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Abstract

Famous K. Gauss introduced reduced row echelon forms for matrices approximately 200 years ago to solve
systems of linear equations but the number of them and their structure has been unknown until 2016 when it was
determined at first in the previous article given up to (n—1)xn matrices. The similar method is applied to find reduced
row echelon forms for (n-2)xn matrices in this article, and all canonical bases for (n—2)-dimensional subspaces of

n-dimensional vector space are found also.
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Introduction

The canonical bases for (n-2)-dimensional subspaces of
n-dimensional vector space are introduced in the article, and all
nonequivalent of them are classified. Canonical bases for (n-1)-
dimensional subspaces of n-dimensional vector space were classified
in the previous article [2] of the same author. This new case of
(n—2)-dimensional subspaces is interesting to be studied because some
n-dimensional Lie algebras haven’t any (n—1)-dimensional subalgebras.
For example, in the article [3], it was proved that 6-dimensional Lie
algebra of Lorentz group doesn’t have any 5-dimensional subalgebra
but this Lie algebra has 4-dimensional subalgebras. We start to
introduce the necessary definitions.

Let V be an n-dimensional vector space with its standard basis

e.e,...,c, - Supposethat aj,a,,...,a,_, are(n-2)linearly independent
vectors in the space V where,

a=a,etape,t..ta,e, @, =0, +taye, +.+a),€,...4, ,=4,,,6+..+a,,,€, . (I)

The vectors (I) describe all possible bases for any (n-2)-dimensional
subspace S of V. This description contains too many arbitrary
components; their number is (n—-2)xn. Instead of that, we introduce
canonical bases with much smaller number of arbitrary components in
each of them (maximum 2(n-2)).

Definition 1: Two bases are called equivalent if they generate the
same subspace of V, and they are called nonequivalent if they generate
two different subspaces of V.

We will associate the following (1n—2)xn matrix M with a basis (I)

a a;, a,
a a a
21 2 2
M= " (II)
Ayoy Guap e Gy,

Definition 2: Two matrices are called row equivalent (or just
equivalent) if they have the same reduced row echelon form, and they
are called nonequivalent if they have different reduced row echelon
forms.

About reduced row echelon forms of matrices, see for example [1].

Definition 3: The basis (I) is called canonical if its vectors

a,,a,,...,a, , are the corresponding rows in some reduced row echelon

form of the matrix M.

Thus, there is one-to-one correspondence between nonequivalent
canonical bases for (n-2)-dimensional subspaces of n-dimensional
vector space and nonequivalent reduced row echelon forms for
(n—2)xn matrix M of the rank(n-2).

Part I. Basic Examples

Consider two examples of nonequivalent canonical bases for
(n—2)-dimensional subspaces of n-dimensional vector spaces where
n=4 and n=6.

Ex. 1: Let V be 4-dimensional vector space with its standard basis

el,g’ e;a . Any 2-dimensional subspace S of V can be described as

S = Span{a,,a,} Where,
a =a,6 +a,6e,+4a,36;,a,=a,€ +aye, +aye; -

This arbitrary basis is equivalent to one and only one canonical
basis from the next list:

(Da=e +ae +ae,b=e, +be +be,; (2) a=e+ae,+ae,b=c +be,;

(S)Zzzel+azez+a3a,l;=a; (4) E:g+a4a,l;=z3+b4a; (5)
a=€3,b=€4;(6)a:€,b’:ej.

Details of evaluation are omitted because it is similar (but easier) to
the evaluation in the example 2. The last canonical bases generate the
following 6 matrices associated with them:

10 a af|l a, 0 a|l a a O[]0 1 0 a0 1 a O0[|O O 1 0
01 b b0 o 1 b0 0o 0o 1001 5][00 0 17000 1]

Ex. 2: Let V be 6-dimensional vector space with its standard

basis e,e,,e;,¢,,6;,¢, . Any 4-dimensional subspace S of V can be

described as S = Span{a,b,c,d} where,

a=ae +a,e, +aye, +a,e, +ase; +age,, b=be +b,e, +be, +be, +bes +be
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c=ce +c,e, +cie+cie, +eses+ce, d=de +dye,+de;+de +de; +dgeg - (I11)

Start our transforming procedure for the basis {&,E,E,g} to find all
possible canonical nonequivalent bases.

A. Let at least one coefficient from a, b1> cp d1 in the basis (III)
is not zero. Without any loss in the generality, we can suppose that
a, # 0. Perform the linear operation ala, first, and operations
B—blzz, E—clzz, d —dlzz after the first one. As a result, the following
basis is obtained:

a=ae +ae, +a,e; +a,e, +ase, +age,, b=he, +b,e, +bye, +b,e, +boe, +bee, >
c=cye, +eje, e, +ees +cie,, d=dye, +dye, +d,e, +die,+d,e, . (a)

Remark 1: The first components of vectors a,b,c,d are changed
as the result of operations performed but all other components of them
still have the same notations just for the common convenience. This
idea will be used also in all steps of the procedure below.

