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Existence of Invariant Planes in a Complex Projective
3-Space under Discrete Projective Transformation Groups

Masahide KATO

Sophia University

Abstract. Let Γ be a finitely generated discrete subgroup of PGL(4, C) acting on P3. Suppose that Γ leaves

invariant a surface in P3. Then, except for a few cases, we can find a plane which is invariant by a finite index
subgroup of Γ . The exceptional cases will be determined explicitly.

Introduction

Let Γ be a finitely generated discrete subgroup of PGL(4, C) acting on P3. By a curve
(resp. surface), we shall mean an irreducible compact complex space of dimension one (resp.
two). We say that a set M is (Γ -)semi-invariant, if we can find a finite index subgroup Γ0 of
Γ such that g(M) = M for any g ∈ Γ0. If Γ0 = Γ , we say M is (Γ -) invariant.

In this note, we shall prove the following.

THEOREM A. Suppose that Γ leaves invariant a curve C and a surface S such that
C ⊂ S. Then, there are Γ -semi-invariant planes, except for the following two cases.

I. By a suitable system of homogeneous coordinates [z0 : z1 : z2 : z3] on P3, C and S

are given by

C = {z0 = z1 = 0}, S = {z0z3 − z1z2 = 0} ,

and, every element σ ∈ Γ is represented by a matrix of the form
(

Aσ 0
cσ Aσ Aσ

)
, cσ ∈ C .

Further, there are no Γ -invariant surfaces other than S.
II. C is a twisted cubic curve, and S is the tangential surface of C.
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Here the tangential surface of a twisted cubic curve C is the union of the tangent lines
to C.

THEOREM B. Assume that Γ leaves invariant a surface S in P3. If Γ admits no semi-
invariant planes, then S is either a non-singular quadric, the tangential surface of a twisted
cubic curve, or a cone over a non-singular conic.

As an application of our results, we shall give an explicit geometric construction of
finitely generated discrete subgroups in PGL(4, C) without semi-invariant surfaces (Section
6).

In section 1, in the first half, we collect together some terms and well-known elementary
facts from classical Kleinian group theory and, in the second half, make preparations for the
proof of Theorem A. Here we see that there are two cases of C to be considered, the line
case and the space rational curve case. The line case will be considered in section 2 and
the space rational case in section 3. In section 4, we shall prove Theorems A, B and their
corollaries. In section 5, we shall give examples in each of the exceptional cases. In section 6,
we shall construct finitely generated discrete subgroups in PGL(4, C) without semi-invariant
surfaces. In section 7, we introduce the Eichler cohomology and prove a lemma which is used
in constructing an example in section 5.

1. Preliminaries

1.1. Elementary facts from Kleinian group theory. The contents of this subsection
will be used in sections 3, 5 and 7. Here we collect some terms and well-known facts from
the classical Kleinian group theory.

A subgroup G of a Lie group G is said to be a discrete subgroup if G is a discrete subset
of G. This is equivalent to the fact that the identity element 1 ∈ G has an open neighborhood
U such that U ∩ G = {1}.

Let G be a discrete subgroup of PGL(2.C). Then G acts on P1 naturally. A point z ∈ P1

is called a properly discontinuous point, if z has a neighborhood U such that the set

{g ∈ G : g(U) ∩ U �= ∅}
is finite. The set of all properly discontinuous points on P1 is called the discontinuity region
of G, which we indicate by Ω(G). Obviously Ω(G) is an open set, but may happen to be

empty. We call the group G a Kleinian group 1, if Ω(G) is not empty. It can be proved that
the action of G on Ω(G) is properly discontinuous. The complement

Λ(G) = P1 \ Ω(G)

1We adopt here the classical definition of the Kleinian groups. In [MT], any discrete subgroups of PGL(2, C) is
said to be Kleinian, see [MT, Theorem 1.19]
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of the discontinuity region is called the limit set of G. If the cardinality of Λ(G) is less than
3, G is said to be elementary ([MT, Definition p.41]). The following fact follows from [MT,
Theorem 2.4 ].

PROPOSITION 1. If G admits a non-empty G-invariant finite set, then G is elementary.

We use also the following

PROPOSITION 2 (Proposition 2.2 in [MT]). If G is elementary, then G contains an
abelian subgroup of finite index.

Any element in PSL(2, C) has a matrix representative conjugate to one of the following:

(1)

(
1 1
0 1

)
, (2)

(
λ 0
0 λ−1

)
|λ| = 1, (3)

(
λ 0
0 λ−1

)
|λ| �= 0, 1 .

The element conjugate to (1) is said to be parabolic, the one conjugate to (2) is said to be
elliptic, and the one conjugate to (3) is said to be loxodromic.

PROPOSITION 3 (Lemma 2.3 in [MT]). If G is non-elementary, then G contains lox-
odromic elements.

1.2. Two Cases. In this subsection, we shall make preparation for the proof of Theo-
rem A. The conditions we impose on Γ are the following.

A1. Γ is a finitely generated discrete infinite subgroup of PSL(4, C).

A2. Γ leaves invariant a curve C in P3.
A3. Γ admits no semi-invariant planes.

PROPOSITION 4. If Γ contains a solvable subgroup of finite index, then Γ admits a
semi-invariant plane.

PROOF. Suppose that Γ0 ⊂ Γ is a solvable subgroup of finite index. Let p : SL

(4, C) → PSL(4, C) be the natural projection. Then Γ̃0 = p−1(Γ0) is also solvable. Hence

Γ̃0 is conjugate in SL(4, C) to a subgroup of the triangular subgroup of SL(4, C) by the matrix
theory. Therefore Γ0 admits an invariant plane.

PROPOSITION 5. We can assume that C is a line, or a space rational curve.

PROOF. Suppose that C is not a line. If C is a plane curve, then the plane is Γ -invariant.
This contradicts the assumption A3. Therefore C is a space curve. Then the restriction

r : Γ → Aut(C)

is injective. Hence Aut(C) is an infinite group. Therefore C is either a (possibly singular)
rational curve, or a non-singular elliptic curve. If C is non-singular elliptic, then Aut(C)

contains a finite index abelian subgroup. Hence so is Γ . Then Γ admits a semi-invariant
plane by Proposition 4. This also contradicts the condition A3. Hence C is a space rational
curve.
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In view of Proposition 5, we consider the line case in section 2, and the space rational
curve case in section 3 separately.

2. Line case

In this section, in addition to the three conditions (A1), (A2) and (A3) on Γ , we assume
that

C is a line contained in a Γ -invariant surface S.

Then we have the following.

THEOREM 1. S is a non-singular quadric.

To prove the theorem, we determine the defining equation of S. Let [z0 : z1 : z2 : z3] be a
system of homogeneous coordinates on P3 such that C is given by

C = {z0 = z1 = 0} .

