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Introduction and statement of the main results

Given a differentiable self-map f of a compact manifold M , we denote by

Pern f := {x∈M : fn(x)=x}

the set of its n-periodic points. To study its cardinality, we shall consider the subset

Per0n f⊂Pern f of isolated n-periodic points. The cardinality of Per0n f is invariant under

conjugacy. Hence, it is natural to study the growth of this cardinality with n.

Clearly, if f is a polynomial map, the cardinality of Per0n f is bounded by the degree

of fn, which grows at most exponentially fast (see the generalization [18]). The first

study in the C∞-case goes back to Artin and Mazur [2], who proved the existence of

a dense set D in Diff∞(M) formed by diffeomorphisms f such that the cardinality of

Per0n f grows at most exponentially fast:

lim sup
n!∞

1

n
log CardPer0n f <∞. (AM)

This leads Smale [35] and Bowen [15] to wonder whether a topologically generic diffeo-

morphism satisfies property (AM). Later, Arnold asked the following problem.

Problem 0.1. (Smale [35], Bowen [15], Arnold [1, Problem 1989-2]) Can the num-

ber of fixed points of the nth iteration of a topologically generic infinitely smooth self-

mapping of a compact manifold grow, as n increases, faster than any prescribed sequence

(an)n (for some subsequences of time values n)?

Given ∞⩾r⩾1, we recall that a property is Cr-topologically generic if it holds true

in a countable intersection of open and dense sets of Cr(M,M). The topology on the

space of C∞-maps is the union of the ones induced by the Cr-topologies for finite r⩾0.

Behind this problem is the following basic one: Is there an interesting dynamical

property which is valid for any polynomial dynamics but not for a typical differentiable

dynamics?

We will see that Problem 0.1 motivated a large number of important contributions

and that our first main result complements these to give a complete positive answer when

dimM⩾2.

However, it is well known that topological genericity is not a so good notion of

typicality from the metric viewpoint. Indeed, there are topologically generic subsets of

R which have Lebesgue measure zero. Another notion of typicality was sketched by

Kolmogorov during his plenary talk at the International Congress of Mathematicians in

1954. His student Arnold then formalized it as follows [26], [30].
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Definition 0.2. (Arnold’s typicality) A property (P) on the set of Cr-self-mappings

of M is typical if, for k⩾1, with Bk the unit closed ball of Rk, for a topologically

generic Cr-family (fp)p∈Bk
of maps fp∈Cr(M,M), the map fp satisfies property (P) for

Lebesgue almost every p∈Bk.

We recall that (fp)p∈Bk
is of class Cr if the map (p, z) 7!fp(z) is of class C

r. When

r<∞, the topology on this space is equal to the uniform Cr-topology of Cr(Bk×M,M).

The topology on the space of C∞-families is the one given by the union of those induced

by the Cr′ -topologies for finite r′⩾0. In this work, we address the following.

Problem 0.3. (Arnold [1, Problem 1992-13]) Prove that for a typical smooth self-

map f of a compact manifold, the cardinality of Pern f grows at most exponentially

fast.

This problem inspired Arnold to formulate many related ones [1, Problemas 1994-

47, 1994-48, 1992-14]. The second and main result of this article is a negative answer to

Problem 0.3 in the finite differentiable case and dimension ⩾2. Before stating this, let

us relate (some of) the long tradition of works on these problems.

In dimension 1, Martens–de Melo–van Strien [32] showed that for any ∞⩾r⩾2,

for an open and dense set(1) of Cr-maps, the number of periodic points grows at most

exponentially fast.

Kaloshin [27] answered a question of Artin and Mazur (in the finitely smooth case)

by proving that for a dense set D in Diffr(M), r<∞, the set Pern f is finite for every n

(so equal to Per0n f) and its cardinality grows at most exponentially fast. On the other

hand, he proved in [28] that whenever 2⩽r<∞ and dimM⩾2, a locally topologically

generic diffeomorphism displays a fast growth of the number of periodic points: there

exists a non-empty open set U⊂Diffr(M), so that for any sequence of integers (an)n, a

topologically generic f∈U satisfies

lim sup
n!∞

CardP 0
n(f)

an
⩾ 1. (⋆)

This answered positively Problem 0.1 in the case dimM⩾2 and 2⩽r<∞. Later Bonatti–

Diaz–Ficher [13] extended this positive answer to the C1-case in dimension ⩾3. The

recent seminal work of Turaev [38] also implies that among C∞-surface diffeomorphisms,

fast growth of the number of periodic points is locally a topologically generic property.(2)

(1) whose complement is the infinite codimentional manifold formed by maps with at least one flat
critical point.

(2) Turaev proved the existence of a locally dense set of C∞-surface diffeomorphisms which display

a periodic spot: an open set formed by periodic points of same period. These are easy to perturb to one
displaying a fast growth of the number of periodic points.
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A new argument will enable us to carry the C∞-case in dimension⩾3 which remained

open. More precisely, we will show that for any 2⩽r⩽∞, among Cr-diffeomorphisms

of manifold of dimension ⩾3 or C∞-self-mapppings of surface, the fast growth of the

number of periodic points is locally a topologically generic property. This yields a full

answer to Problem 0.1, in any regularity ∞⩾r⩾2 and any dimension (our contribution

here is the C∞-case).

Theorem A. Let ∞⩾r⩾2 and let M be a compact manifold of dimension n.

If n=1, Property (AM) is satisfied by an open and dense set of Cr-self-mapping.

If n⩾2, there exists a (non-empty) open set U⊂Diffr(M) so that given any sequence

(an)n of integers, a topologically generic f in U satisfies (⋆).

To deal with the C∞-case, we will prove in Proposition 1.7, that it suffices to show

the local density of dynamics with a normally hyperbolic periodic circle on which the

dynamics acts as a smooth rotation. Indeed, such a rotation can be perturbed to a

rational one, or equivalently having an iterate equal to the identity, and so by adding a

Cr-small sine function of high frequency, we can create a perturbation with plenty of n-

periodic saddle points. In order to show that the dynamics acts as a smooth rotation on

such a circle, we will use the Arnold–Herman–Yoccoz Theorem 1.1, which explains that

we only have to prescribe a Diophantine property for the rotation number of the circle

dynamics. To obtain a Diophantine rotation number, we will give evidence in §2.2 that

it suffices to couple a Bonatti–Diaz blender with a north-south dynamics on a normally

hyperbolic circle. However, we will use a different argument to obtain such a rotation

number, which more sophisticated but generalizable to prove a parametric counterpart

of Theorem A.

We will focus on parabolic circle diffeomorphisms: these are diffeomorphisms g with

a unique fixed point P and which satisfy DP g=1 and D2
P g ̸=0. Since these are easy

to perturb to smooth rotations, we will prove in Theorem 1.8 that it suffices to show

the local density of dynamics with a normally hyperbolic periodic circle at which the

dynamics is parabolic. To show the local density of such assumptions, we will introduce

a new object: the λ-blender in §2.3 and §3.2 and introduce a new dynamical rescaling

technique in §2.4 and §4.1.

We will first introduce these new techniques and concepts involving blender (in-

cluding their para version) in the easier setting of IFS defined by a semi-group of circle

diffeomorphisms in §2. Recall that given a finite alphabet A , the semi-group spanned

by (ga )a∈A ∈Diff∞(R/Z)A is

⟨ga : a ∈A ⟩ := {gm := gm n
�...�gm 1 :m =(m i)1⩽i⩽n ∈A n, n⩾ 0}
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An immediate consequence of Proposition 2.7 and Corollary 2.15 stated in §2.2 and §2.4

is the following.

Corollary A. For a finite set A , there is a subset D⊂Diffω(R/Z)A satisfying

the following properties:

(1) Every (ga )a∈A ∈D spans a semi-group which contains parabolic maps and smooth

rotations.(3)

(2) For any 2⩽r⩽∞ or r=ω, the set D is Cr-locally dense: its closure has non-

empty interior.

These methods might also be also useful to prove that the bifurcation locus of some

semi-groups of rational maps arising in Ising models have non-empty interior.(4) We will

explain below how this is corollary might be also interesting to extend the concept of

universal semi-group [4].

The study of circle diffeomorphisms (and more precisely non-singular flows on the

2-torus) was certainly the original motivation of Kolmogorov to introduce his new notion

of typicality. Indeed, Morse–Smale is an open and dense (and so topologically generic)

property among circle diffeomorphisms but is not typical in the sense of Arnold. This was

proved by Kolmogorov by introducing the KAM theory (in which the Arnold–Herman–

Yoccoz Theorem 1.1 belongs).

KAM theory was already implemented to establish fast growth of the number of pe-

riodic points for conservative(5) dynamical systems. Indeed, an immediate consequence

of Gelfreich–Turaev theorem [19] is that a locally tologically generic conservative diffeo-

morphism of surface displays a fast growth of the number of periodic points.(6) More

recently, Asaoka [3] used also KAM theory to show the existence of an open set(7) of

conservative C∞-surface diffeomorphisms in which typically in the sense of Arnold, a

map displays a fast growth of the number of periodic points.

While Asaoka gave a negative answer to the conservative counterpart of Arnold’s

Problem 0.3, in the (original) dissipative setting the trend was more in favor of a positive

answer. Indeed, Hunt and Kaloshin [30], [29] used a method described in [20] to show

that for ∞⩾r>1, a prevalent Cr-diffeomorphisms satisfies:

lim sup
n!∞

logPn(f)

n1+δ
=0 for all δ > 0. (♢)

(3) A smooth rotation is a circle diffeomorphism conjugate to a rotation via a smooth diffeomor-
phism.

(4) The presence of parabolic points is used to study the boundary of the bifurcation locus in [6].
(5) To the best of my knowledge, the present work is the first to use KAM for Problems 0.1 and 0.3.
(6) See also Kaloshin–Saprykina theorem [31] which solves Problem 0.1 for conservative dynamics

of 3-manifold.
(7) He showed also a version of this result for analytic mappings.
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The notion of prevalence was introduced by Hunt, Sauer and Yorke [25]. A property is

prevalent if roughly speaking almost all perturbations in the embedding of a Hilbert cube

at every point of a Banach manifold (like Cr(M,M)), the property holds true. We notice

that (♢) is satisfied for a prevalent diffeomorphism but not for a topologically generic

diffeomorphism (see other examples of mixed outcome in [24]).

However, the latter did not completely solve Arnold’s Problem 0.3, in particular

because the notion of prevalence is a priori independent to the notion of typicality initially

meant by Arnold. Indeed, his problem was formulated for typicality in the sense of

Definition 0.2 (see the explanation after Problem 1.1.5 in [30]). In this term, the second

and main result of this work is surprising since it provides a negative answer to Arnold’s

Problem 0.3 in the case of finite smoothness.

Theorem B. Let ∞>r⩾1 and 0⩽k<∞ and let M be a manifold of dimension

⩾2. Then, there exists a (non-empty) open set Û of Cr-families (fp)p∈Bk
of Cr-self-

mappings fp of M so that for any sequence of integers (an)n, a topologically generic

(fp)p∈Û consists of maps fp satisfying (⋆), for every p in the ball Bk. Moreover,if

dimM⩾3, the set Û contains families of diffeomorphisms.

We will prove this theorem by basically following the same scheme as for Theorem A.

We will show that it suffices to construct a locally dense set D̂ of families of dynamics

(fp)p which are normally hyperbolic at a fibration by circles and display the following

property:

(P̂) There is a finite covering (Ui)i of Bk by open subsets Ui of parameters p for

which fp acts on a periodic fiber as a parabolic dynamics.

Theorem 1.9 asserts that if such a locally dense set D exists, then a topologically

generic family in the interior of the closure cl (D) of D displays a fast growth of the

number of periodic points at every parameter, as claimed in Theorem B. The proof of

Theorem 1.9 is similar to its parameter-free version (Theorem 1.8), but will need more-

over Theorem 1.4 stating that a family of parabolic maps can be smoothly approximated

by one having a Diophantine rotation number. The proof of Theorem 1.4 will occupy the

whole of §5. The techniques of this latter proof might be generalized to describe the ge-

ometry of the parameter space of analytic circle diffeomorphisms, and more precisely how

the 1-codimensional manifolds formed the parabolic maps are analytically accumulated

by those formed by Diophantine rotations, as seen numerically nearby Arnold tongues.

To prove the local density of families of dynamics satisfying (P̂), we will introduce

a new object: the Cr-λ-parablender. It is a generalization of both the λ-blender and the

Cr-parablender introduced in [8]. Again its IFS counterpart will be first introduced in

§?? and §?? since easier to understand. It is possible to use them to obtain a parametric
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version of Corollary A. We will focus on their counterpart for families of differentiable

dynamics of a manifold. In §3.3 we will give the intrinsic definition of Cr-(λ)-parablender

as embedded into a normally hyperbolic fibration for a family of differentiable maps. In

the appendix we will give an extrinsic definition of them. In §4.2, we will give the

parametric counterpart of the argument of §4.1 to achieve the proof of Theorem B.

To conclude this introduction, let me recall that Arnold’s philosophy was not to

propose problems of binary type admitting a “yes-no” answer, but rather to propose

wide-scope programs of explorations of new mathematical (and not only mathematical)

continents, where reaching new peaks reveals new perspectives, and where a preconceived

formulation of problems would substantially restrict the field of investigations that have

been caused by these perspectives. [...] Evolution is more important than achieving records,

as he explained in his preface [1].

In this sense the contrast between the result of Kaloshin–Hunt and Theorem B is

interesting since they shed light on how an answer to a question might depend on the

definition of typicality.

Let us emphasize that the C∞-case of Problem 0.3 (or [1, Conjecture 1994-47])

remains open, although in view of Theorem B, we would bet for a negative answer. we

would even dare to propose the following.

Conjecture 0.4. For every r∈{1, ...,∞, ω}, there exists an open set of diffeomor-

phisms U∈Diffr(M), so that given any k⩾0, for any Cr-generic family (fp)p∈Rk with

fp∈U , for every p small, the growth of the number of periodic points of fp is fast.

In favor of this conjecture, there is the local density of conservative analytic maps

satisfying (⋆) [3]. Also, Corollary 4.11 of the proof of Theorem A shows the local density

of analytic dynamics with a normally hyperbolic periodic circles at which the dynamics

is a smooth Diophantine rotation. We explain there that modulo a solution of Problem

4.12, this implies the existence of a locally dense of analytic (non-conservative) dynamics

displaying a fast growth of the number of periodic points. Note that a positive answer

to Conjecture 0.4 would give one of the very first example of an interesting property

satisfied for a typical analytic map of a compact manifold but not for a polynomial.

Also, Corollary A should be useful to prove the typicality of dynamics with uni-

versal behaviors. Indeed, parabolic maps and rotations were used in [5], [16] to show

the existence of finitely generated groups containing any prescribed countable subset of

Diff∞(R/Z). This leads to:

Conjecture 0.5. There exists a finite set A such that for any countable subset

C⊂Diff∞(R/Z), there exists D⊂Diff∞(R/Z)A such that

(1) if (ga )a∈A ∈ D, the semi-group ⟨ga :a ∈A ⟩ contains C;
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(2) for every 2⩽r⩽∞, the set D is Cr-locally dense: int cl (D) ̸=∅.

This conjecture applied with C equal to a dense subset of Diff∞(R/Z) would imply

that a locally topologically generic free semi-group of circle diffeomorphisms is dense

in Diff∞(R/Z). This can be seen as a global version of the main result of Asaoka–

Shinohara–Turaev [4] on universality of locally topologically generic free semi-group of

interval diffeomorphisms. Universal semi-group are roughly speaking those which contain

a dense set of germs of diffeomorphisms. The concept of universality helped Turaev [37]

to claim that a global understanding of most of the differentiable dynamics is impossible.

However, this claim can be attacked by arguing that the domains of the germs might be

“too small to be seen”. It is not anymore the case with the above global formulation,

which can be certainly generalized in higher dimensions.

Also, the techniques and notions introduced in §2 should lead to a natural parametric

counterpart of Corollary A, and so Conjecture 0.5. Such would be helpful to prove

[10, Conjecture II.5] stating roughly speaking that among dynamical systems of high-

dimensional manifolds, any property which is local and locally topologically generic is

then locally typical in the sense of Arnold. The latter conjecture was motivated by our

program on emergence [9].
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1. From parabolic maps to fast growths of the number of periodic points

In this section we show that in order to prove Theorems A and B, it suffices to con-

struct a normally hyperbolic fibration by circles, at which a dense set of perturbations

act parabolically on some periodic fibers. This is stated in Theorems 1.8 and 1.9. The

statements and the proof of these theorems need a few results. First, we recall the notion

of Poincaré rotation number and Arnold–Herman–Yoccoz Theorem 1.1 in the next sub-

section. In §1.1, we will recall the notion of parabolic map and state our new Theorem 1.4

on perturbations of families of parabolic maps which are smooth rotations. Then, we
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will recall Hirsch–Pugh–Shub Theorem 1.6 and its counterpart for endomorphisms on

the persistence of normally hyperbolic fibration. In the last §1.3 we will state and prove

Theorems 1.8 and 1.9.

1.1. Smooth rotations and parabolic maps of the circle

Given a homeomorphism g∈Diff0(R/Z) of the circle R/Z, one defines its rotation number

ρg as follows. We fix a lifting G∈Diff0(R) of g for the covering π:R!R/Z. Then,

Poincaré proved that the limit ρG=limn!∞Gn(0)/n is well defined and its projection

ρg=π(ρG) does not depend on the lifting G of g. The rotation number of g is ρg. It is

easy to show that the rotation number depends continuously on g. The number ρg∈R is

Diophantine, if there exist τ>0 and C>0 such that

|qρg−p|⩾Cq−τ for all p, q ∈N\{0}.

Let us recall that the set of Diophantine numbers is of full Lebesgue measure. Here is

Yoccoz’ improvement of Herman’s theorem of the Arnold conjecture.

Theorem 1.1. (Arnold–Herman–Yoccoz [21], [39]) If the rotation number ρ of g∈
Diff∞(R/Z) is Diophantine, then g is conjugate to the rotation Rρ of angle ρ via h∈
Diff∞(R/Z):

h�g�h−1 =Rρ.

Moreover, if (gp)p is a C∞-family of diffeomorphisms with constant rotation number ρ

which is Diophantine, then (gp)p is conjugate to Rρ via a C∞-family (hp)p of diffeomor-

phisms hp:

hp�gp�h
−1
p =Rρ.

