
minimum, uniquely attained at some x∈R2, the bottom of the spectrum of Lh (for
h small enough) is comprised of multiplicity one eigenvalues λ0(h)<λ1(h)..., with

λj(h)= b0h+(C1+C2j)h2+o(h2) .

The corresponding eigenfunctions are concentrated around x, in the sense that their
L2 mass outside of a fixed neighborhood of x is O(h∞). The purpose of this article
is to obtain a stronger concentration in the case when B is real analytic.

1.1. Statement of the result

From now on, we assume the following:
(i). The magnetic field B has a unique minimum b0 at x=0. It is positive,

non-degenerate, and not attained at infinity (lim inf B>b0).
(ii). There exists a complex strip S=R2+i[−a, a]2 (a>0) to which B can be

holomorphically extended as a bounded function.
(iii). The function (x1, x2) �→

∫ x1
0

∂B(u,x2)
∂x2

du is bounded on the strip S.
For example, B=2−e−|x|2 satisfies our assumptions. We will say that a func-

tion f :Rn→R goes linearly to infinity at infinity if there is a constant C>0 such for
|x|>C, f>|x|/C. Our main result is the following exponential localization estimate.

Theorem 1.1. Consider a Lipschitz function d:R2→R+ with a unique and

non-degenerate minimum at 0, d(0)=0, and going linearly to infinity at infinity, and

let K>0. Then there exist C, h0, ε>0 such that, for all h∈(0, h0) and u∈L2(R2)
such that

Lhu=hμu with μ≤ b0+Kh ,

we have ∫
R2

eεd(x)/h|u(x)|2 dx≤C‖u‖2
L2(R2) ,

Observe that here, the third Assumption (iii) seems technical, and depends on
a choice of a system of coordinates, but we have not been able to remove it. Also
note that since we are not trying to optimize constants in our theorem, the value
of a>0 in (ii) is not essential. As a consequence, to lighten notations, we will use
a>0 as a generic constant throughout the paper. The size of the strip on which we
are working will be reduced a finite number of times.
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1.2. Eigenvalues asymptotics

Strong localization of eigenfunctions, such as the one claimed by Theorem 1.1,
is often a footprint of discrete spectrum. Indeed, under Assumption (i), it follows
from the usual theory (see [2]) that below h lim inf B, the spectrum of Lh is discrete.
Let λ0(h)≤λ1(h)≤...λ�(h)≤...≤lim inf B be the (possibly finite) sequence of such
eigenvalues, repeated according to their multiplicity.

The following theorem has been established via a dimensional reduction in [20]
(see also [19] and the review paper [18]) and via a Birkhoff normal form in [37].
In fact, this theorem does not require the analyticity of B (i.e Assumptions (ii)
and (iii)), but rather C∞ bounds on B.

Theorem 1.2. ([19], [20] and [37])

(1.2) ∀�∈N , λ�(h)= b0h+
(

2�
√

detH
b0

+ (TrH 1
2 )

2

2b0

)
h2+o(h2) ,

where b0=minR2 B and H= 1
2Hess(0,0)B.

1.3. Complex WKB expansions

With Theorem 1.2 comes the question of describing the eigenfunctions. Inspired
by the results about the semiclassical Schrödinger operator with an electric poten-
tial, we can wonder whether the complex version of the famous Wentzel-Kramers-
Brillouin (WKB) Ansatz can be adapted to the magnetic case. Such constructions,
solving formally the eigenvalue problem, are rather rare in the context of the pure
magnetic Laplacian; see however [29, VI, S2]. Their existence has been established
for the first time in a multi-scale framework in [4] and then in non-degenerate mag-
netic wells (i.e., under Assumption (i)) in [16]. Let us recall the latter result (which
was generalized to the Riemannian setting in [35]).

Theorem 1.3. ([16]) Under Assumption (i), and after a rotation, we can

assume

(1.3) B(x1, x2)= b0+αx2
1+γx2

2+O(‖x‖3) , with 0<α≤ γ .

Let �∈N. There exist

(i). a neighborhood V of (0, 0) in R2,

(ii). an analytic function S on V satisfying

ReS(x)= b0
2

[ √
α√

α+√
γ
x2

1+
√
γ√

α+√
γ
x2

2

]
+O(‖x‖3) ,
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(iii). a sequence of analytic functions (aj)j∈N on V,
(iv). a sequence of real numbers (μj)j∈N satisfying

μ0 = b0 , μ1 =2�
√
αγ

b0
+

(
√
α+√

γ)2

2b0
,

such that, for all J∈N, and uniformly in V,

eS/h

⎛⎝(−ih∇−A)2−h

J∑
j≥0

μjh
j

⎞⎠⎛⎝e−S/h
J∑

j≥0
ajh

j

⎞⎠=O(hJ+2) .

The WKB constructions in [4] and [16] give a positive answer to the open
problem mentioned by Helffer in [17, Section 6.1]: in generic situations with pure
magnetic field, WKB constructions corresponding to the low lying spectrum exist.
Once the WKB analysis is done, we want to know to which extent the Ansätze are
approximations of the exact eigenfunctions u�∈L2(R2). It follows from Theorem 1.2
that, when h is small enough, the eigenvalues are simple and separated by a gap
of order ∼h2. Thanks to the Spectral Theorem, we deduce that the WKB Ansätze
are approximations in the L2-sense, and even in a weighted L2-space thanks to
Theorem 1.1 (up to taking a smaller ε).

Corollary 1.4. Denote by u�,J =χ(x)e−S/h
∑J

j≥0 ajh
j , with χ∈C∞

0 (V), and
constant around the origin. Then, for fixed �∈N and ε>0 small enough, we have

for some θ∈R
‖eεd(x)/h(eiθu�−u�,J )‖L2(R2) =O(h J

2 ).

(This will be proved at the end of Section 5.) In contrast with Theorem 1.1,
the WKB Ansätze decay like e−ReS/h away from the magnetic well; thus, the ap-
proximation should actually hold in a slight perturbation of the weighted space
L2(e−2ReS/h). Behind this question lies the tunneling effect problem: such expo-
nential estimates are the heart of the analysis of the interaction between multiple
magnetic wells. The present paper does not go that far,(1) but establishes that the
eigenfunctions decay like e−ϕ(x)/h for some non-negative function ϕ. These types of
estimates are well-known and proved in the electric Schrödinger operator −h2Δ+V ,
where they go by the name of Agmon (see [1], [21] and [38]). As we will see, the
purely magnetic case seems to necessitate a significantly more advanced strategy,
based on the Fourier-Bros-Iagolnitzer (FBI) transform. (In [21], the FBI transform
does appear, but not for proving the exponential localization; it is used in a second
step, to control the asymptotic expansion of eigenvectors and eigenvalues.)

(1) The only known (and optimal) result of pure magnetic tunnelling has recently been proved
in a two-dimensional setting in [5] by means of microlocal dimensional reductions.
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1.4. Failure of the naive Agmon estimates

Let us explain formally why the electric strategy fails in giving the optimal
Agmon estimates in the pure magnetic case (see also [36, Proposition 4.23] for a
slightly different presentation). This strategy is based on the following formula:

eϕ/h(−ih∇−A)2e−ϕ/h =(−ih∇−A+∇ϕ)2 ,

where ϕ is bounded and Lipschitz continuous, and on using the coercivity of the
real part

Re 〈eϕ/h(−ih∇−A)2e−ϕ/hu, u〉= ‖(−ih∇−A)u‖2−‖∇ϕu‖2 ,

where u∈C∞
0 (R2). Then, we want to use the magnetic field, and we notice that

‖(−ih∇−A)u‖2 ≥h

∫
R2

B(x)|u|2 dx ,

so that, for all λ∈R,

Re
〈(

eϕ/h(−ih∇−A)2−λ
)
e−ϕ/hu, u

〉
≥
∫
R2

(
hB(x)−|∇ϕ|2−λ

)
|u|2 dx .

From this last inequality, we see that the only possibility to control the gradient
is that ϕ actually depends on h. With the choice ϕ=h

1
2 Φ, where Φ is the Agmon

distance (to 0) associated with the metric (B−b0−|∇Φ|2)+dx2, we can deduce
that, for eigenvalues such that λ=b0h+O(h2), the corresponding eigenfunctions
ψ(=e−ϕ/hu) satisfy, for h small enough,

(1.4)
∫
R2

e2Φ/h
1
2 |ψ|2 dx≤C‖ψ‖2 .

