Existence of Invariant Planes in a Complex Projective 3-Space under Discrete Projective Transformation Groups

Masahide KATO

Sophia University

Abstract

Let Γ be a finitely generated discrete subgroup of $\operatorname{PGL}(4, \mathbf{C})$ acting on \mathbf{P}^{3}. Suppose that Γ leaves invariant a surface in \mathbf{P}^{3}. Then, except for a few cases, we can find a plane which is invariant by a finite index subgroup of Γ. The exceptional cases will be determined explicitly.

Introduction

Let Γ be a finitely generated discrete subgroup of $\operatorname{PGL}(4, \mathbf{C})$ acting on \mathbf{P}^{3}. By a curve (resp. surface), we shall mean an irreducible compact complex space of dimension one (resp. two). We say that a set M is (Γ-)semi-invariant, if we can find a finite index subgroup Γ_{0} of Γ such that $g(M)=M$ for any $g \in \Gamma_{0}$. If $\Gamma_{0}=\Gamma$, we say M is (Γ-) invariant.

In this note, we shall prove the following.
THEOREM A. Suppose that Γ leaves invariant a curve C and a surface S such that $C \subset$ S. Then, there are Γ-semi-invariant planes, except for the following two cases.
I. By a suitable system of homogeneous coordinates $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ on \mathbf{P}^{3}, C and S are given by

$$
C=\left\{z_{0}=z_{1}=0\right\}, \quad S=\left\{z_{0} z_{3}-z_{1} z_{2}=0\right\},
$$

and, every element $\sigma \in \Gamma$ is represented by a matrix of the form

$$
\left(\begin{array}{cc}
A_{\sigma} & 0 \\
c_{\sigma} A_{\sigma} & A_{\sigma}
\end{array}\right), \quad c_{\sigma} \in \mathbf{C} .
$$

Further, there are no Γ-invariant surfaces other than S.
II. C is a twisted cubic curve, and S is the tangential surface of C.

[^0]Here the tangential surface of a twisted cubic curve C is the union of the tangent lines to C.

Theorem B. Assume that Γ leaves invariant a surface S in \mathbf{P}^{3}. If Γ admits no semiinvariant planes, then S is either a non-singular quadric, the tangential surface of a twisted cubic curve, or a cone over a non-singular conic.

As an application of our results, we shall give an explicit geometric construction of finitely generated discrete subgroups in $\operatorname{PGL}(4, \mathbf{C})$ without semi-invariant surfaces (Section $6)$.

In section 1, in the first half, we collect together some terms and well-known elementary facts from classical Kleinian group theory and, in the second half, make preparations for the proof of Theorem A. Here we see that there are two cases of C to be considered, the line case and the space rational curve case. The line case will be considered in section 2 and the space rational case in section 3. In section 4, we shall prove Theorems A, B and their corollaries. In section 5, we shall give examples in each of the exceptional cases. In section 6, we shall construct finitely generated discrete subgroups in $\operatorname{PGL}(4, \mathbf{C})$ without semi-invariant surfaces. In section 7, we introduce the Eichler cohomology and prove a lemma which is used in constructing an example in section 5.

1. Preliminaries

1.1. Elementary facts from Kleinian group theory. The contents of this subsection will be used in sections 3, 5 and 7. Here we collect some terms and well-known facts from the classical Kleinian group theory.

A subgroup G of a Lie group \mathcal{G} is said to be a discrete subgroup if G is a discrete subset of \mathcal{G}. This is equivalent to the fact that the identity element $1 \in \mathcal{G}$ has an open neighborhood U such that $U \cap G=\{1\}$.

Let G be a discrete subgroup of $\operatorname{PGL}(2 . \mathbf{C})$. Then G acts on \mathbf{P}^{1} naturally. A point $z \in \mathbf{P}^{1}$ is called a properly discontinuous point, if z has a neighborhood U such that the set

$$
\{g \in G: g(U) \cap U \neq \emptyset\}
$$

is finite. The set of all properly discontinuous points on \mathbf{P}^{1} is called the discontinuity region of G, which we indicate by $\Omega(G)$. Obviously $\Omega(G)$ is an open set, but may happen to be empty. We call the group G a Kleinian group ${ }^{1}$, if $\Omega(G)$ is not empty. It can be proved that the action of G on $\Omega(G)$ is properly discontinuous. The complement

$$
\Lambda(G)=\mathbf{P}^{1} \backslash \Omega(G)
$$

[^1]of the discontinuity region is called the limit set of G. If the cardinality of $\Lambda(G)$ is less than $3, G$ is said to be elementary ([MT, Definition p.41]). The following fact follows from [MT, Theorem 2.4].

Proposition 1. If G admits a non-empty G-invariant finite set, then G is elementary.
We use also the following
Proposition 2 (Proposition 2.2 in [MT]). If G is elementary, then G contains an abelian subgroup of finite index.

Any element in $\operatorname{PSL}(2, \mathbf{C})$ has a matrix representative conjugate to one of the following:
(1) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$,
(2) $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)|\lambda|=1$,
(3) $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)|\lambda| \neq 0,1$.

The element conjugate to (1) is said to be parabolic, the one conjugate to (2) is said to be elliptic, and the one conjugate to (3) is said to be loxodromic.

Proposition 3 (Lemma 2.3 in [MT]). If G is non-elementary, then G contains loxodromic elements.
1.2. Two Cases. In this subsection, we shall make preparation for the proof of Theorem A. The conditions we impose on Γ are the following.

A1. $\quad \Gamma$ is a finitely generated discrete infinite subgroup of $\operatorname{PSL}(4, \mathbf{C})$.
A2. $\quad \Gamma$ leaves invariant a curve C in \mathbf{P}^{3}.
A3. $\quad \Gamma$ admits no semi-invariant planes.
Proposition 4. If Γ contains a solvable subgroup of finite index, then Γ admits a semi-invariant plane.

Proof. Suppose that $\Gamma_{0} \subset \Gamma$ is a solvable subgroup of finite index. Let p : SL $(4, \mathbf{C}) \rightarrow \operatorname{PSL}(4, \mathbf{C})$ be the natural projection. Then $\tilde{\Gamma}_{0}=p^{-1}\left(\Gamma_{0}\right)$ is also solvable. Hence $\tilde{\Gamma}_{0}$ is conjugate in $\operatorname{SL}(4, \mathbf{C})$ to a subgroup of the triangular subgroup of $\operatorname{SL}(4, \mathbf{C})$ by the matrix theory. Therefore Γ_{0} admits an invariant plane.

PROPOSITION 5. We can assume that C is a line, or a space rational curve.
Proof. Suppose that C is not a line. If C is a plane curve, then the plane is Γ-invariant. This contradicts the assumption A3. Therefore C is a space curve. Then the restriction

$$
r: \Gamma \rightarrow \operatorname{Aut}(C)
$$

is injective. Hence $\operatorname{Aut}(C)$ is an infinite group. Therefore C is either a (possibly singular) rational curve, or a non-singular elliptic curve. If C is non-singular elliptic, then $\operatorname{Aut}(C)$ contains a finite index abelian subgroup. Hence so is Γ. Then Γ admits a semi-invariant plane by Proposition 4. This also contradicts the condition A3. Hence C is a space rational curve.

In view of Proposition 5, we consider the line case in section 2, and the space rational curve case in section 3 separately.

2. Line case

In this section, in addition to the three conditions (A1), (A2) and (A3) on Γ, we assume that

$$
C \text { is a line contained in a } \Gamma \text {-invariant surface } S \text {. }
$$

Then we have the following.
THEOREM 1. S is a non-singular quadric.
To prove the theorem, we determine the defining equation of S. Let $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ be a system of homogeneous coordinates on \mathbf{P}^{3} such that C is given by

$$
C=\left\{z_{0}=z_{1}=0\right\}
$$

Let $F=F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0$ be the defining equation of S. Put $m=\operatorname{deg} F$. Since $C \subset S$, F is written as
(1)

$$
F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\sum_{k=1}^{m} F_{k}\left(z_{0}, z_{1}, z_{2}, z_{3}\right), \quad F_{k}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\sum_{i+j=k} a_{i j}^{(k)}\left(z_{2}, z_{3}\right) z_{0}^{i} z_{1}^{j}
$$

where the $a_{i, j}^{(k)}=a_{i, j}^{(k)}\left(z_{2}, z_{3}\right)$ are homogeneous polynomials of degree $m-k$. Put

$$
n=\min \left\{k: F_{k} \neq 0\right\}
$$

Obviously, $n \geq 1$.
Let $\mu: M \rightarrow \mathbf{P}^{3}$ be the blowing-up of \mathbf{P}^{3} centered with C. The exceptional set $E=$ $\mu^{-1}(C)$ is biholomorphic to $\mathbf{P}^{1} \times \mathbf{P}^{1}$. Let ($\left[u_{0}: u_{1}\right],\left[v_{0}: v_{1}\right]$) be a system of coordinates on E. Here $\left[u_{0}: u_{1}\right]$ and $\left[v_{0}: v_{1}\right]$ are the homogeneous coordinates on \mathbf{P}^{1} such that $\mu \mid E: E \rightarrow$ C is given by

$$
\mu\left(\left[u_{0}: u_{1}\right],\left[v_{0}: v_{1}\right]\right)=\left[0: 0: v_{0}: v_{1}\right] \in \mathbf{P}^{3}
$$

Let \tilde{S} be the proper transform of S by μ and $\tilde{C}=\tilde{S} \cap E$. Then \tilde{C} is given by

$$
\begin{equation*}
F_{n}\left(u_{0}, u_{1}, v_{0}, v_{1}\right)=\sum_{i+j=n} a_{i j}^{(n)}\left(v_{0}, v_{1}\right) u_{0}^{i} u_{1}^{j} \tag{2}
\end{equation*}
$$

Consider \tilde{C} with its reduced structure. If \tilde{C} has singular points, put

$$
\Gamma_{1}=\{\sigma \in \Gamma: \sigma \text { fixes each singular point of } \tilde{C}\}
$$

Then Γ_{1} is a subgroup of Γ with finite index. Let $\left(\left[p_{0}: p_{1}\right],\left[q_{0}: q_{1}\right]\right) \in \tilde{C}$ be one of the singular points. Then Γ_{1} leaves the plane $p_{1} z_{0}-p_{0} z_{1}=0$ invariant. If \tilde{C} has no singular points, then \tilde{C} would be a finite disjoint union of non-singular curves in E. Note that μ maps every connected component of \tilde{C} onto $C \simeq \mathbf{P}^{1}$.

