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Some Relations among Apostol-Vu Double Zeta
Values for Coordinatewise Limits at Non-positive Integers
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Abstract. We consider Apostol-Vu double zeta values for coordinatewise limits at non-positive integers, and
we give some relations among Riemann’s zeta values, Euler-Zagier double zeta values and Apostol-Vu double zeta
values for all coordinatewise limits at non-positive integers. Using the relations, we also give relations among multi-
ple Bernoulli numbers.

1. Introduction

Apostol and Vu [3] introduced the following sum:

o0

Do D mtmy M+ my) 7

my=1my=m

where 51, 5o € C with R(s; + s2) > 2, Rsy > 1. They proved that this can be expressed as a
rational linear combination of products of zeta values at positive integers when s1 = 52 = a
where a € N. For complex variables si, ..., sr4+1, Matsumoto [12], [13] introduced r-ple
Apostol-Vu multiple zeta functions

Cav,r(S1, ..o, Sr5 Srg1)

= ZZ m?‘ylm;‘yz...m;s"(ml+m2+...+mr)7sr+1

1<mi<--<m,<oc0

o0 o
= Z Z m N (my4+ma)T X x (my 4 my) T
mi=1 mr=1
x (rmy + @ — Dmy 4+ -+ +m,) "5+, (1.1)

including the sum of Apostol and Vu. He also proved the meromorphic continuation to the
whole space by the Mellin-Barnes integral formula (see Lemma 2.3 in the present paper).
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On the other hand, Zagier [19] first treated Witten zeta functions defined by

!
G0 =2 dim(p)*

where s € C and p runs over all finite-dimensional representations of a certain semi-simple
Lie algebra g. In particular,

oo

ZS
Ls13)(8) = ,,,%::1 pmry— (1.2)
o 6S
$a05)(8) = mnzzl m*n*(m + n)*(m + 2n)* (13)

Matsumoto [13] considered a generalization of (1.3), that is
> 1
Ls0(5)(S1, 82, 83, 84) = Z

m,n=1

, (1.4)

m*1ns2(m + n)s3 (m + 2n)%4

where s1, 52, 53, 54 are complex variables. Also, Matsumoto and Tsumura [14] define multi-
variable Witten zeta functions for g = sl(n), including the function (1.2). We see that the
Apostol-Vu double zeta function is a special case of (1.4) by the following relation:

Cav,2(s1, 52; 83) = L50(5)(0, 51, 52, 53) .

For r € N, the r-ple Euler-Zagier multiple zeta function is defined by

CEZr(S1, ..., 87) = Z . Z m{tmy e em (1.5)

1<mi<--<m,<o0

where s1,...,s, € C. Akiyama, Egami and Tanigawa [1] and Zhao [20], independently of
esch other, and later Matsumoto [11] also, proved the meromorphic continuation to the whole
space. When s1, ..., s, are positive integers with s, > 2, the r-ple Euler-Zagier multiple zeta
function is absolutely convergent. Its values are called multiple zeta values. The multiple zeta
function, especially some relation among multiple zeta values, has been studied extensively
by many mathematicians. For example, the sum formula [4], [5], Hoffman’s relation [6],
Ohno’s relation [15], Kawashima’s relation [7], etc.

Also, there are studies about multiple zeta values at non-positive integers. When
s1, ..., S are non-positive integers, the point can be singularity of {gz . In fact, we have
the following theorem:

THEOREM 1.1 ([1], [11]). The function (1.5) is holomorphic except for the singular-
ities located only on

sr=11

sp+s,-1=2,1,-2n (n € Ny),
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sr+8-1+s2=3—n (neNy,

Sy +---+s1=r—n (neNyp).
Here, we put No = N U {0}.

Also, it is well-known that each point (s, ...,s;) = (=I1,..., =) € Zr<0 is a point
of indeterminacy of {gz , (see [1]). Here, Z < is the set of non-positive integersT The values
of (pz rat (=, ..., =) € Z’<Odepend on the limiting process. Akiyama and Tanigawa [2]
defined regular and reverse values by

{Ez,r(_lls"'v_lr) = hm tee llm ;Ez,r(sls"'vsr)v
S|—>—l| Sr—>—1y
R . : :
gy (=l o, =)= lim .- lim &gz, (s1,...,87),
: Sr—>—lr S|—>—l|

respectively. They also gave recursive formulas for these values. For example, in the case
r = 2, they gave

15
teza(=l, —b) = Y (=)}Fa,(~h —h+q), (1.6)
g=—1

[y
(Rz 2=l —h) == ) (=l ag¢ (=l =l +q) + £(=11)¢ (—h) (1.7)

g=-1

(see [1] and [2]). Here, we put

s(s+1)---(s+qg—1) if gisapositive integer,
(5); = 1=l if g =0,
/(s —1) if ¢g=-1,

ag = By41/(g + 1)! and By, is the nth Bernoulli number. The case » = 3, Sasaki [17]
gave some relations among multiple zeta values for all coordinatewise limits. Komori [9]
treated more general multiple zeta values at non-negative integers by using generalizations of
Bernoulli numbers.