Due to the non-degeneracy of the minimum of B, Φ may be chosen with a unique
and non-degenerate minimum at 0. Thus, (1.4) tells us for instance that the ground
state is a priori exponentially localized at the scale h

1
4 near the minimum. This is

consistent with Theorem 1.3, but much worse than expected. In the analytic case,
the construction of WKB quasi-modes made in [16] suggests that one should be
able to do better; namely, to prove that the eigenfunctions are localized at the scale
h

1
2 near the minimum. That it is indeed the case is the main result of this article.

Notice that estimate (1.4) does not require the analyticity of the magnetic
field. We believe that it is optimal in the C∞ category, where exponential estimates
cannot be controlled in phase space and the techniques of the present paper don’t
apply. Even the construction of the WKB phase becomes problematic in the smooth
case, see [6].



58 Y. Guedes Bonthonneau, N. Raymond and S. Vũ Ngo.c

1.5. Related results

Some articles have been devoted to the Agmon estimates in the presence of a
magnetic field, but almost always with an additional electric potential. For instance,
in [22], the decay estimates are inherited from the electric potential and the magnetic
field is considered as a perturbation (see in particular [22, p. 629]). In the same
spirit, Agmon estimates are considered in [34, Theorem 1.1] (see also the closely
related articles [14] and [32]) in the case of an electric well with constant magnetic
field. It is proved that the magnetic field improves the decay of the eigenfunctions
away from the electric well.

We will see in this paper that pure magnetic Agmon estimates at the “right”
semiclassical scale can be obtained as projections of microlocal exponential esti-
mates. Our strategy will be inspired by the ideas of Martinez [26] (see also [33],
and [28] in relation with the corresponding WKB analysis). The fact that we are
able to refine this point of view, which is based on the FBI transform, and to apply
it to establish our new magnetic Agmon estimates, is reminiscent of Sjöstrand’s
pioneer work on analytic hypo-ellipticity [39].

Remark 1.5. Throughout our analysis, we will meet some known close links
between magnetic and Toeplitz operators. These connections are described, for in-
stance, in [11], or [24, Section 4]. In the context of Toeplitz operators, exponential
decay estimates of eigenfunctions have been the subject of the recent works [12,
Theorem C] and [24, Theorem 1.3]. In these papers, the semiclassical parameter
is of the form h=p−1, where p∈N is the degree of tensorization of a line bun-
dle.

1.6. Organization and strategy

In Section 2, we perform various reductions to put the magnetic Laplacian in a
“normal form”. Section 3 is central in our analysis and is devoted to general proper-
ties of the Fourier-Bros-Iagolnitzer transform. Our presentation closely follows and,
sometimes, completes the one exposed in the book by Martinez [27, Chapter 3]. This
part of the investigation can also be considered an interpretation of the magnetic
Laplacian as a Toeplitz operator. In Section 4, we prove that the FBI transform of
an eigenfunction (with low energy) is exponentially localized at the scale h

1
2 near

0∈R2×(R2)∗. We proceed in two steps: firstly, we prove the exponential microlo-
calization near the characteristic manifold {(x, ξ)∈R2×R2; ξ=A(x)}, which is the
zero energy level set of the classical Hamiltonian (Theorem 4.4); secondly, we es-
tablish an exponential localization inside the manifold (Theorem 4.5). In Section 5,
we use the microlocal exponential estimates to deduce Theorem 1.1.
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2. Normal form

In [37], the second and third author constructed a Fourier integral operator Uh

that conjugates the magnetic Laplacian Lh to an operator of the form

Opw
h (f(H, x2, ξ2))+O(h∞),

microlocally near the characteristic set of Lh, where H=h2D2
x1

+x2
1 and Opw

h de-
notes the Weyl quantization. If the symbol f were analytic, and the remainder
O(h∞) improved to O(e−C/h), this would imply a natural (and probably optimal)
exponential estimate on the bottom eigenfunctions of Lh. However, the FIO Uh

is constructed in a relatively non-explicit fashion, including a generically divergent
Birkhoff normal form, and tracking those estimates down would require quite so-
phisticated tools of analytic microlocal analysis.

Since we “only” want to obtain decay of eigenfunctions and not the expansion
of the bottom eigenvalues of Lh to any power of h, we will only need a rather crude
normal form.

Lemma 2.1. Under Assumptions (i), (ii), (iii), there exists a>0 and, for h>0,
a unitary operator Uh acting on L2(R2, dx) such that

(2.1) UhLhU
−1
h =Opw

h (pL ),

where pL is an h-dependent holomorphic function on R4+i[−a, a]4, such that

(2.2) pL = g11ξ2
1 +2g12ξ1x1+g22x2

1+h2q,

where g11, g12, g22 and q are holomorphic, bounded, and on R4 they are real valued.

Additionally, the gij are critical at 0, and

(2.3) B(x, ξ)=
√

g11g22−(g12)2,

when restricted to R4, admits a positive non-degenerate minimum at 0, uniquely

attained, and not attained at infinity.

This type of operators, whose symbol is a quadratic form of some variables,
with parameters, was studied by several authors in the context of hypo-ellipticity in
the smooth category (see [8] and references therein), and in the analytic category by
Sjöstrand in [39]. It would be interesting to obtain a global version of Sjöstrand’s
results in order to give a different proof of Theorem 1.1.

Observe that the exponential decay of eigenfunctions is not preserved by general
unitary operators. However, we will see that Uh can be explicitly described, so this
will not be an issue.
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For a given magnetic field B, the choice of magnetic potential A is not unique.
Any other choice A′ differs from A by a gradient, i.e. A′=A+∇f . Then, the cor-
responding magnetic Laplacian is obtained by conjugating Lh by the multiplication
operator u �→eif/hu, which is unitary, both pointwise and in L2. Hence, it does not
impact Theorem 1.1. Therefore we may, and we will, assume that

(2.4) A(x)= (0, A2(x)) , A2(x)=
∫ x1

0
B(u, x2) du ,

Notice that A2 is real-analytic, admits a holomorphic extension to the strip S, and
its derivatives are bounded on S according to Assumption (iii).

For d=2 or d=4 depending on the context and a>0, it will be convenient to
set Sa :=Rd+i[−a, a]d.

2.1. Normal form near the characteristic set

In this section, we prove Lemma 2.1. The operator Uh will be decomposed as
the composition of a change of variables and a metaplectic operator. Let us start
by constructing the change of variable.

The first idea, which is quite standard, is to choose coordinates in which the
magnetic field is constant as a 2 form. In that case, the natural symplectic structure
becomes canonical, and all the magnetic information is transferred to a variable
Riemannian metric. The guiding model is the case of constant magnetic field and
constant metric, where the magnetic Laplacian takes the form

L ct
h =(hDx1)

2+(hDx2−Bx1)2,

and its bottom eigenvalue is hB. The solutions, sometimes called zero modes, to(
L ct

h −hB
)
u=0

are of the form e−Bx2
1/2hf , with f holomorphic, and they play an important role in

the spectral analysis of the magnetic Dirac operator (see [3]).
Coming back to our problem, there are many diffeomorphisms ˇ of R2 such

that ˇ∗B is the canonical 2 form (Darboux’ lemma), so we pick the following

(x1, x2)=ˇ(x̃1, x̃2), x̃1 =
∫ x1

0
B(x′, x2) dx′, x̃2 =x2.

That this defines indeed a global diffeomorphism of R2 is ensured by Assumption (i).

Lemma 2.2. Under Assumptions (i), (ii) and (iii), ˇ is a bi-Lipschitz analytic

diffeomorphism of R2 such that ˇ∗B=dx̃1∧dx̃2 and ˇ∗A=x̃1dx̃2. Moreover, there

exists λ≥1 and a>0 such that ˇ and ˇ
−1 send Sa′ to Sλa′ for all a′∈(0, a/λ).



Exponential localization in 2D pure magnetic wells 61

It will be useful to let

α(x1, x2)=
∫ x1

0
∂x2B(u, x2) dx1.