Suppose that \tilde{C} is non-singular, i.e., that \tilde{C} consists of mutually disjoint non-singular curves. If \tilde{C} has a component, say \tilde{C}_{1}, such that $\mu \mid \tilde{C}_{1}: \tilde{C}_{1} \rightarrow C$ is of $\operatorname{deg} \mu \mid \tilde{C}_{1} \geq 2$. Then $\mu \mid \tilde{C}_{1}$ would have branch points. Let B be the set of branch points of $\mu \mid \tilde{C}$, and put

$$
\Gamma_{2}=\{\sigma \in \Gamma: \sigma \text { fixes each point of } B\} .
$$

Since B is a finite set, Γ_{2} is a subgroup of Γ with finite index. Take any point ($\left[p_{0}: p_{1}\right]$, $\left[q_{0}\right.$: $\left.\left.q_{1}\right]\right) \in B$. Then the plane $p_{1} z_{0}-p_{0} z_{1}=0$ would be Γ_{2}-invariant.

Suppose that \tilde{C} is non-singular, and that μ maps every component of \tilde{C} bijectively onto C. Suppose further that \tilde{C} has distinct components \tilde{C}_{1} and \tilde{C}_{2}. Since \tilde{C}_{1} and \tilde{C}_{2} do not intersect each other, we see that both are of the form

$$
\begin{equation*}
\tilde{C}_{j}=\left\{\left[p_{0}^{j}: p_{1}^{j}\right]\right\} \times \mathbf{P}^{1} \subset E, \quad j=1,2 \tag{3}
\end{equation*}
$$

for some $\left[p_{0}^{j}: p_{1}^{j}\right] \in \mathbf{P}^{1}$. Put

$$
\Gamma_{3}=\left\{\sigma \in \Gamma: \sigma\left(\tilde{C}_{1}\right)=\tilde{C}_{1}\right\}
$$

Then Γ_{3} is a subgroup of Γ with finite index and the plane $p_{1}^{1} z_{0}-p_{0}^{1} z_{1}=0$ would be Γ_{3}-invariant.

Thus it remains to consider the case where \tilde{C} consists of a unique non-singular curve, and where μ maps \tilde{C} bijectively onto C. In this case, \tilde{C} is defined by a homogeneous polynomial $G\left(u_{0}, u_{1} ; v_{0}, v_{1}\right)$ of the four variables of the form

$$
\begin{equation*}
G\left(u_{0}, u_{1} ; v_{0}, v_{1}\right)=g_{1}\left(v_{0}, v_{1}\right) u_{0}-g_{0}\left(v_{0}, u_{1}\right) u_{1}, \tag{4}
\end{equation*}
$$

where $d=\operatorname{deg} g_{0}=\operatorname{deg} g_{1}$. Define a holomorphic map

$$
\varphi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}
$$

by

$$
\varphi\left(\left[v_{0}: v_{1}\right]\right)=\left[g_{0}\left(v_{0}, v_{1}\right): g_{1}\left(v_{0}, v_{1}\right)\right] .
$$

Note that every $\sigma \in \Gamma$ can be written as

$$
\left(\begin{array}{cc}
A_{\sigma} & 0 \\
C_{\sigma} & D_{\sigma}
\end{array}\right)
$$

where $A_{\sigma}, C_{\sigma}, D_{\sigma}$ are (2,2)-matrices with $\operatorname{det} A_{\sigma} \cdot \operatorname{det} D_{\sigma} \neq 0$. The action of σ on E is given by

$$
[u, v] \mapsto\left[A_{\sigma} u, D_{\sigma} v\right]
$$

where $u=\left(u_{0}, u_{1}\right), v=\left(v_{0}, v_{1}\right)$. Therefore we have the commutative diagram

for any $\sigma \in \Gamma$.
If φ is a constant map, then put $\left[p_{0}: p_{1}\right]=\varphi\left(\mathbf{P}^{1}\right)$. Then the plane $p_{1} z_{0}-p_{0} z_{1}=0$ is left invariant by Γ.

Suppose that φ is not constant. First we consider the case $\operatorname{deg} \varphi=d \geq 2$. In this case, the set

$$
R=\left\{v \in \mathbf{P}^{1}: d \varphi(v)=0\right\}
$$

is a non-empty finite set. Put

$$
\Gamma_{4}=\left\{\sigma \in \Gamma: A_{\sigma} \text { fixes every point of } R\right\} .
$$

Then, Γ_{4} is a subgroup of Γ with finite index. This implies that for a suitable homogeneous coordinates $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ on \mathbf{P}^{3}, the matrices A_{σ} and D_{σ} are lower triangular for all $\sigma \in \Gamma_{4}$. Therefore $z_{0}=0$ is left invariant by Γ_{4}.

Lastly, we consider the case $\operatorname{deg} \varphi=d=1$. Since $\varphi \in \operatorname{PSL}(2, \mathbf{C})$ in this case, replacing coordinates z_{2}, z_{3} of $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ suitably, we can assume that

$$
A_{\sigma}=D_{\sigma}
$$

holds for every $\sigma \in \Gamma$. Then G can be written as

$$
\begin{equation*}
G\left(u_{0}, u_{1} ; v_{0}, v_{1}\right)=v_{1} u_{0}-v_{0} u_{1} . \tag{5}
\end{equation*}
$$

Recall that we have been studying \tilde{C} with its reduced structure. By (4) and (2), F_{n} in (1) is of the form

$$
F_{n}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\left(z_{0} z_{3}-z_{1} z_{2}\right)^{n}
$$

where $m=2 n$. Thus we have shown the following.
LEMMA 2.1. We can choose a system of homogeneous coordinates $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ on \mathbf{P}^{3} such that

$$
\begin{equation*}
F_{n}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\left(z_{0} z_{3}-z_{1} z_{2}\right)^{n}, \quad m=2 n \tag{6}
\end{equation*}
$$

and that every element $\sigma \in \Gamma$ is represented by a matrix of the form

$$
\left(\begin{array}{cc}
A_{\sigma} & 0 \tag{7}\\
C_{\sigma} & A_{\sigma}
\end{array}\right)
$$

Before going into the process of determining F, we shall check the conditions that can be imposed on Γ. Let

$$
\rho: \Gamma \rightarrow \operatorname{PSL}(2, \mathbf{C})
$$

be the homomorphism defined by $\rho(\sigma)=A_{\sigma}$. Since Γ is finitely generated, replacing Γ with its subgroup of finite index, we can assume that $\rho(\Gamma)$ is torsion free. This implies, in particular, that $\rho(\Gamma)$ contains no elements represented by matrices of the following forms

$$
\left(\begin{array}{ll}
0 & b \tag{8}\\
c & 0
\end{array}\right), \quad\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \varepsilon^{-1}
\end{array}\right),
$$

where $b, c \in \mathbf{C}^{*}$, and ε is a root of unity other than ± 1.
Lemma 2.2. If every element of $\rho(\Gamma)$ is parabolic, then there is a Γ-invariant plane.
Proof. By taking a suitable conjugate of Γ, we can assume that $\rho(\Gamma)$ contains an element represented by $J=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Now take any element $\sigma \neq 1$ in $\rho(\Gamma)$, which is represented by $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbf{C})$. Since $A J, A^{-1} J$ are parabolic or identities, their traces are ± 2. Hence, we obtain $|a+d+b|=|a+d-b|=|a+d|=2$. This implies $b=0$. Therefore every element of $\rho(\Gamma)$ is represented by a lower triangular matrix. Hence $z_{0}=0$ is a Γ-invariant plane.

By Lemma 2.2, we can assume that Γ contains an element σ represented by

$$
\left(\begin{array}{cc}
A_{\sigma} & 0 \tag{9}\\
C_{\sigma} & A_{\sigma}
\end{array}\right), \quad A_{\sigma}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right)
$$

where $\alpha \in \mathbf{C}^{*}$ is not a root of unity. Put

$$
C_{\sigma}=\left(\begin{array}{ll}
\gamma_{00} & \gamma_{01} \\
\gamma_{10} & \gamma_{11}
\end{array}\right) .
$$

Introduce a new system of homogeneous coordinates $\left[z_{0}^{\prime}: z_{1}^{\prime}: z_{2}^{\prime}: z_{3}^{\prime}\right]$ on \mathbf{P}^{3} by

$$
\left\{\begin{align*}
z_{0} & =z_{0}^{\prime} \tag{10}\\
z_{1} & =z_{1}^{\prime} \\
z_{2} & =z_{2}^{\prime}+\frac{\gamma_{01}}{\alpha^{-1}-\alpha} z_{1}^{\prime} \\
z_{3} & =z_{3}^{\prime}+\frac{\gamma_{10}}{\alpha-\alpha^{-1}} z_{0}^{\prime}
\end{align*}\right.
$$

Then σ can be represented by the matrix

$$
\left(\begin{array}{cc}
A_{\sigma} & 0 \tag{11}\\
C_{\sigma} & A_{\sigma}
\end{array}\right), \quad A_{\sigma}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right), \quad C_{\sigma}=\left(\begin{array}{cc}
\gamma_{00} & 0 \\
0 & \gamma_{11}
\end{array}\right) .
$$

From now on in this section, we fix the homogeneous coordinates above on \mathbf{P}^{3}, by which the element σ is represented by the matrix (11). Note that the equation (6) remains unchanged. Here we sum up the conditions imposed on Γ.
(i) Γ has no elements of finite order,
(ii) Γ consists of elements satisfying (7),
(iii) Γ contains an element of the form (11),
(iv) $\rho(\Gamma)$ has no elements of finite order. Thus $\rho(\Gamma)$ contains no elements represented by matrices of (8),
(v) $\rho(\Gamma)$ contains an element of the form

$$
A=\left(\begin{array}{ll}
\alpha_{00} & \alpha_{01} \\
\alpha_{10} & \alpha_{11}
\end{array}\right), \quad\left|\alpha_{01}\right|+\left|\alpha_{10}\right| \neq 0
$$

Recall that conditions (i) and (iv) are fulfilled, if Γ is replaced with its subgroup of finite index. Condition (iii) is a consequence of Lemma 2.2. We impose the condition (v) on Γ, since otherwise Γ will have trivially a Γ-invariant plane. By the conditions (iv) and (v), every $A \in \rho(\Gamma)$ with $\left|\alpha_{01}\right|+\left|\alpha_{01}\right| \neq 0$ satisfies either $\alpha_{01} \alpha_{11} \neq 0$ or $\alpha_{00} \alpha_{10} \neq 0$.