1. Suppose now that at least one coefficient from b,, c,, d, at the
basis (a) is not zero. Without any loss in generahty, let b # 0 Perforrn
the linear operations: first 5/b,, and then g— a,b,c—c,b,d—d,b.
As the result, the following transformed basis is obtained:

a=e +ae, +ae, +ase, +a.e,, b=e, +bye, +b,e, +bse, +be, >
c=cye tce toses e, d=dye +de +dses+dge - 1)
2. Suppose that at least one coefficient among c,, d, at the basis (1)

is not zero. Again, without any loss in the generahty, let c,# 0 Perform

the operation c/c, first, and then operations @ — a,c, b—byc, d —dyc .

As the result, the following basis is done.
a=e +ae, +ase +age,b=e,+be, +be;+be,>
c=e tce tee,tege, d=de +dse +de - @)

3. Suppose now that the coefficient d, at the basis (2) is not
zero. Perform the operatlon dld, ﬁrst and then operations
a— a,d,b—b, d,c 7c4d . As the result, the following canonical basis
is obtained:

a=e +ase;+age, b=e, +be;+be, c=e;+cses +ege, d=e, +dse; +dge; - (al)

If d,=0 then the basis (2) is transformed into the following one:

a=e +ase, +ase;+age, b=e,+be, +bse, +be, 3)
c=e, +ce, +cse,+cie, d=dses+de
Vector d/«in the basis (3) has at least one nonzero coefficient d,or
d.Lletd #0.

Perform operation d/ d, first, and the operations
a- asd b— b, d c—c; d after the ﬁrst one. As the result, the following
canonical ba51s is obtamed

a=e +aye,+ase,b=e,+be, +be,c=e +c,e,+ce,d=e +dge, (a,)

Ifd . #0in the basis (3), then perform operation d/ d, first, and
operations a —ayd, b—bd, c —cyd after the first one. We obtain the
new canonical basis:

a=e +ae, +ae,b=e,+be, +be, c=e +ce,+cse,d=dse; +e - (33)

4. Suppose now that both coefficients c, d, at the basis (1) are zero.
We have:
a=e +aye, +a,e, +ase, +ase,, b=e, +be, +b,e, +be, +be,,

(4)

c=cye,+ces+cie,d=de, +dse; +dge

Consider coefficients c,, d, in the basis (4). Suppose that at least
one of them is not zero. Let ¢, # 0. Perform operation c¢/c, first, and
perform operations a —a,c, b b,c,d —d,c after the first one. The
following basis is obtained,

Zl:e—l"'ase—s"'ase—s"'ase—e’I;:e—z+bze—3+b5;5+begts"

E=a+cse~s+%e~m3=dse~s+d(,a

In the last basis, at least one coeflicient d5 or d6 is not zero.
Let d, # 0. Performing operation d/d;s first, and operations
a—agd,b—b,d,c—c.d after the first one, we obtain the new
canonical basis:

a=e +aye, +aze,b=e,+be, +he, c=e,+c.e,,d=e +de, - ()
If d, 0 then doing similarly we obtain the following canonical basis:
a=e +aye,+a,e,, b=e,+be, +be, c=e,+c.e,,d =dge, +e, - (a;)

If d, # 0 in the basis (4), then there will be obtained the bases that
are equivalent to (a,) and (a,).

5. Suppose now that both coefficients c,, d, in the basis (4) are zero.
We obtain:

a=e +ase; +ae, +ases+age, b=e, +be, +b,e, +be +be, (5)
c=cses+ce, d =dses+dgeg

In the last basis (5), at least one coefficient among o d5 is not zero. If
both coefficients dS, f are zero, then ¢ = ¢ 626, d=d a ,and vectors 4 7
arelinearly dependentbutit'simpossible for anyba51s Let * 0.Perform
the operation ¢/ ¢ first, and operations 4 —q ¢, bh—bc, ¢ —c.d after
the first one. We obtain the following basis:

a=e +ae;+ae,+ae,b=e, +be +be, +be,
c=e,+ce,,d=dge,

In the last basis, d # 0. Perform the operation ...« first, and the
operations g —a,d, b—b,d,c—c,d after the first one. We obtain the
new canonical basis:
a=e +ae +ae,b=e, +be +he,c=e,d=e,- (ay)
At the case when d,# 0 in the basis (5), we obtain the same basis (a,).

