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This paper is concerned with a measure theoretic characterization of
the duality mapping of the space I” of bounded sequences of real numbers.
The duality mapping of a Banach space X is a possibly multi-valued
mapping F from X into its dual space X* which assigns to each we X
a subset of X* defined by

Fu)={f e X*: {w, f>=\lulP=II71,

where (u, f) stands for the value of fe X* at the point we X. The
mapping F is well-defined on all of X by means of the Hahn-Banach
theorem, and it is well-known ([1], [4], [9]) that F(u) is weakly-star
compact and convex for each u € X; and F is weakly-star demi-closed in
the sense that if u, converges strongly to % in X, f,€ F(u,), and f is
a weak-star cluster point of the sequence {f,:nlc}, then fe F(u). The
space I is one of the typical non-reflexive classical Banach spaces in the
sense that it is a Banach lattice with respect to the usual ordering and
every separable Banach space can be embedded isometrically and isomor-
phically in I®. Accordingly, the duality mapping of I~ is a prototype
of the duality mappings of general non-reflexive Banach spaces.

Here we investigate the structure and topological properties of the
duality mapping F of I®. This problem was arised both in the study
of generalized derivatives of strongly absolutely continuous functions
which take values in non-reflexive Banach spaces and in the investigation
of nonlinear dissipative operators. The results obtained in this paper
will suggest not only typical properties possessed by the duality mapping
of a general nonreflexive Banach space but also counterexamples concern-
ing generalized derivatives and nonlinear dissipative operators.

Our work is mainly devoted to two problems: The first aim is to
investigate the structure of the values F(u), uel!™; and the second
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purpose is to give some topological properties of the multi-valued
mapping F:[”—(*)*. Since the dual space (I*)* is identified with the
space ba of bounded, finitely additive measures on the power set I of
the set N of all positive integers, we shall fully apply the theory of
integration with respect to finitely additive measures and characterize
F(u) in terms of the finitely additive measure theory.

In this paper we shall employ three means to investigate the struec-
ture of the mapping F. The first means is the Jordan decomposition
of measures in ba. In fact, a measure N\ in F(u) is represented as A=
[INH]|wt—]|A"||y~, where A=A*—X\" is the Jordan decomposition of A, and
v*, v~ are positive measures such that if u*=u\Vv0 and w =(—u)VO0
then ||ut||v* € F(u*) and |ju~||y~ € F(u~), respectively. Hence our problem
is reduced to the considerations of the values of F for positive elements
#=0. The second means is the Yosida-Hewitt decomposition. That is,
we shall employ the fact that every N\ in ba is decomposed as the sum
of a countably additive measure \, and a purely finitely additive measure
A,. The Yosida-Hewitt decomposition is equivalent to the Dixmier de-
composition, since ba is the third conjugate of the space ¢, of sequences
converging to 0, the A, is regarded as an element of the space I' of
absolutely convergent sequences, and the \, is regarded as an annihila-
tor of the closed subspace ¢, of [*. Now by means of this decomposition,
detailed properties of measures in F(u) can be discussed along with
various types of bounded sequences % in [”. The third means is the use of
0-1 measures. A 0-1 measure is a measure which assumes only the values
0 and 1, and such a measure is either countably additive or purely finitely
additive. Now extremal points of the weakly-star compact and convex
set F(u) are characterized as 0-1 measures and the set of all extremal
points of F(u) is described in terms of those of F(u*) and F(u~). Aec-
cordingly, it turns out that the structure of F(u) is determined through
Krein-Milman’s theorem by the 0-1 measures belonging to the F(u).

Applying the results concerning the above-mentioned facts, precise
structures of the unit balls in [ and ba are obtained. We shall divide
the surface S of the unit ball in I* into five zones and find a partition
of the surface S* of the unit ball in ba which is associated through the
mapping F' with this partition of S. In fact, it will be shown that S*
shapes a “cylinder” in the space ba and is divided into three Zzones.
Besides, the range of F' will be considered with the aid of Bishop-Phelps’
theorem and James’ theorem. Moreover, the application of our results
enables us to characterize extremal points and smooth points of S; and
it is interesting to note that the set of smooth points of S, sm S, is
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open-dense in S. These characterizations will play important roles to
discuss the topological properties of F'.