Proof. ˇ is a global diffeomorphism of R2 because B is positive, and ˇ
−1 is

well defined on Sa. Next, there is a C>0 such that |B|≤C and |α|≤C, so that ˇ−1

maps Sa′ into S2Ca′ for 0<a′<a.
We can compute

dx(ˇ−1)=
(
B(x) α(x)

0 1

)
.

In particular,

(dx(ˇ−1))−1 =
(

1
B(x) − α(x)

B(x)
0 1

)
.

Since B≥b0>0 on R2, and using Assumption (ii), there exists 0<a0<a such that
|B|−1≤(ReB)−1≤1/(2b0) on Sa0 . In particular, on Sa0 , (dx(ˇ−1))−1 is bounded.

Around each real point x, we can apply the holomorphic local inversion theorem
and deduce that there are εx, ε

′
x>0 such that ˇ−1 is a biholomorphism between the

ball of radius εx centered at x and its image, which contains the ball of radius
ε′x around ˇ

−1(x). One can give lower bounds to the constants εx, ε′x, expressed
only in terms of the C2 norms of ˇ

−1, and an upper bound on (dx(ˇ−1))−1. In
particular, we can choose them independent of x.

Additionally, if ˇ−1(x)=ˇ
−1(y) for some x, y∈Sa′ with 0<a′<a1, then x2=y2,

and
∫ y1
x1

B=0. Observe that

0 = Re
∫ y1

x1

B =
∫ Re y1

Re x1

ReB(t+iIm x1, x2) dt−
∫ Im y1

Imx1

ImB(Re y1+it, x2) dt.

Since ReB≥b0/2 on Sa1 , we deduce that |Re (x1−y1)|≤C(a′)2 for some C>0. In
particular, according to the argument above, if a′ is small enough, this implies that
x1=y1. For such an a′>0, ˇ

−1 is a biholomorphism between Sa′ and ˇ
−1(Sa′),

which satisfies
Sa′′ ⊂ˇ

−1(Sa′)⊂SCa′ ,

for some a′′>0. Further, ˇ−1 is uniformly Lipschitz, and so is its inverse. Taking
min(a′, a′′) as the new value of a and λ the Lipschitz constant of ˇ, ˇ−1 ends the
proof. �

We can associate ˇ with a unitary operator Uˇ by setting

Uˇf(x̃)= Jac(ˇ)1/2 f(ˇ(x̃)).
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According to Lemma A.1 and keeping the same notation, we have

(2.5) UˇLhU
−1
ˇ

=(−ih∇x̃−Ã)g∗(−ih∇x̃−Ã)−h2V .

Here, V is explicit in terms of ˇ, and g∗ is the dual Riemannian metric (dˇT dˇ)−1.
Note also that

(2.6) (−ih∇x̃−Ã)g∗(−ih∇x̃−Ã)=Opw
h (g∗(ξ̃−Ã(x̃), ξ̃−Ã(x̃)))+O(h2) ,

where the O(h2) comes from the explicit computation of the subprincipal term with
the composition formula (the operator in the right hand side is symmetric).

From explicit expressions for the remainders, and dropping the tilde on the
variable x, we deduce that

(2.7) UˇLhU
−1
ˇ

=Opw
h (‖(ξ1, ξ2−x1)‖2

g∗ +O(h2)) ,

where the remainder symbol is of the form h2q1, q1 holomorphic and bounded on
some Sa with a>0. Moreover, letting B̃=B¨ˇ and α̃=α¨ˇ, we get

(2.8) ‖(ξ1, ξ2−x1)‖2
g∗ = B̃2ξ2

1 +(ξ2−x1+α̃ξ1)2 .

We are now almost in the desired form. We consider the following symplectomor-
phism

ˇM(x, ξ)= (x+Aξ, ξ) , where A=
(

0 1
1 0

)
, A−1 =A .

It is associated with the metaplectic operator M, defined as

(2.9) Mu(x1, x2) := 1
(2πh)2

∫
R4

e
i
hΦ(x,y,ξ)u(y) dy dξ ,

the phase being given by

Φ(x, y, ξ)=ϕ(x, ξ)−〈y, ξ〉 , ϕ(x, ξ)=
〈
x− 1

2Aξ, ξ
〉
,

and ϕ being the generating function of ˇM. We observe that

Mu(x)= (2πh)−2
∫
R2

e
i
h 〈x,ξ〉Fhu(ξ)e− i

2h 〈Aξ,ξ〉 dξ ,

where we used the semiclassical Fourier transform

Fhu(ξ)=
∫
R2

e−
i
h 〈x,ξ〉u(x) dx , F−1

h v(x)= (2πh)−2
∫
R2

e
i
h 〈x,ξ〉v(ξ) dx .

Recalling that
F−1

h (UV )=F−1
h (U)�F−1

h (V ) ,
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the operator M can be written as a convolution operator

(2.10) Mu=K�u , K =F−1
h e−

i
2h 〈Aξ,ξ〉 = 1

2πhe
i

2h 〈Ax,x〉 ,

where we used the well-known result about the Fourier transform of a quadratic
exponential.

For a symbol σ in S ′(R4), which is surely the case of the symbols we are
manipulating so far, we have the exact “Egorov” correspondence

(2.11) M−1 Opw
h (σ)M=Opw

h (σ ¨ ˇM) .

It follows that M−1UˇLhU
−1
ˇ

M is in the form announced by Lemma 2.1. It re-
mains to check the conditions on the coefficients. We find that

g11 =(B̃2+α̃2) ¨ ˇM, g12 = α̃ ¨ ˇM, g22 =1.

Then

(2.12) B(x, ξ)=
√

g11g22−(g12)2 =B(ˇ(ˇM(x, ξ))),

is suitably non-degenerate according to Assumption (i), and it remains to check
that α̃¨ˇM is critical at 0. But this is true if α itself is critical at 0, and this holds
since (B being critical at 0)

α=x2
1∂

2
x2,x1

B(0)+O(x3).

It is important to observe that since M somehow mixes x and ξ variables, it
does not preserve exponential decay of functions. However, in a sense to be precised
later, we will get decay in “x and ξ”, which is preserved by M.

In the sequel, it will be convenient to let

(2.13) pM := g11ξ2
1 +2g12x1ξ1+g22x2

1 .

Additionally, we will distinguish variables by setting X1=(x1, ξ1), X2=(x2, ξ2). In
these new variables, the characteristic set of Lh becomes {X1=0}.

2.2. Reduction to a bounded symbol

Our strategy strongly relies on the presentation of the Fourier-Bros-Iagolnitzer
(in short, FBI) transform given in Martinez’ book [27]. There, many results require
that operators have symbols in the class S(1), which is the space of smooth functions
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on phase space that are uniformly bounded, together with all their derivatives.
However, because the magnetic Laplacian is a differential operator of positive order,
its symbol does not belong to that class. The statements we will use could probably
be extended to the general case of symbols with more general order functions. It is
to avoid this, and concentrate on the essential arguments, that we have decided to
restrict ourselves to the case of a bounded magnetic field, a situation where we can
reduce the problem to a problem in the S(1) class, as follows.

Initially, the symbol of magnetic Laplacian is polynomial in ξ and hence belongs
to a class with gains of powers of 〈ξ〉: locally in x,

(2.14) |∂α
x ∂

β
ξ pˇ| ≤Cα,β〈ξ〉2−|β|.

This still holds after the change of variables ˇ. However, the metaplectic transform
M mixes the x and ξ variables, so that we do not gain powers of ξ anymore. Recall
that for a non-negative function m on Rd, SRd(m) is defined as the set of functions
σ that satisfy estimates

|∂α
x σ| ≤Cαm, α∈Nd.

If σ is holomorphic on a complex strip Rd⊂S⊂Cd, we shall say that σ∈SS(m) if

∀z ∈S, |∂α
x σ(z)| ≤Cαm(Re z), α∈Nd.

Also recall what it means for a non-vanishing smooth function m on T ∗R2=R4 to
be an admissible order function. First, one requires that m∈SR4(m). Second, there
is an N>0 such that for some C>0 and any (x, ξ), (x′, ξ′)∈T ∗R2,

(2.15) m(x, ξ)
m(x′, ξ′) ≤C〈(x−x′, ξ−ξ′)〉N .