6. Suppose, in opposition to step 1, that all coefficients b,, c,, d, in
the basis (a) are zero. We obtain:

a :zl+azg+a3;3+a4a+a525+a6;5>B:bsa+b4a+bsa+bea=

c= C}% +c4g‘; +Csa + C(»gﬁ" d= d}% +d4a + dsg + daa

Consider coefficients b,, c,, d, in the last basis. Suppose that at least
oneofthemisnotzero. Let b # O (w1th0ut anylossin generality). Perform

the operation b /b, first, and the operations a —a;b, ¢ —c,b, d —d,b
after the first one. We obtain the following result:

a=e +a,e, +ae, +ae;+age,b=e +be, +be;+be,, )
c=c,e, +ces+ce,d=d,e, +dse;+dge

7. Suppose now that at least one coefficient from c,, d, in the basis
(6) is not zero. Let c,# 0. Perform the operation ¢/ ¢, ﬁrst and the
operations a—a,c, b b,c,b—b,c after the first one. The following
basis is obtained:

a=e +aye, +ase;+age, b=e,+be +be, @

c=e, +cses+cse,d=dse; +dgeg

In the basis (7), at least one from the coeflicients ds, d6 is not zero.
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Let d; # 0. Perform the operation d/d, first, and the operations
a- asd b—byd,c—c,d after the first one. We obtain the new
canonical ba51s

d=e +ae+ae.b=e+bhe.c=e +ce.d=e+de - (a
a=e +ae,+ae,b=e +he,c=e,+ce,d=e +de - (@)

If d, # 0 in the basis (7), we obtain the following canonical basis
performing similar steps:

a=e +a,e, +ae,b=e,+be,c=e, +ce, d=d,e,+e, . (a)

If d, 0 in the basis (6), we obtain the canonical bases that are
equivalent to (a,) and (a,).

8. Suppose now that both coefficients c,, d, in the basis (6) are zero.
We obtain:

a :a+azg+a4a+asa+aégr b :g+b4a+b5a+bea’ (8)

c=ce, +cie, d=dse, +dge,

In the basis (8) at least one coefficient from ¢, d, is not zero.
Otherwise, vectors c, d are linearly dependent. Let ¢, # 0 Perform the
operation ¢/ ¢, first, and the operations a — a;c, b- b ¢, d —d,c after
the first one. We obtain the following basis:

a=e +a,e,+ae, +age,b=e, +be, +be,c=e+ce,d=dge -

Performing one more obvious step, we obtain the following
canonical basis:

a:21+a22+a42,13:e‘3+b4a,2:2,3:2. (a,)
If d; 0 in the basis (8), then we obtain the canonical basis that is

equivalent to (a,).

9. Suppose now that all coefficients bz, Cyp d2 and b3, Cp d3 in the basis
(a) are zero. This is the new case that opposites to the case considered
in the step 6. We have:

a=e +a,e, +aye;+a,e, +ases+age, b=>be, +bse; +bgeg,
c=c,e, +cses+cge, d=d,e, +dse;+dge
In the last basis, at least one coefficient from b,, ¢, d, is not zero.

Otherwise, vectors are linearly dependent but it’s impossible for any
basis. Let b, # 0 (without any loss in the generality). Perform the

operation b/p, first, and the operations a-— a4l;, c— c4l;, d- d4l;
after the first one. We obtain the following basis:
a:a+azg+a3a+asa+aoa’B:a+bsa+bsa’

&)

c=cse,+cge, d =dse; +dgeg

In the basis (9), at least one coefficient among c,, d, is not zero.
Let ¢, # 0. Perform the operation cleg first, and the operations

a-ayb, c—c,b,d—d,b after the first one. The following basis is
obtained:
a=e +a,e, +ae;+age,b=e, +be,c=e+cie,d=de-

The obvious linear operations transform the last basis into the new
canonical basis:

a=e +aye, +a,e, +ase,b=e,+be, c=e+cee,d=dge,-(a,

If d, 0 in the basis (9), then the basis that is equivalent to (a,,) will
be obtained. We have analyzed all possibilities in the situation A.

B. Suppose now that all coefficients a, b1> s d] are zero in (III). The
following basis is obtained:

a=azez+ae1+a4e4+a56 +a6e5,b be7+be3+be4+bes+beé, . (b)

c—czez+c3e3+c494+cses+céeé,d d ez+d e3+d e4+d es+d 86

1. Consider coefficients a, bz, Cp d2 in the basis (b). Suppose now
that at least one coeflicient among a, b2> Cp d2 is not zero. Without

any loss in generality, let a, = 0. Perform next linear operations: ¢/

first, and l;—bza, E—cza, E—dza then. As the result, the next
transformed basis appears:

a=a,e, +ae, +a,e, +ase; +age, +be3+be4+bes+b eﬁ,

— @

b=b,e
d= dez+de}+d e4+de +dge,

et e b o 4o
2. Suppose now that at least one coefficient from b,, c,, d, in the
basis (1) is not zero. Without any loss in generality, let b 0. Perform
next linear operations: /b, first, and b—b,a, ¢ —c,a, d- d,a then.
As the result, the next transformed basis appears:
Zl:Z+a4e—4+ase—5+ase—6’E:e—3+b4a+bse—5+be;5’ )
c= C4Z4+Csa+%;w d :d4a+d5a+dsa
3. Consider coefficients c,, d, in the basis (2). Suppose that at least
one of them is not zero. Let ¢, # 0. Perform operation ¢ /¢, first, and
operations b—b,a, ¢ —c,a d d,a after the first one. We obtain the
following basis:

a=e,+vae, +ase, b=e, +be, + b, c=e,+cse, +c,e,, d=dse, +dye, (3)
The vector @ in the basis (3) has at least one non zero

coefficient in the last basis. If d, # 0 then performing operations

d/d,,a—a,d,b—byd,c—c,d ,weobtain the new canonical basis:

a= e2 +abe(,, b= e3 +b6e6, c= e4 + céeo, d= e5 +déeé . (&)
If d, # 0 then we obtain one more new canonical basis:

G—evae,boevhe,cme+ee,d=de+a - (b
The assumption d, 0 brings the same canonical bases (b,) and (b,).