Finally, topological properties of the mapping F will be investigated
by restricting it on the surface S of the unit ball in [*. After some
aspects of the weak-star demi-closedness of F' are given, it will be shown
that F' is single-valued and norm continuous on the open-dense subset
sm S of S. F is genuinely multi-valued on S—sm S, the boundary of
sm S. Now the value F(v) of F at each boundary point v€S—sm S
can be viewed as a “boundary value” of the single-valued mapping F
restricted on sm S, since for every extremal point N of F(v) there exists
a sequence {v,} in sm S such that v is a strong cluster point of the
sequence {v,:nl} and A is a weak-star cluster point of the sequence
{F(v,): nToo} in S*.

Section 1 contains some basic facts on finitely additive measures
belonging to ba. In this section we shall briefly review Yosida-Hewitt’s
theory. In Section 2 we discuss 0-1 measures in connection with the
duality mapping of [*. Section 3 concerns a general representation of
measures in F'(«) in terms of the Jordan decomposition. Section 4 treats
the characterization of F(u) in terms of its extremal points. In this
section 0-1 measures will play an essential role. In Section 5 the struec-
ture of F(u) will be discussed from the point of view of the Yosida-
Hewitt decomposition. In this section we shall give a complete relation-
ship between Yosida-Hewitt’s decomposition theorem and Dixmier’s
decomposition theorem. Section 6 concerns geometrical interpretations
of our results obtained in the previous sections. Moreover, in this
section, extremal points and smooth points of the unit sphere in I* will
be discussed. Finally, Section 7 treats topological properties of the
duality mapping F.

§1. Basic facts on the dual space (I)*.

Let N be the set of all positive integers, 3 the power set of N, and
let u(E) be the cardinality of EeZX. Then [® is regarded as the
Lebesgue space L*(N, 3, ¢t) and elements of [” are understood to be real-
valued function on N; the s-th element of the sequence u €l is denoted
by wu(s). The norm of I* is denoted by ||-||. By (I")* we mean the
positive cone {uel”:u(s)=0 for all se N}. Every element % in I can
be decomposed as u=u*—u", where u*=u\V0 and v~ =(—u)V0. In this
paper S and S* denote the surfaces of the closed unit balls of [* and
(I*)*, respectively. By the definition of duality mapping F, F(0) is
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simply a singleton set consisting of the null functional 0 on ! and
nothing interesting happens. Accordingly, in what follows, we shall
treat only the case u+#0 and restrict ourselves to the investigation of
the normalized duality mapping F, defined by

(1.1) Foyu)={»e (I7)*: Cu, My =|lul], IM|=1}, u=0

instead of F. For a given Kcl”, F(K) denotes the union U{F,(u): u € K}.

As is well-known, (I*)* is isometrically isomorphic to the space ba=
ba(N, %, ) of bounded, finitely additive measures on Y; hence the natural
pairing between [” and ba is represented as

(1.2) (o, Ny = SN wENds), uel®, neba.

For the terminology and fundamental facts on the integration of uwel”
with respect to N eba, we refer to the treatise of Dunford-Schwartz [7],
Chapters 3 and 4.

Let Aeba. We write A\=0 when AM(E)=0 for Ec>; and for )\, veba,
we write A=y provided A—v=0. ba forms a vector lattice with respect
to this ordering. In fact, for every pair \, v in ba define the meet M AY
and the join A\/v by

AV E)=inf (MT)+v(E—-T): TCE}, EeZX

and M Vy=—((—N)A(—V)), respectively; then AAy, Ay belong to ba and
give the greatest lower bound and the least upper bound of A, v, respec-
tively. We shall use in later arguments the following simple fact:

(1.3) If N, vebat and AAY=0, then axABY=0 for a, 8=0 ;

hence MAY=0iff ax ABY=0 for some «, 8>0.