Now we are going into the process of determining F. We write F in the form (1). By (6), we know that F is written as

$$
\begin{equation*}
F=F_{n}+F_{n+1}+\cdots+F_{m}, \quad m=\operatorname{deg} F=2 n \tag{12}
\end{equation*}
$$

where

$$
F_{n}=\left(z_{0} z_{3}-z_{1} z_{2}\right)^{n}
$$

In general, for a polynomial

$$
G=\sum_{i_{0}, i_{1}, i_{2}, i_{3}} g_{i_{0} i_{1} i_{2} i_{3}} z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{2}} z_{3}^{i_{3}}
$$

we indicate by

$$
[G]_{k}=\sum_{i_{0}+i_{1}=k} g_{i_{0} i_{1} i_{2} i_{3}} z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{2}} z_{3}^{i_{3}}
$$

the partial sum of terms with $i_{0}+i_{1}=k$. Thus $F_{k}=[F]_{k}$. We put

$$
F_{k}=\sum_{i_{0}+i_{1}=k} a_{i_{0} i_{1} i_{2} i_{3}} z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{2}} z_{3}^{i_{3}}
$$

Sublemma 2.1. Under the conditions (i)-(iv) on Γ, F is of the form

$$
F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\sum_{k=0}^{n} F_{n+k}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)
$$

where

$$
F_{n+k}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\left(z_{0} z_{1}\right)^{k} \sum_{i_{2}+i_{3}=n-k} a_{i_{2} i_{3}}\left(z_{0} z_{3}\right)^{i_{3}}\left(z_{1} z_{2}\right)^{i_{2}}
$$

Proof. Let $\sigma \in \Gamma$ be an element of (iii), i.e., of the form (11). We already know that F_{n} is a polynomial of $z_{0} z_{3}$ and $z_{1} z_{2}$. From $\sigma^{*} F=F$, it follows that

$$
\begin{equation*}
\left[\sigma^{*} F\right]_{n+1}=F_{n+1} \tag{13}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\left[\sigma^{*} F\right]_{n+1}=F_{n+1}\left(\alpha z_{0}, \alpha^{-1} z_{1}, \alpha z_{2}, \alpha^{-1} z_{3}\right)+\left[\sigma^{*} F_{n}\right]_{n+1} \tag{14}
\end{equation*}
$$

where

$$
\left[\sigma^{*} F_{n}\right]_{n+1}=n\left(\alpha \gamma_{11}-\alpha^{-1} \gamma_{00}\right) z_{0} z_{1}\left(z_{0} z_{3}-z_{1} z_{2}\right)^{n-1} .
$$

Hence, by (13), we have

$$
\begin{align*}
F_{n+1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)= & F_{n+1}\left(\alpha z_{0}, \alpha^{-1} z_{1}, \alpha z_{2}, \alpha^{-1} z_{3}\right) \tag{15}\\
& +n\left(\alpha \gamma_{11}-\alpha^{-1} \gamma_{00}\right) z_{0} z_{1}\left(z_{0} z_{3}-z_{1} z_{2}\right)^{n-1}
\end{align*}
$$

Comparing the terms $z_{0} z_{1}\left(z_{0} z_{3}\right)^{k}\left(z_{1} z_{2}\right)^{n-k-1}$ in (15), we have

$$
\begin{equation*}
F_{n+1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=F_{n+1}\left(\alpha z_{0}, \alpha^{-1} z_{1}, \alpha z_{2}, \alpha^{-1} z_{3}\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \gamma_{11}-\alpha^{-1} \gamma_{00}=0 . \tag{17}
\end{equation*}
$$

Let

$$
F_{n+1}=\sum_{i_{0}+i_{1}=n+1, i_{2}+i_{3}=n-1} a_{i_{0} i_{1} i_{2} i_{3}} z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{2}} z_{3}^{i_{3}} .
$$

By (16), we see that non-zero terms $a_{i_{0} i_{1} i_{2} i_{3}} z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{2}} z_{3}^{i_{3}}$ satisfy $i_{0}+i_{2}=i_{1}+i_{3}$. Therefore we have $i_{0}=i_{3}+1$ and $i_{1}=i_{2}+1$, and

$$
a_{i_{0} i_{1} i_{2} i_{3}} z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{2}} z_{3}^{i_{3}}=a_{i_{0} i_{1} i_{2} i_{3}}\left(z_{0} z_{1}\right)\left(z_{0} z_{3}\right)^{i_{3}}\left(z_{1} z_{2}\right)^{i_{2}}
$$

Hence we have

$$
\begin{equation*}
F_{n+1}=z_{0} z_{1} \sum_{i_{2}+i_{3}=n-1} a_{i_{2} i_{3}}\left(z_{0} z_{3}\right)^{i_{3}}\left(z_{1} z_{2}\right)^{i_{2}} \tag{18}
\end{equation*}
$$

Further, (17) implies

$$
\begin{equation*}
\sigma^{*}\left(F_{n}\right)=F_{n} \tag{19}
\end{equation*}
$$

By (18), we have

$$
\begin{aligned}
\sigma^{*}\left(F_{n+1}\right) & =F_{n+1}\left(\alpha z_{0}, \alpha^{-1} z_{1}, \alpha z_{2}+\gamma_{00} z_{0}, \alpha^{-1} z_{3}+\gamma_{11} z_{1}\right) \\
& =z_{0} z_{1} \sum_{i_{2}+i_{3}=n-1} a_{i_{2} i_{3}}\left(z_{0} z_{3}+\alpha \gamma_{11} z_{0} z_{1}\right)^{i_{3}}\left(z_{1} z_{2}+\alpha^{-1} \gamma_{00} z_{0} z_{1}\right)^{i_{2}} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\sigma^{*}\left(F_{n+1}\right) \text { is a polynomial of } z_{0} z_{1}, z_{0} z_{3} \text { and } z_{1} z_{2} \tag{20}
\end{equation*}
$$

Next, we consider F_{n+2}. Using (19), we have

$$
\begin{align*}
F_{n+2} & =\left[\sigma^{*} F\right]_{n+2} \tag{21}\\
& =\left[\sigma^{*}\left(F_{n}\right)+\sigma^{*}\left(F_{n+1}\right)+\sigma^{*}\left(F_{n+2}\right)\right]_{n+2} \\
& =\left[\sigma^{*}\left(F_{n+1}\right)\right]_{n+2}+\left[\sigma^{*}\left(F_{n+2}\right)\right]_{n+2}
\end{align*}
$$

Since

$$
\left[\sigma^{*}\left(F_{n+2}\right)\right]_{n+2}=F_{n+2}\left(\alpha z_{0}, \alpha^{-1} z_{1}, \alpha z_{2}, \alpha^{-1} z_{3}\right)
$$

it follows from from (21) that

$$
\begin{equation*}
F_{n+2}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)-F_{n+2}\left(\alpha z_{0}, \alpha^{-1} z_{1}, \alpha z_{2}, \alpha^{-1} z_{3}\right)=\left[\sigma^{*}\left(F_{n+1}\right)\right]_{n+2} \tag{22}
\end{equation*}
$$

By (20), $\sigma^{*}\left(F_{n+1}\right)$ is a polynomial of $z_{0} z_{1}, z_{0} z_{3}$ and $z_{1} z_{2}$. On the other hand, the left-hand side of (22) contains no terms of monomials of $z_{0} z_{1}, z_{0} z_{3}$ and $z_{1} z_{2}$, since these terms remain invariant by the action $\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \mapsto\left(\alpha z_{0}, \alpha^{-1} z_{1}, \alpha z_{2}, \alpha^{-1} z_{3}\right)$. Hence we have

$$
\begin{align*}
F_{n+2}\left(z_{0}, z_{1}, z_{2}, z_{3}\right) & =F_{n+2}\left(\alpha z_{0}, \alpha^{-1} z_{1}, \alpha z_{2}, \alpha^{-1} z_{3}\right) \tag{23}\\
{\left[\sigma^{*}\left(F_{n+1}\right)\right]_{n+2} } & =0
\end{align*}
$$

Let

$$
F_{n+2}=\sum_{i_{0}+i_{1}=n+2, i_{2}+i_{3}=n-2} a_{i_{0} i_{1} i_{2} i_{3}} z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{2}} z_{3}^{i_{3}}
$$

By (23), we see that non-zero terms $a_{i_{0} i_{1} i_{2} i_{3}} z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{2}} z_{3}^{i_{3}}$ satisfy $i_{0}+i_{2}=i_{1}+i_{3}$. Therefore we have $i_{0}=i_{3}+2$ and $i_{1}=i_{2}+2$, and

$$
a_{i_{0} i_{1} i_{2} i_{3}} z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{2}} z_{3}^{i_{3}}=a_{i_{0} i_{1} i_{2} i_{3}}\left(z_{0} z_{1}\right)^{2}\left(z_{0} z_{3}\right)^{i_{3}}\left(z_{1} z_{2}\right)^{i_{2}}
$$

Hence we have

$$
\begin{equation*}
F_{n+2}=\left(z_{0} z_{1}\right)^{2} \sum_{i_{2}+i_{3}=n-2} a_{i_{2} i_{3}}\left(z_{0} z_{3}\right)^{i_{3}}\left(z_{1} z_{2}\right)^{i_{2}} \tag{24}
\end{equation*}
$$

From this, it follows also that

$$
\begin{equation*}
\sigma^{*}\left(F_{n+2}\right) \text { is a polynomial of } z_{0} z_{1}, z_{0} z_{3} \text { and } z_{1} z_{2} \tag{25}
\end{equation*}
$$

By (24), (20) and (25), we can proceed to the next induction step F_{n+3}. Thus the sublemma is proved inductively.