4. Suppose now that both coefficients c,, d, are zero in the basis (2).
We have:

a=e, +ae, +ase +age,b=e +be, +he +be, (4)
Cmectee, d=derde,

Inthebasis (4), atleast one coefficient from ¢, d, isnot zero. Let ¢, # 0.
Perform operation ¢/ ¢ first, and operations a —a,c, b — byc, d- d c
after the first one. We obtain the next basis:

ZZ:g+a4a+a6a>E:%+b4a+béa’zzzs+cags 3=dszs :

It is easy to transform the last basis into the next canonical basis:

e vae.bee b, iea.dms- (b)

If we suppose that d, # 0 in the basis (4), the same canonical basis
(b,) will be done.

5. Suppose now that all coefficients b,,
We obtain:

¢,» d, in the basis (1) are zero.

a=e,+ae;+a,e, +ase;+age,, b=>b,e, +bse +bge, 5)

c=c,e,+cses+cie,d=de, +dse, +dgeg

In the basis (5), at least one coefficient among b,, c,, d, is not
zero. Otherwise, vectors b,c,d are linearly dependent but it’s
impossible. Let b, # 0. Perform next linear operations: b/b, first, and
a—a 4b c— 0417 d d, b then. As the result, the next transformed
basis appears:
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a=e,+ae;+ase; +age, b=e, +bse; +bge,
c=cse;+coe,d =dses +dgeg

If ¢, # 0 or d, 0, then we obtain bases that are equivalent to the
last basis. At least one coeflicient among c,, d, at the last basis is
not zero. Let ¢, # 0. Perform operation c/c ﬁrst and operations
a—a,c,b—bc,d —dc after the first one. We obtam

a=e,+ae;+age,b=e,+be,c=e +cie,d=dge -
The last basis can be transformed immediately into the next
canonical basis:

G—ai,b—bi,d—die ®)

If we suppose that d, 0 instead ¢, # 0, we’ll obtain the same
canonical basis (b,).

6. Consider coefficients a,, b,, c,, d, in the basis (b). Suppose now
(in opposition to the step 1) that all coefficients a,, b,, c,, d, are zero.
We have the basis:

a= a3e3+a4e4+ases+aéeéb be +be4+bes+beﬁ, 6)
c:c3e3+c4e4+cses+c(,eé,d de3+de4+de5+deé

Consider coefficients a, b3, Cyp d3. At least one of them is not zero.
Otherwise, vectors a,b,c,d are linearly dependent but it’s impossible
for any basis. Let a, # 0 (without any loss in generality). Perform the
operation al a, ﬁrst and the operations bh— bya, c-c,a, d— d, a after
the first one. We obtain the following basis:

a :e‘3+a4a+ase‘5+asa: b =b4a+b5€:+bsaa
c= 046—4 +Cse—5 +cée—6’ d= d4e—4 + dsa +dée—6

Consider coefficients b,, c,, d, in the last basis. At least one of
them is not zero. Otherw1se Vectors b,c,d are lmearly dependent but
it's impossible. Let b, # 0. Perform the operation .. first, and the

operations a — a,b,c—c,b,d—d,b after the first one. We obtain:

a=e, +ae,+ase, b=e,+be, +be,c=cse, +coe, d=dge, +dge,

Continue this procedure; we will obtain the following canonical
basis at the end:

Page 4 of 8
a=e,+ase;,b=e, +be,c=e,+ce;,d=dse;+e (b)
a=e,+ae,b=e+be,c=e,d=¢ (b,)
a=e, +ae,b=e,c=e,d=e¢, (b,
a= e,b=e,c=e,d=¢ (®,)

Compare these canonical bases to determine nonequivalent among
them. If d, # 0 in the basis (a,) then this basis is equivalent to the basis
(a,), s0 d_=0in (a,). Similarly, if d_ # 0 in the basis (a,) then this basis is
equivalent to the basis (a,), so d,=0 in (a,). Again, if d, # 0 in the basis
(a,) then this basis is equivalent to the basis (a,), so d5=0 in (a,). If d, #
0 in the basis (b,) then this basis is equivalent to the basis (b ), so d,=0
in (b,). The final list of nonequivalent canonical bases is:

5:a+a5a+aee—6,5:e—z+bse—5+bba,Z:€+csa+cﬁa,3:a+dsa+dﬁa (a1)
5=a+a4a+aéa,5=5+b45+b66‘m£=€t+04;4+06€‘6,3=;s+d69‘6 (az)
G=ctae +ae,boc +he +he,c=e tce e, d=e (@)
e (a)