Let F = F(z0, z1, z2, z3) = 0 be the defining equation of S. Put m = deg F . Since C ⊂ S,
F is written as
(1)

F(z0, z1, z2, z3) =
m∑

k=1

Fk(z0, z1, z2, z3), Fk(z0, z1, z2, z3) =
∑

i+j=k

a
(k)
ij (z2, z3)z

i
0z

j

1 ,

where the a
(k)
i,j = a

(k)
i,j (z2, z3) are homogeneous polynomials of degree m − k. Put

n = min{k : Fk �= 0} .

Obviously, n ≥ 1.
Let µ : M → P3 be the blowing-up of P3 centered with C. The exceptional set E =

µ−1(C) is biholomorphic to P1 × P1. Let ([u0 : u1], [v0 : v1]) be a system of coordinates on

E. Here [u0 : u1] and [v0 : v1] are the homogeneous coordinates on P1 such that µ|E : E →
C is given by

µ([u0 : u1], [v0 : v1]) = [0 : 0 : v0 : v1] ∈ P3 .

Let S̃ be the proper transform of S by µ and C̃ = S̃ ∩ E. Then C̃ is given by

(2) Fn(u0, u1, v0, v1) =
∑

i+j=n

a
(n)
ij (v0, v1)u

i
0u

j
1 .

Consider C̃ with its reduced structure. If C̃ has singular points, put

Γ1 = {σ ∈ Γ : σ fixes each singular point of C̃} .
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Then Γ1 is a subgroup of Γ with finite index. Let ([p0 : p1], [q0 : q1]) ∈ C̃ be one of the

singular points. Then Γ1 leaves the plane p1z0 − p0z1 = 0 invariant. If C̃ has no singular

points, then C̃ would be a finite disjoint union of non-singular curves in E. Note that µ maps

every connected component of C̃ onto C � P1.

Suppose that C̃ is non-singular, i.e., that C̃ consists of mutually disjoint non-singular

curves. If C̃ has a component, say C̃1, such that µ|C̃1 : C̃1 → C is of deg µ|C̃1 ≥ 2. Then

µ|C̃1 would have branch points. Let B be the set of branch points of µ|C̃, and put

Γ2 = {σ ∈ Γ : σ fixes each point of B} .

Since B is a finite set, Γ2 is a subgroup of Γ with finite index. Take any point ([p0 : p1], [q0 :
q1]) ∈ B. Then the plane p1z0 − p0z1 = 0 would be Γ2-invariant.

Suppose that C̃ is non-singular, and that µ maps every component of C̃ bijectively onto

C. Suppose further that C̃ has distinct components C̃1 and C̃2. Since C̃1 and C̃2 do not
intersect each other, we see that both are of the form

(3) C̃j = {[pj

0 : p
j

1 ]} × P1 ⊂ E, j = 1, 2

for some [pj

0 : p
j

1 ] ∈ P1. Put

Γ3 = {σ ∈ Γ : σ(C̃1) = C̃1} .

Then Γ3 is a subgroup of Γ with finite index and the plane p1
1z0 − p1

0z1 = 0 would be
Γ3-invariant.

Thus it remains to consider the case where C̃ consists of a unique non-singular curve, and

where µ maps C̃ bijectively onto C. In this case, C̃ is defined by a homogeneous polynomial
G(u0, u1; v0, v1) of the four variables of the form

(4) G(u0, u1; v0, v1) = g1(v0, v1)u0 − g0(v0, u1)u1 ,

where d = deg g0 = deg g1. Define a holomorphic map

ϕ : P1 → P1

by

ϕ([v0 : v1]) = [g0(v0, v1) : g1(v0, v1)] .

Note that every σ ∈ Γ can be written as
(

Aσ 0
Cσ Dσ

)
,

where Aσ ,Cσ ,Dσ are (2, 2)-matrices with det Aσ · det Dσ �= 0. The action of σ on E is
given by

[u, v] 	→ [Aσu,Dσ v] ,
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where u = (u0, u1), v = (v0, v1). Therefore we have the commutative diagram

P1 ϕ−→ P1

Dσ ↓ ↓ Aσ

P1 ϕ−→ P1

for any σ ∈ Γ .

If ϕ is a constant map, then put [p0 : p1] = ϕ(P1). Then the plane p1z0 − p0z1 = 0 is
left invariant by Γ .

Suppose that ϕ is not constant. First we consider the case deg ϕ = d ≥ 2. In this case,
the set

R = {v ∈ P1 : dϕ(v) = 0} .

is a non-empty finite set. Put

Γ4 = {σ ∈ Γ : Aσ fixes every point ofR} .

Then, Γ4 is a subgroup of Γ with finite index. This implies that for a suitable homogeneous

coordinates [z0 : z1 : z2 : z3] on P3, the matrices Aσ and Dσ are lower triangular for all
σ ∈ Γ4. Therefore z0 = 0 is left invariant by Γ4.

Lastly, we consider the case deg ϕ = d = 1. Since ϕ ∈ PSL(2, C) in this case, replacing
coordinates z2, z3 of [z0 : z1 : z2 : z3] suitably, we can assume that

Aσ = Dσ

holds for every σ ∈ Γ . Then G can be written as

(5) G(u0, u1; v0, v1) = v1u0 − v0u1 .

Recall that we have been studying C̃ with its reduced structure. By (4) and (2), Fn in (1) is of
the form

Fn(z0, z1, z2, z3) = (z0z3 − z1z2)
n

where m = 2n. Thus we have shown the following.

LEMMA 2.1. We can choose a system of homogeneous coordinates [z0 : z1 : z2 : z3]
on P3 such that

C = {z0 = z1 = 0} ,

(6) Fn(z0, z1, z2, z3) = (z0z3 − z1z2)
n, m = 2n ,

and that every element σ ∈ Γ is represented by a matrix of the form

(7)

(
Aσ 0
Cσ Aσ

)
.
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Before going into the process of determining F , we shall check the conditions that can
be imposed on Γ . Let

ρ : Γ → PSL(2, C)

be the homomorphism defined by ρ(σ) = Aσ . Since Γ is finitely generated, replacing Γ

with its subgroup of finite index, we can assume that ρ(Γ ) is torsion free. This implies, in
particular, that ρ(Γ ) contains no elements represented by matrices of the following forms

(8)

(
0 b

c 0

)
,

(
ε 0
0 ε−1

)
,

where b, c ∈ C∗, and ε is a root of unity other than ±1.

LEMMA 2.2. If every element of ρ(Γ ) is parabolic, then there is a Γ -invariant plane.

PROOF. By taking a suitable conjugate of Γ , we can assume that ρ(Γ ) contains an

element represented by J =
(

1 0
1 1

)
. Now take any element σ �= 1 in ρ(Γ ), which is

represented by A =
(

a b

c d

)
∈ SL(2, C). Since AJ,A−1J are parabolic or identities,

their traces are ±2. Hence, we obtain |a + d + b| = |a + d − b| = |a + d| = 2. This implies
b = 0. Therefore every element of ρ(Γ ) is represented by a lower triangular matrix. Hence
z0 = 0 is a Γ -invariant plane.