REMARK 1. By (17), σ of (iii) is of the form

$$
\left(\begin{array}{cc}
A_{\sigma} & 0 \tag{26}\\
c_{\sigma} A_{\sigma} & A_{\sigma}
\end{array}\right), \quad c_{\sigma} \in \mathbf{C}
$$

Sublemma 2.2. Under the conditions (i)-(v) on Γ, F is of the form

$$
F=\sum_{k=0}^{n} a_{k}\left(z_{0} z_{1}\right)^{k}\left(z_{0} z_{3}-z_{1} z_{2}\right)^{n-k}, \quad a_{0}=1
$$

Proof. Put $y=z_{0} z_{3}-z_{1} z_{2}$ for short. By Sublemma 2.1, it is enough to show that each F_{n+k} is divisible by y^{n-k}. Since $F_{n}=y^{n}$, we are done for $k=0$. Now we shall prove the lemma by induction on $k \geq 0$. Suppose that F_{n+j} is determined for $j \leq k$ and consider the case $k+1$. Let

$$
F=\sum_{j=0}^{k} a_{j}\left(z_{0} z_{1}\right)^{j} y^{n-j}+\sum_{j=k+1}^{n} F_{n+j}
$$

where $a_{j} \in \mathbf{C}$ for some k with $0 \leq j \leq k<n$. Choose $\tau \in \Gamma$ of (v). Put
(27) $\left(\begin{array}{cc}A_{\tau} & 0 \\ C_{\tau} & A_{\tau}\end{array}\right), \quad A_{\tau}=\left(\begin{array}{ll}\alpha_{00} & \alpha_{01} \\ \alpha_{10} & \alpha_{11}\end{array}\right), \quad C_{\tau}=\left(\begin{array}{ll}\gamma_{00} & \gamma_{01} \\ \gamma_{10} & \gamma_{11}\end{array}\right), \quad\left|\alpha_{01}\right|+\left|\alpha_{10}\right| \neq 0$.

Put also

$$
\begin{aligned}
w_{0} & =\alpha_{00} z_{0}+\alpha_{01} z_{1} \\
w_{1} & =\alpha_{10} z_{0}+\alpha_{11} z_{1}, \\
v_{0} & =\gamma_{00} z_{0}+\gamma_{01} z_{1}, \quad w_{2}=\alpha_{00} z_{2}+\alpha_{01} z_{3} \\
v_{1} & =\gamma_{10} z_{0}+\gamma_{11} z_{1}, \quad w_{3}=\alpha_{10} z_{2}+\alpha_{11} z_{3}
\end{aligned}
$$

We put

$$
\Delta_{\tau}=w_{0} v_{1}-w_{1} v_{0}
$$

Note that

$$
\begin{equation*}
y=z_{0} z_{3}-z_{1} z_{2}=w_{0} w_{3}-w_{1} w_{2} \tag{28}
\end{equation*}
$$

and that

$$
\tau^{*} y=y+\Delta_{\tau}
$$

From $\tau^{*} F=F$, it follows that

$$
\begin{aligned}
F_{n+k+1} & =\left[\tau^{*}\left(\sum_{j=0}^{k} a_{j}\left(z_{0} z_{1}\right)^{j} y^{n-j}+F_{n+k+1}\right)\right]_{n+k+1} \\
& =y^{n-k-1} \sum_{j=0}^{k}{ }_{n-j} C_{n-k-1} a_{j}\left(w_{0} w_{1}\right)^{j} \Delta_{\tau}^{k+1-j}+\left[\tau^{*}\left(F_{n+k+1}\right)\right]_{n+k+1} \\
& =y^{n-k-1} \sum_{j=0}^{k}{ }_{n-j} C_{n-k-1} a_{j}\left(w_{0} w_{1}\right)^{j} \Delta_{\tau}^{k+1-j}+F_{n+k+1}\left(w_{0}, w_{1}, w_{2}, w_{3}\right)
\end{aligned}
$$

In view of Sublemma 2.1, we can write F_{n+k+1} as

$$
F_{n+k+1}=\left(z_{0} z_{1}\right)^{k+1} \sum_{i_{2}+i_{3}=n-k-1} a_{i_{2} i_{3}}\left(z_{0} z_{3}\right)^{i_{3}}\left(z_{1} z_{2}\right)^{i_{2}}
$$

Suppose that $n-k-1>0$. Then, letting $z_{0}=z_{2}=0$ in (29), we have

$$
\begin{align*}
0 & =F_{n+k+1}\left(\alpha_{01} z_{1}, \alpha_{11} z_{1}, \alpha_{01} z_{3}, \alpha_{11} z_{3}\right) \tag{30}\\
& =\left(\alpha_{01} z_{1} \alpha_{11} z_{1}\right)^{k+1} \sum_{i_{2}+i_{3}=n-k-1} a_{i_{2} i_{3}}\left(\alpha_{01} z_{1} \alpha_{11} z_{3}\right)^{i_{3}}\left(\alpha_{11} z_{1} \alpha_{01} z_{3}\right)^{i_{2}} \\
& =\left(\alpha_{01} \alpha_{11}\right)^{n} z_{1}^{n+k+1} z_{3}^{n-k-1} \sum_{i_{2}+i_{3}=n-k-1} a_{i_{2} i_{3}} .
\end{align*}
$$

Similarly, letting $z_{1}=z_{3}=0$ in (29), we have

$$
\begin{align*}
0 & =F_{n+k+1}\left(\alpha_{00} z_{0}, \alpha_{10} z_{0}, \alpha_{00} z_{2}, \alpha_{10} z_{2}\right) \tag{31}\\
& =\left(\alpha_{00} z_{0} \alpha_{10} z_{0}\right)^{k+1} \sum_{i_{2}+i_{3}=n-k-1} a_{i_{2} i_{3}}\left(\alpha_{00} z_{0} \alpha_{10} z_{2}\right)^{i_{3}}\left(\alpha_{10} z_{0} \alpha_{00} z_{2}\right)^{i_{2}} \\
& =\left(\alpha_{00} \alpha_{10}\right)^{n} z_{0}^{n+k+1} z_{2}^{n-k-1} \sum_{i_{2}+i_{3}=n-k-1} a_{i_{2} i_{3}} .
\end{align*}
$$

Recall that, by the conditions (iv) and (v), we have either $\alpha_{01} \alpha_{11} \neq 0$ or $\alpha_{00} \alpha_{10} \neq 0$. Hence by (30), (31), we have

$$
\begin{equation*}
\sum_{i_{2}+i_{3}=n-k-1} a_{i_{2} i_{3}}=0 . \tag{32}
\end{equation*}
$$

This condition (32) implies that F_{n+k+1} is divisible by y. Define $G_{1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ by

$$
F_{n+k+1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=y G_{1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right),
$$

where G_{1} is of the form

$$
\begin{equation*}
G_{1}=\left(z_{0} z_{1}\right)^{k+1} \sum_{i_{2}+i_{3}=n-k-2} a_{i_{2} i_{3}}\left(z_{0} z_{3}\right)^{i_{3}}\left(z_{1} z_{2}\right)^{i_{2}} \tag{33}
\end{equation*}
$$

Further, by (29) and (28), we have

$$
\begin{equation*}
G_{1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=y^{n-k-2} \tilde{\Delta}_{\tau}+G_{1}\left(w_{0}, w_{1}, w_{2}, w_{3}\right) \tag{34}
\end{equation*}
$$

where

$$
\tilde{\Delta}_{\tau}=\sum_{j=0}^{k}{ }_{n-j} C_{n-k-1} a_{j}\left(w_{0} w_{1}\right)^{j} \Delta_{\tau}^{k+1-j}
$$

Therefore we can repeat the argument from (30) while $n-k-1>0$. This implies that F_{n+k+1} is divisible by y^{n-k-1}. This proves the sublemma.

REMARK 2. Until now, we have not used the assumption that S is irreducible.
Proposition 6. Assume that the conditions (i)-(iv) on Γ are fulfilled with respect to a system $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ of homogeneous coordinates on \mathbf{P}^{3}, where

$$
\ell=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right]: z_{0}=z_{1}=0\right\} .
$$

If S is a Γ-invariant surface, then the defining equation F of S can be given by

$$
\begin{equation*}
F=\left(z_{0} z_{3}-z_{1} z_{2}+t z_{0} z_{1}\right)^{n} \tag{35}
\end{equation*}
$$

for some $t \in \mathbf{C}$. Further, each element $\sigma \in \Gamma$ is represented by a matrix of the form

$$
\left(\begin{array}{cc}
A_{\sigma} & 0 \tag{36}\\
c_{\sigma} A_{\sigma}+A_{\sigma} T-T A_{\sigma} & A_{\sigma}
\end{array}\right), \quad T=\left(\begin{array}{cc}
0 & t \\
0 & 0
\end{array}\right), \quad c_{\sigma} \in \mathbf{C}
$$

Proof. By Sublemma 2.2, any irreducible factor of F is of the form

$$
\begin{equation*}
z_{0} z_{3}-z_{1} z_{2}+t z_{0} z_{1}, \quad t \in \mathbf{C} \tag{37}
\end{equation*}
$$

Since S is irreducible, F is of the form (35). Each $\sigma \in \Gamma$ is represented by a matrix of the form $\left(\begin{array}{cc}A_{\sigma} & 0 \\ C_{\sigma} & A_{\sigma}\end{array}\right)$. To determine C_{σ}, we define

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
0 & t \\
0 & 0
\end{array}\right)
$$

Since $\sigma \in \Gamma$ leaves the equation (37) invariant, we have the relation of parings \langle,$\rangle of 2-$ vectors

$$
\left\langle A_{\sigma} z, J\left(T A_{\sigma} z+C_{\sigma} z+A_{\sigma} z^{\prime}\right)\right\rangle=\left\langle z, J\left(T z+z^{\prime}\right)\right\rangle,
$$

where $z={ }^{t}\left(z_{0}, z_{1}\right)$ and $z^{\prime}={ }^{t}\left(z_{2}, z_{3}\right)$. By the relation ${ }^{t} A_{\sigma} J A_{\sigma}=J$, we have $\left\langle z, J z^{\prime}\right\rangle=$ $\left\langle A_{\sigma} z, J A_{\sigma} z^{\prime}\right\rangle$. Hence we obtain

$$
\left\langle z,\left({ }^{t} A_{\sigma} J T A_{\sigma}+{ }^{t} A_{\sigma} J C_{\sigma}-J T\right) z\right\rangle=0
$$

This implies

$$
{ }^{t} A_{\sigma} J T A_{\sigma}+{ }^{t} A_{\sigma} J C_{\sigma}-J T=c_{\sigma} J
$$

for some $c_{\sigma} \in \mathbf{C}$. Hence we have

$$
C_{\sigma}=c_{\sigma} A_{\sigma}+A_{\sigma} T-T A_{\sigma} .
$$

Thus we have the proposition.
Theorem 1 is clear by the proposition above.
Corollary 2.1. Let S_{1} and S_{2} be surfaces which are invariant by a finitely generated discrete subgroup $\Gamma \subset \operatorname{PGL}(4, \mathbf{C})$. Suppose that $S_{1} \cap S_{2}$ contains a line and that Γ admits no semi-invariant planes. Then $S_{1}=S_{2}$.