Proof. The first part of this theorem is the main result of [39]. Since the conjugacy is

uniquely defined up to a composition with a rotation, the second part of this theorem is a

local problem. Hence, by the first part, it suffices to show that if (gp)p satisfies moreover

g0=Rρ, then the family of conjugacy (hp)p can be chosen smooth in a neighborhood of

p=0. This is a direct consequence of [14, Theorem 3.1.1].

A key new idea in this work is to exhibit circle diffeomorphisms with Diophantine

rotation number by creating first parabolic diffeomorphisms of the circle.

Definition 1.2. A C2-diffeomorphism g of a circle R/Z is parabolic if it displays a

unique fixed point p∈R/Z, and this fixed point is non-degenerate parabolic:

g(p)= p, Dpg=1, D2
pg ̸=0.
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Using parabolic maps to obtain dynamics smoothly conjugate to Diophantine ro-

tations might sound anti-intuitive, since their rotation number are of two very different

kind. Nevertheless the interest of parabolic maps of the circle is that they have a simple

geometric definition and are easy to perturb to irrational rotations. Indeed, if g is a

Cr-parabolic circle map, for r⩾2, then its rotation number is zero. By reversing the

circle orientation if necessary, we may assume that D2
pg>0. Then, g has a lifting G such

that x∈R 7!G(x)−x is non-negative and less than 1. Thus, for every ϵ>0, the lifting

x∈R 7!G(x)−x+ϵ of the composition Rϵ�g takes its value in (0, 1), and so Rϵ�g has no

fixed point, and hence a non-zero rotation number. Then, by continuity of the rotation

number and density of Diophantine numbers in R, we can choose ϵ>0 arbitrarily small

so that the rotation number ρ(ϵ) of Rϵ�g is Diophantine. This proves the following.

Proposition 1.3. For every r⩾2, the set Dr of Cr-circle maps with Diophantine

rotation number accumulates on the set P r of Cr-parabolic maps: cl(Dr)⊃P r.

The above argument is topological. Hence, the following is a non-trivial extension

of the latter proposition for parameter families.

Theorem 1.4. Let k∈N and let B′⋐B⊂Rk be open subsets. Given any C∞-family

(gp)p∈B of circle maps such that for every p∈B the map gp is parabolic, there exist

an arbitrarily small Diophantine number α>0 and a small C∞-perturbation (g̃p)p∈B of

(gp)p∈B such that the rotation number of g̃p is α for every p∈B′.

The proof this theorem will be done in §5 using a parabolic renormalization.

1.2. Normally hyperbolic fibrations

Let 2⩽r⩽∞, let f be a Cr-differentiable map of a manifoldM . The proofs of Theorems A

and B involve a continuous family (Ly)y∈Σ of disjoint, Cr-embedded submanifolds Ly⊂
M , indexed by a compact set Σ. This defines a fibration L=

⋃
y∈Σ Ly!Σ. The map

f∈Cr(M,M) leaves invariant the fibration L if, for every y∈Σ, there exists σ(y)∈Σ
such that f sends Ly into Lσ(y). Hence, the following diagram commutes:

L

��

f
// L

��

Σ
σ // Σ,

Then, observe that Df leaves invariant the tangent bundle of the fibers TL:=
⋃

y∈Σ TLy.

Hence the action [Df ] of Df on the normal bundle N=(TM |L)/TL is well defined.
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Definition 1.5. For R⩾1, an f -invariant fibration L is R-normally hyperbolic if

� [Df ] leaves invariant a splitting Es⊕Eu=N :

[Df ](Es)⊂Es and [Df ](Eu)⊂Eu;

� there exists N⩾1 such that, for all unit vectors vs∈Es, vu∈Eu, and all v∈TL,

∥[DfN ](vs)∥< 1, ∥[DfN ](vu)∥> 1 and ∥[DfN ](vu)]∥> ∥DfN (v)∥R > ∥[DfN ](vs)∥.

The dynamics is R-normally expanding at L if Es=0.

Normally hyperbolic fibrations are important since they are persistent.

Theorem 1.6. ([22], [7]) Let r⩾1 and 1⩽R⩽r. Let f be a Cr-map of M which

is R-normally hyperbolic at the bundle L=
⋃

y∈Σ Ly. Moreover, if f is not a diffeomor-

phism, we assume that f is R-normally expanding at L. Then, for any Cr-perturbation

f̃ of f , there exists a continuous family (L̃y)y∈Σ of disjoint Cr-submanifolds such that

� f̃(L̃y)=L̃σ(y) for every y∈Σ;
� L̃y is Cr-close to Ly for every y∈Σ.

For our purposes, the map σ of Σ will be conjugate to a full shift σ on a finite

alphabet A . Then, for a dense set of y∈Σ, the fiber Ly is q-periodic: fq(Ly)=Ly for

some q⩾1.

1.3. Conditions implying typicalities of fast growths of the number of

periodic points

We recall that a map f of a circle is a Cr-rotation if there is α∈R/Z such that f is Cr-

conjugate to the rotation Rα of angle α. The following will be used to prove Theorem A.

Proposition 1.7. Let 2⩽r⩽∞ and U be a non-empty subset of Cr(M,M). As-

sume that there is a dense set D⊂U formed by maps f displaying a q-periodic, normally

hyperbolic, Cr-circle T⊂M such that fq|T is a Cr-rotation. Then, for any (an)n∈NN,

a topologically generic f∈U satisfies

lim sup
n!∞

1

an
CardPer0n(f)⩾ 1.

Proof. Let f∈D and T be as in the statement. Let q⩾1 be the minimal period of T:
f j(T) is disjoint from T for every 1⩽j<q. Thus, there exists a small Cr-perturbation f̃

of f , the map f̃q leaves invariant T and f̃q|T is a Cr-rational rotation. Then, there exists

a q′∈qN\{0} minimal such that f̃q′ leaves invariant T, and f̃q′ |T=idT. Observe that q′

must be large when f̃ is close to f .
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Also, there exist non-trivial segments J⋐I⊂T such that (f̃ i(I))1⩽i⩽q is a disjoint

family. Let ρ∈C∞(T, [0, 1]) be a function supported by I and satisfying ρ|J=1. We

handle a small perturbation f̃ ′ of f̃ supported by a small neighborhood of I and in the

complement of
⋃

1⩽k<q f̃
k(I) such that (f̃ ′)q|J=x∈J 7!x+ϵρ(x) sin(2π ·aq ·x/|J |) for an

identification of T with R/Z such that the left endpoint of J is zero and ϵ>0 is small.

Note that f̃ ′ displays at least aq hyperbolic periodic points of period q. By normal

hyperbolicity, these periodic points are hyperbolic, and so persist for small perturbations

of f̃ ′.

This proves, for every N⩾1, the existence of an open and dense set UN⊂U formed

by maps f∈UN displaying at least aq hyperbolic periodic points of period q for a certain

q⩾N . The topologically generic set is R:=
⋂

N⩾0 UN . As hyperbolic q-periodic points

are isolated in the set of q-periodic points, for every f∈R, there exists q arbitrarily large

such that CardPer0q f⩾aq.

Although, by KAM theory, it sounds very intuitive that for many normally hyper-

bolic circle bundles, the hypothesis of the above proposition holds true. Nevertheless,

this intuition is not satisfied on a topologically generic set. Indeed, an open and dense

set of Cr-diffeomorphisms of the circle are Morse–Smale. As the set of periodic fibers

in a normally hyperbolic bundle is countable, a subset D of dynamics satisfying the

hypotheses of Proposition 1.7 must be topologically meager in Cr(M,M)!

To show that the existence of a set D satisfying the hypotheses of Proposition 1.7 we

will introduce a technique which uses a Bonatti–Dı́az blender and a robust heterodimen-

sional cycle. Actually, we are going to prove an equivalent statement to these hypotheses,

but more convenient to be used in for the parameter counterpart Theorem B of Theo-

rem A. Here is the statement.

Theorem 1.8. Let 2⩽r⩽∞ and D⊂Cr(M,M) the subset of maps f displaying a

q-periodic, normally hyperbolic, Cr-circle T⊂M such that fq|T is parabolic. Then, for

any (an)n∈NN, a topologically generic f in the interior of cl(D) satisfies

lim sup
n!∞

1

an
CardPer0n(f)⩾ 1.

Proof. Let us show that we may assume that fqi |T is of class C∞. First note that

the submanifold T is r-normally hyperbolic. Thus, by [22, § Forced smoothness], it

is of class Cr. Therefore, up to a Cr-coordinate change, we may assume that T is of

class C∞. Let C∈T be the parabolic periodic point and let us identify T with R/Z.
Note that x∈T 7!fq(x)−x is a unimodal map nearby C and zero is its unique critical

value. We now perform a smoothing of f such that T remains q-periodic. Note that the

induced perturbation of x∈T 7!fq(x)−x is still unimodal nearby C with a small critical
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value. Thus, by composing with a small local translation along this fiber, we can restor

the critical value to zero. We obtained a Cr-perturbation of f whose qi iterate leaves

invariant T, and its restriction at it is both parabolic and of class C∞.

Then, Proposition 1.3 implies the existence of a Cr-perturbation at which the dy-

namics on the normally hyperbolic, periodic, C∞-circle displays a Diophantine rotation

number. Therefore, by Yoccoz’ Theorem 1.1, the dynamics on the normally hyperbolic,

periodic, C∞-circle is (C∞-conjugated to) an irrational rotation. Then, Proposition 1.7

implies the sought result.

Theorem A will be proved by showing that the assumptions of Theorem 1.8 are

satisfied. In order to do so, we will introduce a new object, the λ-blender. This object

will be coupled to a north-south dynamics of the circle. Then, a new technique involving

a dynamical rescaling will reveal the density of the parabolic maps. These concepts and

techniques will be first introduced in the context of semi-group of circle maps in §2, then

the λ-blender IFS will be embedded in a normally hyperbolic fibration in §3.1 and §3.2,

and used in §4.1 to prove Theorem A.

In parallel to the proof Theorem A, we will introduce the parametric counterpart

of each studied object. The parametric counterpart of the λ-blender will be the λ-Cr-

parablender. It will be introduced in §2 for semi-groups of families of maps, and then

generalized for skew products over a shift in §3.3. This will be used in §4.2 to prove

Theorem B, by proving that the assumptions of the next theorem are satisfied.

Let k⩾1 and recall that Bk denotes the closed unit ball of Rk. Let 2⩽r<∞ and let

Êndrk(M) be the set of Cr-families (fp)p∈Bk
of self-maps fp of M .

Theorem 1.9. Let D̂ be a subset of families (fp)p∈Bk
∈Êndrk(M) displaying a per-

sistent r-normally hyperbolic fibration (Lp)p∈Bk
by circles with the following property :

(P̂) The set Bk is covered by open subsets Ui associated with a qi-periodic fiber

Tyi,p of L at which the restriction fqi
p |Tyi,p

is parabolic for every p∈Ui.

Then, for any (an)n∈NN, a Cr-topologically generic (fp)p∈Bk
in the interior of

cl(D̂) satisfies

lim sup
n!∞

1

an
CardPer0n(fp)⩾ 1 for all p∈Bk.

Proof of Theorem 1.9. Let (fp)p∈D̂. By definition of persistence (see Theorem 1.6),

for all i, the circle Tyi,p depends continuously on p∈Bk. By compactness of Bk, we may

assume that the covering (Ui)i∈I is finite. Up to merge the elements Ui of the covering

associated with a same torus, we may assume the orbits of Tyi,p and Tyj ,p are disjoint

for i ̸=j∈I and p∈Ui∩Uj . By continuity, the distance between Tyi,p and Tyj ,p is positive

for i ̸=j∈I and p∈Bk, and so it is uniformly bounded from below.
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Let us show that we may assume that (fqi
p |Tyi,p

)p is of class C∞. First note that the

submanifold
⋃

p∈Ui
{p}×Tyi,p is r-normally hyperbolic for (p, z) 7!(p, fqi

p (z)). Thus, by

[22, §Forced smoothness], the family (Tyi,p)p∈Ui
is of class Cr. Therefore up to conjugate

(fp)p with a Cr-family of conjugacy, we may assume that (Tyi,p)p∈Ui
is of class C∞. Let

Ci(p)∈Tyi,p be the parabolic periodic point and let us identify Tyi,p with R/Z. Note

that x∈Tyi,p 7!fqi
p (x)−x is a unimodal map nearby Ci(p) and zero is its unique critical

value. We now perform a smoothing of (fp)p such that Tyi,p remains qi-periodic. Note

that the induced perturbation of x∈Tyi,p 7!fqi
p (x)−x is still unimodal nearby Ci(p), but

its critical value is in general different to zero. However, the critical values of a Cr-family

of unimodal maps depend Cr on the parameter, and so the critical value of the smoothed

map is a Cr-small function of p. Thus, by composing with a local translation along this

fiber, we can restore the critical value to zero. Then, we obtain a Cr-perturbation of (fp)p

whose qi iterate leaves invariant (Tyi,p)p∈Ui
, and its restriction at it is both parabolic

and of class C∞. Thus, Theorem 1.4 implies the following.

Fact 1.10. There exists a Cr-perturbation (f̆p)p∈Bk
of (fp)p∈Bk

such that, for all i

and all p∈Ui, the map f̆qi
p is normally hyperbolic at Tyi,p, the family of restrictions

(f̆qi
p |Tyi,p

)p∈Ui
is of class C∞, and the rotation number of f̆qi

p |Tyi,p
is a Diophantine

number αi independent of p∈Ui.

Then, by the second part of Herman–Yoccoz’ Theorem 1.1, the family f̆qi
p |Tyi,p

is C∞-

conjugated to the rotation Rαi
for every p∈Ui, and the conjugacy hi a depends infinitely

smoothly on p. Hence, by the same reasoning as for the proof of Proposition 1.7, there

exists an integer ri⩾1 arbitrarily large and a Cr-perturbation (f̊p)p of (fp)p such that,

for every p∈Ui, f̊
qi
p leaves invariant Tyi,p and

f̊qi·ri
p |Tyi,p

= idTyi,p
and f̊qi·r

p |Tyi,p
̸= idTyi,p

for all 1⩽ r < ri.

Thus, for every i, there exists a non-trivial segment Ji p⋐Tyi,p depending smoothly on p

and such that the family of segments (f̊k
p (Ji p))0⩽k<qi·ri is disjoint for every p∈Ui.

Hence, we can perform a last perturbation (f̃p)p of (f̊p)p so that, for every p∈Ui, we

have

f̃ri·qi
p |Ji p

:x 7−!x+ϵρi(x) sin

(
2π ·ari·qi ·x
|Ji p|

)
for an identification of Tyi p with R/Z such that the left endpoint of Ji p is zero and ϵ>0

is small.

Then, for all i and all p∈Ui, the map f̃p displays at least aqi·ri saddle points of

period ri ·qi. As these periodic points persist for small perturbations of f̃p, this proves the

existence of an open and dense set M̂N⊂int(cl D̂)=:M̂ such that, for every (f̃p)p∈M̂N

and every p∈Bk, the map f̃p displays at least ari·qi saddle points of period ri ·qi⩾N .
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Note that the intersection R̂:=
⋂

N⩾0 M̂N is Cr-topologically generic in M̂ and for

every (fp)p∈R̂, for every p∈Bk, there exists n arbitrarily large such that

CardPer0n fp ⩾ an.

In the C1-topology, we can perturb a neutral fixed point to make it locally equal to

the identity. Thus, we can perform the same trick by adding a small oscillation of high

frequency to obtain the following result.

Corollary 1.11. When r=1, the conclusion of Theorem 1.9 holds true if we replace

(P̂) by:

(P̂ ′) The set Bk is covered by open subsets Ui associated with a qi-periodic fiber Tyi,p

of L at which the restriction fqi
p |Tyi,p

displays a parabolic fixed point varying continuously

for every p∈Ui.

2. Locally dense properties of finitely generated groups

of circle diffeomorphisms

The aim of this section is to develop and introduce notions and techniques which will be

generalized to construct an open set of self-maps and families of self-maps satisfying the

assumptions of Theorems 1.8 and 1.9. In particular, we will introduce two new objects,

the λ-blender and the Cr-λ-parablender, which are developments of the Bonatti–Diaz

blender [12] and the Cr-parablender introduced in [8] (see also [9]). To make these

notions more apprehensive, we push forward some of the ingredients of [11] to develop

the notions of blender and parablenders for IFS in §2.1, and introduce their λ-version

in §2.3. We will see how to use them to find locally dense sets of semi-groups of circle

diffeomorphisms with rotations in §2.2 and parabolic maps in §2.4.

2.1. Blender and parablender IFS

LetM be a manifold and let Endr(M) be the space of self-maps ofM of class Cr for every

∞⩾r⩾0 or r=ω. Given a semi-group G⊂End0(M), a compact subset Λ is G-invariant

if Λ=
⋃

g∈G g(Λ). It is transitive if it displays a dense G-orbit. The set Λ is a contracting

attractor if G⊂End1(M) and g|Λ is contracting for every g∈G.

If there exists a finite set B and (gb )b ∈B∈End
1(M)B which generates G, then Λ is

a contracting attractor for the iterated function system (IFS) (gb )b ∈B. Given m ∈B(N),

we denote |m |∈N its number of letters in B. The following is the IFS counterpart of the

Bonatti–Diaz blender [12].
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Definition 2.1. (C1-Blender IFS) A contracting attractor Λ⊂M for an IFS

(gb )b ∈B ∈End
1(M)B

is a blender if its interior is non-empty and for any subset K⋐Λ, every C1-perturbation

of (g̃b )b ∈B has a contracting attractor which contains K.

Example 2.2. Let B0 :={−,+}. The set Λ=[−1, 1] is a blender for the IFS (gb )b
with g−:x∈R 7! 2

3 (x+1)−1∈R and g+:x∈R 7! 2
3 (x−1)+1∈R.

Proof. For any η>0, the convex subset K :=[−1+η, 1−η] is sent by g− and g+

onto
[
−1+ 2

3η,
1
3−

2
3η

]
and

[
− 1

3+
2
3η, 1−

2
3η

]
, respectively. Thus, the following covering

property holds true:

K ⊂ int g+(K)∪int g−(K).