In this paper, we denote by ba* the positive cone {A€ba:A=0} of
this vector lattice. For a given \ € ba, the representation A=X\*—\" means
the Jordan decomposition of N\, where A* and A~ stand respectively for
the positive and negative variations of )\, i.e., A*=AV0 and A=(—\)V0.
Note that A* AN"=0. For a given E e 3, v(\, E) denotes the total variation
of A on E; hence v(\, E)=A"(H)+N"(E). The norm of A\ is then defined
by |All=v(A\, N). Also, the relation

(1.4) Ay=QAVY)+(AAY)

holds for A, veba. Now suppose that A, v, veba, AMAY=MAY and A V7=
AVy; then the application of (1.4) yields y=v. From this we infer with
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the aid of Bergmann’s theorem ([2], p. 134) that ba forms a distributive
lattice. In fact, ba forms a Banach lattice. For the detailed arguments,
see Birkhoff [2] and Yosida [12].

Let Neba. If every countably additive measure v in ba such that
0=y=v(n, +) is identically zero, then \ is said to be purely finitely addi-
tive (cf. [11], Theorem 1.17). We sometimes permit ourselves the common
abbreviations, c.a. measure and p.f.a. measure, in referring respectively
to the countably additive and purely finitely additive measures. The
following Yosida-Hewitt’s decomposition theorem plays an important
role in this paper:

THEOREM 1.1 (Yosida-Hewitt). Let x€ba. Then \ 18 uniquely decom-
posed as the sum of a c.a. measure A, and a p.f.a. measure A, i.e.,
A=\, +N,.  If in particular, v=0, then N;=0 and A\ =0.

The following lemma is also useful for our later arguments:

LEMMA 1.2. Let M€ba and suppose that N 18 writlten as A=\ —N\,,
where N eba*, 1=1,2. If MANXN,=0, then this representation gives the
Jordan decomposition of N, i.e., M=AT and A,=N\".

PrROOF. The application of (1.4) yields AT=AVO0=A;—N\)VO0=
M VA =X =N — (M AN) =N, —0=];; and A =X, in a similar way.
q.e.d.

By means of this lemma, the variation of A is also decomposed in
accordance with the Yosida-Hewitt decomposition:

PROPOSITION 1.3. Let n€ba and let A=N\,+\, be the Yosida-Hewitt
decomposition of N. Then we have ||M|=||N]]|+ ][Nl

PROOF. Consider the Jordan decomposition A=A"—A" and apply
Theorem 1.1 to get the decompositions A" =XAF+A; and A=A +2,;. Then
A can be written as A= —\;)+(f—2;). Hence, if we set A, =Af—A;
and A,=\}—X\,;, then A, and A, are respectively c.a. and p.f.a. ([11],
Theorems 1.14 and 1.17). Moreover these two expressions give the
Jordan decompositions of A\, and A,, respectively. In fact, noting that
022t and 0=\, <\, we have 0=ZA AN EAMAN =0, and so MA
A7 =0. From this and Lemma 1.2 we see that A =\ —\. gives the
Jordan decomposition of \,. Similarly, A,=X\}—\,; gives that of ,.
Therefore, we have [|N||=[|N|[+[IN[|=[IMA MGG =11+
[IN,l]e q.e.d.
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We shall use the following notation: For a given Ec X, X, denotes
the characteristic function of E; and X, is regarded as an element of I
in the sense that it defines a sequence {X,(n) }such that X (n)=1 for n € E
and=0 for nec E°. We then write

(ux,;., A =S u(8)AM(ds) , and
(1.5) B
ults, viv, =\ _lu@)|o0, ds) .

Accordingly, ME)=<{Xg ), v(\, E)={Xz v(\, -)), and the Lebesgue
dominated convergence theorem may be restated as follows:

THE DOMINATED CONVERGENCE THEOREM. Let Mcba and let {u,} be
a sequence in 1™ such that ||u,||<M for n=1 and w, converges to ucl”
in N-measure, i.e., lim v(\; {s: |u,(s) —u(s)| >€})=0 for €>0. Then we have
the convergence

lim {u,, A)=<{u, \) .

We shall also use the following fact: Let EFe X, wel” and let A e€ba.
Then we have

(1.6) [KuXe, M= lulXg, v(N, <))
=sup [u(s)| v(r, E) = ulv(\, E)

Finally, we shall frequently use extremal points and smooth points
of subset of ba as well as . For a given a set F' in I® (or in ba), ext F'
will denote the set of all extremal points of F' and sm F' will stand for
the set of all smooth points of F.

§2. 0-1 measures.

In this section we study 0-1 measures in ba and give a method for
computing the values of the integrals of elements in ! with respect to
such measures.