Proof. By Proposition 6, both S_{1} and S_{2} are quadrics defined respectively by

$$
\begin{array}{ll}
S_{1}: F_{1}=z_{0} z_{3}-z_{1} z_{2}+t_{1} z_{0} z_{1}, & t_{1} \in \mathbf{C} \\
S_{2}: F_{2}=z_{0} z_{3}-z_{1} z_{2}+t_{2} z_{0} z_{1}, & t_{2} \in \mathbf{C}
\end{array}
$$

For $\sigma \in \Gamma$, we have $\sigma^{*} F_{j}=\left(\operatorname{det} A_{\sigma}\right) F_{j}$. Therefore the polynomial $F_{1}-F_{2}=\left(t_{1}-t_{2}\right) z_{0} z_{1}$ is also Γ-invariant. Since Γ admits no semi-invariant plane, we have $t_{1}=t_{2}$. Hence $S_{1}=S_{2}$.

3. Space rational curve case

In this section, in addition to the three conditions (A1), (A2) and (A3) on Γ, we assume that

$$
C \text { is a space rational curve not contained in any plane. }
$$

Let

$$
\begin{align*}
\varphi & : \mathbf{P}^{1} \rightarrow C \subset \mathbf{P}^{3} \tag{38}\\
\varphi([z: w]) & =\left[v_{0}([z: w]): v_{1}([z: w]): v_{2}([z: w]): v_{3}([z: w])\right] \tag{39}
\end{align*}
$$

be the normalization of C, where $n=\operatorname{deg} v_{j}, 0 \leq j \leq 3$. Let $\varphi^{(k)}$ be the k-th associated curve of φ (see [GH, p.263]) :

$$
\varphi^{(0)}=\varphi, \quad \varphi^{(1)}: \mathbf{P}^{1} \rightarrow \operatorname{Gr}(4,2), \quad \varphi^{(2)}: \mathbf{P}^{1} \rightarrow \mathbf{P}^{3^{\vee}}
$$

Since C is Γ-invariant, every $\sigma \in \Gamma$ induces a holomorphic automorphism $\tilde{\sigma} \in \operatorname{Aut}\left(\mathbf{P}^{1}\right)$ which makes the diagram

commutative. Let $\tilde{\Gamma}$ denote the subgroup of $\operatorname{Aut}\left(\mathbf{P}^{1}\right)$ generated by $\tilde{\sigma}$ for $\sigma \in \Gamma$. Since Γ is a discrete group of $\operatorname{PSL}(4, \mathbf{C}), \tilde{\Gamma}$ is also discrete in $\operatorname{PSL}(2, \mathbf{C})$. If $\tilde{\Gamma}$ is an elementary group, then $\tilde{\Gamma}$ contains an abelian subgroup of finite index. Hence Γ admits a semi-invariant plane by Proposition 4 . Therefore we can assume that $\tilde{\Gamma}$ contains no elementary subgroup of finite index. Consider the sets

$$
\Sigma^{(k)}=\left\{x \in \mathbf{P}^{1}: \operatorname{rank} d \varphi^{(k)}(x)=0\right\}, \quad k=0,1,2
$$

and

$$
\Sigma=\bigcup_{k=0}^{2} \Sigma^{(k)}
$$

Proposition 7. If $\Sigma \neq \emptyset$, then there is a semi-invariant plane.
Proof. Note that Σ is a $\tilde{\Gamma}$-invariant finite set. Hence $\tilde{\Gamma}$ is elementary by Proposition 1. This contradicts our assumption.

It is well-known that $\Sigma=\emptyset$ if and only if C is a twisted cubic. Suppose that C is given by

$$
\begin{equation*}
\varphi: \mathbf{P}^{1} \ni[1: t] \rightarrow\left[1: t: t^{2}: t^{3}\right] \in \mathbf{P}^{3} \tag{40}
\end{equation*}
$$

By Proposition 3, we can take a loxodromic element $\tilde{\sigma}$ in $\tilde{\Gamma}$. Choosing the coordinates on \mathbf{P}^{1} and \mathbf{P}^{3} suitably, $\tilde{\sigma} \in \tilde{\Gamma}$ is given by

$$
\begin{equation*}
\tilde{\sigma}([1: t])=[1: \alpha t] \tag{41}
\end{equation*}
$$

where $0<|\alpha|<1$. Let S be the tangential surface of C. Note that the tangential surface is irreducible, Γ-invariant and containing C.

Proposition 8. There is no Γ-invariant surface containing C other than S.
Proof. By an easy calculation, the tangential surface S is of degree 4 given by

$$
F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{0}^{2} z_{3}^{2}-6 z_{0} z_{1} z_{2} z_{3}-3 z_{1}^{2} z_{2}^{2}+4 z_{0} z_{2}^{3}+4 z_{1}^{3} z_{3}=0
$$

Hence, we see that S contains the lines

$$
\begin{equation*}
\ell_{01}=\left\{z_{0}=z_{1}=0\right\} \text { and } \ell_{23}=\left\{z_{2}=z_{3}=0\right\} \tag{42}
\end{equation*}
$$

Suppose that there is a Γ-invariant surface S_{1} other than S. Let $F_{1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ be the defining equation of S_{1}. Put $m=\operatorname{deg} F_{1}$. Then by (41), F_{1} satisfies

$$
\begin{aligned}
F_{1}\left(t z_{0}, t z_{1}, t z_{2}, t z_{3}\right) & =t^{m} F_{1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right), \\
F_{1}\left(z_{0}, t z_{1}, t^{2} z_{2}, t^{3} z_{3}\right) & =t^{N} F_{1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right),
\end{aligned}
$$

for any $t \in \mathbf{C}$, and some fixed natural number N. If $N>m$, then F_{1} contains no terms with $z_{0}^{i_{0}} z_{1}^{i_{1}}$ with $m=i_{0}+i_{1}$. Hence $\ell_{23} \subset S_{1}$. If $N<2 m$, then F_{1} contains no terms with $z_{2}^{i_{2}} z_{3}^{i_{3}}$
with $m=i_{2}+i_{3}$. Hence $\ell_{01} \subset S_{1}$. Therefore S_{1} contains either ℓ_{01} or ℓ_{23}. Hence by (42), $S \cap S_{1}$ contains either ℓ_{01} or ℓ_{23}. Since both S and S_{1} are Γ-invariant, there is a subgroup Γ_{1} of Γ which leaves invariant the line in $S \cap S_{1}$. Thus we are in the case of section 2 . Since S is not a non-singular quadric, we have a contradiction.

4. Proof of main results

Let Γ be a finitely generated discrete subgroup of $\operatorname{PGL}(4, \mathbf{C})$ acting on \mathbf{P}^{3}.
Proof of Theorem A. For the first case, it is enough to use $\left[z_{0}: z_{1}: z_{2}: z_{3}+t z_{1}\right]$ as a new system of homogeneous coordinates on \mathbf{P}^{3} in Proposition 6. The uniqueness follows from Corollary 2.1. The second case is obvious by Proposition 8.

Proof of Theorem B. Suppose that the singular locus of S is a finite set points. Then Γ contains a finite index subgroup Γ_{1} which fixes a singular point p. Then the tangent cone S_{0} at p of S is Γ_{1}-invariant. If $S_{0} \neq S$, then $S_{0} \cap S$ is a finite union of curves. Let $C_{0} \subset S_{0} \cap S$ be a curve passing through p. Then the tangent cone of C_{0} at p contains a line L, which is contained also in S_{0}. Obviously, L is Γ_{1}-semi-invariant. Thus the pair L and S_{0} satisfies the condition of section 2 . Hence by Theorem $1, S_{0}$ is a non-singular quadric. This contradicts the fact that p is a singular point of S. Hence $S=S_{0}$, i.e., S is a cone over a non-singular plane curve C. If C is not rational, then Γ_{1} contains a solvable subgroup of finite index. Hence there are semi-invariant planes by Proposition 4. If C is a line, then S is the plane left invariant by Γ_{1}. Thus C is a non-singular conic. If the singular locus of S contains a curve, then we can apply Theorem A and obtain that S is either a quadric or the tangential surface of a twisted cubic curve. Suppose that S is non-singular. Put $n=\operatorname{deg} S$. By assumption, we have $n \geq 2$. If $n=2$, then there is nothing to prove. It is well-known that every non-singular surface of degree 3 contains exactly 27 lines. Hence each one of these lines is semi-invariant. Thus we are in the case Theorem 1 and we see that this case doesn't occur. Suppose that $n \geq 4$. Note that the group

$$
G=\{g \in \operatorname{PSL}(4, \mathbf{C}): g(S)=S\}
$$

is a closed algebraic subgroup of $\operatorname{PSL}(4, \mathbf{C})$. It is easy to see that, if $n \geq 4, S$ does not admit non-zero tangent vector fields. Hence we see that G is a finite group. This implies Γ itself is a finite group, a contradiction.