Given two admissible order functions m and m′, then 1/m and mm′ also are ad-
missible and we have the following result (see for instance [13, Proposition 7.7]): if
σ∈S(m) and σ′∈S(m′), then

(2.16) Opw
h (σ)Opw

h (σ′)=Opw
h

(
σσ′+ h

2i{σ, σ
′}+OS(mm′)(h2)

)
,

with the usual sign convention {f, g}=∂ξf∂xg−∂xf∂ξg. Following the result of
Boutet de Monvel-Krée [9], a refinement of estimate (2.16) shows that if σ, σ′ had
a holomorphic extension to a strip, with uniform estimates, then the symbol of the
product also does, with uniform estimates. Consider now

mM(X1, X2)= 1+pM(X1, X2) .

Lemma 2.3. Assume that pM is in the form (2.13), with coefficients satisfying

the conclusion of Lemma 2.1. Then mM is an admissible order function, and pM∈
SSa(mM) for some a>0.
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If these assumptions are satisfied, we will introduce a bounded spectral param-
eter μ and work with

P =Opw
h

(
1

1+pM

)
Opw

h (pL −hμ)

=Opw
h

(
pM−hμ

1+pM
+OSSa (1)(h2)

)
=Opw

h (ph),(2.17)

where pL =pM+h2q, see (2.2), so that ph∈SSa(1), uniformly with respect to h and
μ.

Remark 2.4. Since the intensity of the magnetic field is given by√
det HessX1(ph)|X1=0+O(h)

(see Equation (2.12)) the fact that it is globally bounded is actually necessary for
obtaining ph∈SSa(1).

Proof. Let us check that pM∈SSa(mM). Since the coefficients gij are in SSa(1)
for some a>0, one finds that

|∂αpM| ≤Cα(1+|X1|2) on Sa.

Thus, it suffices to show that there exists λ>0 such that

(2.18) 1+Re pM ≥λ(1+|X1|2) .

Let us start by proving this on R4. Note that (2.18) is satisfied for example if λ≤1
and everywhere

λ≤ g11+g22−
√

(g11−g22)2+4(g12)2
2 .

Let
C =sup{|g11|+|g22|} , C ′ = inf{g11g22−(g12)2} .

The quantity in the right hand side is larger than

2(g11g22−(g12)2)/(g11+g22)≥ 2C ′/C > 0 ,

uniformly on T ∗R2. Now, we turn to the case that (x, ξ)=(Re x,Re ξ)+i(u, v).
Then, we can write

Re pM =Re
(
g11(ξ2

1−v2
1)+2g12(ξ1x1−u1v1)+g22(x2

1−u2
1)
)

−2Im
(
g11ξ1v1+2g12(ξ1u1+x1v1)+g22x1u1

)
≥λ′(ReX1)2−Ca2(1+|ReX1|),
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where λ′ may be smaller than the λ from before, but is still non-negative if we
assume that inf{Re g11Re g22−(Re g12)2}>0 on R4+i[−a, a]4. Up to taking a small
enough, this holds.

Finally, we consider the temperance of the symbol. We already know that for
some constants C,C ′,

1+pM(x, ξ)
1+pM(x′, ξ′) ≤

1+C(X ′
1)2

1+C ′X2
1

,

whence we find
1+pM(x, ξ)
1+pM(x′, ξ′) ≤

C

C ′ (1+λ(X1−X ′
1)2) ,

for λ large enough. �

3. About the FBI transform

Our main tool in this section will be the Fourier-Bros-Iagolnitzer (FBI) trans-
form. Several versions exist in the literature, see [23]; in this paper we follow [27,
Chapter 3], and the FBI transform we use here is defined, for u∈S ′(R2), by

Tu(x, ξ)=αh

∫
R2

ei(x−y)ξ/he−|x−y|2/2hu(y) dy , αh =2−1(πh)− 3
2 .

The αh is chosen so that T is isometric from L2(R2) to L2(R4). The knowledge of
Tu implies the knowledge of u via the inversion formula:(2)

(3.1) u(y)=αh

∫
R4

e−i(x−y)ξ/h−|x−y|2/2hTu(x, ξ) dx dξ =T ∗Tu .

It will be essential later that

(3.2) (h(∂x−i∂ξ)−iξ)T =0.

In other words, T maps L2(R2) into the closed subspace of L2(R4) of functions of
the form e

−ξ2
2h f(x−iξ), where f is holomorphic on C2.

3.1. Towards a Toeplitz representation

Since the naive Agmon tactic fails, it seems natural to try and use weights in
phase space that depend on both x and ξ. However, it is not easy to understand
the behavior of an operator of the type Opw

h (eψ(x,ξ)/h), all the more if ψ was not
bounded. (Although, in the case of a quadratic ψ, see the recent article [10].)
Following the strategy of [27, 3.5] and [31], we use the FBI transform to simplify

(2) sometimes called coherent state decomposition; in relation with the magnetic Laplacian,
it has been used in [4, Section 2.3].
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this, as eψ(x,ξ)/h can be seen as an multiplication operator on L2(R4). Precisely, let
us consider the following quantity

(3.3) 〈meψ/hTPu, eψ/hTu〉L2(R4) ,

where P is defined in (2.17), and m∈S(1) is multiplier (it is not an order function!).
In this section, ψ∈S(1) and might depend on parameters uniformly with respect to
the S(1)-topology, and all the bounds will depend on dψ only.

Since the FBI transform we are using has a quadratic phase, we have an exact
formula

T Opw
h (σ)=Opw

h (σT )T ,

where σT (x, ξ, x∗, ξ∗)=σ(x−ξ∗, x∗), valid for σ∈S ′(R4). From this, we get

〈meψ/hTPu, eψ/hTu〉L2(R4) = 〈meψ/hPTTu, e
ψ/hTu〉L2(R4) .

We set
Pψ

T = eψ/hPT e
−ψ/h , uψ = eψ/hTu=Tψu ,

so that
(3.3)= 〈mPψ

T uψ, uψ〉L2(R4) .

Thanks to our analyticity assumption and [27, Lemma 3.5.4] or [31, Corollary 5],
Pψ

T is still a pseudo-differential operator with symbol in S(1). Its symbol satisfies

(3.4) pψh = ph(x−ξ∗−i∂ξψ, x
∗+i∂xψ)+O(h2) .

Since we use the Weyl quantization, we have indeed O(h2) and not only O(h). Now,
we apply [27, Theorem 3.5.1] or [31, Theorem 1], which gives

(3.5) 〈TPu,me2ψ/hTu〉L2(R4) =
∫
R4

pψh,m(x, ξ;h)|uψ|2 dx dξ+O(h2)‖uψ‖2 ,

with

(3.6) pψh,m(x, ξ;h) :=m(x, ξ)ph(x+2∂zψ, ξ−2i∂zψ)+O(h) .

Here, we have introduced the complex variable z=x+iξ, and

∂z = 1
2(∂x−i∂ξ), ∂z = 1

2(∂x+i∂ξ).

We stress again that the all the constants in the estimates only involve ψ via semi-
norms of dψ in S(1).
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3.2. Subprincipal term

In fact, we can even describe the term estimated by O(h) and we will actually
need it. For that purpose, and also for the convenience of the reader, let us revisit
and refine [27, Theorem 3.5.1].

3.2.1. General expression of the subprincipal term

Let us focus on the proof of (3.5) once we have (3.4). The following proposition
shows how to explicitly write a pseudo-differential operator acting on the range of
Tψ (in the sense of quadratic forms) as a multiplication operator modulo O(h2).

Proposition 3.1. Consider a symbol q=q0(x, ξ, x∗, ξ∗)∈SR8(1). We have

〈Opw
h (q)uψ, uψ〉L2(R4) =

∫
R4

(q̃0(x, ξ)+hq̃1(x, ξ))|uψ|2 dx dξ+O(h2)‖uψ‖2
L2(R4) ,

where

q̃0(x, ξ)= q0(x, ξ, ξ−∂ξψ, ∂xψ) , q̃1(x, ξ)= 1
2 ({σf , g}+{f, σg})f=g=0 ,

with

f(x, ξ, x∗, ξ∗) =x∗−ξ+∂ξψ

g(x, ξ, x∗, ξ∗) = ξ∗−∂xψ

σf (x, ξ, x∗, ξ∗) =
∫ 1

0
∂x∗q0(x, ξ, ξ−∂ξψ+tf, ξ∗) dt

σg(x, ξ, x∗, ξ∗) =
∫ 1

0
∂ξ∗q0(x, ξ, ξ−∂ξψ, ∂xψ+tg) dt .