This property is stable for any C1-perturbation (g̃+, g̃−) of (g+, g−). Hence, for any

perturbation of the dynamics, for any z0∈K, there exists a preorbit (zi)i⩽0 such that zi

belongs to K. By preorbit we mean that zi+1=ga i(zi) for a certain a i∈B0. Thus the

continuation Λ̃ of Λ contains K. The transitivity is left as an exercise to the reader.

For 1⩽r<∞, we now study semi-groups of parameter Cr-families (gp)p∈Bk
of self-

maps gp∈Endr(M) of a manifold M , parametrized by the closed unit k-ball Bk. We

recall that Êndrk(M) denotes the space of such families (which is itself a semi-group for

the composition rule). As we will work with Cr-perturbations, we shall deal with the

action of such families on Cr-jets. We recall that the Cr-jet at p0∈Bk of a Cr-family of

points z=(zp)p∈Bk
is

Jr
p0
z=

r∑
j=0

∂j
pzp0

j!
(p−p0)⊗j .

Let Jr
p0
M be the space of Cr-jets at p0 of Cr-family z=(zp)p∈Bk

of points zp∈M . We

notice that any Cr-family g=(gp)p∈Êndrk(M) acts canonically on Jr
p0
M as

Jr
p0
g: Jr

p0
(zp)p ∈ Jr

p0
M 7−! Jr

p0
(gp(zp))p ∈ Jr

p0
M.

Let B be a finite set and, for every b ∈B, let gb =(gbp )p∈Bk
∈Êndrk(M). Let p0∈Bk.

We recall that if Λp0
is a contracting attractor for the IFS (gbp0

)b ∈B. Then, for every

point Ω nearby Λp0
, the set Λp0

consists of the points Xp0
(b )=limi!∞ g

b −i...b −1
p0 (Ω)

among b =(b i)i<0∈BZ−
. This limit does not depend on Ω. Also, for every p nearby p0,

the set of points Xp(b )=lim∞ g
b −i...b −1
p (Ω) among b ∈BZ−

is a contracting attractor

for (gbp )b ∈B. The family (Λp)p is called the continuation of Λp0
. Furthermore, the family
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(Xp(b ))p is of class Cr for every b ∈BZ−
and depends continuously on b . We consider

the subset

Jr
p0
Λ := {Jr

p0
X(b ) : b ∈BZ−

}⊂Jr
p0
M.

This set is compact, invariant, and transitive for the IFS (Jr
p0
gb )b ∈B. Roughly speaking,

the continuation (Λp)p is a Cr-parablender at p0 if Jr
p0
Λ is a blender for (Jr

p0
gb )b ∈B.

However, there is one tricky point: the maps Jr
p0
gb are in general only continuous and not

differentiable nor contracting at Jr
p0
Λ. However, these maps are topologically contracting.

Proposition 2.3. There exists a neighborhood U of Jr
p0
Λ such that, for (g̃b )b

Cr-close to (gb )b ,

(1) when the length of m ∈B(N) is large, the diameter of Jrg̃m (U) approaches zero.

(2) The families (Jr
p0
X̃p(b ))

b ∈BZ− and (Jr
p0
Xp(b ))

b ∈BZ− are uniformly close,

when (g̃b )b is Cr-close to (gb )b .

Proof. First note that (1) implies (2). Let us show (1). At a neighborhood of Λ, the

map g̃mp is a large composition of contractions when |m | is large. So, ∂xg̃mp is small and

even Cr−1-small. Also, when |m |!∞, the derivative ∂k
p g̃

m
p is a sum of compositions of

an exponentially large number of maps which are almost all contractions. So, ∂k
p g̃

m
p is

close to a constant ℓk. By the Faa-di-Bruno formula, there are polynomials Bj,k such

that

∂k
p g̃

m
p (xp)=

k∑
j=0

∂k
x∂

j
pg

m
p ·Bj,k

(
∂pxp, ∂

2
pxp, ..., ∂

k−j
p xp

)
=(∂k

pg
m
p )(xp)+O(∥∂xg̃p∥Ck−1 ∥xp∥Ck).

Thus, at a neighborhood U of Jr
p0
Λ, when |m | is large, the map Jr

p0
gm is close to the

constant function
r∑

k=0

ζk ·(p−p0)k 7−!
r∑

k=0

ℓk
k!
·(p−p0)k.

From this we obtain the following generalization of the covering property (compare

to [11]).

Proposition 2.4. The continuation (Λp)p satisfies the Jr
p0
-covering property if the

interior of Jr
p0
Λ is non-empty and there exists an increasing sequence of subsets

Kn ⋐ Jr
p0
Λ

whose union is the interior of Jr
p0
Λ and such that

cl(Kn)⊂
⋃
B

int Jr
p0
gb (Kn)⊂ Jr

p0
Λ.
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Then, for any n⩾0 and any Cr-small perturbation (g̃b )b ∈B of (gb )b ∈B, the set Jr
p0
Λ̃

contains Kn.

The following is the IFS counterpart of the Cr-parablender introduced in [8].

Definition 2.5. Given a Cr-family of IFS (gb )b ∈B, the continuation (Λp)p of a

blender Λp0
is a parablender at p0 if Jr

p0
Λ has non-empty interior and, for every K⋐

Jr
p0
Λ, the continuation (Λ̃p)p of a sufficiently small Cr-perturbation (g̃b )b ∈B of (gb )b ∈B

satisfies Jr
p0
Λ̃⋑K.

Given i=(i1, ..., ik)∈Nk and p=(p1, ..., pk)∈Rk, we work with the multi-index nota-

tion pi :=pi11 ... pikk and |i|=i1+...+ik. For r∈N, let Er :={i∈Nk :|i|⩽r}.

Example 2.6. Let Br :={−1, 1}Er and, for every b =(b i)i∈Er
∈Br, let

Pb (p)=
∑
i∈Er

b i ·pi and gbp :=x∈R 7! 2
3 (x−Pb (p))+Pb (p).

Then, the continuation of Λ0 :=[−1, 1] is a Cr-parablender at p=0 for ((gbp )p∈Bk
)b ∈Br

,

with

Jr
0Λ :=

{ ∑
i∈Er

ξi ·pi : (ξi)i ∈ [−1, 1]Er

}

Proof. First note that the set of diffeomorphisms {gb0 :b ∈Br} equals the one in

Example 2.2 for which Λ0 :=[−1, 1] is a blender. Via the conjugacy (xj)j∈Er 7!
∑

Er xjp
j ,

the set of maps (Jr
0g

b )b ∈Br
is conjugated to the Cartesian product of CardEr times the

set of maps in Example 2.2:

{Jr
0g

b : b ∈Br}≈{(xj)j∈Er
7! (gb j (xj))j∈Er

: (b i)i ∈BEr} using Br ≈BEr .

Thus, Jr
0Λ≈[−1, 1]Er is a product of blenders IFS satisfying the covering property and

so the continuation (Λp)p satisfies the assumptions of Proposition 2.4.

2.2. Density of rotations from blender IFS

Let us explain how to use a blender to obtain the local density of semi-groups of finitely

generated circle diffeormorphisms containing a rotation. We recall that the projectivized

P 1(R) of R2 is a smooth circle which is canonically identified to the 1-point compact-

ification R∪{∞} of R via the inclusion x∈R↪![x; 1]∈P 1(R). This enables to extend

analytically the dynamics of any non-zero real polynomial or even rational map of R to

this circle. These are the projectivized corresponding maps.
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Proposition 2.7. There exists a neighborhood N in Diff1(P 1(R)) of a triplet of

homographies (ga , gb , gc ), such that any (g̃a , g̃b , g̃c )∈N∩Diff∞(P 1(R)) can be perturbed

by conjugacies with homographies to span a semi-group containing a smooth, irrational

rotation.

Proof. Let (ga , gb )a ,b ∈B0
be the projectivized action of the affine maps of Exam-

ple 2.2 and let V be a C1-neighborhood of this pair of diffeomorphisms such that every

(g̃a , g̃b )∈V has a blender Λ̃ containing
[
− 2

3 ,
2
3

]
. Let

gc :x∈P 1(R) 7−! 3

2

x

x+1

and let V ′ be a small neighborhood of gc formed by maps g̃c which displays exactly two

periodic points: an attracting xa≈ 1
2 and a repulsive xr≈0.

Let (g̃b )b ∈B0
∈V and g̃c ∈V ′ be of class C∞. Using the transitivity of the blender,

there exists m ∈B
(N)
0 such that g̃m sends a point close to xa to a point close to xr.

Hence, up to a small perturbation of g̃c (using a composition with a homography), we

may assume that g̃m (xa)=xr. Now, we consider a small unfolding (g̃cϵ)ϵ∈[−ϵ0,ϵ0] of g̃
c =:g̃c0

such that, with xa(ϵ) and xr(ϵ) being the continuations of the fixed points xa=:xa(0)

and xr=:xr(0), respectively, we have

xa(−ϵ0)<xa <xa(ϵ0) and xr(ϵ0)<xr <xr(−ϵ0).

This can be done by conjugating the map g̃c by
(
x 7!(1+ϵ)

(
x− 1

4

)
+ 1

4

)
ϵ
. Thus, xa is sent

to xr by g̃m . Then, for k large, the points ((g̃cϵ0)
j(xr))k⩾j⩾0 go clockwise to land nearby

xa(ϵ0)>xa:

g̃m (xa)=xr < g̃cϵ0(xr)< ...< (g̃cϵ0)
j(xr)< ...< (g̃cϵ0)

k(xr)>xa.

On the other hand, the points ((g̃c−ϵ0)
j(xr))k⩾j⩾0 go anti-clockwise to land nearby

xa(−ϵ0)<xa:

g̃m (xa)=xr > g̃c−ϵ0(xr)> ...> (g̃c−ϵ0)
j(xr)> ...> (g̃c−ϵ0)

k(xr)<xa.

Thus, when ϵ varies between −ϵ0 and ϵ0, the point (g̃
c
ϵ)

k
�g̃m (xa) makes at least one whole

turn around P 1(R). This implies that the rotation number of (g̃cϵ)
k
�g̃m is not constant

when ϵ varies in [−ϵ0, ϵ0]. Thus, by continuity of the rotation number and density of

the Diophantine ones, there exists ϵ∈(−ϵ0, ϵ0) such that the rotation number of g̃c
n

ϵ �g̃m

is Diophantine. By Arnold–Herman–Yoccoz Theorem 1.1, the map g̃c
n

ϵ �g̃m is smoothly

conjugate to the rotation Rα.
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This proposition implies the first part of Corollary A. However, the technique is not

easy to generalize to obtain a parametric version of this result. We know that the set D

of Diophantine smooth rotations is an union of 1-codimensional submanifolds, and these

appear locally C0-densely from the above argument. However, this does not provide any

control on the tangent spaces of these manifolds, while it is crucial for Theorem B. To

obtain such a control, we will focus on parabolic maps and introduce the λ-blender to

show their density.

2.3. λ-blender and λ-parablender IFS

Let M be R or P 1(R)≈R/Z; its tangent bundle is identified with M×R.

Definition 2.8. The Lyapunov fibration of a contracting attractor Λ for an IFS

(gb )b ∈B of M is

λ(Λ) :=
⋂
n⩾0

cl

{(
gm (x),

1

|m |
log |Dxg

m |
)
:x∈Λ, m ∈B(N) and |m |⩾n

}
⊂Λ×R.

To show the local density of finitely generated group of circle diffeomorphisms with

a parabolic element, we introduce the following new notion.

Definition 2.9. (λ-Blender IFS) A blender Λ for an IFS (gb )b ∈B∈End
1(M)B is

a λ-blender if its Lyapunov fibration λ(Λ) has non-empty interior, and for any subset

K⋐λ(Λ), for every C1-small perturbation of (g̃b )b ∈B, the Lyapunov fibration of the

continuation of Λ contains K.

Example 2.10. Let Bλ
0 :={−1,+1}2. Then, for ϵ>0 small, [−1, 1] is a λ-blender for

the IFS (gb )b ∈Bλ
0
, where gb :x∈R 7! 2

3 ·exp(ϵ·δ
′)·(x+δ)−δ for b =(δ, δ′)∈Bλ

0 and with

Lyapunov fibration

λ(Λ) := [−1, 1]×
[
log 2

3−ϵ, log
2
3+ϵ

]
⊂R×R.

Proof. Let η>0 be small and let

K := [−1+η, 1−η]×
[
log 2

3−ϵ+η, log 2
3+ϵ−η

]
.

Let (g̃b )b ∈Bλ
0
be a C1-perturbation of (gb )b ∈Bλ

0
. It suffices to show, for every

(x0, ℓ)∈K and n⩾0, the existence of a sequence of letters (b i)−n⩽i<0∈(Bλ
0 )

n and a

sequence of points (xi)−n⩽i<0∈[−1+η, 1−η]n such that

(1) x0=x and g̃b i(xi)=xi+1 for every −n⩽i<0,

(2) −2ϵ⩽log |Dx−n
gb −n...b −1 |−n·ℓ⩽2ϵ.
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The step n=0 is trivial. Assume the result shown for n⩾0. Then, with δ the sign of

x−n and δ′ the sign of −(log |Dx−n
g̃b −n...b −1 |−nℓ), with b =(δ, δ′)∈{−1, 1}2=Bλ

0 and

with x−n−1 the preimage by g̃b −n−1 of x−n, the induction hypothesis holds true by the

covering property showed in Example 2.2. Indeed, if δ′=+1 then

log |Dx−n
g̃b −n...b −1 |−nℓ⩽ 0

and log |Dx−n−1 g̃
b −n−1 |−ℓ is approximately in

log
2

3
+ϵ−

[
log 2

3−ϵ+η, log 2
3+ϵ−η

]
= [η, 2ϵ−η].

Thus,

0⩾ log |Dx−n
g̃b −n...b 0 |−nℓ>−2ϵ and 2ϵ> log |Dx−n−1

g̃b −n−1 |−ℓ> 0.

Summing these two bounds, we obtain (2). The case δ′=−1 is done similarly.

Let us now give the parametric counterpart of the λ-blender. Let M be a curve; its

tangent bundle is identified with M×R. Let B be a finite set and for every b ∈B, let

gb =(gbp )p∈Bk
∈Êndrk(M). Let p0∈Bk. We recall that, if Λp0

is a contracting attractor

for the IFS (gbp0
)b ∈B, then for every point Ω nearby Λp0

and p nearby p0, the set

Λp := {lim∞ gb −i...b −1
p (Ω) : b ∈BZ−

}=
⋂
n⩾0

cl({gmp (Ω) :m ∈B(N) and |m |⩾n})

is the continuation of Λp0
. It does not depend on Ω. Its Lyapunov fiber is

λ(Λp)=
⋂
n⩾0

cl

{(
gmp (Ω),

1

|m |
log |DΩg

m
p |

)
:m ∈B(N) and |m |⩾n

}
.

While studying the Cr-parablender, we considered

Jr
p0
Λ := {Jr

p0
lim∞ gb −i...b −1

p (Ω) : b ∈BZ−
}=

⋂
n⩾0

cl{Jr
p0
gmp (Ω) :m ∈B(N) and |m |⩾n}.

It is thus natural to consider the following para-counterpart the Lyapunov fiber:

λ(Jr
p0
Λ) :=

⋂
n⩾0

cl

{(
Jr
p0
gmp (Ω), Jr−1

p0

1

|m |
log |DΩg

m
p |

)
:m ∈B(N) and |m |⩾n

}
.

We notice that λ(Jr
p0
Λ) is a compact subset of Jr

p0
M×Jr−1

p0
R.

The following is a natural generalization of both the Cr-parablender and the λ-

blender. This new notion can be used to prove the local density of finitely generated

groups of families of circle diffeomorphisms with a parabolic element at every parameter.
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Definition 2.11. (Cr-λ-parablender IFS) The family (Λp)p of contracting attrac-

tors for (gb )b ∈B is a Cr-λ-parablender at p0 if λ(Jr
p0
Λ) has non-empty interior and for

any subset K⋐λ(Jr
p0
Λ), the continuation (Λ̃p)p of every Cr-perturbation (g̃b )b ∈B of

(gb )b ∈B satisfies λ(Jr
p0
Λ̃)⋑K.

Remark 2.12. We notice that Λp0 is a λ-blender for (gb p0)b and (Λp)p is a Cr-

parablender at p=p0 for (gb )b .

Example 2.13. Let Br and (Pb )b ∈Br
be defined as in Example 2.6 and put

Bλ
r :=Br×Br−1.

Then, for ϵ>0 small, the continuation of Λ:=[−1, 1] is a Cr-λ-parablender at p=0 for

(gb )b ∈Bλ
r
, where gb =(gb p)p∈Bk

is defined by

gbp :x∈P 1(R) 7−! 2
3 ·exp(ϵ·Pb ′(p))·(x−Pb (p))+Pb (p) for (b , b ′)∈Br×Br−1 =Bλ

r .

Moreover, we have

λ(Jr
0Λ)=

{( ∑
i∈Er

ξi ·pi, log
2

3
+ϵ

∑
i∈Er−1

λi ·pi
)
: (ξi)i ∈ [−1, 1]Er , (λi)i ∈ [−1, 1]Er−1

}

Proof. Let η>0 be small and put I :=[−1+η, 1−η]⋐[−1, 1] and:

K :=

{( ∑
i∈Er

ξi ·pi, log
2

3
+ϵ

∑
i∈Er−1

λi ·pi
)
: (ξi)i ∈ IEr , (λi)i ∈ IEr−1

}
.

Let (g̃b )b ∈Bλ
0
be a Cr-perturbation of (gb )b ∈Bλ

0
. It suffices to show that for every

(x0, ℓ)∈K and n⩾0, the existence of a sequence of letters (b j)−n⩽j<0∈(Bλ
0 )

n and a

sequence of points (xj , ℓj)−n⩽j<0∈Kn such that

(1) Jr
p0
g̃b j (xj)=xj+1 for every −n⩽j<0,

(2) ℓn=Jr−1
p0

(log |Dx−n(p)g̃
b −n...b −1
p |)p∈

{
nℓ+

∑
i∈Er−1

λi ·pi :λi∈[−2ϵ, 2ϵ]
}
.

The step n=0 is obvious. Assume the result shown for n⩾0. Let b −n−1∈Bλ
r be

the upplet whose coefficients are the sign of those of the polynomial

(x−n,− log |Dx−n
gb −n...b −1 |+n·ℓ).