+bye, +be,c=e,+cse,d=¢;  (a)

a=e +a3e3+a666,b—ez+b e3+b e6,c—e4+cﬁeﬁ,d e+

X

a=e +ase; +ases,b=

a:e]+a2e2+ae b=e +be,c=e,+cie,d=e; +dgeg (as)

a=e +aye,+age,b=e,

+hee,c=e,+ce,d=e, +d,e, (a,)

Al S S Sl B (a)
a=e +ae, +ae,b=e+be,c=e,d=e, (a,)
a=e +ae,+a,e,b=e, c=e,d=e, (a,)
a=e, +ae,b=e, +be,c=e,+c.e,d=e +dge, ()
5=€+05€:=5=gz+b5;5»5=a+cs;533=;6 (b,
a=e +ae,b=e +bhe,c=e,d=e, (b)
AR Sl B ®)
a=e,b=c,c=e,d=¢, (b))

a= e:, b= e—4, c= es, = 66 (®,) The following 15 matrices are associated with the canonical bases
All other subcases in the step 6 give the same basis (b,). above
The total list of all canonical bases that are found at the situations 1000 a a1 00 a 0 a1 00 a a0
A and B is done here: 0100 b b ||0 105 0 b[[01 0 b b 0f
L 001 0 ¢ ¢[]00T1 ¢ 0 c¢|[|00T1 ¢ ¢ 0
a:el+a4e4+a6eo,b:ez+b4e4+boeb,c:e3+c4e4+c6eo,d:es+does.(al) 00001 d d][000 0 1 d][000 0 01
a=etage tae,b=e +he the,c=e +ce e, d=e+de () 10 a 00 a1 0a 0a 0/[10a a 0 0]
a=e tae raeb=e, +he the,c=e tee toed=de e, (a) 0 1 6 005110 1 6 0 b 010 1 5 b 00
- - e - 00 0 10 ¢[00 0 1 ¢ 000 01 0/
a=e +ae,+ae,b=e,+be +be,c=e, +cie,d=e+de (a4) 00001 d|l00o0 00 1/l000 001
a=e +ae +ae,b=e +be +bhe, c=e, +ce,d=de +e, (a,) -~ o o .
I . . . [, 1 0 aq 0 0 ag 1 0 ag 0 a; O[|1 O a, a0 O O
a:el+a3e3+a4e4,b:ez+b3e3+b4e4,c:es,d:eG (as) 0 1 b3 0 0 b6 0 1 b3 0 b5 0 0 1 b3 b4 0 0
a=e +tae,+age, b=e,+be,c=e,+tce,d=es+dgeg  (a) 00 0 1 0 ¢[00 0 1 ¢ 000 01 0/
- = — - > - - - — - = - — 00 0 01 d 00 0 0 0 1{{0 0 0 0 01
a=e +ae +ae,b=e +be,c=e,+ce;,d=dse;+e; (a,) - o4k -t -
- = — - = — - - == — B! 00 0[O 1 00O 0100 0
a=e +aye,+ae,b=e+be,c=e,d=¢, (a,) “o b 4 4
00 0 1 0 0[]0 01 0 0 b 001 0 b 0f
imevae b basc—a e, d=atdie (a,) 00 001000010 ¢||000T1c¢c 0
i=etaenb=e thanc=c +cend=e +de (b) 000 0 00 1//0000Td][000O0 O 1
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All these matrices are not equivalent.

Part II. General Case:

The following statement concerning (n-2)xn matrices M of the

type (II) is true.

Theorem 1: Let M be a (n—2)xn matrix (II) of the rank (n—2) where

n > 4. This matrix is row equivalent to one and only one of the @

following matrices:

1 00
010
00 1

[ -

[n-3] .

-1 .

[2n-5]

[Bn-9]| .

0 a,,., a, 1 0 0
0 a,,., a,, 01 0
0 a,, a,, 00 1
21
0 a, 4,4 @4, 000
0 a,5,, a,;, 000
1 [ 0 0 0
00 a, ] [1 a,,
00 a, 0 0
00 a, 0 0
P ,[n=2]] . .
00 a,,, 0 0
10 a,,, 0 0
01 a,, »0 0
a,, a,, 0 1 0 0 .
a,, G,, 0 010
a,,_ a,, 0 001
L I
gpy g O 000 .
1 a, ,, a.;,, 0 000
0 0 0 1 000
00 a,, 0 100
00 a,, 0 10 .
00 a, O 01
. M [2;1—4]
00 a,,, 0 00
.01 a.,,, 0 00
00 0 1 00
0 a,, 00
0 a,, 00
.0 a,, O
. Seies [n(nT—?ﬁH]
1 a,,, 00
0 0 10
.0 0 01
0 .. 00 - 0
I .. 00 a, 0
0 .. 00 a, ’[n(n—3)+3] 0
. R 2
0 .. 10 a,
0 .. 01 aq