Corollary 1. If Γ leaves invariant distinct two surfaces in \mathbf{P}^{3}, then there is a semiinvariant plane.

Proof. The two surfaces intersect in curves, and Γ contains is a finite index subgroup which leaves invariant each irreducible component of the intersection. Hence the corollary follows from Theorem A.

As an easy consequence, we have the following, which was proved in [K1] by a rather long case-by-case checking.

Corollary 2 ([K1, Lemma 5.9]). If there is a non-trivial rational function on \mathbf{P}^{3} which is invariant under the action of a finitely generated discrete subgroup Γ of $\operatorname{PGL}(4, \mathbf{C})$, then Γ contains a subgroup Γ_{0} of finite index such that Γ_{0} leaves invariant a 2-dimensional projective plane in \mathbf{P}^{3}.

Corollary 3. Let C be a Γ-invariant curve in \mathbf{P}^{3}. If Γ admits no semi-invariant planes, then C is a line or a twisted cubic curve.

Proof. Suppose that C is not a line. Then, C is a space rational curve by Proposition 5. Then, by Propositions 7, we conclude that C is a twisted cubic curve.

5. Examples

Let Γ be a finitely generated discrete subgroup of $\operatorname{PGL}(4, \mathbf{C})$ acting on \mathbf{P}^{3}. Suppose that a surface $S \subset \mathbf{P}^{3}$ is Γ-invariant, but that Γ admits no semi-invariant planes. Then, by Theorem B, S is either a non-singular quadric, tangential surface of a twisted cubic curve, or a cone over a non-singular conic. In this section, we shall give an example for each case.
5.1. Non-singular quadric. Let G be a finitely generated non-elementary Kleinian group, and $c \in \operatorname{Hom}(G, \mathbf{C})$ any element. Define the group Γ by

$$
\Gamma=\left\{\left(\begin{array}{cc}
A & 0 \\
c(A) A & A
\end{array}\right): A \in G\right\}
$$

It is easy to see that Γ is a finitely generated discrete subgroup of $\operatorname{PGL}(4, \mathbf{C})$ and that the line

$$
z_{0}=z_{1}=0
$$

and the surface

$$
z_{0} z_{3}-z_{1} z_{2}=0
$$

are Γ-invariant.
LEMMA 5.1. Γ admits no semi-invariant plane.
Proof. Consider the Segre map

$$
s: \mathbf{P}^{1} \times \mathbf{P}^{1} \rightarrow \mathbf{P}^{3}
$$

where

$$
s\left(\left[u_{0}: u_{1}\right],\left[v_{0}: v_{1}\right]\right)=\left[u_{0} v_{0}: u_{0} v_{1}: u_{1} v_{0}: u_{1} v_{1}\right]
$$

Then s defines a group homomorphism

$$
\tilde{s}: \operatorname{PSL}(2, \mathbf{C}) \times \operatorname{PSL}(2, \mathbf{C}) \rightarrow \operatorname{PGL}(4, \mathbf{C}) .
$$

Obviously, we have

$$
\tilde{s}\left(\left(J_{c}, A\right)\right)=\left(\begin{array}{cc}
A & 0 \\
c A & A
\end{array}\right), \quad \text { where } J_{c}=\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right) .
$$

Suppose that a finite index subgroup Γ_{1} leaves a plane

$$
p_{0} z_{0}+p_{1} z_{1}+p_{2} z_{2}+p_{3} z_{3}=0
$$

invariant. Put

$$
p=\left(p_{0}, p_{1}\right), q=\left(p_{2}, p_{3}\right), u={ }^{t}\left(u_{0}, u_{1}\right), \text { and } v={ }^{t}\left(v_{0}, v_{1}\right) .
$$

Then, for $h=\left(J_{c}, A\right) \in \tilde{s}^{-1}\left(\Gamma_{1}\right)$, by the invariance of the plane we have that

$$
u_{0} p A v+\left(c u_{0}+u_{1}\right) q A v=\mu(h)\left(u_{0} p v+u_{1} q v\right)
$$

for some $\mu(h) \in \mathbf{C}^{*}$. Thus we have

$$
\begin{aligned}
p A v+c q A v & =\mu(h) p v, \\
c q A v & =\mu(h) q v,
\end{aligned}
$$

and hence

$$
\begin{align*}
p A+c q A & =\mu(h) p \tag{43}\\
c q A & =\mu(h) q \tag{44}
\end{align*}
$$

The equality (44) implies $q=0$, since otherwise G would be an elementary group. Then again, the equality (43) implies that G is elementary, a contradiction.
5.2. Tangential surface to a twisted cubic curve. Let G be a non-elementary discrete subgroup of $\operatorname{PGL}(2, \mathbf{C})$. Note that any element in $\operatorname{PGL}(2, \mathbf{C})$ defines a linear transformation $H^{0}\left(\mathbf{P}^{1}, \mathcal{O}(3)\right) \simeq \mathbf{C}^{4}$. Hence G defines a discrete subgroup $\Gamma \subset \operatorname{PGL}(4, \mathbf{C})$, which gives an example of this case. Indeed, if Γ admits a semi-invariant plane, then the intersection of the plane with the twisted cubic curve would be a semi-invariant set. Thus a finite index subgroup of G would have a fixed point. This implies that G is elementary, a contradiction.
5.3. Cone over a non-singular conic. Let $\left\{1, z, z^{2}\right\}$ be a basis of $H^{0}\left(\mathbf{P}^{1}, \mathcal{O}(2)\right)(\simeq$ Π_{2}), and

$$
\Phi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{3}
$$

be the embedding defined by $\Phi([1: z])=\left[0: 1: z: z^{2}\right]$. Let G be a non-elementary Kleinian group with $A_{2}(\Omega(G), G) \neq 0$, and consider the Eichler cohomology $H^{1}\left(G, \Pi_{2}\right)$ (see Appendix for the definition). Let $e=\{e(\gamma)\}_{\gamma \in G} \in Z^{1}\left(G, \Pi_{2}\right)$ be a cocycle which is not zero in $H^{1}\left(G_{0}, \Pi_{2}\right)$ for any subgroup $G_{0} \subset G$ of finite index. We can choose such e by Lemma 7.1 in Appendix. For $\gamma \in G$, we write

$$
e(\gamma)=e_{1}(\gamma)+e_{2}(\gamma) z+e_{3}(\gamma) z^{2}
$$

where $e_{j}(\gamma) \in \mathbf{C}$, and

$$
\gamma(z)=\frac{a(\gamma) z+b(\gamma)}{c(\gamma) z+d(\gamma)}, \quad\left(\begin{array}{ll}
a(\gamma) & b(\gamma) \\
c(\gamma) & d(\gamma)
\end{array}\right) \in \operatorname{SL}(2, \mathbf{C}) .
$$

Define a matrix by

$$
\rho_{e}(\gamma)=\left(\begin{array}{cccc}
1 & e_{1}(\gamma) & e_{2}(\gamma) & e_{3}(\gamma) \\
0 & d(\gamma)^{2} & 2 c(\gamma) d(\gamma) & c(\gamma)^{2} \\
0 & b(\gamma) d(\gamma) & a(\gamma) d(\gamma)+b(\gamma) c(\gamma) & a(\gamma) c(\gamma) \\
0 & b(\gamma)^{2} & 2 a(\gamma) b(\gamma) & a(\gamma)^{2}
\end{array}\right) .
$$

Then the map

$$
\rho_{e}: G \rightarrow \operatorname{PGL}(4, \mathbf{C})
$$

will be a group homomorphism. The image group $\rho_{e}(G)$ is an automorphism of the cone over the conic $\Phi\left(\mathbf{P}^{1}\right)$ with the vertex $[1: 0: 0: 0]$.

PROPOSITION 9. $\quad \rho_{e}(G)$ admits no semi-invariant planes.
Proof. Suppose contrary that there is a finite index subgroup G_{0} of G such that $\rho_{e}\left(G_{0}\right)$ admits an invariant plane. Then we see that e represents zero in $H^{1}\left(G_{0}, \Pi_{2}\right)$ by an easy calculation. This contradicts the choice of e.

Proposition 9 shows that $\rho_{e}(G)$ gives an example of Γ in this case.
REMARK 3. Fix any integer $q>2$. Let S be a cone over a non-singular rational curve embedded in $\mathbf{P}^{2 q-1}$ by the complete linear system $|\mathcal{O}(2 q-2)|$ on \mathbf{P}^{1}. Let Γ be any finitely generated Kleinian group. Then, for each cocycle in the Eichler cohomology $H^{1}\left(\Gamma, \Pi_{2 q-2}\right)$, we can construct by the same method as above, a subgroups of $\operatorname{PGL}(2 q, \mathbf{C})$ which leaves S invariant.

6. Discrete subgroups without invariant surfaces

In this section, we shall construct by a geometric method an example of finitely generated discrete subgroups in $\operatorname{PGL}(4, \mathbf{C})$ without semi-invariant surfaces.

A domain $\Omega \subset \mathbf{P}^{3}$ is said to be large, if Ω contains a line. Every holomorphic automorphism of a large domain extends to an element of $\operatorname{PGL}(4, \mathbf{C})$ ([K1, Lemma 3.1]). Let Ω be a large domain and Γ a properly discontinuous group of holomorphic automorphisms of Ω acting freely on Ω. Suppose that the quotient manifold $X=\Omega / \Gamma$ is compact. It is not difficult to see that the quotient manifold $X=\Omega / \Gamma$ also contains an open subdomain which is biholomorphic to a tubular neighborhood of a line in \mathbf{P}^{3}.

When we are given two such compact quotients $X_{1}=\Omega_{1} / \Gamma_{1}, X_{2}=\Omega_{2} / \Gamma_{2}$ of large domains, we can connect complex analytically these two to obtain another compact quotient
$X_{3}=\Omega_{3} / \Gamma_{3}$ of a large domain. The manifold X_{3} is called a connected sum ${ }^{2}$ of X_{1} and X_{2} and denoted by $X_{3}=X_{1} \# X_{2}$. The connected sum is a kind of complex analytic surgery analogous to the classical Klein combination. We describe the connected sum more explicitly in a special case below.