Then, for the same reasons as for Examples 2.6 and 2.10 the induction hypothesis holds

true at step n+1.
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2.4. Density of parabolic maps from λ-blender IFS

We now introduce a technique based on a dynamical rescaling. It enables to show that

a group contains a parabolic map nearby a prescribed one, say

h:x∈P 1(R) 7−! x

2x+1
∈P 1(R),

and this for a dense set of perturbations of its generator. This method involves the

λ-parablender of 2.10 extended to the projective space P 1(R) and the map gc which is

conjugate to ∆:x 7! 3
2x via the parabolic map h:

gc =h�∆�h−1:x∈P 1(R) 7−! 3

2

x

x+1
∈P 1(R). (2.1)

The map gc has an expanding fixed point at xr=0 with eigenvalue 3
2 . Given a

perturbation g̃c of gc , we denote x̃r the continuation of xr. Let g̃c
n

be the composition

of n-times g̃c . The proof of the following contains the aforementioned key technique. It

will be generalized to prove the main theorems, and should be fruitful to generalize to

an even broader setting.

Proposition 2.14. For every r⩾2, for every n⩾1 large and Cr-perturbation

(g̃c , (g̃b )b ∈Bλ
0
)

of (gc , (gb )b ∈Bλ
0
), for every b n∈(Bλ

0 )
n if

g̃b n(x̃r)= x̃r = g̃c (x̃r) and
1

n
log |Dx̃r g̃

b n |=− log |Dx̃r
g̃c |,

then the map h̆:=g̃c
n

�g̃b n is parabolic and its restriction to
[
− 3

2 ,
3
2

]
is Cr-close

h|[−3/2,3/2].

As
(
0, log 3

2

)
belongs to the Lyapunov fibration of the λ-blender defined by (gb )Bλ

0
,

for (g̃c , (g̃b )Bλ
0
) in a Cr-neighborhood of (gc , (gb )Bλ

0
), when n is large, there is b n∈

(Bλ
0 )

n such that g̃b n displays a fixed point close to x̃r, with Lyapunov exponent close to

log |Dx̃r
g̃c |. Thus, there is a perturbation of g̃c of the form (1+ϵ′)·g̃c +ϵ satisfying the

assumptions of the above proposition. This shows the following.

Corollary 2.15. For every C2-perturbation (g̃c , (g̃b )Bλ
0
) of (gc , (gb )Bλ

0
), there ex-

ist ϵ, ϵ′∈R arbitrarily small such that the semi-group spanned by (exp(ϵ′)·g̃c +ϵ, (g̃b )Bλ
0
)

contains a parabolic diffeomorphism.
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Proof of Proposition 2.14. First note that, if h̆∈Diff2(P 1(R)) has its restriction to[
− 3

2 ,
3
2

]
which is C2-close to h and has a parabolic point nearby zero, then h̆ cannot

have another fixed point in
[
− 3

2 ,
3
2

]
, indeed the parabolic fixed point of h(x)=x/(2x+1)

is non-degenerate. It cannot have another fixed point in P 1(R)\
[
− 3

2 ,
3
2

]
since h sends

P 1(R)\
[
− 3

2 ,
3
2

]
onto

[
3
8 ,

3
4

]
⋐
(
− 3

2 ,
3
2

)
, and so the same holds true for h̆. As h̆ has by

assumption a parabolic point nearby zero, to show the proposition, it suffices to prove

the following claim.

Claim 2.16. Under the assumptions of Proposition 2.14, the restriction of the map

h̆:=g̃c
n

�g̃b n to
[
− 3

2 ,
3
2

]
is Cr-close to h|[−3/2,3/2].

Up to a coordinate change close to the identity, we may assume that the fixed point

x̃r of g̃c is equal to zero. Then, in these coordinates, we shall prove that h̆|[−5/3, 5/3] is
Cr-close to the identity.

Theorem 2.17. (Sternberg [36]) There exists a map h̃ which is Cr-close to h, for

which zero is a parabolic fixed point and such that h̃|[−2,2]=g̃c
n

�h̃�(D0g̃
c n)−1|[−2,2].

Proof. Let B be the subset of Cr([−2, 2],R) formed by maps h̄ such that h̄(0)=0

and D0h̄=1, is complete for the distance

d(h, h̃)= max
2⩽k⩽r

∥Dkh−Dkh̃∥∞.

The operator

h̄∈B 7−! g̃c �h̄�(D0g̃
c )−1

depends continuously on g̃c and has a contracting iterate. Its fixed point h̃∈Cr([−2, 2],R)
depends continuously on g̃c and satisfies

h̃|[−2,2] = g̃�h̃�(D0g̃
c )−1|[−2,2].

As when g̃c =gc the fixed point is h by (2.1), when g̃c is close to gc the fixed point h̃∈B
is Cr-close to h.

Then, the dynamical rescaling techniques consists of noting that h̆=h̃�Φ, where h̃

was bounded by the above theorem and

Φ=D0g̃
c n

�h̃−1�g̃b n |[−2,2]

is bounded by the following.

Lemma 2.18. The map Φ=D0g̃
c n

�h̃−1�g̃b n |[−2,2] is Cr-close to the identity.
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This lemma implies that Φ
([
− 5

3 ,
5
3

])
is included in [−2, 2], and so the composition

h̃�Φ is well defined on
[
− 5

3 ,
5
3

]
, equal to h̆, and is Cr-close to h̃ and so h. This proves

the claim.

Proof of Lemma 2.18. By assumption of Proposition 2.14, x̃r=0 is a neutral fixed

point of Φ which is equal to (D0g̃
b n)−1�h̃−1�g̃b n |[−2,2]. Thus, it suffices to show that

D2Φ is Cr−2-small:

D2Φ=(D0g̃
b n)−1 ·D2h̃−1 ·(Dg̃b n)2+

n∑
i=1

D0g̃
b n ·Dh̃−1 ·Dg̃b

n,i+1
n ·D2g̃b

i
n ·(Dg̃b

i−1,1
n )2,

where g̃b
n,i+1
n :=g̃b

n
n
�...�g̃b

i+1
n and g̃b

i−1,1
n :=g̃b

i−1
n

�...�g̃b
1
n , with b n :=b n

n ... b
i
n ... b

1
n.

The first term (D0g̃
b n)−1 ·D2h̃−1 ·(Dg̃b n)2 is of the order of |Dg̃b n | which is small.

The sum is small since the derivatives D2g̃b
i
n are all small, whereas

|(D0g̃
b n)−1 ·Dh̃−1 ·Dg̃b

n,i+1
n |·|(Dg̃b

i−1,1
n )2|

is of the order of |Dg̃b
i−1,1
n |, which is exponentially Cr−1-small when n−i is large.

3. Intrinsic definition of (λ)-(para)-blenders

In this section we are going to embed the λ and/or parablender IFS into normally hyper-

bolic fibrations for a single differentiable dynamics of a manifold. The attractors of these

IFS will persist as hyperbolic basic sets. We are going to introduce a formalism to study

their intrinsic properties. These will be used in the next section via a generalization of

Corollary 2.15 together with Theorems 1.8 and 1.9 to prove Theorems A and B.

3.1. Embedding a semi-group into a normally hyperbolic fibration

Let 1⩽r⩽∞. Let A be a finite alphabet and let Σ=A I with I=N or Z. This is a

compact space endowed with the product topology. Its shift dynamics is denoted by

σ: s=(a i)i∈Σ 7!(a i+1)i∈Σ. Let N be a compact manifold. The aim of this subsection is

to recall that the orbit of a finitely generated semi-group can be ‘persistently’ embedded

into the following class of maps.

Definition 3.1. A Cr-endomorphism of Σ×N over σ is a self-map of Σ×N of the

form

g: (s , x)∈Σ×N 7−! (σ(s ), gs (x)),

where (gs )s∈Σ is a continuous family of Cr-maps of N . The space of Cr-endomorphisms

over σ is denoted by Endrσ(Σ×N). Two Cr-endomorphisms g, g̃∈Endrσ(Σ×N) are close

if their induced families (gs )s∈Σ and (g̃s )s∈Σ are uniformly close for the Cr-topology.
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Example 3.2. (Canonical map of Endrσ(N) associated with (ga )a∈A ) A family

(ga )a∈A

of Cr-maps of N is canonically associated with the following endomorphism of Σ×N :

g: (s , x) 7−! (σ(s ), gs (x)), where gs = ga if a ∈A is the letter of s at the 0-position.

For every m ∈A (N), the element gm of the semi-group spanned by (ga )a∈A is equal to

the restriction of g|m | to the |m |-periodic fiber {m∞}×N , with m∞∈Σ the |m |-periodic
point whose A -letters at the 0, 1, ..., |m |−1 positions are those of m . Hence, any element

of the semi-group is equal to the dynamics of a periodic fiber. Now we would like to

embed this dynamics into the one of a manifold M . This requires the following notion.

Definition 3.3. A Cr-embedding of Σ×N into M is a map of the form

j: (s , x)∈Σ×N 7−! j s (x)∈M,

where (j s )s∈Σ is a continuous family of Cr-embedding of N into M with disjoint images.

Two Cr-embeddings are Cr-close if their families of Cr-maps are uniformly Cr-close.

The space of Cr-embeddings of Σ×N into M is denoted by Embr(Σ×N,M).

Let f be a Cr-self-map of M which leaves invariant a fibration L=
⋃

s∈Σ Ls , where

Ls :=j s (N) is defined by j∈Embr(Σ×N,M). We assume that the dynamics between the

fibers is given by the shift σ: for every s ∈Σ, the fiber Ls is sent by f into the fiber Lσ(s ).

Then, g :=j−1�f �j is a Cr-endomorphisms of Σ×N over σ. Let us restate Theorem 1.6

in this terminology.

Theorem 3.4. Assume that f is r-normally hyperbolic at L. Moreover, if f is not

a diffeomorphism, we assume that f is r-normally expanding at L. Then, for every f̃ Cr-

close to f there exists an embedding j̃∈Embr(Σ×N,M) close to j and g̃∈Endrσ(Σ×N)

close to g such that

f̃ �j̃= j̃�g̃.

Remark 3.5. If f is normally expanding at j(Σ×N), then I must be equal to N. If
f is normally hyperbolic but not normally expanding at j(Σ×N), then I must be equal

to Z.

Theorem 3.4 is actually the main motivation to consider the class Endrσ(Σ×N).

Together with Example 3.2 and Proposition 3.8, it will enable to show that a finitely

generated group of Diffr(N) can be robustly embedded into a fibration in any manifold

M of dimension ⩾2, modulo perturbations in Endrσ(Σ×N). Let us prepare also the

k-parameter (k⩾1) version of this.
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Definition 3.6. A family (gp)p∈Bk
of maps gp in Embr(Σ×N,M) or Endr(Σ×N,M)

is of class Cr if each map (p, x) 7!gp(s , x) is of class Cr and depends continuously on s ∈Σ.
Two such families are close if their corresponding latter maps are uniformly Cr-close. We

denote by Êmb
r

k(Σ×N,M) and Ênd
r

σ k(Σ×N) these spaces of Cr-families of embeddings

and endomorphisms.

Corollary 3.7. If (fp)p is a Cr-family of maps fp of M satisfying the assumption

of Theorem 3.4 with Lp=jp(Σ×N), where (jp)p∈Bk
is a Cr-family of embeddings of

Σ×N into M , then for every (f̃p)p Cr-close to (fp)p, there exists a family (j̃p)p of

embeddings Cr-close to (jp)p and a family (g̃p)p of endomorphisms of Σ×N Cr-close

to (j−1p �fp�jp)p such that

f̃p�j̃p = j̃p�g̃p.

Proof. We first consider the k-ball Bk as a subset of B̂k :=P k(R) and we extend the

families (fp)p and (jp)p to C
r-families of maps parameterized by B̂k. Then, we notice that

f̂ :=(p, x) 7!(p, fp(x)) and ĵ :=(s , p, x) 7!j sp(x) satisfies the assumption of Theorem 3.4 for

the fibration Σ×N̂ , where N̂=B̂k×N . As for every Cr-perturbation (f̃p)p, the map
ˆ̃
f :=(p, x) 7!(p, f̃p(x)) is Cr-close to f̂ , there exists an embedding ˆ̃j of Σ×N̂ which is

Cr-close to ĵ and which is left invariant by
ˆ̃
f .

Thus, for any p∈Bk and s ∈Σ, the submanifold ˆ̃j({s }×B̂k×N) intersects transver-

sally {p}×M at a submanifold j̃ sp(N). By transversality, this defines a Cr-family (j̃ sp)p∈Bk

of embedding j̃ sp:N ↪!M , which depends continuously on s ∈Σ. Put j̃p: (s , x) 7!j̃ sp(x); it is

a Cr-embedding of Σ×N into M . Also, the family (j̃p)p∈Bk
is of class Cr. Note that the

submanifold j̃ sp(N) is sent by f̃p into j̃
σ(s )
p (N), since

ˆ̃
f leaves invariant {p}×M and sends

ˆ̃j({s }×B̂k×N) into ˆ̃j({σ(s )}×B̂k×N), while {p}×j sp(N)={p}×M∩ˆ̃j({s }×B̂k×N) and

{p}×jσ(s )p (N)={p}×M∩ˆ̃j({σ(s )}×B̂k×N).

The following enables to embed a finitely generated semi-group of circle diffeomor-

phisms into the periodic fibers of a normally hyperbolic fibration of any manifold M of

dimension n⩾2. A perturbation of this embedding persists is the sense of Theorem 3.4.

Proposition 3.8. For any (ga )a ∈Endr(N)A with N a circle and 1⩽R⩽r⩽∞ with

R<∞, there are a Cr-map f of M and a fibration L=j(Σ×N) with j∈Embr(Σ×N,M)

such that

(1) if n⩾2 and I=N, then the map f is R-normally expanding at L;
(2) if n>2, I=Z and each ga is a diffeomorphism preserving the orientation, then

f is a diffeomorphism R-normally hyperbolic at L;
(3) g=j−1�f �j is the canonical endomorphism associated with (ga )a∈A given by

Example 3.2.
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Similarly, for any ((gap )p∈Bk
)a∈A ∈Êndrk(N)A , there are an embedding

j ∈Embr(Σ×N,M)

and a Cr-family (fp)p of maps fp of M such that, for every p∈Bk, the maps fp and

L:=j(Σ×N) satisfy (1)–(3) with (gap )a∈A .

Proof. It suffices to prove this proposition in the case where M=(−1, 1)n−1×N
with f (resp. each fp) coincides with the identity nearby the boundary of M . Indeed,

as N is a circle, the set (−1, 1)n−1×N can be embedded into any n-manifold and the

dynamics can be extended by the identity outside of this embedding. So, let us assume

that M=(−1, 1)n−1×N . Let us now focus on the parametric case (the parameter free

version is obtained by taking k=0).

When I=N, let S be a smooth map of (−1, 1)n−1 equal to the identity at the neigh-

borhood of ∂[−1, 1]n−1, and such that S leaves invariant an expanding Cantor set K

which is conjugate to the shift on A N. Up to replacing S by an iterate and taking a

subset of K, we may assume that the restriction of DS|K is R-times more expanding

than any derivatives of (gap )a∈A ,p∈Bk
.

When n⩾3 and I=Z, let S be a smooth diffeomorphism of (−1, 1)n−1 equal to the

identity at the neighborhood of ∂[−1, 1]n−1, and such that S leaves invariant a hyperbolic

horseshoe K which is conjugate to the shift σ on A Z. We are going to construct fp of

the form: fp :=(s , x) 7!(Sm(s ), f s
p(x)) for some m⩾1. Up to replacing S by an iterate and

taking a subset ofK, we may assume that the restriction ofDS to the stable and unstable

directions of K are R-times more contracting and expanding than any derivativative of

(gap )a∈A ,p∈Bk
.

Fact 3.9. There is a Cr-family (f s
p)s∈(−1,1)n−1,p∈Bk

of self-maps f s
p of N such that

for any p∈Bk:

(1) f s
p coincides with the identity nearby the boundary of (−1, 1)n−1;

(2) f s
p=gap if s belongs to K and corresponds to an A -sequence with a ∈A at the

0-position;

(3) if for every p, the maps (gap )a∈A are orientation preserving diffeomorphims,

then the maps f s
p are orientation preserving diffeomorphims for every s ∈[−1, 1]n−1.

Proof. The construction can be done using bump function and homotopies in the set

of Cr-endomorphisms of N or Cr-diffeomorphisms preserving the orientation of N .

We can consider the immersion j: Σ×N!K ′×N⊂K×N⊂M which is R-normally

expanding or hyperbolic for fp :=(s , x) 7!(S(s ), f s
p(x)).
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Remark 3.10. In the proof of the latter proposition for the diffeomorphisms case,

we may assume that the hyperbolic basic set K has unstable dimension 1, and that it

is a subset of an attractor A (for instance using a Plykin attractor). Then, there is

a neighborhood of N×A which is sent into itself by the dynamics and on which the

dynamics is partially hyperbolic. So, this neighborhood is Cr−1-foliated by local strong

stable manifolds of dimension dimM−2, by [22] or [33, Theorem 3.2]. Also, if f depends

Cr-on a parameter, this foliation depends Cr−1 on the parameter.

It will be more comfortable while working with blenders to only deal with endomor-

phisms of A N×N . In order to do so, we consider the canonical projection ρ: Σ=A Z
!A N

and put s∼s ′ if ρ(s )=ρ(s ′) for s , s ′∈Σ. Let

Σ̃ := {(s , s ′)∈Σ2 : s ∼ s ′}.

Proposition 3.11. Under the setting of Proposition 3.8 with I=Z, there exists a

continuous family (hols ,s
′
)(s ,s ′)∈Σ̃ of homeomorphisms of N such that

(1) hols ,s
′
is the identity if s=s ′,

(2) holσ(s ),σ(s
′)
�g̃s =g̃s

′
�hols ,s

′
for every (s , s ′)∈Σ̃;

(3) if dimN=1, then hols ,s
′
is in Diffr−1(N) and depends continuously on (s , s ′)∈Σ̃

Under the setting of Corollary 3.7 with I=Z, there exists a continuous family

(hols ,s
′

p )p∈Bk

of homeomorphisms hols ,s
′

p of N satisfying (1) and (2) with g̃p for every p∈Bk. Also, if

dimN=1, then (hols ,s
′

p )p is a Cr−1-family of Cr−1-diffeomorphisms and depends con-

tinuously on (s , s ′)∈Σ̃.