—2n

iy
a2
3,2
Aygn-2
Ay 302
0
0 0
I .. 0
0 0
0 0
0 1
0 0
a,, 0
a4, 0
a,, 0
n-4.n 0
0 1
0 0
a3
303
33
Ayan-3
0
0
CERNC
0 0
0 0
0 0
0 0
0 0
0 .. 0
1 .. 0
0 .. 0
0 .. 1
0 .. 0

a

a,

a

a,,

A,

a,

a,

n=4.n-1

n=3,n-1

n-3,

0

a,

n—4,n

n=3,n

n-2,n

n-1

Page 5 of 8
010a 00][01 a 000][001000 01 a, .. 000 001 ..000
001 b 00[[00 1 00[|000100 00 0 ..000 000..000
0000 1000 01000001 0f = 1000 00 01 n(n=D, 0 0 0 .. 00 0f
0000 0 1/[000O00O0T1/[00000O0°11 : - Y R

00 0 ..010 000 ..010
00 0 0 1 000 001

All matrices above are not equivalent between them.

Proof: We will use the mathematical induction method with
respect to the dimension n. This statement is correct in the cases n=4
and n=6 according Examples 1 and 2. Suppose that the statement is
true for arbitrary n>4, and prove it for the dimension (n+1). Let M be a
matrix of the size (n—1)x (n+1):

a, a, a; a, a1 a, Ay
a,, a, a3 ay Ay i a, Ay i1
a;, as, as as ., as s, a3 41
M=
a4, 31 432 4,33 A 302 zan Ysan Gzan
a, 51 Gyan a3 Ayonz Yona Yon Yoan
| Dot Gy Gy Ay ipo Qpoipr Gy Gy |
Consider the (n-2)x n submatrix M’ located in the upper left
corner of the matrix M. According the assumption, this submatrix
can be transformed into one of the matrices listed in this statement.

We will substitute submatrix M’ by the corresponding matrix, and
then transform the special matrix M into reduced rom echelon form.
The standard linear operations with rows (vectors) will be utilized: (a)
interchange any two rows, (b) multiply any row by a nonzero constant,
(c) add a multiple of some row to another row.

1. At the first case, we have:
1 0 0 0 a a, ay .
0 1 O aZ,nfl az,n aZ,nH
O 0 1 O a},n—l a},n a},n+l
M =
0 0 0 A, 3010 D3n Auzan
1 anfz,nfl an72,n anfz,nﬂ
7an—l,l an—l,Z an—l,} an—l,n—z an—l,n—l an—l,n an—l,nﬂ i
Perform linear transformations «,,-q, 4, a,,-4,,,4, ....a,,~a,,,,4,, .
The result of the operations is the following matrix:
0 0 0 a a, , A i
O O 0 aZ,n—l a2,n a2,n+1
O 0 1 O a3,nfl a3,n a3,n+l
M =
0 0 0 0 an73,n71 an73,n an—3,n+l
0 0 0 an—2,n—1 an—Z,n an—2,n+1
_O O 0 O an—l,n—l an—l,n an—l,n+1 B
At least one components among a ,a ,a is not zero
n-1, n-1 n-1,n n-1, n+l

#0.

n-1,n-1

first, and the operations

but all other components of the (n—1) row are zero. Let a
Perform the operation a, /a

n-1,n-1

a—a, a,,,a,—a,, d after the first one.

We obtain:
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Page 6 of 8
00 .. 00 a, [ 1oo . a,, 0 a, ) i1
010 .00 a, a,, . (1) Gy 8 I Sy
b a —. a n a n
O O 0 0 a3 n a} n+l o > Bt
. ) M=
M =
0 0 0 an—3,/172 0 11,,,3_,1 an73‘n+l
000 .0 Gz s 0 0 lLoa, ,, a5,
00 0 .. 10 A, s, Aygnn L 0 .. [ 0 Ayt A |
000 .. 0 a a .
L n=ln Tl | At least one components among a , a , a is not
n-1, n-2 n-1, n n-1, n+l

It is the matrix of the first type from the list above as we need. Let
a 0, and a .

n-1, n-1=

. ,#0. Perform the operation 4, /a,, first, and

after the

the operations a, - a, ,a, ,a,—a,,,a,, ..., a4, ,—a, ,,a,
first one. We obtain:

0O 0 ... 0 a,,_, 0 A i

010 ..0 a,, 0 a,,

0 0 0 a,, 0 a,,
M =

06000 . 0wa,,, O A, 3001

0O 0 0 ... 1 a,_ 5, 0 a, 5 n41

000 ..0 0 1 a_,,

The last matrix is of the second type matrix from the
list as we need. Let a 0, a =0, and a =0.

n=1, n-1= n-1, n+l
Perform the operation 4@,,/4,,,,

n=1, n

first, and the operations

A=y Ay =y Qs vees Ay — an—Z.rHla—n:; after the first one.
We obtain:
0 0 0 al,n—l al,n 0
O O . O a2,n—1 azJ’l
0 0 0 a,, a, O
M=
000 ..0 a,,, a,, 0
000 ..1a,,, a,, O
000 ..0 0 U

The last matrix is of the (n-1) type matrix from the list above. The
statement is proved for the 1* case.