To discuss the structure of the values F,(u), we need a notion of
0-1 measure introduced by Yosida and Hewitt [11]. Let a=1 or —1.
By a 0-a measure on ¥ we mean a nonzero element )\ <€ ba which assumes
only the values 0 and @. If A in ba is a 0-1 measure, it has the follow-
ing properties:

(i) If MFE)=1 and EcM, then M(M)=1.

(ii) If M(E)=0 and McCE, then M(M)=0.
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(i) |M[=MN)=1.

(iv) MNE)=1iff M(E°)=0.

(v) If MM)=x(E)=1, then MNE+ @, M(MNE)=1 and M\(MAE)=0,
where MAFE means the symmetric difference of M and E.

A typical example of 0-1 measures is the so-called point mass: Let
ke N and define 6,: ¥ —{0, 1} by setting ¢6,(F)=1 if ke E and 6, (E)=0 if
k¢ E. Then 6,cba in the sense that {(u, §,>=u(k) for uel” and it is a
0-1 measure on 2. Note that o, is countably additive. A general argu-
ment for the construction of 0-1 measures is given in [11], Theorem 4.1.
However for the sake of later arguments we here attempt to construct
such measures by means of ultrafilters on the set N. In fact, as sug-
gested by properties (i) through (v) mentioned above, one may obtain a
one-to-one correspondence between the class of all ultrafilters on N and
that of 0-1 measures:

PROPOSITION 2.1. (a) For a given 0-1 measure N in ba, let F =
{(FeX:\NE)=1}. Then Z 1is an ultrafilter on N. (b) Conversely,
for every ultrafilter % on N, define \: ¥—{0, 1} by setting NE)=1 if
Fe s and ME)=0 if E¢ . Then N\ is a 0-1 measure in ba.

Let .o be any nonempty family of nonempty subsets of N such
that the intersection of any two sets, belonging to .97 contains a set
which belongs to .9 Then Proposition 2.1 enables us to construct a 0-1
measure A such that M(E)=1 for all Ec . since there is at least one
ultrafilter which is finer than the filter generated by .o~

0-1 measures are classified into two types: 0-1 measures of the first
type are point masses, d,, k€N, and these are all countably additive.
0-1 measures of the second type are p.f.a. 0-1 measures. To describe
this, we introduce two kinds of ultrafilters on N: An ultrafilter % on
N is said to be principal (resp. nonprincipal) if | & + @ (resp. ¥ = Q).
If &% is a principal ultrafilter on N, then there is one and only one
point pe N and & is written as &% ={Ec3: pe E}. Thus, there is a
one-to-one correspondence between the class of point masses d,, k€ N,
and that of principal ultrafilters.

As compared with principal ultrafilters, any nonprincipal ultrafilter
% has the property that it contains no finite subsets in N; and this
property characterizes non-principal ultrafilters. More precisely, given
ultrafilter . # the following conditions are equivalent:

(F1) &~ 1is nonprincipal.

(F2) & contains the filter {F € 3: E° is finite}.

(F8) & contains no finite subsets of V.
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There are uncountably many nonprincipal ultrafilters on N. A typical
example of non-principal ultrafilters is an ultrafilter .# which contains
-%':(N”—{l’ 2, .-, n}: ngl}'

Now p.f.a. 0-1 measures are associated with non-principal ultrafilters
on N:

PROPOSITION 2.2. If N\ 48 a p.f.a. 0-1 measure on X, then F =
{EeX:\MH)=1} is non-principal. Conversely for every mnon-principal
ultrafilter #, define a measure M in the same way as in Proposition
2.1; them N 18 p.f.a.

PrROOF. Let A be a p.f.a. 0-1 measure on Y. Then AAJ,=0 for
ke N, by [11], Theorem 1.16, where 4, is the point mass concentrated
at k. Hence in particular, (M\Ad,)({k})=min (A({k}), 1}=0 or A({k})=0 for
ke N. Thus, M(F')=0 and F¢.# for every finite subset F of N. This
means that & satisfies condition (F3), so .# 1is non-principal. Con-
versely, let . # be any non-principal ultrafilter and A a 0-1 measure
defined as in Proposition 2.1. Then, every finite set F in N does not
belong to .# by (F3); hence M(F)=0 by definition. Now let v be any
c.a. measure satisfying 0=yv=<\. Then, 0=<y(F)N(F')=0 for every finite
set F' in N. Since v is c.a., |[|y||=v(N)= 2, v({k})=0. This means that
A\ is p.f.a. q.e.d.