One of the purposes of the present paper is to determine true singularities of (1.1). Our
proof is based on two methods; one is the method of Matsumoto [11] which uses the Mellin-
Barnes integral formula (Lemma 2.3), and the other is the technique of changing variables
which is introduced by Akiyama, Egami and Tanigawa [1].

The Apostol-Vu double zeta function is a special case of the Witten zeta function for g =
50(5) (see (1.4)) and also a generalization of the Euler-Zagier double zeta function (see (1.5)).
Therefore it is important that we study Apostol-Vu double zeta values at integers. The major
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purpose of the present paper is to give some relations among Riemann’s zeta values, Euler-
Zagier double zeta values and Apostol-Vu double zeta values for all coordinatewise limits at
non-positive integers (Theorem 3.1). By these relations and a certain functional relation, we
will also give some relations among Mordell-Tornheim double zeta values and Euler-Zagier
double zeta values for all coordinatewise limits at non-positive integers (Corollary 4.1). We
note that the Mordell-Tornheim double zeta function is defined by

oo
tur (s, s0553) = ) omT T m 4 )7,

m,n=1

where s1, 52, 53 € C.

2. The true singularities of Apostol-Vu multiple zeta functions

In this section, we determine the true singularities of (1.1). First we recall analytic prop-
erties of (1.1).

THEOREM 2.1 ([13], [16]). Letr be a positive integer. Then the following assertions
hold:

(1) The series (1.1) can be continued meromorphically, as a function in sy, ...,
Sy, Sr41, to the whole C" 1 -space.

(2) The function ¢ ay  is holomorphic except for the possible singularities located only
on

sr+s41=1—n (ne€ Ny,
Sr—1+8 +s41=2—n (n€ Ny,

Sr—2+Sr—1+8 +s,41=3—n (ne€ Ny,

Sl+"'+5r+1=r_n (nEN()).

The possible singularities of (1.1) is given by the above list ((2) of Theorem 2.1). By a
certain recursive structure which can be expressed as a Mellin-Barnes integral and the tech-
nique of changing variables, we can determine the true singularities of (1.1) as follows.

THEOREM 2.2. The function {ay 2 is holomorphic except for the true singularities
located only on

s2+s3=1—n, (€ Ny
s1+s+s3=2,1,—2n (n e Np).

Also, for r > 3, the function {ay . is holomorphic except for the true singularities located
only on

sr+s41=1—n (ne Ny,



RELATIONS AMONG APOSTOL-VU DOUBLE ZETA VALUES 357

Sr—1+8 +s41=2—n (n€ Ny,

Sr—2+Sr—1+ S +8+1=3—n (ne Ny,

s1+---+8s41=r—n (neNp).
Our proof of Theorem 2.2 uses the following Mellin-Barnes integral formula.

LEMMA 2.3. Let s, . be complex numbers, is > 0, largA| < w and A # 0. The
Mellin-Barnes integral formula

1
F@x1+kY‘=§;;()F@+aﬂ¥—@vdz 2.1

is classically known ([18], Section14.51, p.289, Corollary), where —Rs < ¢ < 0 and the path
of integration is the vertical line Rz = c.

PROOF OF THEOREM 2.2. Inthe case r = 2, we assume Ns; > 1@ = 1,2), RNs3 > 0.
Using the Mellin-Barnes integral formula and shifting the path of integrationto %z = N — 1,
where N is a positive integer and 7 is a small positive number, we have

N-1
-
Cava(st, s2;83) = ) ( 3>§EZ,2(S1 —k,s2+s3+k)

k=0 k
1 I'(ss+2)I'(—z
+— M(Ez,z(ﬂ -z, +s3+2)dz. (2.2)
2mi (N=n) F(S3)

Here, for v € C and a nonpositive integer n, we put

n

<v) _Jvw—=1---(v=n+1)/n! if n isapositive integer,
R if n=0.