(3.7)

Proof. Let us follow the presentation by Martinez. The computations also
appear in [31]. We consider

r1(x, ξ, x∗, ξ∗)= q(x, ξ, x∗, ξ∗)−q(x, ξ, ξ−∂ξψ, ∂xψ) ,

By the Taylor formula,
r1 = fσf +gσg .

We set F=Opw
h f and G=Opw

h g. Since we use the Weyl quantization, we have

Opw
h (fσf )= 1

2(F Opw
h (σf )+Opw

h (σf )F )+O(h2) .

(Here, the symbol f is not in S(1), however all its derivatives are, which is essential
in the computation.) Next, we observe that Equation (3.2) implies that FTψ=iGTψ



Exponential localization in 2D pure magnetic wells 69

and deduce

1
2 〈(F Opw

h (σ)+Opw
h (σ)F )uψ, uψ〉= i

2 〈[Opw
h (σ), G]uψ, uψ〉 .

Thus (again, since dg∈S(1))

〈Opw
h (fσf )uψ, uψ〉= h

2 〈Opw
h ({σf , g})uψ, uψ〉+O(h2)‖uψ‖2 .

In the same way, we get

〈Opw
h (gσg)uψ, uψ〉= h

2 〈Opw
h ({f, σg})uψ, uψ〉+O(h2)‖uψ‖2 .

Therefore, iterating the argument,

〈Opw
h r1uψ, uψ〉= h

2

∫
R4

({σf , g}+{f, σg})f=g=0 |uψ|2 dx dξ+O(h2)‖uψ‖2 . �

Notation 3.2. When a∈SR4(1), we let

â(x, ξ)= a(x+2∂zψ, ξ−2i∂zψ) .

Corollary 3.3. We have

(3.8) 〈TPu,me2ψ/hTu〉L2(R4) =
∫
R4

pψh,m(x, ξ;h)|uψ|2 dx dξ+O(h2)‖uψ‖2 ,

where

(3.9) pψh,m(x, ξ;h)=m(x, ξ)p̂h(x, ξ)+hpψh,m,1 ,

and

pψh,m,1 =−2∂zm∂̂zph+ms(x, ξ) ,

with

s(x, ξ)= 1
2 ({σf , g}+{f, σg})|f=g=0 ,

where we used the notations of Proposition 3.1 with

q0(x, ξ, x∗, ξ∗)= ph(x−ξ∗−i∂ξψ, x
∗+i∂xψ) .



70 Y. Guedes Bonthonneau, N. Raymond and S. Vũ Ngo.c

Proof. We apply Proposition 3.1 to the pseudo-differential operator Opw
h q=

mPψ
T . By the composition formula,

q(x, ξ, x∗, ξ∗)=mq0(x, ξ, x∗, ξ∗)+hq1(x, ξ, x∗, ξ∗)+O(h2) ,

where

q1(x, ξ, x∗, ξ∗)= (2i)−1{m(x, ξ), ph(x−ξ∗−i∂ξψ, x
∗+i∂xψ)}

=−(2i)−1∂xm·∂ξph+(2i)−1∂ξm·∂xph .

We deduce that

pψh,m =m(x, ξ)p̂h(x, ξ)+ ih

2

(
∂xm·∂̂ξph−∂ξm·∂̂xph

)
+hs(x, ξ) ,

with

s= 1
2({mσf , g}+{f,mσg})|f=g=0

= m

2 ({σf , g}+{f, σg})|f=g=0+ 1
2(−∂̂ξph ·∂ξm−∂̂xph ·∂xm).

But we have
i

2

(
∂xm·∂̂ξph−∂ξm·∂̂xph

)
+ 1

2(−∂̂ξph ·∂ξm−∂̂xph ·∂xm)

= 1
2∂xm· ̂(−∂xph+i∂ξph)+ 1

2∂ξm· ̂(−i∂xph−∂ξph)

=−2∂zm·∂̂zph. �

3.2.2. Rough estimate of the subprincipal terms

Here we use the variables introduced in Section 2, in order to describe pψh,m,1
in the case when m=m(X2)∈S(1), and X2=(x2, ξ2). Recall that

ph = g11ξ2
1−2g12ξ1x1+g22x2

1−hμ

1+g11ξ2
1−2g12ξ1x1+g22x2

1
+O(h2),

where the coefficients gij are in S(1) on R4+i[−a, a]4, and μ≥0. Then we notice
that, since m only depends on z2,

|∂zm·∂̂zph|=
∣∣∣(∂z2m)∂̂z2ph

∣∣∣≤C(min(|X1|2, 1)+h2) ,

and that this term is zero when m=1. Also, we observe that a priori, s∈S(1), so
that

pψh,m =mp̂h+hmO(1)+hO(min(|X1|2, 1))+O(h3) .
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3.2.3. A more accurate description

When ψ=Ψ(X2), we can give a more explicit expression for s. It will be
convenient to set

(3.10) w(x, ξ, f, g) := ph(x−2∂zψ−g, ξ+2i∂zψ+f) ,

Then,

σf =
∫ 1

0
∂fw(x, ξ, tf, g) dt , σg =

∫ 1

0
∂gw(x, ξ, 0, tg) dt .

We have

{σf , g}f=g=0 =
∑
k,j

{ξj , gk}∂fk∂ξjw(x, ξ, 0, 0)

+ 1
2{fj , gk}∂fk∂fjw(x, ξ, 0, 0)+{gj , gk}∂fk∂gjw(x, ξ, 0, 0) ,

and

{f, σg}f=g=0 =
∑
k,j

{fk, xj}∂gk∂xjw(x, ξ, 0, 0)+ 1
2{fk, gj}∂gk∂gjw(x, ξ, 0, 0) .

From the expressions of f and g, we notice that {ξj , gk}=−δjk, {fk, xj}=δjk and

{gk, gj}=−∂2
ξk,xj

ψ−∂2
ξj ,xk

ψ ,

{gk, fj}=−δk,j+∂2
ξk,ξj

ψ+∂2
xk,xj

ψ .

Since ψ=Ψ(X2), the only non-zero terms involving ψ are obtained for j=k=2.
Thus,

(3.11) 2s(x, ξ)=
(∑

k

−∂fk∂ξk + 1
2∂fk∂fk +∂gk∂xk

+ 1
2∂gk∂gk

)
w(x, ξ, 0, 0)+R1 ,

where R1=O(|d2ψ||d2
X2

ph|). Let us look at the first term in the right-hand side
of (3.11) and recall (3.10). Then, we can write it as(∑

k

−∂fk∂ξk + 1
2∂fk∂fk +∂gk∂xk

+ 1
2∂gk∂gk

)
w(x, ξ, 0, 0)=−1

2Δ̂ph+R2 ,

where again, R2=O(|d2ψ||d2
X2

ph|), so that finally,

s=−1
4Δ̂ph+O(min(|X1|2, 1))+O(h2).

We can summarize the discussion above in the following.
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Scholium 3.4. Under the conclusion of Lemma 2.1, consider ψ bounded with

dψ∈S(1) and m=m(X2)∈S(1). Then

〈me−ψ/hTPu, e−ψ/hTu〉=
∫
R4

|uψ|2
[
mp̂h+hms+hr+O(h2)

]
dX1 dX2 ,

where r, s∈S(1) and |r|≤C(min(|X1|2, 1)). Moreover, we have the following prop-

erties.

(i). When m=1, r=0
(ii). When ψ=Ψ(X2),

s=−1
4Δ̂ph(x, ξ)+”R ,

where ”R∈S(1) and ”R=O(|d2Ψ|min(|X1|2+h2, 1)).
Moreover, all estimates are uniform for h small and dψ varying in a bounded subset

of S(1).

Noticing that ”R is zero when ψ=0, we get the following.