Therefore, any 0-1 measure is either c.a. or p.f.a.

In the remainder part of this section we discuss the integration of
elements of [ with respect to 0-1 measures.

First the value of the integral of any element v of I” with respect
to a point mass N\ is simply given by

(2.1) (v, \)=v(k), provided that \=9, .

Next, by connecting non-principal ultrafilters on N with the Bolzano-
Weierstrass property of bounded sequences in R, we can characterize
the values of integrals of elements in [® with respect to p.f.a. 0-1
measures in terms of the filter theory.

Let % be a nonprincipal ultrafilter and let v be a fixed element
of I”. We recall that every E in & is an infinite set. Let v(V) denote
the range of v and let .&4={S: Scv(N), v*(S)e % }. Then &2 forms an
ultrafilter on the set v(V).

Let then v(N) be the closure of v(N) in R; hence v(IN)C[—||v|], ||v|I]
and . is a base for a filter on v(N). Let .2 be the filter generated
on v(N) by .&45. Then .52 forms an ultrafilter on »(V) in accordance
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with the following proposition:

LEMMA 2.3. Let X be a nonvoid set and let Y be any monvoid sub-
set of X. If F 1is a filter on Y, then F 18 a base for a filter on X.
Let & be the filter generated on X by #. Then we have:

(@) For every AcX with A+, ANYe F if AeZ. _

(b) If & is an ultrafilter on Y, then & is an ultrafilter on X.

Now since »(N) is compact, .52 converges to some element « in v(IV);
and the limit a is unique as »(N) is a metric space. Moreover, we have
just shown that given a non-principal ultrafilter 4 on N and an
element v of !°, the family .52, and consequently .2, was uniquely
determined. Hence we conclude that to every .# and v there corresponds
a unique real number « in v(IN). We then consider the p.f.a. 0-1
measure A associated through Proposition 2.2 with .&# and characterize
the value of the integral of v with respect to .

PROPOSITION 2.4. Let vel”, » any p.f.a. 0-1 measure, F the as-
sociated mon-primcipal ultrafilter on N in the sense of Proposition 2.2,
and let & be the ultrafilter on the compact set v(N) specified as above.
Then, the value (v, \) i8 given as the limit of & and (v, \) € v(N).

PROOF. That &2 converges to the limit @ means that Unv(N) € . &2
for every neighborhood U of a. Hence by Lemma 2.3, UNnv(N)e€.&
for every neighborhood U of . We then set U,={t€ R:|t—a|<1/n},
S.=U,Nv(N), and E,=v"%S,). Then S,<c.%” (and hence v(N)—S, ¢ .).
So, E,€.# and N—E, ¢ .. Since each K, is an infinite set, one can
choose an infinite sequence {k,} such that k,c E, and k,=k._,+1 and
vk, o as n—>o. Let E,=K,—{1,2, +--,k,—1} for n=1. Then k,=
min E, and E,c. % for all n=1. Next, define a sequence {v"} of simple
functions on NV by setting v*=v(k,)Xz,; and set M;={s € N: [v"(8)—v(8)|>¢}
for €¢>0 and n»=1l. Then noting that AME;)=0 and [v"(s)—v(s8)|=
lv(k,) —a|+|a—v(s)|<2/n for se E,(CFE,), we infer that 2/n<e implies

v, M) =v(\, Mo NE)+v(N, MyNE,)=0,

which means that v" converges to v in A-measure. Since |[v*||<Z||v|| for
n=1, the dominated convergence theorem yields

v, Ay =lim ", AW =lim v(k,)=a c v(N) . q.e.d.

Finally, we give the following useful result as an application of
Proposition 2.4.
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PROPOSITION 2.5. Let vel”. Given €¢>0 let E,=vY(UJ|v|]), where
U.(|v|]) denotes the e-neighborhood in R of ||v||. Then for every p.f.a.
0-1 measure N belonging to F,(v), we have ME,)=1 for ¢>0.