By Lemma 2.2, we can assume that Γ contains an element σ represented by

(9)

(
Aσ 0
Cσ Aσ

)
, Aσ =

(
α 0
0 α−1

)
,

where α ∈ C∗ is not a root of unity. Put

Cσ =
(

γ00 γ01

γ10 γ11

)
.

Introduce a new system of homogeneous coordinates [z′
0 : z′

1 : z′
2 : z′

3] on P3 by

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 = z′
0

z1 = z′
1

z2 = z′
2 + γ01

α−1 − α
z′

1

z3 = z′
3 + γ10

α − α−1
z′

0.
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Then σ can be represented by the matrix

(11)

(
Aσ 0
Cσ Aσ

)
, Aσ =

(
α 0
0 α−1

)
, Cσ =

(
γ00 0
0 γ11

)
.

From now on in this section, we fix the homogeneous coordinates above on P3, by which
the element σ is represented by the matrix (11). Note that the equation (6) remains unchanged.
Here we sum up the conditions imposed on Γ .

(i) Γ has no elements of finite order,
(ii) Γ consists of elements satisfying (7),

(iii) Γ contains an element of the form (11),
(iv) ρ(Γ ) has no elements of finite order. Thus ρ(Γ ) contains no elements represented

by matrices of (8),
(v) ρ(Γ ) contains an element of the form

A =
(

α00 α01

α10 α11

)
, |α01| + |α10| �= 0 .

Recall that conditions (i) and (iv) are fulfilled, if Γ is replaced with its subgroup of finite
index. Condition (iii) is a consequence of Lemma 2.2. We impose the condition (v) on Γ ,
since otherwise Γ will have trivially a Γ -invariant plane. By the conditions (iv) and (v), every
A ∈ ρ(Γ ) with |α01| + |α01| �= 0 satisfies either α01α11 �= 0 or α00α10 �= 0.

Now we are going into the process of determining F . We write F in the form (1). By
(6), we know that F is written as

(12) F = Fn + Fn+1 + · · · + Fm, m = deg F = 2n

where

Fn = (z0z3 − z1z2)
n .

In general, for a polynomial

G =
∑

i0,i1,i2,i3

gi0i1i2i3z
i0
0 z

i1
1 z

i2
2 z

i3
3 ,

we indicate by

[G]k =
∑

i0+i1=k

gi0i1i2i3z
i0
0 z

i1
1 z

i2
2 z

i3
3

the partial sum of terms with i0 + i1 = k. Thus Fk = [F ]k . We put

Fk =
∑

i0+i1=k

ai0i1i2i3z
i0
0 z

i1
1 z

i2
2 z

i3
3 .
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SUBLEMMA 2.1. Under the conditions (i)–(iv) on Γ , F is of the form

F(z0, z1, z2, z3) =
n∑

k=0

Fn+k(z0, z1, z2, z3) ,

where

Fn+k(z0, z1, z2, z3) = (z0z1)
k

∑
i2+i3=n−k

ai2i3(z0z3)
i3(z1z2)

i2 .

PROOF. Let σ ∈ Γ be an element of (iii), i.e., of the form (11). We already know that
Fn is a polynomial of z0z3 and z1z2. From σ ∗F = F , it follows that

(13)
[
σ ∗F

]
n+1 = Fn+1 .

On the other hand, we have

(14)
[
σ ∗F

]
n+1 = Fn+1(αz0, α

−1z1, αz2, α
−1z3) + [

σ ∗Fn

]
n+1 ,

where
[
σ ∗Fn

]
n+1 = n

(
αγ11 − α−1γ00

)
z0z1(z0z3 − z1z2)

n−1 .

Hence, by (13), we have

Fn+1(z0, z1, z2, z3) = Fn+1(αz0, α
−1z1, αz2, α

−1z3)(15)

+n
(
αγ11 − α−1γ00

)
z0z1(z0z3 − z1z2)

n−1

Comparing the terms z0z1(z0z3)
k(z1z2)

n−k−1 in (15), we have

(16) Fn+1(z0, z1, z2, z3) = Fn+1(αz0, α
−1z1, αz2, α

−1z3)

and

(17) αγ11 − α−1γ00 = 0 .

Let

Fn+1 =
∑

i0+i1=n+1, i2+i3=n−1

ai0i1i2i3z
i0
0 z

i1
1 z

i2
2 z

i3
3 .

By (16), we see that non-zero terms ai0i1i2i3z
i0
0 z

i1
1 z

i2
2 z

i3
3 satisfy i0 + i2 = i1 + i3. Therefore we

have i0 = i3 + 1 and i1 = i2 + 1, and

ai0i1i2i3z
i0
0 z

i1
1 z

i2
2 z

i3
3 = ai0i1i2i3(z0z1)(z0z3)

i3(z1z2)
i2 .

Hence we have

(18) Fn+1 = z0z1

∑
i2+i3=n−1

ai2i3(z0z3)
i3(z1z2)

i2 .
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Further, (17) implies

(19) σ ∗(Fn) = Fn .

By (18), we have

σ ∗(Fn+1) = Fn+1(αz0, α
−1z1, αz2 + γ00z0, α

−1z3 + γ11z1)

= z0z1

∑
i2+i3=n−1

ai2i3(z0z3 + αγ11z0z1)
i3(z1z2 + α−1γ00z0z1)

i2 .

Therefore

(20) σ ∗(Fn+1) is a polynomial of z0z1, z0z3 and z1z2 .

Next, we consider Fn+2. Using (19), we have

Fn+2 = [
σ ∗F

]
n+2(21)

= [
σ ∗(Fn) + σ ∗(Fn+1) + σ ∗(Fn+2)

]
n+2

= [
σ ∗(Fn+1)

]
n+2 + [

σ ∗(Fn+2)
]
n+2 .

Since [
σ ∗(Fn+2)

]
n+2 = Fn+2(αz0, α

−1z1, αz2, α
−1z3) .

it follows from from (21) that

(22) Fn+2(z0, z1, z2, z3) − Fn+2(αz0, α
−1z1, αz2, α

−1z3) = [
σ ∗(Fn+1)

]
n+2

By (20), σ ∗(Fn+1) is a polynomial of z0z1, z0z3 and z1z2. On the other hand, the left-hand
side of (22) contains no terms of monomials of z0z1, z0z3 and z1z2, since these terms remain
invariant by the action (z0, z1, z2, z3) 	→ (αz0, α

−1z1, αz2, α
−1z3). Hence we have

Fn+2(z0, z1, z2, z3) = Fn+2(αz0, α
−1z1, αz2, α

−1z3),(23) [
σ ∗(Fn+1)

]
n+2 = 0 .