Proof. We define hols ,s
′
as the holonomy from j̃ s (N) and j̃ s

′
(N) along the strong

stable foliation defined in Remark 3.10.

Given a section ι:A N ↪!A Z of ρ, the latter proposition defines a semi-conjugacy

between g and the map (s , x)∈A N×N 7!(σ(s ), gι(s )(x)), and so enables to focus on the

case I=N.

3.2. Intrinsic definition of (λ)-blender

The notion of blender was introduced by Bonatti and Diaz in [12], as a hyperbolic basic

set for a C1-self-map (resp. diffeomorphism) f of a manifold. Such are included in a

normally expanding (hyperbolic) fibration, and so always included in a fibration Σ×N
embedded intoM , whose fibers are either compact or weakly contracted by the dynamics.
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The dynamics induced by f on this fibration is a map g∈Endrσ(Σ×N) for a certain

σ∈C0(Σ,Σ). This leads us to propose an intrinsic definition of blender: it regards only

the map g. For the sake of simplicity, we restrict our study to the case where σ: Σ!Σ is

the shift on A I, with I=N or I=Z. In the case I=Z, using the holonomy along the strong

stable manifolds defined in Proposition 3.11, we recall that the map g is semi-conjugated

to one for which I=N. So, we will focus on the case I=N. For the sake of completeness,

the standard definition of blender is recalled in Appendix A, it is not more general nor

simpler to use than the intrinsic definition we shall introduce.

Let g∈End1σ(Σ×N) with Σ=A N. A g-invariant compact subset Λ⊂Σ×N is a basic

set if it is transitive and locally maximal : it is the maximal invariant set in one of its

neighborhood VΛ. The basic set Λ is centrally contracting if g|Λ∩{s }×N is contracting

for every s ∈Σ. Then, for every C1-perturbation g̃ of g, the maximal invariant

Λ̃ :=
⋂
n∈Z

g̃n(VΛ)

is called the continuation of Λ. One can show that it does not depend VΛ, provided that

g̃ is sufficiently C1-close to g and that Λ̃ is a centrally contracting basic set for g̃. Let
←−
V Λ(g̃) be the set of (vn)n<0∈V Z−

Λ such that g̃(vn−1)=vn for every n<−1. By central

contraction and local maximality of Λ̃, one can show that vn!Λ̃ when n!−∞. Thus,

the following is called a local unstable set of Λ̃:

Wu
loc(Λ̃) := {v0 ∈Σ×N : there exists (vn)n<0 ∈

←−
V Λ(g̃) with g̃(v−1)= v0}.

When g̃=g, we put

Wu
loc(Λ) :=Wu

loc(Λ̃).

When g̃ ̸=g, we say that Wu
loc(Λ̃) is the continuation of Wu

loc(Λ). The following is an

intrinsic definition of the Bonatti–Diaz blender [12].

Definition 3.12. (Blender for End1σ(Σ×N)) The centrally contracting, basic set Λ

is a blender if a local unstable set Wu
loc(Λ) has non-empty interior and for any subset

K⋐Wu
loc(Λ), for every C1-perturbation g̃ of g, the continuation Wu

loc(Λ̃) contains K.

Example 3.13. Let (gb )b ∈B0
be the family of maps of Example 2.2. Let A be a

finite alphabet which contains B0 :={−,+}. Let g∈End1(Σ×R) be such that g|BN
0×R is

the canonical map associated with (gb )b ∈B0
(see Example 3.2). Then, the set

Λ=BN
0 ×[−1, 1]

is a blender for g and Σ×[−1, 1] is a local unstable set of Λ.
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Proof. Let VΛ be the subset of points (s , x)∈Σ×(−2, 2) such that the first letter of

s is in B0. It is a neighborhood of Λ, and so its maximal invariant set must contain Λ.

Also, the maximal invariant set of VΛ must be included in BN
0 ×(−2, 2), and so is equal

to Λ by central contraction. Let K :=(−1+η, 1−η) for η>0 small.

By the open covering property proved in Example 2.2, for g̃ sufficiently close to g,

for all s 0∈Σ=A N and x0∈K, there exist a−1∈B0 and x−1∈K such that

gs−1(x−1)=x0

with s−1∈σ−1(s 0) with 0-coordinate equal to a−1. We can iterate this process to con-

struct a preorbit (s−n, x−n)n⩽−1∈
←−
V Λ(g̃) such that each x−n is in K and

g(s−1, x−1)= (s 0, x0).

Under the assumptions of Definition 3.12, let VΛ be the neighborhood of Λ defining

the local unstable set Wu
loc(Λ). Let g̃ be a C1-perturbation of g. The Lyapunov fiber

λ(g̃,←−v ) of
←−v =(vj)j⩽0 ∈

←−
V Λ(g̃)

is the set of cluster values of (
1

m
log |∂xg̃m(v−m)|

)
m

;

this is an interval of R. The Lyapunov fibration of Wu
loc(Λ̃) is

λ(Wu
loc(Λ̃)) :=

⋃
←−v ∈
←−
V Λ(g̃)

{v0}×λ(g̃,←−v )

Here is the counterpart of the notion of λ-blender introduced for finitely generated

semi-groups of circle diffeomorphisms. This new notion is devoted to prove Theorem A

using Theorem 1.8.

Definition 3.14. (λ-Blender for End1σ(Σ×N)) A blender Λ for g∈End1(Σ×N) is a λ-

blender if the Lyapunov fibration of a local unstable set Wu
loc(Λ) has non-empty interior

and, given any subset K⋐λ(Wu
loc(Λ)), for every C1-perturbation of g̃, the Lyapunov

fibration of the continuation Wu
loc(Λ̃) contains K.

A generalization of the following will be proved in Example 3.20.

Example 3.15. Let (gb )b ∈Bλ
0
be the family of maps in Example 2.10. Let A be

a finite alphabet which contains Bλ
0 and Σ:=A N. Let g∈End1(Σ×R) be such that

g|(Bλ
0 )

N×P 1(R) is the canonical map associated with (gb )b ∈B0
. Then,

Λ= (Bλ
0 )

N×[−1, 1]
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is a λ-blender for g. Then, the set

Wu
loc(Λ)=Σ×[−1, 1]

is a local unstable set of Λ, and its Lyapunov fibration is

Wu
loc(Λ)×

[
log 2

3−ϵ, log
2
3+ϵ

]
3.3. Intrinsic definition of Cr-(λ)-parablender

Let g=(gp)p∈Bk
be a Cr-family of maps gp∈Endrσ(Σ×N), for Σ=A N, 1⩽r<∞ and

k⩾0. For s ∈Σ and p∈Bk, let gsp be the second coordinate of the restriction gp|{s }×N .

Let gs =(gsp)p. For every p0∈Bk, we denote

Jr
p0
g := (s , Jr

p0
x)∈Σ×Jr

p0
N 7−! (σ(s ), Jr

p0
gs (Jr

p0
x))∈Σ×Jr

p0
N.

Assume that gp0
has a blender Λp0

which is locally maximal in a certain neighbor-

hood VΛ of Λp0
. Let Wu

loc(Λp0
) be the local unstable set of Λp0

associated with VΛ. Let Σ
′

be the image of VΛ via the first coordinate projection Σ×N!Σ. Let
←−
Σ ′ be the set of σ-

preorbits (s j)j<0∈Σ′Z
−
and put s 0=σ(s−1). We choose a continuous family Ω=(Ωs )s∈Σ′

such that {(s , ωs ):s ∈Σ′} is included in VΛ. Then, the set Wu
loc(Λp0) is formed by the

points v(s )=limi!+∞ gip0
(s−i,Ωs−i) among s=(s j)j<0∈

←−
Σ ′. Note that

v(s )= (s 0, Xp0(s )) with Xp0(s )= lim
i!∞

gs−i
p0

�...�gs−1
p0

(Ωs−i) and s 0 =σ(s−1).

This limit does not depend on Ω. Also, for every p nearby p0, the continuation Wu
loc(Λp)

of Wu
loc(Λp0

) is formed by the points v(s )=(s 0, Xp(s )), with

Xp(s )= lim
i!∞

gs−i...s−1
p (Ωs−i

).

Furthermore, the family (Xp(s ))p is of class Cr for every s ∈
←−
Σ ′, and depends continuously

on s . Put
Jr
p0
Wu

loc(Λ) := {(s 0, Jr
p0
X(s )) : s ∈Σ′}⊂Σ×Jr

p0
N.

Similarly for f̃ Cr-close to g and p close to p0, we can define

X̃p(s )= lim
i!∞

g̃s−i...s−1
p (Ωs−i)

and

Jr
p0
Wu

loc(Λ̃) := {(s 0, Jr
p0
X̃(s )) : s ∈Σ′}⊂Σ×Jr

p0
N.
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Definition 3.16. (Cr-parablender for Êndrσ,k) The continuation (Λp)p is called a Cr-

parablender at p0 if Jr
p0
Wu

loc(Λ) has non-empty interior and, for every K⋐Jr
p0
Wu

loc(Λ),

the continuation Jr
p0
Wu

loc(Λ̃) of Jr
p0
Wu

loc(Λ) of any sufficiently small Cr-perturbation g̃

of g contains K.

We give an example below of parablender. Let us continue by introducing the Cr-

λ-parablender. Now, N is a curve with tangent space identified to N×R. The Lyapunov
fiber of (s 0, Jr

p0
X(s )) for s ∈

←−
Σ ′ is the set λ(g, Jr

p0
X(s )) of cluster values of(

Jr−1
p0

1

i
log |∂xgip(s−i,Ωs−i)|

)
i>0

.

The following is the Lyapunov fiberation of Jr
p0
Wu

loc(Λ):

λ(Jr
p0
Wu

loc(Λ)) :=
⋃

s ∈←−Σ ′

{(s 0, Jr
p0
X(s ))}×λ(g, Jr

p0
X(s )).

We notice that λ(Jr
p0
Wu

loc(Λ)) is a compact subset of Σ×Jr
p0
N×Jr−1

p0
R. Here is the

parametric counterpart of the λ-blender defined in Definition 3.14; it is devoted to prove

Theorem B using Theorem 1.9.

Definition 3.17. (λ-parablender for Êndrσ,k(Σ×N)) The continuation (Λp)p of a

blender is a Cr-λ-parablender at p0 if λ(Jr
p0
Wu

loc(Λ)) has non-empty interior and any

subset K⋐λ(Jr
p0
Wu

loc(Λ)) is contained in the Lyapunov fibration of Jr
p0
Wu

loc(Λ̃) for any

sufficiently small Cr-perturbation (g̃p)p of (gp)p.

Remark 3.18. We notice that Λp0
is a λ-blender for gp0

and (Λp)p is a C
r-parablender

at p=p0 for (gp)p. When k=0, (Λp)p is a Cr-λ-parablender at p0 if and only if Λp0
is a

λ-blender for gp0
.

As promised here is an example of Cr-parablender.

Example 3.19. Let (gbp )
p∈Bk,b ∈Br

be the family of maps of Example 2.6. Let A be a

finite alphabet which contains Br. Let (gp)p∈Êndrσ,k(Σ×N) be such that gp|BN
r×R is the

canonical map associated with (gbp )b ∈Br
for every p∈Bk. Then, the set Λ0=BN

r ×[−1, 1]
is a blender for g0 and its continuation for (gp)p is a Cr-parablender at p=0 with a local

unstable set satisfying

Jr
0W

u
loc(Λ) :=Σ×

{ ∑
i∈Er

ξi ·pi : (ξi)i ∈ [−1, 1]Er

}
.

We skip the proof of this example, since it is similar to the one for IFS and useless

for the proof of main Theorem B. Let us focus on the following example.
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Example 3.20. Let (gbp )
p∈Bk,b ∈Bλ

r

be the family of maps in Example 2.13 for ϵ>0

sufficiently small. Let A be a finite alphabet which contains Br. Let

(gp)p ∈ Êndrσ,k(Σ×R)

be such that gp|(Bλ
r )

N×R is the canonical map associated with (gbp )b ∈Bλ
r
for every p∈Bk.

Then, the set Λ0=(Bλ
r )

N×[−1, 1] is a λ-blender for g0, and its continuation for g=(gp)p

is a Cr-λ-parablender at p=0 with a local unstable set satisfying

λ(Jr
0W

u
loc(Λ))

=Σ×
{( ∑

i∈Er

ξi ·pi, log
2

3
+ϵ

∑
i∈Er−1

λi ·pi
)
: (ξi)i ∈ [−1, 1]Er , (λi)i ∈ [−1, 1]Er−1

}
.

Proof. Let VΛ be the subset of points (s , x)∈Σ×(−2, 2) such that the 0-coordinate

of s is in Bλ
r . It is a neighborhood of Λ0. For the same reasons as in Example 3.13, the

local unstable set associated with this neighborhood is Wu
loc(Λ0)=Σ×[−1, 1]. Let Σ′ be

the subset of points in Σ whose 0-coordinate is in Bλ
r . Let

←−
Σ ′ be the set of σ-preorbits

(vj)j<0 with vj∈Σ′. Let Ωs =0 for every s ∈Σ. As for Example 2.13, it is easy to see that

the Lyapunov fibration λ(Jr
0W

u
loc(Λ)) has the above form. It remains to show that it is

a Cr-λ-parablender. For η>0 small, put

K =Σ×
{( ∑

i∈Er

ξi ·pi, log
2

3
+ϵ

∑
i∈Er−1

λi ·pi
)
: (ξi)i ∈ IEr , (λi)i ∈ IEr−1

}

with

I := [−1+η, 1−η].

Let g̃ be a Cr-perturbation of g. Let us show for every (s 0, x0, ℓ)∈K and n>0, the

existence of a sequence of letters (b j)−n⩽j<0∈(Bλ
r )

n and a sequence of points

(s j , xj , ℓj)−n⩽j<0 ∈Kn

such that, with ℓ0=0 and s j∈Σ equal to the concatenation of b j ... b −1 with s 0, the
following conditions hold:

(1) Jr
p0
g̃s i(xi)=xi+1 for every −n⩽i<0;

(2) ℓ−n=Jr−1
p0

(log |∂xg̃np (s−n, x−n)|)p∈
{
n·ℓ+

∑
i∈Er−1

λi ·pi :λi∈[−2ϵ, 2ϵ]
}
.

The step n=0 is obvious. Assume the result shown for n⩾0. Then, by the covering

property showed on in Examples 2.2 and 2.6, with b −n−1∈Bλ
r being the vector whose

coefficients are the sign of those of the polynomial (x−n,− log |∂xg̃np (s−n, x−n)|+n·ℓ).
Then, for the same reasons as for Examples 2.2 and 2.10, the induction hypothesis holds
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true at step n+1. Using that g̃ is contracting nearby Λ, by Proposition 2.3 (1), we have

that

Jr
p0
g̃s−i

�...�g̃s−1(Ωs−i
)−Jr

p0
g̃s−i

�...�Jr−1
p0

g̃s−1(x−i)

is small when i is large. This implies directly the first limit and, by Cesàro means, the

second one:

Jr
p0
X̃(s )= lim

i!∞
Jr
p0
g̃s−i
p �...�g̃s−1

p (x−i)=x0 and λ(g̃, Jr
0 X̃(s ))= lim

i!∞

ℓ−i
i

= ℓ.

4. Proof of the main theorems

We have introduced all the concepts and techniques needed to prove main Theorems A

and B. Both proofs are similar: we will show that the sets D and D̂ involved in Theo-

rems 1.8 and 1.9 are locally dense. In order to do so, we are going to use λ-(Cr-para)-

blender and implement the dynamical rescaling techniques of §2.4. The density in the

proof of Theorem A will be done along 2-parameter families. This will enable to obtain

even the local density of analytic maps with a normally hyperbolic, periodic circle at

which f is parabolic.

4.1. Theorem A

Proof of Theorem A. It suffices to show that the closure of the set D of Theorem 1.8

has non-empty Cr-interior for any 2⩽r⩽∞ which intersects Diffr(M) when

n=dimM ⩾ 3.

Let Bλ
0 and (gb )b ∈Bλ

0
be as in Example 2.10. We consider the extension of these

maps to the projective space P 1(R). Let A =Bλ
0 ∪{c } for a symbol c , and put

gc :x∈P 1(R) 7−! 3

2

x

x+1
∈P 1(R).

By Proposition 3.8 with R=2 and r=∞, there are j∈Emb∞(Σ×P 1(N),M) and a

C∞ self-map f of M (which is a diffeomorphism if n⩾3) which is R-normally expanding

(or hyperbolic if n⩾3) at L=j(Σ×P 1(R)), and such that g=j−1�f �j is the canonical

map of End∞σ (Σ×P 1(R)) associated with (gA )a∈A (see Example 3.2).

The idea is to apply a similar perturbation scheme as for Corollary 2.15. This leads

us to unfold f into a 2-parameter family. Let W be a neighborhood of 0∈R2 and for

p=(u, v)∈W , let

gbp :=x 7−! gb (x−v)+v for all b ∈Bλ
0
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and

gcp :=x 7−! exp(u)·gc (x).

Note that zero is a fixed point of gcp with Lyapunov exponent log 3
2+u. It is repulsive for

W is small.

Again by Proposition 3.8, there is a C∞-family (fp)p∈W of self-maps such that

f0=f and such that fp leaves invariant L and satisfies gp=j−1�fp�j is the canonical

endomorphism of Σ×P 1(R) associated with ((gap )p∈W )a∈A .

Note that given any CR-neighborhoodMW of (fp)p, the setM={f̃0 :(f̃p)p∈MW }
is a neighborhood of f . Thus, it suffices to show that for MW sufficiently small, for

every (f̃p)p∈MW , there is an arbitrarily small parameter p such that f̃p has a periodic

fiber at which it is parabolic. Indeed, this defines a set of self-maps of M whose closure

containsM.

Let (j̃p)p be the family of embeddings given by Corollary 3.7, and let

g̃p := j̃−1p �f̃p�j̃p ∈EndRσ (Σ×P 1(R)).

Recall that (g̃p)p is CR-close to (gp)p whenMW is small and g̃p is of the form

g̃p(s , x)= (σ(s ), g̃sp(x)),

Let us simplify the setting.

Fact 4.1. Up to a reparametrization of Σ×P 1(R) depending C2 on p, we may

assume that for every s ∈Σ whose 0-coordinate is c , we have gsp(0)=0 for every p small.