Proposition 3.5. When σ∈S(1),

〈Opw
h (σ)u, u〉L2(R2) = 〈T Opw

h (σ)u, Tu〉L2(R4)

=
∫
R4

(
σ(x, ξ)− h

4Δσ(x, ξ)+O(h2)
)
|Tu|2 dx dξ .(3.12)

Remark 3.6. This classical proposition (see [27, Corollary 3.5.7 & Section 3.6,
Example 7] and consider also [40, Theorem 13.10]) is also true when σ is a quadratic
form, and in this case the remainder O(h2) is zero.

4. Microlocal Agmon estimates

In this section, we establish Agmon estimates with respect to X1 in an exponen-
tially weighted space with respect to X2. These estimates are stated in Theorem 4.3
and 4.4. They imply Theorem 4.1. In this whole section we will consider u∈L2(R2)
solving the equation

(4.1) Pu=Opw
h

(
1

1+pM

)
Opw

h (pM−hμ+h2q)u=0.

with pL =pM+h2q satisfying the conclusion of Lemma 2.1, so that the conclusions
of Scholium 3.4 applies.

Theorem 4.1. Let Ψ1,Ψ2 be non-negative Lipschitz functions with a unique

and non-degenerate minimum at 0 with minimum value 0. We also assume that they

go linearly to infinity at infinity. We set ψ0(x, ξ)=Ψ1(X1)+Ψ2(X2). Given K>0,
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there exist ε, h0, C>0, such that, for all h∈(0, h0), μ≤b0+Kh and u solving (4.1),
we have ∫

R4
e2εψ0(x,ξ)/h|Tu|2 dx dξ≤C

∫
R4

|Tu|2 dx dξ (=C ‖u‖2).

4.1. Decay away from the characteristic manifold

In this section, we establish the exponential decay of Tu with respect to X1;
we use the notation from Section 3 with ψ=εψ0.

4.1.1. First estimate

One will need the following elementary lemma.

Lemma 4.2. Recall that pM(x, ξ)=g11ξ2
1−2g12ξ1x1+g22x2

1. Then, there exist

non-negative numbers γ, c1, c2, c3 such that

(i). for all |X1|≥γ, pM
1+pM

≥c1,

(ii). for all |X1|≤γ, pM
1+pM

≥c2|X1|2.
If, moreover, ε is small enough,

(i). for all |X1|≥γ, Re p̂M
1+p̂M

≥c1,

(ii). for all |X1|≤γ, Re p̂M
1+p̂M

≥Re p̂M−c3|X1|4, and Re p̂M≥c2|X1|2,
where we used Notation 3.2.

Theorem 4.3. Given K>0, there exist ε, h0, C>0 such that, for all h∈(0, h0),
μ≤K and u solving (4.1), we have∫

R4
e2ε(Ψ1(X1)+Ψ2(X2))/h|Tu|2 dx dξ≤C

∫
R4

e2εΨ2(X2)/h|Tu|2 dx dξ .

Proof. Assume temporarily that Ψ1 is bounded. Let us use Scholium 3.4 with
m=1. Then, taking the real part, we get∫

R4
(Re p̂h−Ch)|uψ|2 dx dξ≤ 0 .

Recall
ph(x, ξ)= pM(x, ξ)−hμ

1+pM(x, ξ) +O(h2) .

Since pM≥0, ∫
R4

(
Re p̂M

1+p̂M
−C(1+K)h

)
|uψ|2 dx dξ≤ 0 .



74 Y. Guedes Bonthonneau, N. Raymond and S. Vũ Ngo.c

Consider R>0 and the set

JR = {X ∈R4 : |X1| ≥Rh
1
2 } .

We write ∫
JR

(
Re p̂M

1+p̂M
−C(1+K)h

)
|uψ|2 dx dξ

≤−
∫

�JR

(
Re p̂M

1+p̂M
−C(1+K)h

)
|uψ|2 dx dξ ,

and notice∣∣∣∣∫�JR

(
Re p̂M

1+p̂M
−C(1+K)h

)
|uψ|2 dx dξ

∣∣∣∣≤CRh

∫
R4

e2εΨ2(X2)/h|Tu|2 dx dξ .

From Lemma 4.2, we get c̃2>0 such that on JR,

Re p̂M
1+p̂M

−C(1+K)h≥ c̃2R
2h−C(1+K)h .

Choosing R large enough, we get∫
JR

|uψ|2 dx dξ≤CR

∫
R4

e2εΨ2(X2)/h|Tu|2 dx dξ ,

and then ∫
R4

|uψ|2 dx dξ≤C

∫
R4

e2εΨ2(X2)/h|Tu|2 dx dξ .

If Ψ1 is not bounded, we introduce an appropriate cutoff function. For example, we
apply the previous estimates to Ψ1,k :=χ(k−1εΨ1(X1))εΨ1(X1) and send k to +∞.
The estimates are independent of k because dΨ1,k is uniformly bounded in S(1).
Then, we conclude with the Fatou lemma. �

4.1.2. Agmon estimate with multiplier

Let us now add a multiplier in the previous estimate. This can be done modulo
O(h).

Theorem 4.4. Consider m=m(X2) non-negative with m∈S(1). Then, for

M>0, there exist ε, h0, C>0 such that, for all h∈(0, h0), μ≤M and u solving (4.1),
we have∫

R4
me2ε(Ψ1(X1)+Ψ2(X2))/h|Tu|2 dx dξ≤C

∫
R4

(m+h)e2εΨ2(X2)/h|Tu|2 dx dξ .
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Proof. We use again Scholium 3.4, this time without assuming that m=1. We
have

Re
∫
R4

pψh,m(x, ξ;h)|uψ|2 dx dξ =O(h2)‖uψ‖2 ,

so that, with Theorem 4.3,∫
R4

Re pψh,m(x, ξ;h)|uψ|2 dx dξ≤Ch2
∫
R4

e2εΨ2(X2)/h|Tu|2 dx dξ .

Then, by Scholium 3.4,∫
R4

(mRe p̂h(x, ξ;h)−Chm) |uψ|2 dx dξ≤Ch

∫
R4

|X1|2|uψ|2 dx dξ

+Ch2
∫
R4

e2εΨ2(X2)/h|Tu|2 dx dξ .

Using again Theorem 4.3 with a smaller ε to absorb the |X1|2 term,∫
R4

(mRe p̂h(x, ξ;h)−Chm) |uψ|2 dx dξ≤Ch2
∫
R4

e2εΨ2(X2)/h|Tu|2 dx dξ .

Then, the analysis follows the same lines as in the proof of Theorem 4.4. The same
splitting of the integral in the left-hand-side gives the conclusion. �

4.2. Subprincipal decay estimates

Let us now prove an exponential estimate with respect to all the phase space
variables. In the previous section, we essentially used the ellipticity of the operator
outside of the characteristic set. The results, while new in this precision as far as we
know, are not surprising. However, in this section, we have to understand what is
happening directly on the characteristic set, i.e understand in detail the subprincipal
terms. This is a much finer analysis. At the microlocal level, the computations are
similar to the ones in [39]; however, instead of using the Boutet de Monvel calculus
for polynomial operators, we directly use the invertibility of an effective harmonic
oscillator.

Theorem 4.5. For M>0, there exist ε, h0, C>0 such that, for all h∈(0, h0),
μ≤b0+Mh and u solving (4.1), we have∫

R4
e2εΨ2(X2)/h|Tu|2 dx dξ≤C

∫
R4

|Tu|2 dx dξ .

Proof. This time, ψ=Ψ(X2). Let us use Scholium 3.4 again with m=1. We
get ∫

R4
Re
(
p̂h−

h

4 Δ̂ph−”R−Ch2
)
|uψ|2 dx dξ≤ 0 .
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With Theorem 4.3, we can estimate ”R and get∫
R4

Re
(
p̂h−

h

4 Δ̂ph−Ch2
)
|uψ|2 dx dξ≤ 0 .

Observe that

(4.2) p̂h+O(h2)= p̂M−hμ

1+p̂M
= p̂M−hμ+hμ

p̂M
1+p̂M

− p̂2
M

1+p̂M
.

The fourth term in the right-hand side is O(min(|X1|4, 1)), and can be absorbed
using Theorem 4.3, and replaced by a O(h2). The third term can also be absorbed
in the same fashion, and replaced by O(h2μ). We deduce that∫

R4

(
Re p̂M−b0h−

h

4Re Δ̂ph−C(1+K)h2
)
|uψ|2 dx dξ≤ 0 .