PROOF. Let .52 be the ultrafilter on the compact set v(IN) specified
as before. Then .&Z converges to the value a=||v|| since (v, \)=]||v|| for

every p.f.a. 0-1 measure in F,(v). Hence it is seen from the proof of
Proposition 2.4 that ME,)=1 for ¢>0. q.e.d.

§3. Representation of measures in F(u).

In this section we first establish two decomposition theorems for the
scalar products <{u, A), M€ Fy(u), and then give general representations
of measures in F,(u) in terms of the measures which belong to F (u')
and Fy(u~). We start with the following

LEMMA 8.1. Let uecl”—{0}, N€ Fy(u), and let EcX. Then we have
{uXgy Ny = u|Xg, v(N, <)) =||ul|v(n, B).

ProoOF. The desired relation is obtained by comparing the correspond-
ing terms in the estimate:

llwl|=<uXg, M)+ {UXn_g, M) = || Xg, ¥(N, +))
+ < gy w0, <) Sllul|vOy, E)+|[uf|vy, N—E)=|lu|| . q.e.d.

The first decomposition theorem for the scalar product {(u, A) is given
in terms of the Jordan decompositions of # and .

PROPOSITION 3.2. Let uel®>—{0}, ne Fy(u), and let EcX. Let u=
ut—u~ and AN=AN"—A". Then we have {uXg, N)=<{u Xz, M)+ {u Xz, N").
Moreover, if E=N then each term on the right side of this relation can
be written as :

u®y MO =|ut|[ [N = ]| {[M]
and

Cu™y, MO =llw[[ [N =]lullIIM],
where we understand that ||[u*||<||u|| implies N*=0, respectively.

PrROOF. First we infer that
(3.1) udg, My ={utXg, N> —Lut Ay VD
— UKy N+ U ey M)

On the other hand, we have
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(3.2) ulXg, v\, <)) = utXg, W)+ ut g, V7D
U Xgy M)+ UKy, V)

But, the left sides of (8.1) and (8.2) are equal by Lemma 3.1; hence
{utXg, M)+ <{u Xz M>=0 from which, together with (3.1), we obtain the
first relation in the statement. To get the last assertion, apply the first
relation just obtained; then we have ||u||=<{u*, M)+ u™, M) [wt|| V] +
e[V el M+ [l [N =[|u]] sinee | |[+[A7[|=][M]=1. Comparing
the corresponding term, we get the last two relations in the statement.
Finally, the above estimate also means that if ||u*||<||u| then A* must
be identically zero, respectively. q.e.d.

The following is an immediate consequence of Proposition 3.2:

COROLLARY 3.3. Let wel~—{0} and let e Fym). If ue(®)*, then
A=0; and if —ue (™), then MZ0. '

This result also states that the duality mapping F), is order-preserv-
ing in the sense that w,—wu, ¢ (I°)* implies F\(u,—u,)Cbat.

The second decomposition theorem for the scalar product {(u, \) is
described in terms of the Yosida-Hewitt decomposition.

PROPOSITION 3.4. Let uwel”—{0}, M€ Fy(u), and let x=N,+N\,. Then
we have ||[ul|=<{u, M) +<{u, A,

<uy 7\'c>':<iuiy 'UO\:,,, ')>=|lul| ||>"c” ’ and
<u’ )"p>:<lu[: ”(M, ')>=H'II/H H)'pH .

PrROOF. Employing the same idea as in the proof of Proposition 3.2,
the desired equalities are obtained by comparing the corresponding terms
in the estimate

[l = Cuy Ned + <%y Npp =t v(Rey <)+t V(0 0D
= [l ol [l N[ = [l

where we used Proposition 1.3. q.e.d.

We are now in a position to state the main theorem of this setion.

THEOREM 3.5. Let uecl”—{0}, n€ Fy(u), and let A=\N"—N". Then \
18 written as A=|AY||vT—||]A7||lvT, where vve Fy(u'), v-eF,(u) and
[NV ANl =0.