Then, by Theorem 1.1 and the technique of changing variables, we determine the true singu-
larities of {4y 2 as follows:

s2+s3=1—n, (ne Ny
s1+s+s3=2,1,—2n (n € Ny).
In fact, by Theorem 1.1 and (2.2), we see that
s2+s3=1—n, (ne Ny
s1+s2+s3=2,1,—2n (n € Nyp)
determine the possible singularities of {4y 2. We also put

up =Sy, Uz =82 +s83, U3 =3
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(this is the technique of changing variables) and substitute them into the first term on the right
hand side of (2.2), to find that the degree of each term in the sum with respect to u3 is different
from each other. Therefore the singularities will not vanish identically. Hence

s2+s3=1—n, (neNy
s1+s2+s3=2,1,—2n (n € Ny)
determine the true singularities of {4y 2.
When r = 3, we use the recursive structure of Theorem 5 in [16]. First we define

Cav.3(st, 52, 53, 54)
o
= > w4 m2) T @my A+ ma) Omy 4 ma A+ my)
my,mpy,m3=1
We assume Ns; > 1(i = 1,2,3), Rs4 > 0. Using the Mellin-Barnes integral formula and
shifting the path of integration to ¥z = N — n, we have

Cav,3(s1, 82,83, 84) = Cav,2(s1, 52 + 54 — 15 53)

s4— 1

—S4

N-1
+ Z ( k >§(—k)§Av,2(S1,S2 + 54+ k; 53)
k=0

1 r I'(-
+— Mg(—z)gv,z(smz + 854 + 25 53)dz . (2.3)
2mi (N—n) I (s4)

Then, applying Theorem 2.2 for {4y 2 and the technique of changing variables to (2.3). Indeed
we put

Uy =Sy, U2 =152+ 84, U3 =583, Ug =54

and substitute them into the first term on the right hand side of (2.3), to find that the degree of
each term in the sum with respect to u4 is different from each other. Hence we see that

s4 =1,
s2+s3+s4=2—n, (neNy
s1+s2+s3+s4=3—n (ne€ Ny
determine the true singularities of EA v.3(s1, 52, 53, s4). By this result, we obtain Theorem 2.2
in the case r = 3.

In fact, using the Mellin-Barnes integral formula and shifting the path of integration to
Nz = N — n, we have

NoL o
Cav.3(s1, 82,835 84) = Z Sav,3(s1, 82, —k, 83 + 54 + k)
PN
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1 I'(sa+2)I'(—2)~
— (4—)()§Av,3(Sl,32, —2,83 + 54 +2)dz. 24
2i Jn—n) I"(s4)

By the above result on the true singularities of EA v.3 and the technique of changing variables
(U1 = 81, up = 59, U3 = 83 + 84, u4 = s4), we have Theorem 2.2 in the case r = 3.

Lastly we assume the validity of Theorem 2.2 for {4y ,—1, and prove Theorem 2.2 for
Zav.r. The argument is similar to the case r = 3 and we omit the details.

We only note that we define EA v.r by the following function:

{:AV,r(Sl, ey Sry Sr1)
00
= Z m?‘ﬂ(?ﬂl +m2)76‘2,_.((m1 +...+mr_1)*sr,1
my,...,mp=1

X ((r = Dmy 4 (r = 2Dma + -+ me_) ™7 (my 4 -+ mp)

where s1 ...s,41 € C. O

3. Apostol-Vu double zeta values for coordinatewise limits at non-positive integers

In this section, we will give some relations among Apostol-Vu double zeta values for all
coordinatewise limits, (1.6) and (1.7) at non-positive integers.

THEOREM 3.1. For any non-negative integers l; (i =1, 2,3), we have

lim lim  lim {av,2(s1, 525 53)
51%711 SQ—)*lz S3~>713

= lim lim lim Zav2(s1,$2; 83)
s1—> =1 s3—>—I3 sp—>—1

I3

=Y Crzal-h—k, b —l3+k), 3.1)
k=0

lim lim lim gav,2(s1, 525 53)
s2—>—lp s1—>—l) s3—>—13

= lim lim lim Zav2(s1,$2; 83)
S2—>—l253—>—l3S1—>—l]

I3
= Z ggz,z(_ll —k,—lh —13+k), (3.2)
k=0

lim  lim  lim {av2(s1,52; 53)
s3—>—Il3 s1—>—11 sHo—>—I '

)
(] .
=> (-1 (;) {g(—h — Nl — I3+ j) =225~y — 1 — I3)
j=0
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— 2o gy (=l — I3+, —11 — )

+ 2~ht a 211+lz+l3+1) (=1 i i 1
htj+1 {(=hh—h—13
h+j .
; 1
— 2_ll_.l Z < 1 ;:])(1 _ 2k)(1 _ 2l]+l2+l3—k)
k=1
x (=l —h -1+ k)((—k)} , (3.3)

Iim Iim lim sy 2(s1, s2; 53)
§s3—>—l3 sp—~>—lp s1—>—1; :

Iy

(1l _ ) .