Proof. We define the operator (xs
p)s∈Σ 7!(x̃s

p)s∈Σ, where x̃s
p=0 if the first letter of s

is not c and x̃s
p=(g̃sp)

−1(x
σ(s )
p ) otherwise. It is a contracting operator at the neighborhood

of (0)s∈Σ. Let (Õs
p)s∈Σ be its fixed point. It depends C2 on p, since the operator does.

Also, when g̃=g, we have (Õs
p)s∈Σ=(0)s∈Σ for every p, thus (Õs

p)s∈Σ is C2-small. Thus,

using a coordinate change via a translation by Õs
p, we obtain the sought property.

The idea is to apply a variation of the proof of Proposition 2.14. This involves

the space Pm of 2m-periodic points s ∈Σ of the form (b m ·cm)∞: their letters at the

positions 0, ...,m−1 form the word b m∈(Bλ
0 )

m, the m next letters are c . We will fix

m⩾1 and s ∈Pm in function of the perturbation (g̃p)p of (gp)p, and more precisely the

properties of the following maps:

g̃b m
p := g̃s

m−1

p �...�g̃s
0

p and g̃c
m

p := g̃s
2m−1

p �...�g̃s
m

p , with s j :=σj(s ) for every j⩾ 0. (4.1)

Note that when g̃=g, it holds g̃b m
p :=x 7!gb m(x−v)+v where gb m is the element of the

group spanned by (gb )b ∈Bλ
0
and g̃c

m

p =(gcp)
m for every p∈W .
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Hence, as W is small, g̃b m
p is a composition of contractions of [−2, 2] into its interior.

Let x̃p(b m):=g̃b m
p (0). On the other hand, by Fact 4.1, the map (g̃c

m

w ) fixes the point

zero. Let λ̃p(b m) and λ̃p(cm) be the Lyapunov exponents of these fixed points:

λ̃p(b m)=
1

m
log |D0g̃

b m
p | and λ̃p(cm)=

1

m
log |D0g̃

cm
p |. (4.2)

Here is the generalization of Proposition 2.14.

Proposition 4.2. For MW small enough, for every (f̃p)p∈MW , if there exist

(b m ·cm)∞∈Pm with m large and p∈W small such that

x̃p(b m)= 0 and λ̃p(cm)+λ̃p(b m)= 0,

then the map h̆:=g̃c
m

p �g̃b m
p is parabolic.

The proof is very similar to Proposition 2.14 and done below. Hence, by Proposi-

tion 4.2 and Theorem 1.8, Theorem A is a consequence of the next claim.

Claim 4.3. For MW CR-small enough, for every (fp)p∈MW , there exist p∈W
small and (b m ·cm)∞∈Pm with m large such that

x̃p(b m)= 0 and λ̃p(cm)+λ̃p(b m)= 0.

Proof. First let us show that we can restrict our proof to the case where I=N.
Indeed, if I=Z, by Proposition 3.11, for every (f̃p)∈MW and every s ∈Σ, there exists a

CR−1-family (holsp)p depending continuously on s ∈Σ such that

holσ(s )p �g̃sp = g̃ι�ρ(s )p �holsp ,

with ρ:A Z
!A N is the canonical retraction and ι:A N

!A Z is the section which sends

(a i)i⩾0 to (a i)i∈Z with a j=c for every j<0. As (g̃
ι�ρ(s )
p )p is CR close to (g

ι�ρ(s )
p )p=(gsp)p,

the family (g̃p)p is CR−1-conjugated to a family of endomorphisms of A N×P 1(R) which
is CR-close to the canonical family of endomorphisms associated with (gap )p. Note that

this is a CR bound although the conjugacy is CR−1. As the conclusion of the Claim is

invariant by C1-intrinsic conjugacy and R=2, it suffices to show the following:

Claim 4.4. Let Σ=A N. For every (g̃p)p in a CR-small neighborhood NW of (gp)p,

there exist p∈W arbitrarily small and (b m ·cm)∞∈Pm with m large such that

x̃p(b m)= 0 and λ̃p(cm)+λ̃p(b m)= 0.

Let c∞=c c c ...∈Σ be the σ-fixed point whose A -spelling has only the letter c . Given

(g̃p)p∈NW , by Fact 4.1, the point zero is fixed and repulsive for g̃c
∞

p . Let

λ̃p(c∞) := log |D0g
c∞
p |.
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Fact 4.5. When NW is small, (λ̃p(c∞))p is CR−1-close to
(
log 3

2+u
)
p=(u,v)

.

Let VΛ⊂Σ×P 1(R) be formed by the points (s , x)∈Σ×(−2, 2) such that the 0-

coordinate of s is in Bλ
0 . By Example 3.15, the g-maximal invariant set of VΛ is a

λ-blender Λ, and the Lyapunov fibration of Wu
loc(Λ)=Σ×[−1, 1] contains

(
c∞, 0, log 2

3

)
in its interior. Thus, for NW sufficiently small, for every (g̃p)p∈NW , there is a g̃0-preorbit
←−v =(vj)j⩽0∈

←−
V λ(g̃) such that

v0 =(c∞, 0) and λ0(g̃0,
←−v )+λ̃0(c∞)= 0. (4.3)

The Σ-coordinate of vm is of the form

(a−m, ..., a−1, c , ..., c , ... )∈Σ,

with b m :=a−m ... a−1∈Bλ
0 )

m. Fix (b m ·cm)∞∈Pm for a large m.

Lemma 4.6. We have

lim
m!∞

x̃0(b m)= 0 and lim
m!∞

−λ̃0(b m)= λ̃0(c∞)= lim
m!∞

λ̃0(cm).

Proof. Most of maps in the composition g̃
c ·(b m·cm)∞

0 �...�g̃
cm·(b m·cm)∞

0 are close to

g̃c
∞

0 when m is large, so are the derivatives at zero. In view of (4.1) and (4.2), this proves

that

lim
m!∞

λ̃0(cm)= λ̃0(c∞).

The map g̃b m
0 is the composition

g̃
b 1·(cm·b m)∞

0 �...�g̃
b m·(cm·b m)∞

0 ,

with b j :=a−j ... a−1. Each of the maps g̃
b j ·(cm·b m)∞

0 is a contraction of [−2, 2] which
is uniformly close to g̃

b j ·c∞

0 when m is large. Thus, the iterates of zero under these

respective maps are uniformly close when m is large. This proves that x̃0(b m) is close to

g̃b 1·c∞

0 �...�g̃b m·c∞

0 (0) when m is large. Also, as g̃b 1·c∞
0 �...�gb m·c∞

0 is a large contraction

of (−2, 2) which sends the x-coordinate xm∈(−2, 2) of vm to the x-coordinate of v0 which

is zero by (4.3). So, limm!∞ x̃0(b m)=0 by (4.3). Note that this argument implies that

most of the iterates of xm and zero under g̃b 1·c∞
0 �...�g̃b m·c∞

0 are close, and these are close

to the iterates of zero under g̃
b 1·(cm·b m)∞

0 �...�g̃
b m·(cm·b m)∞

0 . So are the derivatives at

these points. This proves that

lim
m!∞

λ̃0(b m)=λ0(g̃0,
←−v ),

which is equal to −λ̃0(c∞) by (4.3).
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The later statement and proof were done at the parameter p=0, but can be done at

any p∈W . We also obtain the convergence of the parametric jets for the same reasons.

This gives the following.

Lemma 4.7. For every p0∈W , with G̃m=(G̃m
p )p and G̃m

p :=g̃b 1·c∞
p �...�g̃b m·c∞

p , we

have

JR
p0
(x̃p(b m))p ≈

m!∞
JR
p0
G̃m(0),

JR−1
p0

λ̃0(b m) ≈
m!∞

JR−1
p0

1

m
log |D0G̃

m|,

JR−1
p0

λ̃(c∞)= lim
m!∞

JR−1
p0

λ̃(cm).

We recall that R=2. Let s=(b j ·c∞)j<0∈
←−
Σ ′. By definition,

JR
p0
X̃(s ) and λ(g̃, JR

p0
X̃(s ))

are the limit when m!∞ of

JR
p0
G̃m(0) and JR−1

p0

1

m
log |D0G̃

m|,

respectively. Hence, by the latter lemma, the derivative ∂p(x̃p(b m))p is close to ∂pG
m(0)

and ∂pλ̃0(b m) is close to ∂pλ(g̃, J
R
p0
X(s )). As

Gm
p (0)= lim

j!∞
gb j ...b −1(−v)+v= lim

j!∞
gb j ...b −1(0)+v,

its derivative is close to the second coordinate projection p=(u, v) 7!v. Also, we have

that ∂pλ(g̃, J
R
p0
X(s )) is zero. Thus, ∂p(λ̃(b m), x̃(b m)) is close to the first coordinate

projection. On the other hand, ∂pλ̃(cm) is close to ∂pλ̃(c∞), which is close to ∂pλ(c∞)=

(u, v) 7!u. Thus, the derivative of the following function is close to the identity:

Υm: p=(u, v)∈W 7−! (λ̃p(cm)+λ̃p(b m), x̃p(b m)).

By Lemma 4.6, for m large, the point Υm(0) is small. Thus, by the local inversion

theorem, for m large enough, there exists p small such that Υm(p)=0. This proves Claim

4.4.

Proof of Proposition 4.2. First note that, when (g̃p)p is C2-close to (gp)p and p∈W
is small, then g̃ :=g̃p is C2-close to g=g0. We recall that gc is conjugate to x 7! 3

2x via

h(x)=x/(2x+1). For the same reasons as for Proposition 2.14, the following counterpart

of Claim 2.16 implies Proposition 4.2.
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Claim 4.8. Given g̃ C2-close to g and s ∈Pn with n large, if g̃b n(0)=0 and the

fixed point zero is parabolic for h̆:=g̃c
m

�g̃b n , then the restrictions to
[
− 3

2 ,
3
2

]
of h̆ and h

are C2-close.

The following is the counterpart of Sternberg’s Theorem 2.17.

Lemma 4.9. There exist h̃1, h̃2∈C2([−2, 2],R) which are C2-close to h|[−2,2] and

such that h̃(0)=0, D0h̃(0)=1 and

h̃1 = g̃c
m

�h̃2�(D0g̃
cm)−1|[−2,2].

We show the latter lemma below. On the other hand the proof of the next lemma

is skipped since it is the same as for Lemma 2.18.

Lemma 4.10. The map Φ=D0g̃
cm

�h̃−12 �g̃b m |[−2,2] is C2-close to the identity.

By the latter lemma, the image by Φ of
[
− 5

3 ,
5
3

]
is included in [−2, 2]. Thus, we

can use Lemma 4.9 to obtain that the map h̆|[−3/2,3/2] is equal to the composition of h̃1,

which is C2-close to h with a map Φ C2-close to the identity. This proves the claim.

Proof of Lemma 4.9. Let B be the set of continuous families (hs )s∈Σ of C2-diffeo-

morphisms hs of [−2, 2] into R such that hs (0)=0 and D0h
s =1. We notice that B

endowed with the C2-distance is complete. We consider the operator

Ψ:H =(hs )s∈Σ ∈B 7−! (Ψ(H)s )s ∈B,

with

Ψ(H)s = g̃c ·s �hc ·s
�(D0g̃

c ·s )−1 ,

where {c }×A N and Bλ
0×A N are the subsets of A N formed by points whose first letters

are in {c } and Bλ
0 , respectively. The map Ψ has a contracting iterate; let (h̃s )s be its

fixed point (which depends continuously on g̃). It satisfies

h̃s = g̃c ·s �h̃c ·s
�(D0g̃

c ·s )−1 = g̃c ·s �...�g̃c
m·s

�h̃cm·s
�(D0g̃

c ·s
�...�Dg̃c

m·s )−1.

Thus, with s=(b m ·cm)∞ and g̃c
m

defined in (4.1) (p. 240), we obtain

h̃(b m·cm)∞ = g̃c
m

�h̃(cm·b m)∞
�(D0g̃

cm)−1.

We conclude by putting h̃1=h̃(b m·cm)∞ and h̃2=h̃(cm·b m)∞ .

Let us assume that M is an analytic manifold of dimension ⩾2. Let us choose a

complex extension M̃ of M . For ϵ>0, let M̃ ϵ be the ϵ-neighborhood of M in M̃ . Let

Cω
ϵ (M,M) be the space of analytic maps from M into M whose analytic extension is

well defined from M̃ ϵ into M̃ and C0-bounded. This space is endowed with the uniform

C0-norm. The following is a consequence of the latter proof.
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Corollary 4.11. For ϵ>0 sufficiently small, there are locally dense sets Dp and Dr

in Cω
ϵ (M,M) formed by maps which display a normally hyperbolic smooth circle on which

they act respectively as parabolic maps and Diophantine smooth rotations. Moreover, Dp

and Dr are formed by diffeomorphisms if n⩾3.

Proof. The set of 2-parameter Cω
ϵ -families intersected with MW is an open set

Mω
W,ϵ. Also, the set Mω

ϵ ={f̃0 :(f̃p)p∈Mω
W,ϵ} is open. For every f̃0∈Mω

ϵ , by Proposi-

tion 4.2 and Claim 4.3, there exist p small and m⩾1 such that f̃2m
p restricted to the fiber

of (b m, cm)∞ is a parabolic map h̆. This implies the density inMω
ϵ of analytic dynamics

leaving invariant normally hyperbolic, periodic circles at which they are parabolic.

Now take p′=p+(0, v′) with v′>0 small. Then, the restriction h̆v′ of f̃2m
p′ restricted

to the fiber of (b m, cm)∞ satisfies x⩽h̆(x)<h̆v′(x) for every x∈P 1(R), so h̆v′ has none

fixed points, and so its rotation number differs to the one of h̆ which is zero. Thus, by

continuity of the rotation number, there exists v′ small such that the rotation number of

h̆v′ is Diophantine. This implies the density inMω
ϵ of analytic dynamics leaving invariant

normally hyperbolic, periodic circles at which they are Diophantine rotation.

Then, a proof of the following problem would imply the local density of fast growth

of the number of periodic points among analytic maps (for the inductive topology) by

using Corollary 4.11 and then Grauert and Cartan B theorems.

Problem 4.12. Let f∈Cω(M,M) and let C be a C∞-circle included in M at which

f is normally hyperbolic and such that the rotation number of f |C is Diophantine. Show

that C is analytic.

4.2. Theorem B

The proof of this Theorem B has a similar structure as the one of Theorem A, using

Theorems 1.9 and 1.11 instead of Theorem 1.8 and Cr-λ-parablenders instead of λ-

blenders. However, the perturbations will be more tricky to perform.

Proof of Theorem B. Let us show the existence of a locally dense subset D̂ satis-

fying the assumptions of Theorems 1.9 and 1.11, and which is formed by families of

diffeomorphisms when n=dimM⩾3.

Let Bλ
r and (gbp )b ∈Bλ

r
be as in 2.13 for every p∈Bk. Let

gcp:x 7−!
3

2

x

x+1

for every p∈Bk. We consider these maps as acting on the compactification P 1(R) of R.
Let

A =Bλ
r ∪{c }
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for a symbol c . By Proposition 3.8, for any ∞>r⩾1, there is a C∞-embedding j of Σ×
P 1(R) into the manifold P 1(R)×(−1, 1)n−1⊂M and a C∞-family (fp)p∈Bk

of C∞-self-

maps fp of M (which are diffeomorphisms if n⩾3) which are (r+2)-normally expanding

(or hyperbolic if n⩾3) at L:=j(Σ×P 1(R)) and such that gp=j−1�fp�j is the canonical

map of End∞σ (Σ×P 1(R)) associated with (gA
p )a∈A .

Let M̂ be a small Cr-open neighborhood of (fp)p intersected with the subset of C∞-

families. Given (f̃p)p∈M̂, let (j̃p)p be the family of embeddings given by Corollary 3.7

and let g̃p :=j̃−1p �f̃p�j̃p∈Endrσ(Σ×P 1(R)) and L̃p :=j̃p(Σ×P 1(R)). The assumptions of

Theorem 1.9 are implied by the following shown below.

Claim 4.13. There is a neighborhood B′k of 0∈Bk such that, for all η>0 and all

(f̊p)p∈M̂, there is η′>0 satisfying the following property. For every p0∈B′k, there exists

m⩾1, a 2m-periodic s ∈Σ and (f̃p)p∈M̂ which is Cr-η-close to (f̊p)p, satisfies f̃p=f̊p

for every p /∈([−η′, η′]k+p0), and such that, for every p∈
[
− 2

3η
′, 2

3η
′]k+p0, the restriction

f̃2m
p |j̃p({s }×P 1(R)) displays a parabolic point depending continuously on p and if r⩾2 this

circle diffeomoprhism is parabolic.

For every n0∈{0, 1}k and η>0, let η′>0 and let (f̃p)p be the family whose restric-

tion to [−η′, η′]k+p0, for p0 in the finite set {η′n0+2η′n:n∈Zk}∩B′k, is given by the

above claim applied to (f̊p)p. Note that (f̃p)p is of class Cr and η-distant from (f̊p)p.

Furthermore it satisfies the following property:

(P(n0)) For every n∈Zk, there exists a 2m-periodic point s (n)∈Σ such that, for

p∈
{
η′(n0+2n)+

(
− 2

3η
′, 2

3η
′)k}∩B′k,

the restriction of f̃2m
p to the fiber j̃p({s (n)}×P 1(R)) displays a parabolic point depending

continuously on p and if r⩾2 this circle diffeomorphism is parabolic.

Now, assume we embedded 2k=Card{0, 1}k such normally hyberbolic fibrations at

different places of M and label each by distinct numbers n0∈{0, 1}k. Then, we apply

Claim 4.13 to each of these fibrations. This provides 2k different perturbations at uni-

formly distant subsets of M . Thus, there is a Cr-perturbation of the family of dynamics

on the whole phase space whose restriction to the normally hyperbolic fibration indexed

by n0 satisfies P(n0), for every n0∈{0, 1}k. As⋃
n0∈{0,1}k,n∈Zk

{
η′(n0+2n)+

(
−2

3
η′,

2

3
η′
)k}

=
⋃

n∈Zk

{
η′n+

(
−2

3
η′,

2

3
η′
)k}

=Rk,

we have shown the existence of a Cr-locally dense set D̂0 of smooth families (f̃p)p∈B′
k

satisfying the assumption of Theorem 1.9 with B′k instead of Bk. To get Bk instead of

B′k, we regard D̂ :={(f̃τ ·p)p∈Bk
:(f̃p)p∈Bk

∈D̂0}, with τ>0 such that B′k⊃τ ·Bk.
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Proof of Claim 4.13. First recall that we may assume that M=P 1(R)×(−1, 1)n−1.
Also, we have the following.