Using Equation (4.2) to estimate the contribution from Δ̂ph, and using the same
arguments,∫

R4

(
Re p̂M−b0h−

h

4Re Δ̂X1pM−C(1+K)h2
)
|uψ|2 dx dξ≤ 0 ,

Now, we will approximate p̂M by a quadratic form in X1, with coefficients depending
only on X2. To this end, let

QX2(X1) :=
[
ĝ11

|X1=0

]
ξ2
1−2

[
ĝ12

|X1=0

]
ξ1x1+

[
ĝ22

|X1=0

]
x2

1.

(Observe that since ψ does not depend on X1, ˆ and differentiation in X1 commute.)
Since the coefficients gij are assumed to be critical at 0, and dψ(0)=0, we find

Re p̂M− h

4Re Δ̂X1pM =ReQX2(X1)−
h

2 Tr ReQX2

+O(|X1|2(min(|X1|2+|X2|2, 1)+h|X1|2+h|X1|min(|X2|, 1)))

Using Theorem 4.4, we can absorb O(hk|X1|2� min(|X2|2, 1)) and replace it by

O(hk+�(min(|X2|2, 1)+h)).

Therefore, using also |X1||X2|≤ε−1|X1|2+ε|X2|2, we get∫ (
ReQX2(X1)−b0h−

h

2 Tr ReQX2−Cεhmin(|X2|2, 1)
)
|uψ|2 dX1 dX2 ≤

(1+ε−1+K)h2
∫

|uψ|2 dX1 dX2.
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For fixed X2, we recognize the Bargmann symbol of the “harmonic oscillator”
in X1 (see Remark 3.6) and thus∫

R2

(
ReQX2(X1)−

h

2 TrReQX2

)
|uψ|2 dX1 ≥h

√
det ReQX2

∫
|uψ|2 dX1.

So that∫
R4

(√
det ReQX2−b0−Cεmin(|X2|2, 1)−C(1+ε−1+K)h

)
|uψ|2 dx dξ≤ 0 .

Recall now that B=
√

detQ, so that
√

det ReQ=B(1+O(Tr ReQ−1ImQ))=B(1+εO(min(|X2|2, 1))).

Under the conclusion on Lemma 2.1, we get the estimate∫
R4

(
min(|X2|2, 1)(1−Cε)−C(1+ε−1+K)h

)
|uψ|2 dx dξ≤ 0 .

The conclusion follows from the usual Agmon arguments, and again the fact that
the constant only depend on derivatives of ψ. �

5. Space exponential decay

We are now in position to prove Theorem 1.1. Let û∈L2(R2) such that Lhû=
hμû and let u=M−1Uˇû=M∗Uˇû. We have Pu=0, see Equation (4.1).

Remark 5.1. Following [27, Theorem 4.1.2], with Theorem 4.1, one could de-
duce (up to technicalities) that, if K is a compact set away from 0, we have

‖û‖L2(K) =O(e−c/h)

for some c>0. Below, one will get a more explicit result. Already observe that
we can drop the factor Uˇ. Indeed, since ˇ is uniformly bi-Lipschitz, it preserves
spatial exponential decay. So we can concentrate on ũ:=Mu=Uˇû.

With the notation of Theorem 4.1, we have, for ε small enough,

Tu∈L2
εψ0

(R4), where L2
εψ0

(R4) :=L2(R4; eεψ0dxdξ) ,

with a uniform bound: ‖Tu‖L2
εψ0

(R4)≤C‖u‖L2(R2), where C does not depend on h.
From this exponential decay in phase space, we wish to obtain exponential decay
in the position variable x for ũ. We start with the inversion formula (3.1):

û=MT ∗(Tu).

Let ϕ be a non-negative Lipschitz function, going linearly to infinity at infinity,
having a unique and non-degenerate minimum at the origin, with minimal value 0
(let us call these functions admissible weights). We would like to obtain a uniform
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bound ‖eε′ϕû‖L2(R2)≤C‖û‖L2(R2), for some ε′>0 small enough. Thus, it is enough
to prove that the operator

(5.1) MT ∗ :L2
εψ0

(R4)−→L2
ε′ϕ(R2)

is uniformly bounded with respect to h∈ ]0, h0].

Lemma 5.2. Let ϕ1, ϕ2 be admissible weights on Rd. Then there exists C>0
such that

(5.2) C−1ϕ1 ≤ϕ2 ≤Cϕ1 .

Proof. By the Taylor formula at the origin, the estimate (5.2) is valid in a
neighborhood of 0. By the linear behavior at infinity, it is valid outside of a compact
set. On the remaining compact subset of Rd\{0}, it is enough to use that the range
of ϕj is a compact interval of ]0,+∞]. �

A consequence of the lemma is that the choice of ϕ and ψ0 in (5.1) is not
relevant, as long as we don’t seek the optimal constants and are allowed to play
with ε, ε′.

Proposition 5.3. Given an admissible weight ϕ on R2, there exists an admis-

sible weight ψ0 on R4 of the form required by Theorem 4.1, and a constant C>0
independent of h, such that for all ε′≤ε/C, ε≤1, the operator MT ∗ defined in (5.1)
is bounded by O(1).

As a consequence, there exists ε′0 such that if ε′≤ε′0, then there exists C>0
such that ∫

R2
eε

′ϕ(x)/h |û(x)|2 dx≤C ‖û‖2
L2(R2) .

Proof. By Lemma 5.2, we can always change the function ϕ, so we will pick a
convenient one. First, consider the C 1 Lipschitz function f defined by f(ρ)=ρ2 if
ρ∈[0, 1] and f(ρ)=2ρ−1 if ρ≥1. Notice that

(5.3) ∀ρ≥ 0 , f(2ρ)≤ 4f(ρ) .

We define now the admissible weight ϕ(x):=f(|x|), x∈R2.
A formula for MT ∗ can be obtained from the action of the FBI transform T

on arbitrary metaplectic operators, see [27, 3.4]; here we derive it explicitly. We
have

Tu(x, ξ)=αhe
−ξ2
2h (L�u)(z), with L(x)= e

−x2
2h , z :=x−iξ ∈C2 .

From (2.10) we obtain TM∗u(x, ξ)=αhe
−ξ2
2h ((L�K)�u)(z), where L�K is a com-

plex Gaussian that can be computed explicitly, using in particular that (I+iA)−1=



Exponential localization in 2D pure magnetic wells 79

1
2 (I−iA):

L�K(y)=
√

2πhe
−1
4h 〈(I+iA)y,y〉 , A=

(
0 1
1 0

)
.

Hence

(TM∗u)(x, ξ)= α̃he
−ξ2
2h

∫
R2

e
−1
4h 〈(I+iA)(z−y),z−y〉u(y) dy , α̃h = αh√

2
,

and therefore, taking the adjoint, we have for v∈L2
εψ0

(R4)

(MT ∗)v(y)= α̃h

∫
R4

e
−ξ2
2h e

−1
4h 〈(I−iA)(z̄−y),z̄−y〉v(x, ξ) dx dξ , z̄ =x+iξ .

Let KMT∗(y, x, ξ) be the Schwartz kernel of e ε′ϕ
h MT ∗e−

εψ0
h , viewed as an operator

L2(R4)→L2(R2), i.e.

KMT∗(y, x, ξ)= α̃he
ε′ϕ(y)

h − |ξ|2
2h − 1

4h 〈(I−iA)(z̄−y),z̄−y〉− εψ0(x,ξ)
h .

We have

Re 〈(I−iA)(z̄−y), z̄−y〉= |x−y|2−|ξ|2−2〈Aξ, x−y〉
= |Aξ−(x−y)|2−2 |ξ|2 ,

where in the second line we used |Aξ|2=|ξ|2. Therefore,

|KMT∗(y, x, ξ)| ≤ α̃he
ε′ϕ(y)

h − |Aξ−(x−y)|2
2h − εψ0(x,ξ)

h .