=) (—1>f(j){2“+’3 Ttgza(=ly — I3+ j, =l — j)
j=0

+ R (b —jo—l =3+ j) — ¢ (=l — (=l — I3+ )

A T Y
h+j+1
,1,‘12+'i 12+] _
+ 27 J Z < f )(1 _2k)(1 _211+12+13 k)
k=1
x¢(=h—h -1+ k)c(—k>} : (3.4)

PROOF. First we show (3.1) and (3.2). By (5.9) in [10], we have
N-1

-
Cava(st, s2;83) = ) ( 3){152,2(S1 —k, 52453+ k)

k=0 k

1 (s34 2)I(—2) dz
+(s1+s2+853—1 —/
St st = Do wen T3 smtst+z—1
N—1
+ ) ol + 52+ 53+ DE(=))
j=0
1 I'(s3+2)I'(—2) <—32 — 53 — Z)
X — —_— ) dz
2ri Jv—p) I"(s3) J
N 1 I(s3+2)(—2) (s +s3+z+2)(=2)
Qri)? Jn—n) I'(s3) (N=p) I'(s2 +s3+72)
X L(s1+ 52+ 53 +2)¢(=7)d7dz . (3.5)

By (3.5), ¢av 2(s1, $2; $3) can be continued meromorphically to Ns3 > —N +n, RN(s2 +53) >
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1 — N+ nand R(s; +s2 +53) > 1 — N 4+ 7 (see [10]). We note that 1/I"(—n) = 0 for
non-negative integer n. Hence, by (3.5), we have (3.1) and (3.2).
We next show (3.3). We fix [ € N and consider liml Cav.2(s1, s2; s3). We note that

So—>—2
o0
Cav,2(s1, 82; 83) = Z m " (my +m2)~2(2my +mp) ™"
mi,mpy=1

is absolutely convergent in the region
Ns3 >0, NR(sa+s3) >1, Nsp+s2+53) > 2.
We assume sz > 1+ Ir, N(sy + s3) > 2 + [p. We have

o0
. —5 Il —
lim Cav.o(sy,s283) = > m " my 4 m)? @my + ma) ™
§p—>—1p
my,my=1

o]

L (1 1
= Z(—nf (J) Z - (3.6)
j=0

1—J —htj
my,my=1 M1 (2m; + mp)*% bt

Here, we put

9]

_~ 1
S1,82) == —_.
£(s1,2) Z my' 2my + my)*

mi ,mz:]

We easily see that Z(s1,82) is absolutely convergent in the region fs; > 1, sy > 1. Then

we have
o0

—~ 1
L) =Ts1s)+ Y s 27 ), 3.7)
my,mpy=1 172
my<2my

which can be easily proved by a simple transformation of the sum. We have to study the
second term on the right hand of (3.7). We have

> 1
E = =27"CEz.2(52, 51)
my'm
my,mpy=1 1 2
my<2my
— 1
2" : 3.8
+ Z 2m1 4 2my — 2)51(2my — 1)%2 (3-8)
ml,mz=1

which can be easily proved by replacing 2m; with m + ma (m| € N). Then we assume
Ns1 > 1, Rsp > 1. Applying the Mellin-Barnes integral formula for the second term on the



362 TAKUYA OKAMOTO

right hand side of (3.8), we have

9]

1
Z 2m1 + 2my — 2)51(2my — 1)%2
my,mpy=1
ZL M(l —29(1 — 2—(S|+52+Z))
2mi () F(S])

X ¢(s1+ 852+ 2)¢(—2)dz,

where —Ms; < ¢ < —1. Shifting the path of integration to %iz = N — 1, where N is a positive
integer and 7 is a small positive number, we have

9]

1
2 Qm1 + 2ma — 2)" 2my — 1)

my,mpy=1
1

= m(l — 270Dy (51 52— 1)

N—-1
+) (_km)(l — 291 = 27O () + 52 + k) (=)
k=0

1 I'(si +2)I'(—2)

+o— e Ty (1 —2%)(1 — 27 Grbs2t2)y
X &(s1+s2+2)6(—2)dz. (3.9)
By (3.9),
— 1

Z 2my + 2my — 2)51(2my — 1)%2

my,mpy=1

can be continued meromorphically to fs; > —N + n, R(s; + s2) > —N + n. Hence, by
(3.7), (3.8) and (3.9), we have

lim lim ¢(s1,s$2)
§2—>—r2 §1—>—r1

=¢(=r1)¢(=r2) = 2"¢pz 2(=r2, —11) — 2728(=r1 —12)

st

-2 (”)(1 =29 (1 = 2742 Ry (o — s + RE(—h)
k

k=1
27}’17]
r+1

for ri,rp € No. By (3.6) and (3.10), we have (3.3).