2. At the second case, we have:
1 0 0 A, 0 a,, a .,
1 0 a,, , 0 a,, Ay,
0 1 e O3, 0 as, a3 41
M=
Ay 302 0 [N TR
1 Ayan Ay
L% Gyorn Gy Atz Dot i Guins |

Performlinear transformations a, | -a, ,,a.q, , -a, ,,a;, ... a,, —a, ,, 14,5,
and a,,-a, ,, a,,- The result of the operations is the following

n-1,n-1%n-2 *
matrix:

zero but all other components of the (n-1) row are zero. Leta_,
# 0. Perform the operation a, /a,,, first, and the operations
a-a, ,a,,a,—a,,,q s, ,—a, 5, ,a, after the first one.
We obtain:

100 .. 00 a, a,, |
010 ..00 a, a,,

0 O 1 0 0 (13_” a},n+1

12 e

M =
000 .. 00 a.,, a.,,
00 .. 01 a.,, a,,,
000 .. 10 a.,, a_,,

If interchange rows ¢ , and a_nj, in the last matrix, we obtain
the matrix of the first type as we need. Let a , =0, and a

,20. Perform the operation a,_, /a,., first, and the operationé

a,-a,,a, |, a,—0a,,d, ,...,d, ,—a,,,a, After the first one. We
obtain:
(1.0 0 a,, 00 [ 1
0 10 4, 0 A3 1
00 as ,_» 0 Az 41
M =
00 0 .. A, 3, 00 7R~
00 0 .. 0 1 0 a_,,,
00 0 .. 0 01 a_.,, |

It is the matrix of the 3* type that follows the matrix of the
second type in the list. Let a _  ,=0, a =0, and a #0

Ln n-1, n n-1, n+l :

Perform the operation a, /a,,,, first, and the operations
a = a,,a, |, 0~ 0y, 0, ,.... 4,_, —4a, ,,. 4, after the first one.
We obtain:
(10 0 a,, 0 a, O]
010 a,, 0 a, O
0 0 a,, 0 a, 0
M =
0 0 0 a,5,, 0 a5, O
00 0 .. 0 l a.,, O
100 0 .. 0 0 0 1]

It is the matrix of the type (n) in the list above. The statement is
proved for the 2™ case. All the next cases are similar to the cases (1) and
(2) but we consider some of them.

Case (n). At this case we have:
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Page 7 of 8

[ 1 0 0 s 0 a,, 0 a,,., i
0 1 0 @y, 0 ay, 0 ay .
O 0 a}.n73 0 alnfl 0 a}.nﬂ
0 0 0o . 0 1 a, 5, 0 a5,
0 0 0o .. 0 0 0 1 [~

LD @iy Qs Ayotn-y A2 Aot Gucin Dyt |

Perform linear transformations a, ,-a, ,,q, 4, ,-a, ,,a; ... a, ,
and a, , —a, , ,a, , . The result of the operations is the following matrix:

Ty w23

(1 0 0 .. a,; 0 a,, 0 aqa, 1
010 a,; 0 a,, 0 a,,
001 .. a,; 0 a,, 0 a,

M=
00 0 .. 0 L a5, 0 a_,,
00 0 .. 0 0 0 1 oa, ;..
000 .. a,,; 04a,, 0 a,,,]

At least one components among a ,a ,a is not zero
n—1,n-3 n=1, n n—1, n+l

but all other components of the (n-1) row are zero. Let a_, #0.

Perform the operation @,/@, ., first, and the operations

a=a,, 3a, , =0y, 3G, |, ..., q,_,—a,_,, ;a,  after thefirstone.

We obtain:

n-1°

00 .00 a,, 0 a,.,
010 .00 a,, 0 a,,

01 .00 a,, 0 a,,
000 . 01 a4 a5
000 .00 0 1a
000 ..10a

If we interchange the last 3 rows of this matrix, we obtain the
matrix of the 2" type from the list as we need. Let a,_ =0, and

n-2,n+1

0 a

n-lntl

n—l,n—1

-1,n-3

a,_, ,,#0. Perform the operation a, ,/a, ,,, first, and the operations
a, _‘11,"71;:1: a‘z‘_az,mama e g—n:_an?ln?la after the first one.
We obtain:
100 .. a,, 000 a,, |
010 ..a,, 000 a,,
0 01 a,; 0.0 0 a,,
M =
000 . 0 100 a,,,
000 . 0 0O01 a,,,
000 .. 0 010 a,,,|

If we interchange the rows (n-1) and (n-2) in this matrix, we
obtain the matrix of the 3™ type from the list as we need. Let a, 0,

—_— 71,7173:
a, ,,=0,anda_ =0 Perform the operation a,,/a,,,,, first, and

1,

the operations ¢ —a,,, a
after the first one. We obtain:

n-1s Gy Ty i @y gy eeees Ay oy Ty @y

100 . a,; 0 ¢, 00
06010 . a,; 0 a,, O
001 .. a,;,; 0 a, 00
M=
an73,n71 O
000 .. O O 0
L 0 .

It is the matrix of the (2n-3) type from the list. The case (n) is
proved.