In connected sums, \mathbf{P}^{3} behaves like an unit, i.e., $X \simeq X \# \mathbf{P}^{3} \simeq \mathbf{P}^{3} \# X$ holds. Conversely, only \mathbf{P}^{3} is the unit. In deed, if $X \simeq X \# X_{1}$, then $\pi_{1}(X)$ is isomorphic to the free product $\pi_{1}(X) * \pi_{1}\left(X_{1}\right)$ by van Kampen's theorem. On the other hand, $\pi_{1}(X) \simeq \pi_{1}(X) * \pi_{1}\left(X_{1}\right)$ implies $\pi_{1}\left(X_{1}\right)=\{1\}$ by Grushko's theorem. Hence we have $X_{1} \simeq \mathbf{P}^{3}$, since a simply connected compact 3-manifold with a projective structure is \mathbf{P}^{3}. The connected sum $X_{1} \# X_{2}$ is said to be trivial if one of X_{j} 's is \mathbf{P}^{3}. A compact quotient manifold $X=\Omega / \Gamma$ is said to be prime, if X is not biholomorphic to any non-trivial connected sum $X_{1} \# X_{2}$.

In studying compact quotients of large domains, the existence of invariant planes is sometimes crucial. To construct our example, we make use of the following fact.

THEOREM 2 ([K1, Theorem 5.1]). Let $X=\Omega / \Gamma$ be a compact quotient of a large domain. If Γ admits a semi-invariant plane, then X is prime.

If the compact quotient $X=\Omega / \Gamma$ admits a non-constant meromorphic function, then Γ admits a semi-invariant plane by Corollary 2 (or [K1, Lemma 5.9]). Hence X is prime by the above theorem. By a recent result on extension of holomorphic maps and by Corollary 2, we can refine the argument of $[\mathrm{K} 1]$ to prove that, if $X=\Omega / \Gamma$ admits a non-constant meromorphic function, then X is biholomorphic to either \mathbf{P}^{3}, a Blanchard manifold, or an L-Hopf manifold (see [K2]). Here, a Blanchard manifold is a compact complex 3-manifolds whose universal covering is the complement of a line in \mathbf{P}^{3}. An L-Hopf manifold is a compact complex 3-manifolds whose universal covering is the complement of two skew lines in \mathbf{P}^{3}.

Now we shall construct an examples of finitely generated discrete subgroups of PGL(4, C) without semi-invariant surfaces, using connected sums together with the results obtained in previous sections.

Let Γ_{1} be the infinite cyclic subgroup in $\operatorname{PGL}(4, \mathbf{C})$ generated by

$$
\alpha:\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \mapsto\left[\alpha_{0} z_{0}: \alpha_{1} z_{1}: \alpha_{2} z_{2}: \alpha_{3} z_{3}\right]
$$

where $\alpha_{j}, j=0,1,2,3$, are non-zero constants satisfying the following two conditions:

1. The inequality $\left|\alpha_{0}\right| \leq\left|\alpha_{1}\right|<\left|\alpha_{2}\right| \leq\left|\alpha_{3}\right|$ holds.
2. The equality $\alpha_{i} \alpha_{j}=\alpha_{k} \alpha_{\ell}$ holds if and only if the two sets $\{i, j\}$ and $\{k, \ell\}$ coincide.

For example, we can define $\alpha_{0}=1, \alpha_{1}=c, \alpha_{2}=c^{3}, \alpha_{3}=c^{7}$ for a constant $c \in \mathbf{C}^{*}$ with $|c|>1$, or $\alpha_{0}=1, \alpha_{1}=e^{\sqrt{2} i}, \alpha_{2}=2, \alpha_{3}=2 e^{\sqrt{3} i}$, etc. By the second condition above, we have easily the following

LEMMA 6.1. No (irreducible) surfaces of degree 2 in \mathbf{P}^{3} are Γ_{1}-semi-invariant.

[^2]Let $X_{1}=\Omega_{1} / \Gamma_{1}$ be the L-Hopf manifold defined by $\Omega_{1}=\mathbf{P}^{3} \backslash\left(\left\{z_{0}=z_{1}=0\right\} \cup\left\{z_{2}=z_{3}=\right.\right.$ $0\}$) and $\Gamma_{1}=\langle\alpha\rangle$.

Let Γ_{2} be the rank 4 free abelian subgroup in $\operatorname{PGL}(4, \mathbf{C})$ defined by

$$
\Gamma_{2}=\left\{g_{j}=\left(\begin{array}{cc}
I & A_{j} \\
0 & I
\end{array}\right): j=1,2,3,4\right\}
$$

where I is the identity matrix of size 2 , and

$$
A_{1}=I, \quad A_{2}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad A_{4}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

Let $X_{2}=\Omega_{2} / \Gamma_{2}$ be the Blanchard manifold defined by $\Omega_{2}=\mathbf{P}^{3} \backslash\left\{z_{2}=z_{3}=0\right\}$ and $\Gamma_{2}=\left\langle g_{1}, g_{2}, g_{3}, g_{4}\right\rangle$.

Now consider the connected sum $X=X_{1} \# X_{2}$. The construction of X is as follows. Consider the open subdomain

$$
U_{\varepsilon}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbf{P}^{3}:\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}<\varepsilon^{2}\left(\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)\right\}
$$

where $\varepsilon>0$. Put $U=U_{1}$. Note that, for any $\varepsilon>0, U_{\varepsilon}$ is biholomorphic to U, and that any tubular neighborhood of a line in \mathbf{P}^{3} has a neighborhood biholomorphic to U. For a subset $M \subset \mathbf{P}^{3}$, we indicate by $\operatorname{Int} M,[M]$ and ∂M, the set of interior points, the closure, and the set of boundary points of M, respectively.

First we define an open embedding $j_{1}: U_{2} \rightarrow X_{1}$. Note that $\alpha([U]) \subset U$. We put

$$
Z=[U] \backslash \alpha(U)
$$

which is a compact subset contained in Ω_{1}. The boundary ∂Z has two connected components

$$
\Sigma_{1}=\partial[U] \text { and } \Sigma_{2}=\alpha\left(\Sigma_{1}\right)
$$

The manifold X_{1} is obtained by identifying Σ_{1} and Σ_{2} by α. We can find a line $\ell_{1} \operatorname{in} \operatorname{Int}(Z)$. For example, the line defined by

$$
z_{0}=\mu z_{2}, \quad z_{1}=\mu z_{3}, \quad \text { with } \quad \max \left\{\left|\frac{\alpha_{0}}{\alpha_{2}}\right|,\left|\frac{\alpha_{1}}{\alpha_{3}}\right|\right\}<|\mu|<1
$$

is contained $\operatorname{in} \operatorname{Int}(Z)$. Let $W_{1} \subset \operatorname{Int}(Z)$ be a tubular neighborhood of ℓ_{1} which is biholomorphic to U_{2}. We define the open embedding $j_{1}: U_{2} \rightarrow X_{1}$ by the composition of a biholomorphic map $\tilde{j}_{1}: U_{2} \rightarrow W_{1}$ and the canonical projection $\Omega_{1} \rightarrow X_{1}$.

Next we define an open embedding $j_{2}: U_{2} \rightarrow X_{2}$. Let

$$
p: \Omega_{2} \rightarrow \mathbf{C}^{2}
$$

be the projection defined by

$$
\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \mapsto\left(x_{1}, x_{2}\right),
$$

where

$$
x_{1}=\frac{z_{0} \bar{z}_{2}+\bar{z}_{1} z_{3}}{\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}}, \quad x_{2}=\frac{z_{1} \bar{z}_{2}-\bar{z}_{0} z_{3}}{\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}}
$$

Then p defines a trivial $C^{\infty} S^{2}$-bundle over \mathbf{C}^{2}. Consider the translations τ_{j} of \mathbf{C}^{2} defined by

$$
\begin{aligned}
& \tau_{1}:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}+1, x_{2}\right), \quad \tau_{2}:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}+i, x_{2}\right) \\
& \tau_{3}:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}, x_{2}+1\right), \quad \tau_{4}:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}, x_{2}+i\right)
\end{aligned}
$$

Then we have

$$
\begin{equation*}
p \circ g_{j}=\tau_{j} \circ p, \quad j=1,2,3,4 \tag{45}
\end{equation*}
$$

Hence the fundamental domain F of Γ_{2} is given by

$$
F=p^{-1}\left(\left\{\left|\operatorname{Re} x_{1}\right| \leq \frac{1}{2},\left|\operatorname{Im} x_{1}\right| \leq \frac{1}{2},\left|\operatorname{Re} x_{2}\right| \leq \frac{1}{2},\left|\operatorname{Im} x_{2}\right| \leq \frac{1}{2}\right\}\right)
$$

Fix any $0<r<\frac{1}{2}$ and put

$$
W_{2}=p^{-1}\left(\left\{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}<r^{2}\right\}\right) .
$$

Then, in view of (45), $W_{2} \cap g\left(W_{2}\right)=\emptyset$ for any $g \in \Gamma_{2} \backslash\{1\}$. Therefore there is a subdomain in X_{2} which is biholomorphic to W_{2}. Note that W_{2} is biholomorphic to $U_{r}\left(\simeq U_{2}\right)$. Define the open embedding $j_{2}: U_{2} \rightarrow X_{2}$ by the composition of a biholomorphic map $\tilde{j}_{2}: U_{2} \rightarrow W_{2}$ and the canonical projection $\Omega_{2} \rightarrow X_{2}$.