Lastly, we show (3.4). We fix I; € Ng and we assume sz > 1, N(sy + s3) > 3+ 1.

+ (1 =212t = = 1) (3.10)
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Then we have
o

lim Cav.a(st,s2:3) = > w4 my) T2 @my + mg) ™
S my,mpy=1
l| o0
(1 1
= —1)/ - - . 3.11
Z( ) <J) Z (m1 +m2)%277(2my + mp)$~h+i G
j=0 my,my=1

Here, we put

9]

_ 1
¢(s1,82) 1= Z (my +m2)5t1(2my +ma)2

mi ,mz:]
We note that E(sl , §2) is absolutely convergent in the region Rs; > 1, sy > 1. Then we have
CEZ,2(51,$2) = T(s1,$2) + E(s1,52) + 2720 (51 + 52) , (3.12)

which can be easily proved by a simple transformation of the sum. By (3.10), (3.11) and
(3.12), we have (3.4). O

4. Mordell-Tornheim double zeta values for coordinatewise limits at non-positive
integers

In this section, we will give some relations among Mordell-Tornheim double zeta values
for all coordinatewise limits, (1.6) and (1.7) at non-positive integers by Theorem 3.1 and
certain functional relations.

COROLLARY 4.1. For any non-negative integers l; (i = 1,2, 3), we have

lim lim  lim {pyr2(s1, 525 53)
s3—>—Il3 s1—>—1; so—>—I '

I
(1
= (-1 ( ?)aifz,z(—h —jo=h =13+ j)
j=0 /

lim  lim  lim {pyr2(s1, 525 53)
s3—>—I3 so—>—1p s1—>—1; '

Ly
(1

= Z(—l)f( T)ggz,z(—lz —jo=li =+ )
j=0 /

lim lim  lim &p72(s1, 525 53)
s1—>—11 so—>—1p s3—>—13

= lim lim lim &uy7 2051, 52; 53)
51%711 S3—>*l3 S2~>712

I3

=Y {teza-li—k.—b— L+ k) + ¢, (b — k.~ — 5+ k)
k=0
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+25¢(=l =1 = Iy)

lim lim  lim &pr7 2051, 525 53)
so—>—ly s1—>—11 s3—>—13

= lim lim lim &uyr 2051, 52; 53)
Sz—)—lz S3—>—l3 S —>—l|

I3

=Y {teza(-b—k.—l =L+ k) + (o (—l1 — k. = — I3 + k)
k=0

+25¢(=l = — 1)

PROOF. Corollary 4.1 can be easily proved by Theorem 3.1 and the following two
functional relations:
Smr,2(s1, 825 83) = {mr,2(52, 815 83)
¢mr,2(s1, 825 83)

= Cav,2(51, 525 83) + Cav,2(s2, 515 83) +275¢(s1 + 52 + 53) . O

5. Application

By Theorem 3.1 and Corollary 4.1, we can give relations among multiple Bernoulli num-
bers which is defined by Komori [9]. In this section, we will give an example.
By Theorem 3.21 in [9], for Iy, I>, I3 € No we have

tez.2(=l, =) = (=)"21 L Bez 20, 1), (5.1)
lim lim  lim Cava(si, 525 83) = (=D 2B0D31BAY 20,015 - (5.2)
s1—> =1 so—>—lp s3> —I; ' N
where Bgz 2(,.1,) is the coefficient of ozllzalz] *2 in the Laurent expansion of
1

(eoq(aerl) — (e — 1)

h+h+l b+l I3
Ay 03

and By 2(,,1,,15) s the coefficient of «; in the Laurent expansion of

1
(ex1(I+ax+2ma3) _ 1) (eri2(l+e3) — 1)

By (3.1), (5.1) and (5.2), we have the following relation among multiple Bernoulli numbers:
I3
LLM3!Bav 23, 115 = Z(ll + W+ 13 —K)'BEz 204k I +13—k) -
k=0
We note that our definitions of multiple Bernoulli numbers Bgz 2,1,y and Bavy 2¢,.1,.1;) are
a little different from the definition in [9].
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