Case [M]. At this case, we have the following matrix of (n-1)x
(n+1) size.
To0 0 w0 0 0 a,., ]
0 0 0 .. 0 0 0 a,.,
0 0 0 .. 0 0 0 a,,
M =
0 0 0 .. 0 1 0 a ..
0 0 0 .. 0 0 1 a,,.,
LGt oy Aoy e Gy Gy Gy Gy |

Perform the operations -4, a4, -a, .4, ..., a,, -a,,a,,. We
obtain:

O 0 1 ..000 a,,
0 0 0 ..000 a,,
0O 0 0 ..000 a,,

0 0 0 ..010a
0O 0 0 ..001 a,,,
0 .. 000 a

n-3,n+1

a a

L n-11

n—-1,2 n—1,n+1 B

At least one component among a ,a ,a is not zero. Let
n-1,1 n-1,2 n—1,n+1
o

a,_,,#0. Perform the operation 4, /a,_, , and remove the new last row
into the first position. We obtain:

I a,, 0 .. 000 a_,,
0 0 1 .. 00 a .,
0 0 0 .. 00 a .

0 0 0 ..10 0 a
0 0 ..01 0 a
0 0 .. 001 a

n—4,n+l1

n-3,n+l1

n=2,n+1_|

0,
and a,_, ,#0 in the previous matrix. Perform the operation ¢,_, la,_,
first, and then remove the new last row into the first position. We
obtain:

It is the matrix of the 2™ type from the list as we need. Let a

n-1,1"

010 ..00 0 a,,,

001 ..000 a,,

000 ..000 a,,
M=

000 . 00 a4,

000 ..010 a,,,

000 ..001 a,,,

MJ&] from the list as we

#0 in the previous matrix.
n+l

It is the matrix of the type [

need. Let a = =0, a =0, and a
n-1,1 n-1,2 n—

Perform the operation a, /a

n— n-1,n+1

1,

a_, first, and the operations

4 =@y, 4, 0~y Gy s ey @, — 4, 5,0, after the first one.
We have:
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Page 8 of 8
i l ["—2];1=a+a1,z;z+a1,,,zn,“‘z=;3+az_na, ------ sy o _Zl’+a1172.n;rt‘
000 ..00O0OU o . o . o
00 0 000 0 [” ’1] a=e+ta,e ,ta,e ,a=¢+a,,,¢e ,+ta,, e ...,a, ,=¢€, -
M= [2n=5)a; =+ a6, +ay, 10,1, @ = €+ s, 1€, 1sers Gy s =€, 3 40,016,158, =6, »
0 00
00 O0 .. 00 0 [27’ _4] a=e+a,, e s+a,6 e ,,a,=e+a,, e s+a,, e ,,...,a,,=¢, "
0 - _ I . S,
- - [3’1 79] a, =e+a,e+a, e , a=6%ta,,,€ ,, ....4, 3=¢,_,,04,,=¢, "
. . n(n-1 . . nn-3) . — — - - - - —
It is the matrix of the [———] type from the list as we need. This [T +2la,=e,+a,,e,a,=€,+a,,8 .., d, =€, +d, , € -
case is proved, and the total proof is done.
n(n—3) - — — = = _— — — _—— —
. . . > ———+3la,=e, + ,a,=e,+a, N = + s =e, "
Remark 2: Of cause, the list of matrices in Theorem 1 doesn’t — 16126, 581,016,005 8y =€ %81 €is Gy =€+ gy € By =€,
contain all of them. But any missed matrix can be restored using nn—1). — — — — B,
Ladder Principle. For each subsequence of matrices (between (;) sings) [ 2 la=e,a,=¢,..,0,,=¢,,a,,=¢,4,,=¢,
in the list, imagine the ladder from the lower right corner to the upper .
Conclusion

left corner. Take the left most columns with arbitrary components, and
make 1 step up along the ladder bringing this column up and to the left
of the previous position. Fix elements 0 and only one element 1 at the
corresponding positions in the released column. The next matrix from
the list will be done.

As an obvious consequence of Theorem 1, we obtain the following
statement.

Theorem 2: Each basis for (n-2)-dimensional subspaces of a
n-dimensional vector space (n4) is equivalent to one and only one
canonical basis from the following list.

(1) q=etay, 6, +a,e, =6+, 6, 10,6, . a8 =€ ,+0a,,,,6,+a.,, .

(2 a=e+a,,e.,+a,e,d=6+a,,,¢,,+a,,€,..,0a,,=¢,_,+a,,,¢e,.

Citation: Shtukar U (2016) Classification of Canonical Bases for (n-2)-
Dimensional Subspaces of n-Dimensional Vector Space. J Generalized Lie
Theory Appl 10: 245. doi:10.4172/1736-4337.1000245

Results of this article are ready to be used at any research concerning
subalgebras and ideals of noncommutative algebras. Classification of
canonical bases for (n-2)-dimensional subspaces is very effective to
study reductive subalgebras and reductive pairs of any n-dimensional
Lie algebra.
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