Let

Fn+2 =
∑

i0+i1=n+2, i2+i3=n−2

ai0i1i2i3z
i0
0 z

i1
1 z

i2
2 z

i3
3 .

By (23), we see that non-zero terms ai0i1i2i3z
i0
0 z

i1
1 z

i2
2 z

i3
3 satisfy i0 + i2 = i1 + i3. Therefore we

have i0 = i3 + 2 and i1 = i2 + 2, and

ai0i1i2i3z
i0
0 z

i1
1 z

i2
2 z

i3
3 = ai0i1i2i3(z0z1)

2(z0z3)
i3(z1z2)

i2 .

Hence we have

(24) Fn+2 = (z0z1)
2

∑
i2+i3=n−2

ai2i3(z0z3)
i3(z1z2)

i2 .
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From this, it follows also that

(25) σ ∗(Fn+2) is a polynomial of z0z1, z0z3 and z1z2 .

By (24), (20) and (25), we can proceed to the next induction step Fn+3. Thus the sublemma
is proved inductively.

REMARK 1. By (17), σ of (iii) is of the form

(26)

(
Aσ 0

cσ Aσ Aσ

)
, cσ ∈ C .

SUBLEMMA 2.2. Under the conditions (i)–(v) on Γ , F is of the form

F =
n∑

k=0

ak(z0z1)
k(z0z3 − z1z2)

n−k, a0 = 1 .

PROOF. Put y = z0z3 − z1z2 for short. By Sublemma 2.1, it is enough to show that
each Fn+k is divisible by yn−k . Since Fn = yn, we are done for k = 0. Now we shall prove
the lemma by induction on k ≥ 0. Suppose that Fn+j is determined for j ≤ k and consider
the case k + 1. Let

F =
k∑

j=0

aj (z0z1)
j yn−j +

n∑
j=k+1

Fn+j ,

where aj ∈ C for some k with 0 ≤ j ≤ k < n. Choose τ ∈ Γ of (v). Put

(27)

(
Aτ 0
Cτ Aτ

)
, Aτ =

(
α00 α01

α10 α11

)
, Cτ =

(
γ00 γ01

γ10 γ11

)
, |α01| + |α10| �= 0 .

Put also

w0 = α00z0 + α01z1,

w1 = α10z0 + α11z1,

v0 = γ00z0 + γ01z1, w2 = α00z2 + α01z3,

v1 = γ10z0 + γ11z1, w3 = α10z2 + α11z3 .

We put

∆τ = w0v1 − w1v0 .

Note that

(28) y = z0z3 − z1z2 = w0w3 − w1w2 ,

and that

τ ∗y = y + ∆τ .
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From τ ∗F = F , it follows that

Fn+k+1 =
⎡
⎣τ ∗

⎛
⎝ k∑

j=0

aj (z0z1)
j yn−j + Fn+k+1

⎞
⎠

⎤
⎦

n+k+1

= yn−k−1
k∑

j=0

n−jCn−k−1aj (w0w1)
j∆k+1−j

τ + [
τ ∗(Fn+k+1)

]
n+k+1

= yn−k−1
k∑

j=0

n−jCn−k−1aj (w0w1)
j∆k+1−j

τ + Fn+k+1(w0, w1, w2, w3).(29)

In view of Sublemma 2.1, we can write Fn+k+1 as

Fn+k+1 = (z0z1)
k+1

∑
i2+i3=n−k−1

ai2i3(z0z3)
i3(z1z2)

i2 .

Suppose that n − k − 1 > 0. Then, letting z0 = z2 = 0 in (29), we have

0 = Fn+k+1(α01z1, α11z1, α01z3, α11z3)(30)

= (α01z1α11z1)
k+1

∑
i2+i3=n−k−1

ai2i3(α01z1α11z3)
i3(α11z1α01z3)

i2

= (α01α11)
nzn+k+1

1 zn−k−1
3

∑
i2+i3=n−k−1

ai2i3 .

Similarly, letting z1 = z3 = 0 in (29), we have

0 = Fn+k+1(α00z0, α10z0, α00z2, α10z2)(31)

= (α00z0α10z0)
k+1

∑
i2+i3=n−k−1

ai2i3(α00z0α10z2)
i3(α10z0α00z2)

i2

= (α00α10)
nzn+k+1

0 zn−k−1
2

∑
i2+i3=n−k−1

ai2i3 .

Recall that, by the conditions (iv) and (v), we have either α01α11 �= 0 or α00α10 �= 0. Hence
by (30), (31), we have

(32)
∑

i2+i3=n−k−1

ai2i3 = 0 .

This condition (32) implies that Fn+k+1 is divisible by y. Define G1(z0, z1, z2, z3) by

Fn+k+1(z0, z1, z2, z3) = yG1(z0, z1, z2, z3) ,

where G1 is of the form

(33) G1 = (z0z1)
k+1

∑
i2+i3=n−k−2

ai2i3(z0z3)
i3(z1z2)

i2 .
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Further, by (29) and (28), we have

(34) G1(z0, z1, z2, z3) = yn−k−2∆̃τ + G1(w0, w1, w2, w3) ,

where

∆̃τ =
k∑

j=0

n−jCn−k−1aj (w0w1)
j∆k+1−j

τ .

Therefore we can repeat the argument from (30) while n − k − 1 > 0. This implies that
Fn+k+1 is divisible by yn−k−1. This proves the sublemma.

REMARK 2. Until now, we have not used the assumption that S is irreducible.

PROPOSITION 6. Assume that the conditions (i)–(iv) on Γ are fulfilled with respect to
a system [z0 : z1 : z2 : z3] of homogeneous coordinates on P3, where

 = {[z0 : z1 : z2 : z3] : z0 = z1 = 0} .

If S is a Γ -invariant surface, then the defining equation F of S can be given by

(35) F = (z0z3 − z1z2 + tz0z1)
n

for some t ∈ C. Further, each element σ ∈ Γ is represented by a matrix of the form

(36)

(
Aσ 0

cσ Aσ + AσT − T Aσ Aσ

)
, T =

(
0 t

0 0

)
, cσ ∈ C

PROOF. By Sublemma 2.2, any irreducible factor of F is of the form

(37) z0z3 − z1z2 + tz0z1, t ∈ C .

Since S is irreducible, F is of the form (35). Each σ ∈ Γ is represented by a matrix of the

form

(
Aσ 0
Cσ Aσ

)
. To determine Cσ , we define

J =
(

0 1
−1 0

)
, T =

(
0 t

0 0

)
.

Since σ ∈ Γ leaves the equation (37) invariant, we have the relation of parings 〈 , 〉 of 2-
vectors

〈Aσ z, J (T Aσz + Cσ z + Aσz′)〉 = 〈z, J (T z + z′)〉 ,

where z = t (z0, z1) and z′ = t (z2, z3). By the relation tAσJAσ = J , we have 〈z, J z′〉 =
〈Aσ z, JAσ z′〉. Hence we obtain

〈z, (tAσJT Aσ + tAσ JCσ − JT
)
z〉 = 0 .
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This implies

tAσ JT Aσ + tAσJCσ − JT = cσ J

for some cσ ∈ C. Hence we have

Cσ = cσ Aσ + AσT − T Aσ .