Fact 4.14. Up to a Cr+1-family of coordinates change close to the identity, we may

assume that for any p∈Bk, j̃p(Σ×{0})⊂{0}×(−1, 1)n−1, and if the 0 letter of s ∈Σ is c ,
then the map g̃sp fixes zero.

Proof. Let Rp be the source of the fiber of L̃p based at c∞. Using a coordinate

change close to the identity, we may assume that it is in {0}×(−1, 1)n−1. Also, its strong

unstable manifold Wuu
loc (Rp, f̃p) is of class C

∞ and depends C∞ on p. By Remark 3.10,

we may assume it 1-dimensional and that the local strong stable manifold of its points

form a Cr+1 submanifold Np which depends Cr+1 on the parameter p. This family of

submanifolds is Cr close to the constant family {0}×U for an open subset U of (−1, 1)d

and intersects transversally each fiber of L̃p at a point close to zero. Moreover, it is

locally invariant: Np∩f̃−1p (Np) is an open set of Np.

We achieve the proof using a coordinate change Cr+1-close to the identity of M

sending Np into {0}×(−1, 1)n−1 and changing the coordinate of the fibers so that Np

intersects them at zero.

Similarly to the proof of Theorem A, let Pm be the set of 2m-periodic points of

Σ whose A -spelling is of the form s=(b m ·cm)∞: its letters at the positions 0, ...,m−1
form a word b m∈(Bλ

r )
m, and its m next letters are c . Then, we denote

g̃b m
p := g̃s

m−1

p �...�g̃s
0

p and g̃c
m

p := g̃s
2m−1

p �...�g̃s
m

p , with s j :=σj(s ) for every j⩾ 0. (4.4)

Note that, when (g̃p)p=(gp)p, we have g̃
cm
p =(gcp)

m for every p∈Bk and g̃b m
p =gb m

p , where

gb m
p is the element of the semi-group spanned by (gbp )b ∈Bλ

r
. Using Fact 4.14, we have

g̃c
m

p (0)=0. Let

x̃p(b m)= g̃b
m

p (0), λ̃p(b m)=
1

m
log |D0g̃

b m
p | and λ̃p(cm)=

1

m
log |D0g̃

cm
p |.

We notice that x̃p(b m) belongs to (−2, 2), also λ̃p(cm)≈log 3
2 and λ̃p(b m)<0. Note that

if x̃p(b m)=0, then it is the unique point of g̃b
m

p in (−2, 2). The proof of the following is

the same as the one of Proposition 4.2.

Proposition 4.15. Let r⩾2. For M̂ and B′k small enough, for every (b m ·cm)∞∈
Pm with m large, for every (f̃p)p∈M̂ and p∈B′k, the map h̆p :=g̃c

m

p �g̃b m
p is parabolic if

x̃p(b m)= 0 and λ̃p(cm)+λ̃p(b m)= 0.

Hence, Claim 4.13 is a consequence of the next claim for every r⩾1.
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Claim 4.16. For M̂ and B′k small enough, for all η>0 and (f̊p)p∈M̂, there exists

η′>0 such that the following holds.

For every p0∈B′k, there exists (f̃p)p∈M̂ which is Cr-η-close to (f̊p)p, satisfies

f̃p=f̊p for all p /∈([−η′, η′]k+p0), and there exists (b m ·cm)∞∈Pm with m large at which

x̃p(b m)= 0 and λ̃p(cm)+λ̃p(b m)= 0 for all p∈
[
− 2

3η
′, 2

3η
′]k+p0.

Proof. The following applies the Cr-λ-parablender property; it assumes M̂ and B′k
small enough.

Lemma 4.17. For every p0∈B′k and (f̃p)p∈M̂, when m is large, there exists

(b m ·cm)∞ ∈Pm

such that Jr(x̃p(b m))p is small and Jr−1
p0

(λ̃p(cm))p+Jr−1
p0

(λ̃p(b m))p is small.

Proof. Assume that Σ=A N. We recall that c∞∈Σ denotes the point whose A

spelling is formed uniquely of the letter c . We recall that zero is the repulsive fixed point

of gc
∞

p , let λ̃p(c∞) be its Lyapunov exponent. For M̂ and B′k small enough, we have that

(−λ̃p(c∞))p is Cr−1-close to
(
log 2

3

)
p
. Then, by Example 3.20, the jet

(c∞, 0,−Jr−1
p0

(λ̃p(c∞))p)

is included in the Lyapunov fibration of the unstable set of the λ-Cr-parablender equal

to the continuation of (Bλ
r )

N×[−1, 1]. Thus, with
←−
Σ ′ the space of σ-preorbits with 0-

coordinate in Bλ
r (see Example 3.20), there is s=(s−m)m⩾1∈

←−
Σ ′ such that, with

v−m=(s−m, 0),

lim
m!∞

Jr
p0
(gmp (v−m))p =(c∞, 0)

and

lim
m!∞

Jr−1
p0

(
1

m
log |∂xgmp (v−m)|

)
p

=−Jr−1
p0

(λ̃p(c∞))p.

Note that each s−m is the concatenation of b m∈Bλ
r with c∞. By Lemma 4.7 (whose

statement and argument are still valid in the present setting), this implies

lim
m!∞

Jr
p0
(x̃p(b m))p =

m!∞
0 and lim

m!∞
Jr−1
p0

(λ̃p(cm))p+Jr−1
p0

(λ̃p(b m))p =0.

If Σ=A Z, we observe that the statement of the lemma is invariant by the Cr-conjugacy

of P 1(R)×Σ given by Proposition 3.11 which leaves invariant zero by Fact 4.14. So, we

can use the case Σ=A N to get the case Σ=A Z, as we did in Claim 4.3.
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Now, we fix m large and b m given by the previous lemma. The idea is to perturb

the dynamics so that x̃p(b m)=0 and λ̃p(cm)+λ̃p(b m)=0. Contrarily to the proof of

Claim 4.3, it is difficult to handle such a perturbation using new parameters, since we

have only Cr−1-bounds on the family (λ̃p(cm)+λ̃p(b m))p. So, the perturbation technique

is going to be extrinsic.

Recall that s :=(b m ·cm)∞ and s j :=σj(s ). Note that sm=(cm ·b m)∞. Let

Sp := j̃p(sm, 0) and S′p = j̃p(sm, x̃p(b m)).

Observe that f̃2m
p (Sp)=S′p and Jr

p0
(S′p)p is close to Jr

p0
(Sp)p. Indeed, f̃m

p (Sp)=j̃p(s , 0)
and so f̃2m

p (Sp)=j̃p(sm, x̃p(b m))=S′p. As Jr
p0
(x̃p(b m))p is small, it comes that Jr

p0
(S′p)p

is close to Jr
p0
(Sp)p. The following lemma makes a perturbation of (f̃p)p so that S′p=Sp

when p is uniformly close to p0. Then, Sp will be a 2m-periodic point or equivalently

x̃p(b m)=0 as sought by the first equality of Claim 4.16.

Lemma 4.18. There exists η′>0 which is independent of p0∈B′k such that, when m

is large, there is an 1
2η-C

r- perturbation of (f̃p)p which is supported by p∈p0+[−η′, η′]k

and such that, for every p∈p0+[− 2
3η
′, 2

3η
′]k, the points S′p and Sp coincide. In other

words, x̃p(b m)=0. Moreover, the families (λ̃p(cm))p and (λ̃p(b m))p are unchanged.

Proof. It suffices to notice that the L̃p-fiber of the point f̃2m−1
p (Sp) is isolated with

respect to the fibers of the other points (f̃k
p (Sp))0⩽k⩽2m−2. Indeed, the letters at the

0 and 1 position of sm−1 are in Bλ
r and {c }, respectively, while it is not the case for

the other s k. Thus, we can use a translation along this fiber so that S′p is sent to

Sp, and extends this translation at a neighborhood of this fiber (using a Cr-tubular

neighborhood). Then, using a bump function we perform a local perturbation of (f̃p)p so

that this perturbation is supported by the product of a small neighborhood of f̃2m−2
p0

(Sp0)

with p0+[−η′, η′]k, while f̃2m−1
p (Sp) is sent to Sp for every p∈p0+

[
− 2

3η
′, 2

3η
′]k. Note

that such perturbation does not changed the fiber of the orbit of s . Furthermore, as

Jr
p0
(S′p)p is close to Jr

p0
(Sp)p, the family of translation is Cr-small, and so is its product

with the bump function when η′ is sufficiently small.

Actually η′ does not depend on m large nor p0. Indeed, (Sp)p∈Bk
and (f̃m

p (Sp))p∈Bk

belongs to the set of Cr-families (j̃p(s ′, 0))p∈Bk
. These depend continuously among s ′ in

the compact set Σ. So, the modulus of continuity of their rth derivatives is uniform. The

same occurs for the set of families (f̃ j
p (Sp))p∈Bk

among m⩽j⩽2m, which is included in

the set of fixed points of a compact families of fiber contractions. Thus, the moduli of

continuity of the rth derivatives of (Sp)p and (S′p)p are bounded independently of p0∈B′k
and m large. This gives the sought property.
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Now, it remains to perturb the dynamics to make the periodic point Sp semi-

parabolic (which is now equivalent to λ̃p(cm)+λ̃p(b m)=0). There are two difficulties.

First, the perturbation should be done in many fibers, since we have to perturb the

average central Lyapunov exponent: this must be done at many fibers. Secondly, this

average Lyapunov exponent is only small in the Cr−1-topology while we have to handle

a Cr-perturbation. However, we have the following.

Lemma 4.19. There is a Lipschitz map which sends Cr−1 families λ=(λp)p∈Bk
of

numbers λp to Cr-families (hλ
p)p∈Bk

of self-maps hλ
p of P 1(R) such that h0

p is the identity

and,for every λ,

hλ
p(0)= 0 and log |D0h

λ
p |=λp.

Proof. Given a point (0, p1)∈{0}×Bk, the following is a Cr-jet of a real function on

R×Bk:

Jr
0,p1

u(λ)(x, p)=x·
∑
|j|⩽r−1

1

(j+1)!
∂j
p(expλp1)(p−p1)j+1−x.

By Whitney extension Theorem [23, Theorem 2.3.10], there is a Lipshitz, linear operator

u which sends λ to a function u(λ) from P 1(R)×Bk into R, such that its Cr-jets at

{0}×Bk matches with the above expression. Then, using a bump function, we may

assume that u(λ) is compactly supported. Then, put

hλ
p :x∈P 1(R) 7−!x+u(λ)(x, p)∈P 1(R).

Recall that we assumed that M=P 1(R)×(−1, 1)n−1 and that the fibers of L̃p are

transverse to the fibers of P 1(R)×(−1, 1)n−1!P 1(R). This does not change the limit of

Jr−1
p0

(λ̃p(cm))p+Jr−1
p0

(λ̃p(b m))p

when m!∞ to assume that the norm on the tangent space of L̃p is induced by the first

coordinate projection

P 1(R)×(−1, 1)n−1−!P 1(R).

Now we use the latter lemma, with λ=(−2λ̃p(b m)−2λ̃p(cm))p. This provides a

family of maps hλ
p :P

1(R)!P 1(R) fixing zero and having the jet defined by λ. Let (Hλ
p )p

be a Cr-family of maps of M which leaves invariant the trivial fibration

P 1(R)×(−1, 1)n−1−! (−1, 1)n−1,

which is Cr-close to the identity, coincides with the identity nearby any fiber with 0-letter

in Bλ
r and equal to hλ

p nearby any other fibers. Then, Sp is still a 2m-periodic point



generic family displaying a fast growth of periodic points 251

for Hλ
p �f̆p. Also, half of points in the orbit of Sp have their derivatives along the fibration

multiplied by exp(2λp), while the others are unchanged. Thus, Sp is semi-parabolic for

Hλ
p �f̆p. Note that, after this perturbation, the fibration might have changed. However,

the 2m-periodic point Sp shadows the normally hyperbolic, 2m-periodic fiber of sm and

so must lie in it.

5. Perturbation of families of parabolic circle maps to constant rotations

This section is devoted to the proof of Theorem 1.4. Let k∈N and let B⊂Rk be an open

subset. Let (gp)p∈B be a C∞-family of circle diffeomorphisms so that, for every p∈B,

the map gp is parabolic. Given any B′⋐B, we want to find a C∞-perturbation (g̃p)p∈B

of (gp)p∈B such that g̃p displays a Diophantine rotation number which does not depend

on p∈B′.

We shall work with the coordinates given by a 1-point compactification P 1(R) of R.
Hence, given a<b∈R, we will denote by (a, b) the segment of R⊂P 1(R), and by (b,∞, a)

the arc of P 1(R) containing ∞ and with endpoints {a, b}.

Sketch of proof. The proof of the theorem is done by the following steps:

(1) First we show that in a C∞-family of coordinates, we may assume that, for every

p∈B,

(a) the map gp fixes zero, satisfies D2gp(0)=2 and sends
{

1
2 , 1,−1

}
to

{
1,−1,− 1

2

}
;

(b) up to a C∞ perturbation of (gp)p, the restriction of gp to
[
−1, 1

2

]
coincides with

the time-1 flow of a smooth vector field Xp on [−1, 1] depending C∞ on p.

(2) We look at a family of perturbations (gpη)p for η-small defined by

� gpη is equal to gp on
(
1
2 ,∞,−1

)
;

� gpη coincides on
[
−1, 1

2

]
with the time-1 map of the flow of the vector field Xp+

ρ·η2 for a fixed ρ∈C∞(R, [0, 1]) supported by
(
− 1

2 ,
1
2

)
and such that ρ(0)=1.

Then, we show that in some coordinates (given by the two canonical extensions ofXp

over (1,∞,−1)) the first return map Gpη of gpη in (1,∞,−1) is of the form Gp0+ω+

p (η),

with (p, η) 7!ω+

p (η) of class C
∞.

(3) We show the existence of a C∞-family (Ωp)p of functions Ωp∈C∞([0,∞),R)
such that Ωp(0)=1/π and ω+

p (η)=Ωp(η)/η mod 1 for every p; using an integral formula

on ω+

p (η).

(4) We use the following KAM’s theorem of Herman–Yoccoz.
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Theorem 5.1. (Herman–Yoccoz) For every β∈R Diophantine, let Vβ be the set

of circle diffeomorphisms in Diff∞(R/Z) whose rotation number is β. Then, Vβ is a

smooth submanifold of codimension 1. Moreover, for every f∈Vβ , the family (f+b)b∈R

is transverse to Vβ at b=0.

Proof. By Yoccoz’ Theorem 1.1, we may assume that f is the rotation of angle β.

Then, the theorem is stated in [14, Remark 3.1.3].

Then, given a Diophantine number β, we can define implicitly an arbitrarily C∞-

small function p 7!η(p) (for the compact-open topology), so that the return map Gpη(p)

displays the rotation number β for every p∈B′. This implies that the rotation number

of gpη(p) is of the form 1/(N+β), and so is Diophantine as well. In other words, with

g′p :=gpη(p), the family (g′p)p satisfies the sought properties.

Step 1: Setting. (a) Let xp∈P 1(R) be the fixed point of gp for p∈B. As the map

gp is parabolic, ∂xgp(xp)=1 and ∂2
xgp(xp) ̸=0. Hence, xp can be defined (locally) as the

zero of

(x, p) 7−! ∂xgp(x)−1.

Hence, by the implicit function theorem, the map p 7!xp is of class C∞. Thus, by a

smooth coordinate change, we may assume that xp=0 for every p∈B. Then, we can

conjugate the dynamics by the Moebius function

x 7−! 2·x
D2gp(xp)

for every p∈B, so that for every p∈B we have

gp(0)= 0, Dgp(0)= 1 and D2gp(0)= 2.

Now, we conjugate gp by a smooth family of diffeomorphisms, equal to the identity on

a neighborhood of zero and sending 1
2 , gp

(
1
2

)
, g2p

(
1
2

)
and g3p

(
1
2

)
to 1

2 , 1, −1 and − 1
2 ,

respectively (see Figure 1).

(b) Let d⩾2 and

Gd =

{ r∑
j=2

gj
j!
xj : (gj)

d
j=2 ∈Rd−1

}
.

Given X∈Gd, let ϕX be the time-1 flow of the vector field x+X(x). Let Jd
0ϕX be the

Cd-jet of ϕX:

Jd
0ϕX =

d∑
j=0

∂jϕX

j!
xj =x+

d∑
i=2

∂jϕX

j!
xj .
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−11 ∞

1
2 − 1

2

0

Xp

gp gp

gp

Figure 1.

In other words, Jd
0ϕX belongs to the space Gd of Cd-jets of parabolic maps at zero:

Gd =

{
x+

d∑
j=2

pj
j!
xj+o(xd) : (pj)

d
j=2 ∈Rd−1

}
.

Proposition 5.2. The map X∈Gd 7!ϕX∈C∞(R,R) is smooth. Moreover, the fol-

lowing map is a diffeomorphism onto its image:

Ψ:X∈Gd 7−! Jd
0ϕX ∈Gd.

Proof. The first statement of this proposition is a simple consequence of the Cauchy–

Lipschitz theorem. The second part of the proposition involves the Lie group theory.

Indeed, the Cd-jet spaceGd endowed with the composition rules is a Lie group. Moreover,

it satisfies the following.

Fact 5.3. The group Gd is connected, simply connected and nilpotent.

Proof. The group Gd is homeomorphic to Rd−1, and hence it is connected and simply

connected. Let

G
(s)
d := {ϕ∈Gd : ϕ(x)=x+O(xs+2)}

for s⩾0. A computation gives [Gd, G
(s)
d ]⊂G(s+1)

d . Since G
(d−1)
d is trivial, Gd is nilpotent

with rank ⩽d−1.

We notice that Gd is the Lie algebra of the group Gd. Moreover, the jet of ϕX is the

image by the exponential map exp of X∈Gd. Indeed, if ϕt
X=exp(t·X) and so ϕX=ϕ1

X,

we have

ϕt+δt
X =ϕδt

X �ϕt
X =(id+δt·X)�ϕt

X+o(δt).