Let us choose now, as we may, ψ0(x, ξ):=ϕ(x)+|ξ|2/〈ξ〉. Indeed, ψ0 is not of the
form Ψ1+Ψ2, but is bounded from below by a function of this form (this can be
written explicitly, or by invoking Lemma 5.2). By convexity of ϕ,

ϕ(y)≤ 1
2ϕ(2x)+ 1

2ϕ(2(y−x)) ,

and hence

|KMT∗(y, x, ξ)| ≤ α̃he
ε′ϕ(2x)

2h − εϕ(x)
h + ε′ϕ(2(y−x))

2h − |x−y−Aξ|2
2h − ε|ξ|2

h〈ξ〉 .

If ε′≤ε/2 then, by (5.3), ε′ϕ(2x)/2≤εϕ(x) for all x∈R2 so that

(5.4) |KMT∗(y, x, ξ)| ≤ α̃he
ε′ϕ(2(y−x))

2h − |x−y−Aξ|2
2h − ε|ξ|2

h〈ξ〉 .

We wish to conclude on the L2 continuity of MT ∗ by applying the Schur lemma.
For given (x, ξ), we make a change of variables to get∫

R2
|KMT∗(y, x, ξ)| dy=

∫
R2

|KMT∗(y+x+Aξ, x, ξ)| dy.
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From (5.4) we have

|KMT∗(y+x+Aξ, x, ξ)| ≤ α̃he
ε′ϕ(2(y+Aξ))

2h − |y|2
2h − εξ2

h〈ξ〉 .

Using again the convexity of ϕ,

(5.5) ε′ϕ(2(y+Aξ))
2h − |y|2

2h − εξ2

h〈ξ〉 ≤
ε′ϕ(4y)

4h + ε′ϕ(4Aξ)
4h − |y|2

2h − εξ2

h〈ξ〉 .

From Lemma 5.2, there exists Cϕ>0 such that, ϕ(4Aξ)≤Cϕ|ξ|2/〈ξ〉. Hence, if
ε′≤4Cϕε, we get ε′ϕ(4Aξ)

4h − εξ2

h〈ξ〉≤0, and∫
R2

|KMT∗(y+x+Aξ, x, ξ)| dy≤ α̃h

∫
R2

e
ε′ϕ(4y)

2h − |y|2
2h dy .

Using Laplace’s method, the integral on the right-hand side is O(h) provided ε′<

1/16. Hence, ∫
R2

|KMT∗(y, x, ξ)| dy≤Chα̃h .

On the other hand, for a given y, we make an analogous change of variables:∫
R4

|KMT∗(y, x, ξ)| dx dξ =
∫
R4

|KMT∗(y, x+y+Aξ, ξ)| dx dξ

and write (5.4) as

|KMT∗(y, x+y+Aξ, ξ)| ≤ α̃he
ε′ϕ(2(x+Aξ))

2h − |x|2
2h − εξ2

h〈ξ〉

Applying Equation (5.5) with y replaced by x, and choosing ε′≤2Cϕε, gives∫
R4

|KMT∗(y, x+y+Aξ, ξ)| dx dξ≤ α̃h

∫
R2

e−
εξ2

2h〈ξ〉 dξ

∫
R2

e
ε′ϕ(4x)

4h − |x|2
2h dx .

Using that both integrals are O(h), we have∫
R4

|KMT∗(y, x+y+Aξ, ξ)| dx dξ≤Ch2α̃h .

Hence, the Schur lemma gives MT ∗=O(α̃hh
3/2)=O(1):L2

εψ0
(R4)→L2

ε′ϕ(R2). �

With this Proposition 5.3, the proof of Theorem 1.1 is complete. It would be
very interesting to investigate the optimality of (ϕ, ε′) for which Proposition 5.3
holds, in particular by relating ϕ′′(0) to the behavior of the magnetic field at the
origin.
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Proof of Corollary 1.4. In L2(R2), we can decompose u�,J =αeiθu�+w with w

orthogonal to u�, θ∈R and α≥0. Since the eigenvalues of Lh are h2 separated,
the Spectral Theorem implies that ‖(Lh−λ�(h))u�,J‖≥Ch2‖w‖, so ‖w‖≤ChJ . In
particular, 1−α≤(ChJ)2/2. We then get

‖u�,J−eiθu�‖2
L2 =2(1−α)≤ (ChJ )2.

Now, we turn to exponentially weighted spaces. We consider ε>0 small enough so
that Theorem 1.1 applies to 2ε. Then we observe that

‖u�,J−eiθu�‖L2(eεd(x)/hdx) ≤‖u�,J−eiθu�‖1/2
L2 ‖u�,J−eiθu�‖1/2

L2(e2εd(x)/hdx) . �

A. Change of variables

Since Lh is invariantly defined by the 2-form B and the Riemannian metric on
M , its principal and subprincipal Weyl symbols are well defined, which implies that
a change of variables like the one defined in Lemma 2.2 and used in Lemma 2.1 acts
naturally on the Weyl symbol modulo terms of order O(h2) (see also [30]). Here we
give a direct proof of this and compute explicitly the O(h2) remainder.

Lemma A.1. Consider a change of variable ˇ :R2
y→R2

x. We let

Uψ= |g| 14ψ ¨ ˇ=Jac(ˇ) 1
2ψ ¨ ˇ .

We have

ULhU
−1 =(−ih∇y−Ã)g∗(−ih∇y−Ã)−h2V ,

with

V = |g|− 1
2

(
div(|g| 14 g∗∇(|g| 14 ))+‖g∗∇(|g| 14 )‖2

)
,

and

g∗ =(g−1)T , g=(dˇ)T(dˇ) , Ã=(dˇ)T ¨A ¨ ˇ .

Proof. Considering the quadratic form Qh of Lh on L2(R2
x, dx), we have

Qh(ψ)=
∫
R2
〈(−ih∇y−Ã(y))ψ̃, (−ih∇y−Ã(y))ψ̃〉g∗ |g| 12 dy ,

where

g∗ =(g−1)T , g=(dˇ)T(dˇ) , ψ̃=ψ ¨ ˇ , Ã=(dˇ)T ¨A ¨ ˇ .

In terms of forms, this means that

ˇ
∗g0 = g , ˇ

∗ψ= ψ̃ , ˇ
∗(A1dx1+A2dx2)= Ã1dy1+Ã2dy2 .
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We let P=−ih∇y−Ã(y) and notice that

Qh(ψ)=
∫
R2
〈|g| 14Pψ̃, |g| 14Pψ̃〉g∗ dy

=
∫
R2
〈P |g| 14 ψ̃, |g| 14Pψ̃〉g∗ dy+

∫
R2
〈[|g| 14 , P ]ψ̃, |g| 14Pψ̃〉g∗ dy ,

and then

Qh(ψ)=
∫
R2

‖P |g| 14 ψ̃‖2
g∗ dy

+
∫
R2
〈[|g| 14 , P ]ψ̃, |g| 14Pψ̃〉g∗ dy+

∫
R2
〈P |g| 14 ψ̃, [|g| 14 , P ]ψ̃〉g∗ dy ,

so that

Qh(ψ)=
∫
R2

‖P |g| 14 ψ̃‖2
g∗ dy

+2Re
∫
R2
〈[|g| 14 , P ]ψ̃, |g| 14Pψ̃〉g∗dy−

∫
R2

‖[|g| 14 , P ]ψ̃‖2
g∗ dy .

Since [P, |g| 14 ]=−ih∇(|g| 14 ) and Ã is real-valued, we deduce that

2Re
∫
R2
〈[|g| 14 , P ]ψ̃, |g| 14Pψ̃〉g∗ dy=2hIm

∫
R2
〈ψ̃∇(|g| 14 ), |g| 14 (−ih∇y)ψ̃〉g∗ dy

=2h2Re
∫
R2
〈ψ̃∇(|g| 14 ), |g| 14∇yψ̃〉g∗ dy

=2h2Re
∫
R2

ψ̃(F·∇y)ψ̃ dy

=h2
∫
R2

F·(∇y|ψ̃|2) dy

=−h2
∫
R2

divF |ψ̃|2 dy .

where F=|g| 14 g∗∇(|g| 14 ). Therefore,

Qh(ψ)=
∫
R2

‖PUψ‖2
g∗ dy−h2

∫
R2

V (y)|Uψ|2 dy ,

and the conclusion follows. �
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