Thus we have the proposition.

Theorem 1 is clear by the proposition above.

COROLLARY 2.1. Let S1 and S2 be surfaces which are invariant by a finitely gener-
ated discrete subgroup Γ ⊂ PGL(4, C). Suppose that S1 ∩ S2 contains a line and that Γ

admits no semi-invariant planes. Then S1 = S2.

PROOF. By Proposition 6, both S1 and S2 are quadrics defined respectively by

S1 : F1 = z0z3 − z1z2 + t1z0z1, t1 ∈ C

S2 : F2 = z0z3 − z1z2 + t2z0z1, t2 ∈ C.

For σ ∈ Γ , we have σ ∗Fj = (det Aσ )Fj . Therefore the polynomial F1 − F2 = (t1 − t2)z0z1

is also Γ -invariant. Since Γ admits no semi-invariant plane, we have t1 = t2. Hence S1 = S2.

3. Space rational curve case

In this section, in addition to the three conditions (A1), (A2) and (A3) on Γ , we assume
that

C is a space rational curve not contained in any plane.

Let

ϕ : P1 → C ⊂ P3(38)

ϕ([z : w]) = [v0([z : w]) : v1([z : w]) : v2([z : w]) : v3([z : w])](39)

be the normalization of C, where n = deg vj , 0 ≤ j ≤ 3. Let ϕ(k) be the k-th associated
curve of ϕ (see [GH, p.263]) :

ϕ(0) = ϕ, ϕ(1) : P1 → Gr(4, 2), ϕ(2) : P1 → P3∨
.

Since C is Γ -invariant, every σ ∈ Γ induces a holomorphic automorphism σ̃ ∈ Aut(P1)

which makes the diagram

P1 ϕ−→ P3

σ̃ ↓ ↓ σ

P1 ϕ−→ P3
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commutative. Let Γ̃ denote the subgroup of Aut(P1) generated by σ̃ for σ ∈ Γ . Since Γ is

a discrete group of PSL(4, C), Γ̃ is also discrete in PSL(2, C). If Γ̃ is an elementary group,

then Γ̃ contains an abelian subgroup of finite index. Hence Γ admits a semi-invariant plane

by Proposition 4. Therefore we can assume that Γ̃ contains no elementary subgroup of finite
index. Consider the sets

Σ(k) = {x ∈ P1 : rank dϕ(k)(x) = 0}, k = 0, 1, 2

and

Σ =
2⋃

k=0

Σ(k) .

PROPOSITION 7. If Σ �= ∅, then there is a semi-invariant plane.

PROOF. Note that Σ is a Γ̃ -invariant finite set. Hence Γ̃ is elementary by Proposi-
tion 1. This contradicts our assumption.

It is well-known that Σ = ∅ if and only if C is a twisted cubic. Suppose that C is given
by

(40) ϕ : P1 � [1 : t] → [1 : t : t2 : t3] ∈ P3 .

By Proposition 3, we can take a loxodromic element σ̃ in Γ̃ . Choosing the coordinates on P1

and P3 suitably, σ̃ ∈ Γ̃ is given by

(41) σ̃ ([1 : t]) = [1 : αt]
where 0 < |α| < 1. Let S be the tangential surface of C. Note that the tangential surface is
irreducible, Γ -invariant and containing C.

PROPOSITION 8. There is no Γ -invariant surface containing C other than S.

PROOF. By an easy calculation, the tangential surface S is of degree 4 given by

F(z0, z1, z2, z3) = z2
0z

2
3 − 6z0z1z2z3 − 3z2

1z
2
2 + 4z0z

3
2 + 4z3

1z3 = 0 .

Hence, we see that S contains the lines

(42) 01 = {z0 = z1 = 0} and 23 = {z2 = z3 = 0} .

Suppose that there is a Γ -invariant surface S1 other than S. Let F1(z0, z1, z2, z3) be the
defining equation of S1. Put m = deg F1. Then by (41), F1 satisfies

F1(tz0, tz1, tz2, tz3) = tmF1(z0, z1, z2, z3),

F1(z0, tz1, t
2z2, t

3z3) = tNF1(z0, z1, z2, z3),

for any t ∈ C, and some fixed natural number N . If N > m, then F1 contains no terms with

z
i0
0 z

i1
1 with m = i0 + i1. Hence 23 ⊂ S1. If N < 2m, then F1 contains no terms with z

i2
2 z

i3
3
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with m = i2 + i3. Hence 01 ⊂ S1. Therefore S1 contains either 01 or 23. Hence by (42),
S ∩ S1 contains either 01 or 23. Since both S and S1 are Γ -invariant, there is a subgroup Γ1

of Γ which leaves invariant the line in S ∩ S1. Thus we are in the case of section 2. Since S

is not a non-singular quadric, we have a contradiction.

4. Proof of main results

Let Γ be a finitely generated discrete subgroup of PGL(4, C) acting on P3.

PROOF OF THEOREM A. For the first case, it is enough to use [z0 : z1 : z2 : z3 + tz1]
as a new system of homogeneous coordinates on P3 in Proposition 6. The uniqueness follows
from Corollary 2.1. The second case is obvious by Proposition 8.

PROOF OF THEOREM B. Suppose that the singular locus of S is a finite set points.
Then Γ contains a finite index subgroup Γ1 which fixes a singular point p. Then the tangent
cone S0 at p of S is Γ1-invariant. If S0 �= S, then S0 ∩ S is a finite union of curves. Let
C0 ⊂ S0 ∩ S be a curve passing through p. Then the tangent cone of C0 at p contains a
line L, which is contained also in S0. Obviously, L is Γ1-semi-invariant. Thus the pair L and
S0 satisfies the condition of section 2. Hence by Theorem 1, S0 is a non-singular quadric.
This contradicts the fact that p is a singular point of S. Hence S = S0, i.e., S is a cone over
a non-singular plane curve C. If C is not rational, then Γ1 contains a solvable subgroup of
finite index. Hence there are semi-invariant planes by Proposition 4. If C is a line, then S

is the plane left invariant by Γ1. Thus C is a non-singular conic. If the singular locus of S

contains a curve, then we can apply Theorem A and obtain that S is either a quadric or the
tangential surface of a twisted cubic curve. Suppose that S is non-singular. Put n = deg S.
By assumption, we have n ≥ 2. If n = 2, then there is nothing to prove. It is well-known
that every non-singular surface of degree 3 contains exactly 27 lines. Hence each one of these
lines is semi-invariant. Thus we are in the case Theorem 1 and we see that this case doesn’t
occur. Suppose that n ≥ 4. Note that the group

G = {g ∈ PSL(4, C) : g(S) = S}
is a closed algebraic subgroup of PSL(4, C). It is easy to see that, if n ≥ 4, S does not admit
non-zero tangent vector fields. Hence we see that G is a finite group. This implies Γ itself is
a finite group, a contradiction.