Consider the domain

$$
N(2)=U_{2} \backslash\left[U_{\frac{1}{2}}\right]
$$

in \mathbf{P}^{3}. Define $\sigma \in \operatorname{PGL}(4, \mathbf{C})$ by

$$
\sigma\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[z_{2}: z_{3}: z_{0}: z_{1}\right]
$$

Then σ is an involution of $N(2)$. We define the connected sum $X=X_{1} \# X_{2}$ by

$$
X=\left(X_{1} \backslash j_{1}\left(\left[U_{\frac{1}{2}}\right)\right]\right) \bigcup\left(X_{2} \backslash j_{2}\left(\left[U_{\frac{1}{2}}\right)\right]\right)
$$

where $x_{1} \in j_{1}(N(2))$ and $x_{2} \in j_{2}(N(2))$ are identified if and only if

$$
x_{2}=j_{2} \circ \sigma \circ j_{1}^{-1}\left(x_{1}\right)
$$

Note that $\tilde{j}_{2} \circ \sigma \circ \tilde{j}_{1}^{-1}$ extends to an element $\tau \in \operatorname{PGL}(4, \mathbf{C})$. By this construction, X becomes also a compact quotient of a large domain $\Omega \subset \mathbf{P}^{3}$ by a subgroup $\Gamma \subset \operatorname{PGL}(4, \mathbf{C})$. More explicitly, Γ is generated by $\tau \circ \alpha \circ \tau^{-1}$ and Γ_{2} in $\operatorname{PGL}(4, \mathbf{C})$. The fundamental domain of Γ
is given as a compact subset of Ω_{2} by

$$
\left(F \backslash \tilde{j}_{2}\left(U_{\frac{1}{2}}\right)\right) \bigcup \tau\left(Z \backslash \tilde{j}_{1}\left(U_{\frac{1}{2}}\right)\right)
$$

which is the fundamental domain F of Γ_{2} with disjoint tubular neighborhoods of 2 skew lines in F deleted. Thus Γ is a finitely generated discrete subgroup of $\operatorname{PGL}(4, \mathbf{C})$, and is isomorphic to the free product of Γ_{1} and Γ_{2} by van Kampen's theorem.

Proposition 10. Γ do not admit any semi-invariant surface.
Proof. Suppose contrary that there is a Γ-semi-invariant surface S. Then there is a subgroup $\Gamma^{\prime} \subset \Gamma$ of finite index such that S is Γ^{\prime}-invariant. Since X is not prime, S is not a plane by Theorem 2 . Since a finite index subgroup $\Gamma_{1}^{\prime} \subset \Gamma_{1}$ is contained in Γ^{\prime}, we see that S is neither a surface of degree 2 by Lemma 6.1. Hence S is the tangential surface of a twisted cubic curve by Theorem B.

Let C denote the twisted cubic curve. Since C is the singular locus of S, C is Γ^{\prime} invariant. Hence Γ^{\prime} defines a subgroup $G\left(\simeq \Gamma^{\prime}\right)$ of $\operatorname{PGL}(2, \mathbf{C})$ which induces Γ^{\prime} by the holomorphic map (40). Note that Γ^{\prime} contains a finite index subgroup of Γ_{2}, which is a free abelian group of rank $=4$. Hence, so does G. But free abelian subgroups of rank 4 cannot be discrete in $\operatorname{PGL}(2, \mathbf{C})$. Hence G is not discrete in $\operatorname{PGL}(2, \mathbf{C})$. Consequently, Γ^{\prime} is not discrete in $\operatorname{PGL}(4, \mathbf{C})$. This is a contradiction.

REMARK 4. There is a small neighborhood V of $\tau \in \operatorname{PGL}(4, \mathbf{C})$ such that, for any $\gamma \in V$, the group $\Gamma_{\gamma}:=\left(\gamma \Gamma_{1} \gamma^{-1}\right) * \Gamma_{2}$ is a finitely generated discrete subgroup of $\operatorname{PGL}(4, \mathbf{C})$ that admit no Γ_{γ}-semi-invariant surfaces.

REMARK 5. Using the manifold X constructed above and any other compact quotient manifold Y of a large domain, we can form the connected sum $X \# Y$ that provides an example for which Proposition 10 holds.

7. Appendix : Eichler cohomology

We recall some facts related to the Eichler cohomology. Fix a finitely generated nonelementary Kleinian group G. Let Π_{2} be the vector space of polynomials in z of degree at most 2 . Then G acts from the right on Π_{2} by the rule

$$
P \gamma=P(\gamma(z))\left(c_{\gamma} z+d_{\gamma}\right)^{2}
$$

where

$$
\gamma(z)=\frac{a_{\gamma} z+b_{\gamma}}{c_{\gamma} z+d_{\gamma}} \in G
$$

A map $e: G \rightarrow \Pi_{2}$ is called a cocycle if

$$
e\left(\gamma_{1} \circ \gamma_{2}\right)=e\left(\gamma_{1}\right) \gamma_{2}+e\left(\gamma_{2}\right)
$$

For a fixed $Q \in \Pi_{2}$, its coboundary δQ is a cocycle defined by

$$
\delta Q(\gamma)=Q \gamma-Q, \quad \gamma \in G .
$$

Let $Z^{1}(G, \Pi)$ be the vector space spanned by the cocycles and $B^{1}(G, \Pi)$ its vector subspace spanned by the coboundaries. Then the Eichler cohomology is the vector space defined by

$$
H^{1}\left(G, \Pi_{2}\right)=Z^{1}\left(G, \Pi_{2}\right) / B^{1}\left(G, \Pi_{2}\right)
$$

By [B, Lemma 1], we see that

$$
\operatorname{dim} H^{1}\left(G, \Pi_{2}\right) \leq 3(N-1)
$$

where N is a number of generators of G. The equality holds if G is a free group of N generators.

Put $\Omega=\Omega(G)$ and $\Lambda=\mathbf{P}^{1} \backslash \Omega$. By Ahlfors' finiteness theorem, there are finite number of compact curves C_{1}, \ldots, C_{r} such that

$$
\Omega / G=C_{1}^{*} \cup \cdots \cup C_{r}^{*}
$$

where C_{j}^{*} is C_{j} with a finite number of points $\left\{p_{1}, \ldots, p_{s_{j}}\right\}$ deleted. Let D_{j} be the divisor on C_{j} defined by $p_{1}+\cdots+p_{s_{j}}$. Each C_{j}^{*} is given by Ω_{j} / G_{j}, where Ω_{j} is a connected component of Ω and G_{j} is the stabilizer subgroup of G. Let $K_{C_{j}}$ be the canonical line bundle of C_{j}. Lifting up an element $\omega \in \oplus_{j=1}^{r} H^{0}\left(C_{j}, 2 K_{C_{j}}+D_{j}\right)$ to Ω, we obtain a holomorphic quadratic 1-form $\tilde{\omega}=\phi(z) d z^{\otimes 2}$ on Ω satisfying

$$
\gamma^{*} \tilde{\omega}=\tilde{\omega}, \quad \gamma \in G,
$$

which is called a cusp form of weight (-4). In other words, a cusp form $\tilde{\omega}$ of weight (-4) is a G-invariant holomorphic quadratic 1 -form on Ω whose norm

$$
\|\tilde{\omega}\|:=\sup _{z \in \Omega} \lambda_{\Omega}^{-2}(z)|\phi(z)|
$$

is finite, where $\lambda_{\Omega}(z)|d z|$ is a Poincaré metric on Ω. Let $A_{2}(\Omega, G)$ denote the vector space of the cusp forms. By L. Bers [B, Theorem 3], there is a canonical injective antilinear map

$$
\beta: A_{2}(\Omega, G) \rightarrow H^{1}\left(G, \Pi_{2}\right)
$$

Now let G_{0} be a subgroup of G with finite index. In general, for a discrete group $G \subset$ $\operatorname{PGL}(2, \mathbf{C})$ and its any subgroup G_{0} of finite index, the equality $\Omega(G)=\Omega\left(G_{0}\right)$ holds ([MT, Proposition 2.30]). Hence we have the covering projection $\pi: \Omega / G_{0} \rightarrow \Omega / G$. Therefore we have the commutative diagram

$$
\begin{array}{ccc}
A_{2}\left(\Omega, G_{0}\right) & \xrightarrow{\beta_{0}} & H^{1}\left(G_{0}, \Pi_{2}\right) \\
\uparrow i & & \uparrow r \\
A_{2}(\Omega, G) & \xrightarrow{\beta} & H^{1}\left(G, \Pi_{2}\right),
\end{array}
$$

where i is the inclusion and r is the restriction.
Lemma 7.1. Suppose that $\tilde{\omega} \in A_{2}(\Omega, G)$ is an element such that $\beta(\tilde{\omega}) \neq 0$. Then $r \circ \beta(\tilde{\omega}) \neq 0$ for any subgroup $G_{0} \subset G$ of finite index.

Proof. In the diagram above, i is obviously injective, and so is β by the theorem of Bers cited above. Hence we have $r \circ \beta(\tilde{\omega})=\beta_{0} \circ i(\tilde{\omega}) \neq 0$.

Acknowledgment. The author is thankful to Professor Fumio Sakai, who informed him the notion of osculating planes. The author is also thankful to the referee, whose comment motivated the author to construct an example stated in section 6 .

References

[B] BERS, L., Inequalities for finitely generated Kleinian groups, J. d'Analyse Math. 18 (1967), 23-41.
[GH] Griffiths, P. and Harris, J., Principles of Algebraic Geometry, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., 1978.
[K1] Kato, Ma., On compact complex 3-folds with lines, Japanese J. Math. 11 (1985), 1-58.
[K2] Kato, Ma., Compact quotients with positive algebraic dimensions of large domains in a complex projective 3-space, J. Math. Soc. of Japan. 62 (2010), 1317-1371.
[MT] Matsuzaki, K. and Taniguchi, M., Hyperbolic Manifolds and Kleinian Groups, Oxford Math. Mono., Oxford Sci. Publ., 1998.

Present Address:
Department of Mathematics,
Sophia University,
Kioicho 7-1, Chiyoda-ku, Tokyo, 102-8554 Japan.
e-mail: masahide.kato@sophia.ac.jp

[^0]: Received December 14, 2009; revised March 19, 2010
 2000 Mathematics Subject Classification: 32M05 (Primary), 32J17, 14J50 (Secondary)
 Key words and phrases: projective transformation group, invariant subvariety, projective structure
 This research was supported by Grant-in-Aid for Scientific Research (C) (No. 19540100), Japan Society for the Promotion of Science.

[^1]: ${ }^{1}$ We adopt here the classical definition of the Kleinian groups. In [MT], any discrete subgroups of PGL(2, C) is said to be Kleinian, see [MT, Theorem 1.19]

[^2]: ${ }^{2}$ See [K1] for the details. The connected sum here was called the connecting operation there.