Finally, we infer that for a simply connected and nilpotent Lie group, the exponential

map is an analytic diffeomorphism from the Lie algebra onto the group; cf. [17, p. 13,

Theorem 1.2.1].
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Corollary 5.4. There exists a C∞-map p 7!Xp∈Gd such that

Jd
0ϕXp = Jd

0 gp

for every p.

Let us fix a bump function ρ equal to 1 on
[
− 1

4 ,
1
4

]
and with support in

(
− 1

2 ,
1
2

)
,

and for ϵ>0 small, put

g̃p:x 7−! ρ
(x
ϵ

)
·ϕXp(x)+

(
1−ρ

(x
ϵ

))
·gp(x).

Lemma 5.5. For d large and then ϵ>0 small, the family (g̃p)p∈B is C∞-close to

(gp)p∈B.

Proof. We have

gp(x)−g̃p(x)= ρ
(x
ϵ

)
(gp(x)−ϕXp

(x)).

For every j⩽d, we notice that (p, x)∈B×[−ϵ, ϵ] 7!gp(x)−ϕXp
(x) has its jth derivative

which is small with respect to ϵd−j . On the other hand, the jth derivative of ρ(x/ϵ) is

dominated by ϵ−j . Hence, by Leibnitz formula, the Cd-norm of

(p, x)∈B×(−ϵ, ϵ) 7−! gp(x)−g̃p(x)

is small when ϵ is small.

Observe that (g̃p)p∈B satisfies condition (a), and is equal to the time-1 map of the

flow defined by Xp at the neighborhood of zero. Using the formula Dg̃p�Xp�g̃
−1
p =Xp,

we pull back Xp to extend it to [−1, 0], and we push forward to extend it on [0, 1]. This

defines a smooth family of vector field on [−1, 1] such that condition (b) holds true.

Hence, we can suppose that, after perturbation, (gp)p∈B satisfies conditions (a) and (b),

and furthermore we have the following.

Claim 5.6. We have Xp(x)=x2+O(x3) for every p.

Proof. When x!0, we have that Jd
0 g

2
p(x)−Jd

0 gp(x) is equivalent to both

1
2D

2gp(0)x
2 =x2 and Xp(x).

Step 2. Definition of (gpη)p,η and uniform bound on its first return map. Recall

that ρ is a bump function equal to 1 on
(
− 1

4 ,
1
4

)
and with support in

(
− 1

2 ,
1
2

)
. For η>0

small, let

Xpη:x∈ [−1, 1] 7−!Xp(x)+η2ρ(x).
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We recall that, for x in
[
−1, 1

2

]
the time-1 map of the flow of Xp is well defined and equal

to gp. Also, gp sends −1 to − 1
2 and 1

2 to 1, and the images by the flow of Xp of these

points during times in [0, 1] are, respectively, [−1,− 1
2 ] and [ 12 , 1]. Thus, for η-small, the

time-1 map ϕ1
pη(x) of the flow is well defined on [−1, 1

2 ] and coincides with gp nearby

{−1, 1
2}. This implies the following.

Claim 5.7. The following family (gpη)p,η of C∞-dynamics gpη is well defined and

smooth:

gpη:x 7−!
{

ϕ1
pη(x), if x∈

[
−1, 1

2

]
,

gp(x), if x∈
(
1
2 ,∞,−1

)
.

For η>0, let us study the first return map Tpη of gpη into [1,∞,−1]=[1,∞, gpη(1)].

To this aim, we shall work with two different possible extensions ofXp|[−1,1] on (1,∞,−1).
Let {

X+

p :=x∈ [1,∞,−1) 7!Dgp�Xp�g
−1
p (x),

X−
p :=x∈ (1,∞,−1] 7!Dg−1p �Xp�gp(x).

In general, X+

p and X−
p are different. As Xp|[−1,1] is equal to Xpη|[−1,−1/2]∪[1/2,1],

we have the following.

Fact 5.8. The vector field X+

p extends smoothly Xpη|(−1,1) to one denoted by X+

pη

on P 1(R)\{−1}. Also, X−
p extends smoothly Xpη to one denoted by X−

pη on P 1(R)\{1}.

We now study the first return map Tpη in (1,∞,−1] induced by gpη. The idea is

to glue the endpoints 1 and −1=gpη(1) of this interval by the dynamics, so that the

quotient (1,∞,−1]/∼ is a circle, and the action of Tpη on it enjoys nice bounds when

η!0.

Let N=N(η) be the first return time of −1 into (1,∞,−1], let

ωp(η)= gNpη(−1)∈ (1,∞,−1].

As gpη is orientation preserving, the point at the left of −1 (see Figure 2) are sent by gNp
at the left of ωp(η) until they exit of [−1,∞, 1]. Let αp(η)∈[1,∞,−1] be the point sent

by gNpη to 1. Hence,

Tpη(−1)=ωp(η) and Tpη(αp(η))∼ 1.

To bound Tpη, we consider the diffeomorphisms C+

p and C−
p from [0, 1] onto [1,∞,−1]

which with t∈[0, 1] associate the image of 1 by the time t of the flow of X+

p and X−
p ,

respectively:(8)

C+

p : [0, 1]! [1,∞,−1] and C−
p : [0, 1]! [1,∞,−1].

(8) In this definition, we considered the continuous extensions of X+
p |[1,∞,−1) and X−

p |(1,∞,−1] to
[1,∞,−1].
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Xp

ωp(η) X+

p

X−
p

ω+

p (η)

1 −1

0 1

0 1α−
p (η)

αp(η)

1
2 − 1

2

Xpη

Φp

C−
p

C+

p

Tpη

Figure 2. Notation for the parabolic renormalization.

Remark also that both C±
p do not depend on η, since X±

p does not depend of η.

Let T−
pη :=(C−

p )
−1

�Tpη �C
−
p be the first return map Tpη seen in the coordinates C−

p .

Let α±
p (η) and ω±

p (η) be the preimages of αp(η) and ωp(η) by C±
p . We observe that (see

Figure 2)

T−
pη(1)=ω−

p (η) and T−
pη(α

−
p (η))= 0.

We define the following coordinates change:

Φp: [0, 1] 7−! (C−
p )
−1

�C+

p (t)∈ [0, 1].

Claim 5.9. The first return map T−
pη satisfies{

T−
pη(s)=Φp(s+1−α−

p (η))=Φp(s+ω+

p (η)), if s<α−
p (η),

T−
pη(s)=Φp(s−α−

p (η))=Φp(s+ω+

p (η)−1), if s>α−
p (η).

Proof. As depicted in Figure 2, there is a segment which projects canonically twice

on [−1,∞, 1] and once on [−1, 1], so that X+

p , X
−1
p and Xpη define a smooth vector field

on it. The image of αp(η) and −1 by the time N of its flow are 1 and ωp(η), respectively.

Hence, the time needed to go from αp(η) to −1 equals the time needed to go from 1 to

ωp(η). This means that

1−α−
p (η)=ω+

p (η).

If s>α−
p (η), then the first return of x=C−

p (s) in [1,∞,−1] is the image by the flow X+

p

of 1 after a time s−α−
p (η). In the coordinate C+

p , it is s−α−
p (η). In the coordinate C−

p ,

it is Φp(s−α−
p (η)).

If s<α−
p (η), then the first return of x=C−

p (s) in [1,∞,−1] is the image by the flow

X+

p of ωp(η) after a time s. In the coordinate C+

p , it is ω
+

p (η)+s. In the coordinate C−
p ,

it is Φp(ω
+

p (η)+s).
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Claim 5.10. After gluing the endpoints of [0, 1] by the translation by 1, the map

T−
pη is a smooth map of the circle R/Z, and the family (T−

pη)p,η is of class C∞.

Proof. It is classical [40] that the first return map gpη into [1,∞, gpη(1)]=[1,∞,−1]
is projected to a smooth map of the circle obtained by gluing the endpoints of [1,∞, gpη(1)]

using gηa. Seen in the chart C−
p , this corresponds to glue the endpoints of [0, 1] using the

translation by +1. In this specific parabolic context, this map was called “the essential

map” in [34].

With the conjugacy s 7!s+ω+

p (η) and by Claim 5.9, we obtain the following.

Corollary 5.11. The first return map Tpη of gpη is smoothly conjugated to

Rpη: s∈R/Z 7−!Φp(s)+ω+

p (η)∈R/Z

Step 3. We shall study the derivative of ω+

p (η) mod 1 with respect to η when η!0.

We recall that the time needed for the flow Xpη to go from −1 to 1 is

τp(η) :=

∫
[−1,1]

1

Xpη
dLeb .

We notice that ω+

p (η)+τp(η)=N∈Z, and so

ω+

p (η)=−τp(η) mod 1.

By Claim 5.6, there exists X1
p,η∈C∞([−1, 1],R) such that

Xp,η(x)=x2X1
p,η(x)+η2.

As gp has a unique fixed point at zero, the field X1
p0 is positive on [−1, 1], with value 1

at zero by Claim 5.6. Thus, for η small, there exists C>0 such that

X1
p,η(0)= 1 and X1

p,η ⩾C > 0. (5.1)

In this notation, we have

η ·τp(η)=
∫
[−1,1]

η

s2 ·X1
pη(s)+η2

ds.

We put s=η ·t and we have

η ·τp(η)=
∫ 1/η

−1/η

1

1+t2X1
pη(ηt)

dt, for all η ̸=0.

Let Ψ(t, p, η):=1+t2X1
pη(ηt).

Lemma 5.12. For every n⩾0, there exists Cn>0 such that, for every p∈B′ and η

small, ∣∣∣∣∂n
pη

1

Ψ(t, p, η)

∣∣∣∣⩽ Cn

1+t2
.
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Proof. The case n=0 is an immediate consequence of inequality (5.1). Let n⩾0 and

assume by induction that Lemma 5.12 holds for every k⩽n. By Leibniz formula applied

to Ψ/Ψ, we have
n+1∑
k=0

Ck
n+1∂

k
pη

1

Ψ(t, p, η)
·∂n+1−k

pη Ψ(t, p, η)= 0,

which implies

∂n+1
pη

1

Ψ(t, p, η)
=− 1

Ψ(t, p, η)

n∑
k=0

Ck
n+1∂

k
pη

1

Ψ(t, p, η)
·∂n+1−k

pη Ψ(t, p, η).

It is easy to see that, for 0⩽k⩽n, the derivative ∂n+1−k
pη Ψ(t, p, η) is bounded by a certain

C ′ ·t2. Hence, the induction hypothesis gives∣∣∣∣∂n+1
pη

1

Ψ(t, p, η)

∣∣∣∣⩽ C0

1+t2

n∑
k=0

C ′ ·t2 · Ck

1+t2

Hence, the above sum is bounded from above by Cn+1/(1+t2), for Cn+1∈R independent

of t, p∈B and η small.

We notice that, by the dominated function theorem, the function

(p, η) 7−! η ·τp(η)

is of class C∞. Moreover, we have

lim
η!0

η ·τp(η)=
∫
R

1

Ψ(t, p, 0)
dt=

∫
R

1

1+t2
dt=π.

Consequently, the following holds.

Fact 5.13. There exists a C∞-family (Ωp)p of C∞-functions Ωp∈C∞([0,∞),R)
such that

ω+

p (η)=
Ωp(η)

η
mod 1.

Proof. Indeed, from the above discussion, the number Ωp(η):=−η ·τp(η) depends

smoothly on p∈R and η⩾0.

Step 4. We recall that the coordinates change Φp projects to a C∞-diffeomorphism

of the torus R/Z, and (Φp)p is of class C∞. Here is an immediate consequence of

Herman–Yoccoz’ Theorem 5.1.

Corollary 5.14. For every Diophantine number β, there exists a C∞-function

p∈B 7!θ(p) such that the map s 7!Φp(s)+θ(p)∈R/Z has rotation number equal to β.
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Hence it remains to solve implicitly:

ω+

p (η(p))= θ(p) mod 1 ⇐⇒ Ωp(η(p))

η(p)
= θ(p) mod 1.

As Ωp(0)=π, for every p0∈B there exists η(p0) arbitrarily small such that

Ωp(η(p0))

η(p0)
= θ(p0) mod 1.

Note that the following derivative is large for η small (since Ωp(0)=π and ∂ηΩp(0) is

bounded):

∂η

(
Ω(η)

η

)
=

η ·∂ηΩp(η)−Ωp(η)

η2
∼− π

η2
.

Hence, the implicit function theorem enables us to conclude that, for every B′⋐B,

there exists a small smooth function p∈B′ 7!η(p) such that Rpη(p) has rotation number

equal to β. Then, gpη(p) has a rotation number of the form

1

N+β
,

which is Diophantine as well. Note that (gpη(p))p∈B′ is C∞-close to (gp)p∈B′ . Thus,

Theorem 1.4 is proved.

Appendix A. Extrinsic definition of (λ)-blender and Cr-(λ)-parablender

Let us give for the first time the extrinsic definition of the λ-blender, Cr-parablender and

λ-Cr-parablender in the diffeomorphism case. The endomorphisms cases of these objects

(but not their λ-version) were extrinsically defined in [8], [11].

Let f be a diffeomorphism of a manifold M and let K be a hyperbolic basic set. We

assume that K is partially hyperbolic with a contracting central direction: there exists

a Df -invariant splitting TM |K=Ess⊕Ec⊕Eu such that, for every x∈K,

∥Dxf |Ess∥< ∥(Dxf |Ec)−1∥−1 ⩽ ∥(Dxf |Ec)∥< 1< ∥(Dxf |Eu)−1∥−1

We fix a continuous family of strong stable and unstable manifolds (W ss
loc(x; f))x∈K and

(Wu
loc(x; f))x∈K . The lamination Wu

loc(K; f):=
⋃

x∈K Wu
loc(x; f) is invariant by f−1, and

so is its tangent bundle. So, for every y∈Wu
loc(K; f) with y−n :=f−n(y), we can consider

the action [Dy−n
fn] of Dy−n

fn on the quotient vector spaces Ty−n
M/Ty−n

Wu
loc(K; f)

onto TyM/TyW
u
loc(K; f).
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Definition A.1. ((λ)-Blender) The hyperbolic compact set K is a blender if there

is C1-neighborhood V ss of a strong local stable manifold of K such that, for every

C1-perturbation f̃ of f and every W∈V ss, there exists x∈K such that W intersects

Wu
loc(x; f̃).

The blender K is a λ-blender if moreover dimEc=1 and there exists a non-empty

open subset Uλ⊂R such that, for every C1-perturbation f̃ of f and every W∈V ss and

ℓ∈Uλ, there exists x∈K such that W intersects Wu
loc(x; f̃) at a point y and we have

lim
n!∞

1

n
log ∥[Dy−n f̃n]∥= ℓ, with y−n := f̃−n(y).

Let us now give the parametric version of these definitions. Assume that (fp)p∈Bk
is

a Cr-family such that f0=f and assume that the hyperbolic continuation Kp of K=K0

is well defined for every p∈Bk. Given x0∈K0, we denote by xp∈Kp its continuation for

p∈Bk.

Definition A.2. ((λ)-Cr-Parablender) The continuation (Kp)p∈Bk
is a Cr-parablender

at p0∈Bk if there is a Cr-neighborhood V̂ ss of the continuation (W ss
loc(zp; fp))p of a lo-

cal strong stable manifold of a point z0∈K0 such that the following condition is satis-

fied. For every (f̃p)p Cr-close to (fp)p and every (Wp)p∈V̂ ss, there exist a continuation

(Wu
loc(xp; fp))p of a local unstable manifold of a point z0∈K0 and Cr-families of points

(Pp)p in (Wp)p and (Qp)p in (Wu
loc(xp; f̃p))p such that

Jr
p0
(Qp)p = Jr

p0
(Pp)p.

This continuation (Kp)p∈Bk
is a λ-Cr-parablender at p0 if moreover dimEc=1 and

there exists a non-empty open subset Jr
p0
Uλ⊂Jr−1

p0
R such that, for every (f̃p)p Cr-close

to (fp)p and any (Wp)p∈V̂ ss and ℓ∈Jr
p0
Uλ, there exist a continuation (Wu

loc(xp; fp))p of

a local unstable manifold of a point z0∈K0 and Cr-families (Pp)p in (Wp)p and (Qp)p in

(Wu
loc(xp; f̃p))p such that

Jr
p0
(Qp)p = Jr

p0
(Pp)p and lim

n!∞
Jr−1 1

n
log ∥[Dy−n

p
f̃n
p ]∥= ℓ, with y−np := f̃−np (yp).

References

[1] Arnold, V. I., Arnold’s Problems. Springer, Berlin; Phasis, Moscow, 2004.
[2] Artin, M. & Mazur, B., On periodic points. Ann. of Math., 81 (1965), 82–99.
[3] Asaoka, M., Abundance of fast growth of the number of periodic points in 2-dimensional

area-preserving dynamics. Comm. Math. Phys., 356 (2017), 1–17.
[4] Asaoka, M., Shinohara, K. & Turaev, D., Degenerate behavior in non-hyperbolic

semigroup actions on the interval: fast growth of periodic points and universal dynam-
ics. Math. Ann., 368 (2017), 1277–1309.



generic family displaying a fast growth of periodic points 261

[5] Avila, A., Distortion elements in Diff∞(R/Z). Preprint, 2008.
arXiv:0808.2334[math.DS].

[6] Bencs, F., Buys, P., Guerini, L. & Peters, H., Lee–Yang zeros of the antiferromagnetic
Ising model. Preprint, 2019. arXiv:1907.07479[math.DS].

[7] Berger, P., Persistence of laminations. Bull. Braz. Math. Soc., 41 (2010), 259–319.
[8] — Generic family with robustly infinitely many sinks. Invent. Math., 205 (2016), 121–172.

Correction in Invent. Math., 218 (2019), 649–656.
[9] — Emergence and non-typicality of the finiteness of the attractors in many topologies.

Proc. Steklov Inst. Math., 297 (2017), 1–27.
[10] — Complexities of differentiable dynamical systems. J. Math. Phys., 61 (2020), 032702,

12 pp.
[11] Berger, P., Crovisier, S. & Pujals, E., Iterated functions systems, blenders, and

parablenders, in Recent Developments in Fractals and Related Fields, Trends Math.,
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