COROLLARY 1. If Γ leaves invariant distinct two surfaces in P3, then there is a semi-
invariant plane.

PROOF. The two surfaces intersect in curves, and Γ contains is a finite index subgroup
which leaves invariant each irreducible component of the intersection. Hence the corollary
follows from Theorem A.

As an easy consequence, we have the following, which was proved in [K1] by a rather
long case-by-case checking.
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COROLLARY 2 ([K1, Lemma 5.9]). If there is a non-trivial rational function on P3

which is invariant under the action of a finitely generated discrete subgroup Γ of PGL(4, C),
then Γ contains a subgroup Γ0 of finite index such that Γ0 leaves invariant a 2-dimensional

projective plane in P3.

COROLLARY 3. Let C be a Γ -invariant curve in P3. If Γ admits no semi-invariant
planes, then C is a line or a twisted cubic curve.

PROOF. Suppose that C is not a line. Then, C is a space rational curve by Proposition
5. Then, by Propositions 7, we conclude that C is a twisted cubic curve.

5. Examples

Let Γ be a finitely generated discrete subgroup of PGL(4, C) acting on P3. Suppose

that a surface S ⊂ P3 is Γ -invariant, but that Γ admits no semi-invariant planes. Then, by
Theorem B, S is either a non-singular quadric, tangential surface of a twisted cubic curve, or
a cone over a non-singular conic. In this section, we shall give an example for each case.

5.1. Non-singular quadric. Let G be a finitely generated non-elementary Kleinian
group, and c ∈ Hom(G, C) any element. Define the group Γ by

Γ =
{(

A 0
c(A)A A

)
: A ∈ G

}
,

It is easy to see that Γ is a finitely generated discrete subgroup of PGL(4, C) and that the line

z0 = z1 = 0

and the surface

z0z3 − z1z2 = 0

are Γ -invariant.

LEMMA 5.1. Γ admits no semi-invariant plane.

PROOF. Consider the Segre map

s : P1 × P1 → P3,

where

s([u0 : u1], [v0 : v1]) = [u0v0 : u0v1 : u1v0 : u1v1] .

Then s defines a group homomorphism

s̃ : PSL(2, C) × PSL(2, C) → PGL(4, C) .
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Obviously, we have

s̃ ((Jc,A)) =
(

A 0
cA A

)
, where Jc =

(
1 0
c 1

)
.

Suppose that a finite index subgroup Γ1 leaves a plane

p0z0 + p1z1 + p2z2 + p3z3 = 0

invariant. Put

p = (p0, p1), q = (p2, p3), u = t (u0, u1), and v = t (v0, v1) .

Then, for h = (Jc,A) ∈ s̃−1(Γ1), by the invariance of the plane we have that

u0pAv + (cu0 + u1)qAv = µ(h)(u0pv + u1qv)

for some µ(h) ∈ C∗. Thus we have

pAv + cqAv = µ(h)pv,

cqAv = µ(h)qv,

and hence

pA + cqA = µ(h)p,(43)

cqA = µ(h)q.(44)

The equality (44) implies q = 0, since otherwise G would be an elementary group. Then
again, the equality (43) implies that G is elementary, a contradiction.

5.2. Tangential surface to a twisted cubic curve. Let G be a non-elementary dis-
crete subgroup of PGL(2, C). Note that any element in PGL(2, C) defines a linear transfor-

mation H 0(P1,O(3)) � C4. Hence G defines a discrete subgroup Γ ⊂ PGL(4, C), which
gives an example of this case. Indeed, if Γ admits a semi-invariant plane, then the intersection
of the plane with the twisted cubic curve would be a semi-invariant set. Thus a finite index
subgroup of G would have a fixed point. This implies that G is elementary, a contradiction.

5.3. Cone over a non-singular conic. Let {1, z, z2} be a basis of H 0(P1,O(2)) (�
Π2), and

Φ : P1 → P3

be the embedding defined by Φ([1 : z]) = [0 : 1 : z : z2]. Let G be a non-elementary

Kleinian group with A2(Ω(G),G) �= 0, and consider the Eichler cohomology H 1(G,Π2)

(see Appendix for the definition). Let e = {e(γ )}γ∈G ∈ Z1(G,Π2) be a cocycle which is

not zero in H 1(G0,Π2) for any subgroup G0 ⊂ G of finite index. We can choose such e by
Lemma 7.1 in Appendix. For γ ∈ G, we write

e(γ ) = e1(γ ) + e2(γ )z + e3(γ )z2 ,
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where ej (γ ) ∈ C, and

γ (z) = a(γ )z + b(γ )

c(γ )z + d(γ )
,

(
a(γ ) b(γ )

c(γ ) d(γ )

)
∈ SL(2, C) .

Define a matrix by

ρe(γ ) =

⎛
⎜⎜⎝

1 e1(γ ) e2(γ ) e3(γ )

0 d(γ )2 2c(γ )d(γ ) c(γ )2

0 b(γ )d(γ ) a(γ )d(γ ) + b(γ )c(γ ) a(γ )c(γ )

0 b(γ )2 2a(γ )b(γ ) a(γ )2

⎞
⎟⎟⎠ .

Then the map

ρe : G → PGL(4, C)

will be a group homomorphism. The image group ρe(G) is an automorphism of the cone over

the conic Φ(P1) with the vertex [1 : 0 : 0 : 0].
PROPOSITION 9. ρe(G) admits no semi-invariant planes.

PROOF. Suppose contrary that there is a finite index subgroup G0 of G such that

ρe(G0) admits an invariant plane. Then we see that e represents zero in H 1(G0,Π2) by
an easy calculation. This contradicts the choice of e.

Proposition 9 shows that ρe(G) gives an example of Γ in this case.

REMARK 3. Fix any integer q > 2. Let S be a cone over a non-singular rational curve

embedded in P2q−1 by the complete linear system |O(2q − 2)| on P1. Let Γ be any finitely

generated Kleinian group. Then, for each cocycle in the Eichler cohomology H 1(Γ,Π2q−2),
we can construct by the same method as above, a subgroups of PGL(2q, C) which leaves S

invariant.

6. Discrete subgroups without invariant surfaces

In this section, we shall construct by a geometric method an example of finitely generated
discrete subgroups in PGL(4, C) without semi-invariant surfaces.

A domain Ω ⊂ P3 is said to be large, if Ω contains a line. Every holomorphic auto-
morphism of a large domain extends to an element of PGL(4, C) ([K1, Lemma 3.1]). Let Ω

be a large domain and Γ a properly discontinuous group of holomorphic automorphisms of
Ω acting freely on Ω . Suppose that the quotient manifold X = Ω/Γ is compact. It is not
difficult to see that the quotient manifold X = Ω/Γ also contains an open subdomain which

is biholomorphic to a tubular neighborhood of a line in P3.
When we are given two such compact quotients X1 = Ω1/Γ1,X2 = Ω2/Γ2 of large

domains, we can connect complex analytically these two to obtain another compact quotient
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X3 = Ω3/Γ3 of a large domain. The manifold X3 is called a connected sum2 of X1 and
X2 and denoted by X3 = X1#X2. The connected sum is a kind of complex analytic surgery
analogous to the classical Klein combination. We describe the connected sum more explicitly
in a special case below.

In connected sums, P3 behaves like an unit, i.e., X � X#P3 � P3#X holds. Conversely,

only P3 is the unit. In deed, if X � X#X1, then π1(X) is isomorphic to the free product
π1(X) ∗ π1(X1) by van Kampen’s theorem. On the other hand, π1(X) � π1(X) ∗ π1(X1)

implies π1(X1) = {1} by Grushko’s theorem. Hence we have X1 � P3, since a simply

connected compact 3-manifold with a projective structure is P3. The connected sum X1#X2

is said to be trivial if one of Xj ’s is P3. A compact quotient manifold X = Ω/Γ is said to be
prime, if X is not biholomorphic to any non-trivial connected sum X1#X2.

In studying compact quotients of large domains, the existence of invariant planes is some-
times crucial. To construct our example, we make use of the following fact.

THEOREM 2 ([K1, Theorem 5.1]). Let X = Ω/Γ be a compact quotient of a large
domain. If Γ admits a semi-invariant plane, then X is prime.

If the compact quotient X = Ω/Γ admits a non-constant meromorphic function, then Γ

admits a semi-invariant plane by Corollary 2 (or [K1, Lemma 5.9]). Hence X is prime by
the above theorem. By a recent result on extension of holomorphic maps and by Corollary
2, we can refine the argument of [K1] to prove that, if X = Ω/Γ admits a non-constant

meromorphic function, then X is biholomorphic to either P3, a Blanchard manifold, or an
L-Hopf manifold (see [K2]). Here, a Blanchard manifold is a compact complex 3-manifolds

whose universal covering is the complement of a line in P3. An L-Hopf manifold is a compact

complex 3-manifolds whose universal covering is the complement of two skew lines in P3.
Now we shall construct an examples of finitely generated discrete subgroups of

PGL(4, C) without semi-invariant surfaces, using connected sums together with the results
obtained in previous sections.

Let Γ1 be the infinite cyclic subgroup in PGL(4, C) generated by

α : [z0 : z1 : z2 : z3] 	→ [α0z0 : α1z1 : α2z2 : α3z3] ,

where αj , j = 0, 1, 2, 3, are non-zero constants satisfying the following two conditions:

1. The inequality |α0| ≤ |α1| < |α2| ≤ |α3| holds.
2. The equality αiαj = αkα holds if and only if the two sets {i, j } and {k, } coincide.

For example, we can define α0 = 1, α1 = c, α2 = c3, α3 = c7 for a constant c ∈ C∗ with

|c| > 1, or α0 = 1, α1 = e
√

2i , α2 = 2, α3 = 2e
√

3i , etc. By the second condition above, we
have easily the following

LEMMA 6.1. No (irreducible) surfaces of degree 2 in P3 are Γ1-semi-invariant.

2See [K1] for the details. The connected sum here was called the connecting operation there.
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Let X1 = Ω1/Γ1 be the L-Hopf manifold defined by Ω1 = P3 \ ({z0 = z1 = 0}∪ {z2 = z3 =
0}) and Γ1 = 〈α〉.

Let Γ2 be the rank 4 free abelian subgroup in PGL(4, C) defined by

Γ2 =
{
gj =

(
I Aj

0 I

)
: j = 1, 2, 3, 4

}
,

where I is the identity matrix of size 2, and

A1 = I, A2 =
(

i 0
0 −i

)
, A3 =

(
0 −1
1 0

)
, A4 =

(
0 i

i 0

)
.

Let X2 = Ω2/Γ2 be the Blanchard manifold defined by Ω2 = P3 \ {z2 = z3 = 0} and
Γ2 = 〈g1, g2, g3, g4〉.

Now consider the connected sum X = X1#X2. The construction of X is as follows.
Consider the open subdomain

Uε =
{
[z0 : z1 : z2 : z3] ∈ P3 : |z0|2 + |z1|2 < ε2

(
|z2|2 + |z3|2

)}
,

where ε > 0. Put U = U1. Note that, for any ε > 0, Uε is biholomorphic to U , and that any

tubular neighborhood of a line in P3 has a neighborhood biholomorphic to U . For a subset

M ⊂ P3, we indicate by Int M , [M] and ∂M , the set of interior points, the closure, and the set
of boundary points of M , respectively.

First we define an open embedding j1 : U2 → X1. Note that α([U ]) ⊂ U . We put

Z = [U ] \ α(U) ,

which is a compact subset contained in Ω1. The boundary ∂Z has two connected components

Σ1 = ∂[U ] and Σ2 = α(Σ1) .

The manifold X1 is obtained by identifying Σ1 and Σ2 by α. We can find a line 1 in Int(Z).
For example, the line defined by

z0 = µz2, z1 = µz3, with max

{∣∣∣∣α0

α2

∣∣∣∣ ,
∣∣∣∣α1

α3

∣∣∣∣
}

< |µ| < 1

is contained in Int(Z). Let W1 ⊂ Int(Z) be a tubular neighborhood of 1 which is biholo-
morphic to U2. We define the open embedding j1 : U2 → X1 by the composition of a

biholomorphic map j̃1 : U2 → W1 and the canonical projection Ω1 → X1.
Next we define an open embedding j2 : U2 → X2. Let

p : Ω2 → C2

be the projection defined by

[z0 : z1 : z2 : z3] 	→ (x1, x2) ,
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where

x1 = z0z̄2 + z̄1z3

|z2|2 + |z3|2 , x2 = z1z̄2 − z̄0z3

|z2|2 + |z3|2 .

Then p defines a trivial C∞ S2-bundle over C2. Consider the translations τj of C2 defined by

τ1 : (x1, x2) → (x1 + 1, x2), τ2 : (x1, x2) → (x1 + i, x2)

τ3 : (x1, x2) → (x1, x2 + 1), τ4 : (x1, x2) → (x1, x2 + i) .

Then we have

(45) p ◦ gj = τj ◦ p, j = 1, 2, 3, 4 .

Hence the fundamental domain F of Γ2 is given by

F = p−1
({

| Re x1| ≤ 1

2
, | Im x1| ≤ 1

2
, | Re x2| ≤ 1

2
, | Im x2| ≤ 1

2

})
.

Fix any 0 < r < 1
2 and put

W2 = p−1({|x1|2 + |x2|2 < r2}) .

Then, in view of (45), W2 ∩ g(W2) = ∅ for any g ∈ Γ2 \ {1}. Therefore there is a subdomain
in X2 which is biholomorphic to W2. Note that W2 is biholomorphic to Ur(� U2). Define the

open embedding j2 : U2 → X2 by the composition of a biholomorphic map j̃2 : U2 → W2

and the canonical projection Ω2 → X2.
Consider the domain

N(2) = U2 \ [U 1
2
]

in P3. Define σ ∈ PGL(4, C) by

σ([z0 : z1 : z2 : z3]) = [z2 : z3 : z0 : z1] .

Then σ is an involution of N(2). We define the connected sum X = X1#X2 by

X =
(
X1 \ j1([U 1

2
)]

)⋃ (
X2 \ j2([U 1

2
)]

)
,

where x1 ∈ j1(N(2)) and x2 ∈ j2(N(2)) are identified if and only if

x2 = j2 ◦ σ ◦ j−1
1 (x1) .

Note that j̃2 ◦σ ◦ j̃−1
1 extends to an element τ ∈ PGL(4, C). By this construction, X becomes

also a compact quotient of a large domain Ω ⊂ P3 by a subgroup Γ ⊂ PGL(4, C). More

explicitly, Γ is generated by τ ◦ α ◦ τ−1 and Γ2 in PGL(4, C). The fundamental domain of Γ
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is given as a compact subset of Ω2 by
(
F \ j̃2

(
U 1

2

))⋃
τ

(
Z \ j̃1

(
U 1

2

))

which is the fundamental domain F of Γ2 with disjoint tubular neighborhoods of 2 skew
lines in F deleted. Thus Γ is a finitely generated discrete subgroup of PGL(4, C), and is
isomorphic to the free product of Γ1 and Γ2 by van Kampen’s theorem.

PROPOSITION 10. Γ do not admit any semi-invariant surface.

PROOF. Suppose contrary that there is a Γ -semi-invariant surface S. Then there is a
subgroup Γ ′ ⊂ Γ of finite index such that S is Γ ′-invariant. Since X is not prime, S is not a
plane by Theorem 2. Since a finite index subgroup Γ ′

1 ⊂ Γ1 is contained in Γ ′, we see that S

is neither a surface of degree 2 by Lemma 6.1. Hence S is the tangential surface of a twisted
cubic curve by Theorem B.

Let C denote the twisted cubic curve. Since C is the singular locus of S, C is Γ ′-
invariant. Hence Γ ′ defines a subgroup G(� Γ ′) of PGL(2, C) which induces Γ ′ by the
holomorphic map (40). Note that Γ ′ contains a finite index subgroup of Γ2, which is a free
abelian group of rank = 4. Hence, so does G. But free abelian subgroups of rank 4 cannot
be discrete in PGL(2, C). Hence G is not discrete in PGL(2, C). Consequently, Γ ′ is not
discrete in PGL(4, C). This is a contradiction.

REMARK 4. There is a small neighborhood V of τ ∈ PGL(4, C) such that, for any

γ ∈ V , the group Γγ := (γ Γ1γ
−1)∗Γ2 is a finitely generated discrete subgroup of PGL(4, C)

that admit no Γγ -semi-invariant surfaces.

REMARK 5. Using the manifold X constructed above and any other compact quotient
manifold Y of a large domain, we can form the connected sum X#Y that provides an example
for which Proposition 10 holds.

7. Appendix : Eichler cohomology

We recall some facts related to the Eichler cohomology. Fix a finitely generated non-
elementary Kleinian group G. Let Π2 be the vector space of polynomials in z of degree at
most 2. Then G acts from the right on Π2 by the rule

Pγ = P(γ (z))(cγ z + dγ )2 ,

where

γ (z) = aγ z + bγ

cγ z + dγ

∈ G .

A map e : G → Π2 is called a cocycle if

e(γ1 ◦ γ2) = e(γ1)γ2 + e(γ2) .
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For a fixed Q ∈ Π2, its coboundary δQ is a cocycle defined by

δQ(γ ) = Qγ − Q, γ ∈ G .

Let Z1(G,Π) be the vector space spanned by the cocycles and B1(G,Π) its vector subspace
spanned by the coboundaries. Then the Eichler cohomology is the vector space defined by

H 1(G,Π2) = Z1(G,Π2)/B
1(G,Π2) .

By [B, Lemma 1], we see that

dim H 1(G,Π2) ≤ 3(N − 1) ,

where N is a number of generators of G. The equality holds if G is a free group of N

generators.

Put Ω = Ω(G) and Λ = P1 \Ω . By Ahlfors’ finiteness theorem, there are finite number
of compact curves C1, . . . , Cr such that

Ω/G = C∗
1 ∪ · · · ∪ C∗

r ,

where C∗
j is Cj with a finite number of points {p1, . . . , psj } deleted. Let Dj be the divisor

on Cj defined by p1 + · · · + psj . Each C∗
j is given by Ωj/Gj , where Ωj is a connected

component of Ω and Gj is the stabilizer subgroup of G. Let KCj be the canonical line bundle

of Cj . Lifting up an element ω ∈ ⊕r
j=1H

0(Cj , 2KCj + Dj) to Ω , we obtain a holomorphic

quadratic 1-form ω̃ = φ(z)dz⊗2 on Ω satisfying

γ ∗ω̃ = ω̃, γ ∈ G ,

which is called a cusp form of weight (−4). In other words, a cusp form ω̃ of weight (−4) is
a G-invariant holomorphic quadratic 1-form on Ω whose norm

‖ω̃‖ := sup
z∈Ω

λ−2
Ω (z)|φ(z)|

is finite, where λΩ(z)|dz| is a Poincaré metric on Ω . Let A2(Ω,G) denote the vector space
of the cusp forms. By L. Bers [B, Theorem 3], there is a canonical injective antilinear map

β : A2(Ω,G) → H 1(G,Π2) .

Now let G0 be a subgroup of G with finite index. In general, for a discrete group G ⊂
PGL(2, C) and its any subgroup G0 of finite index, the equality Ω(G) = Ω(G0) holds ([MT,
Proposition 2.30]). Hence we have the covering projection π : Ω/G0 → Ω/G. Therefore
we have the commutative diagram

A2(Ω,G0)
β0−→ H 1(G0,Π2)

↑ i ↑ r

A2(Ω,G)
β−→ H 1(G,Π2) ,
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where i is the inclusion and r is the restriction.

LEMMA 7.1. Suppose that ω̃ ∈ A2(Ω,G) is an element such that β(ω̃) �= 0. Then
r ◦ β(ω̃) �= 0 for any subgroup G0 ⊂ G of finite index.

PROOF. In the diagram above, i is obviously injective, and so is β by the theorem of
Bers cited above. Hence we have r ◦ β(ω̃) = β0 ◦ i(ω̃) �= 0.
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