PROOF. First suppose that At=0. Then |[A7||=1 and (w~, A >=||lu"|
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by Proposition 3.2, i.e., A" € Fy(u~). Therefore, letting y—=X\" and v* be
any element of F,(u*) yields the desired representation for A. Similarly,
in case of A"=0, we obtain the representation by taking v*=\* and an
arbitrary element v~ of Fy(w~). Finally, assume that both \* and A~
are nonzero. In this case, let y*=\*/||A*|| and y~=N\7/||]A"|]|. Then we
infer with the aid of Proposition 3.2 that (u*, y*)=||u*|| and v* e Fy(u*),

respectively. It is now clear that the representation is valid for these
measures vyt and y-. q.e.d.

§4. Structure of the convex set F,(u).

In this section we discuss the structure of the convex sets F,(u) in
terms of 0-1 measures. Since each of F,(u), uel®, is weakly-star
compact in ba, the structure of F,(u) is determined through Krein-
Milman’s theorem by its extremal points. We first investigate the

extremal points of Fy(u) in case of =0 and then discuss the general
case.

THEOREM 4.1. Let ue(*)*—{0} and let e Fy(u). Then, N\ i3 an
extremal point of F,(u) iff ¢t is a 0-1 measure.

PrROOF. Suppose first that A is a 0-1 measure. Let «, >0, a+
B=1, M, M€ Fi(u), and let A=a),+LB\,. We here note that 2,=0 and
=0 by Corollary 3.3. Now let E be an arbitrary element of 3. If
ME)=0, then N(E)=N\(E)=0. Assume that ME)=1. If 0=\ (E)<]1,
then ||\ ||=M(E)=8"'1—a)(E))>L(1—a)=1, which contradicts to the
fact that ||\||=1. Hence, A\ (E) must be 1; and \(E)=1 in a similar
way. This means that A=),=X,, i.e., A is an extremal point of F,(u).
Conversely, let A be an extremal point of F,(u) and assume that 0<
ME,)<1 for some E,e€¥. We then define two bounded additive set
functions A\, and A, on Y by setting N (E)=MENE,) and \(E)=NEN ES)
for Fe€X. Then, A,=0 and [|A;]|>0 since A=0 by Corollary 3.3. More-
over, noting that AE)=NM(E)+N(E) for Ec X, we have |]A||=]N|+
|IN||=1. Now define v,=\,/||A,|| for =1, 2. Then we have v,=0, ||v||=1,
and '

(4-1) 7\'=“>"1“”1+”)\'2””z .

We then demonstrate that v, € Fy(u), =1, 2. Since ||u||=<{u, M)+ U, M) =
[[el[ [ 2]l + [l [Nl | =|u]], we have [[N][7<u, M)>=]lull, i.e., <{u,v=|ull,
from which it follows that v, € Fy(u). But, A is an extremal point of
Fy(u), hence (4.1) implies that v,=y,=A. Therefore, we have 0<\(E,)=
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V,(Ey) =Ny | "ME,N ES)=0, a contradiction. This means that )\ can not
take values between 0 and 1, i.e., N is a 0-1 measure. q.e.d.

The above theorem states that if u e (I*)*—{0}, ext F,(u) consists of
only 0-1 measures. Since each of F,(u) in a convex and weakly-star
compact subset of ba, the application of Krein-Milman’s theorem yields
the following characterization of the convex set F,(u) in terms of 0-1
measures.

THEOREM 4.2. If we (I°)*—{0}, then F,(u) contains at least onme 0-1
measure, and Fy(u) is a weakly-star closed convexr hull of 0-1 measures

mn Fy(u).

Next, let us consider the general case. Let wel®, u=ut—u", and
assume that ||u*||>0 and ||u~||>0. Moreover, let

Ef={s: u(s)>0}, E;={s:u(s)<0},

(4.2) |
Et={s:u(s)=0}, E ={s:u(s)<0}.

Clearly, Ej and E; are disjoint. Employing these sets, we have:

LEMMA 4.3. If v*eFyu*) and v~ € Fyu~), then v'(E)=v (E;7)=1
and vH(E )=y (E+)=0.

ProoF. First, o7 (E))=¢ (E;)=1 for ¢*cext F,(u") and ¢ €
ext Fi(w~™). For if ¢*(E)=0, then [|ju*||=<u*, ¢*>=<{u*Xz-, $*>=0 and
we have a contradiction; furthermore, it is impossible to assume ¢~ (F;)=0
by the same reason. This fact also means that ¢*(E*)=¢"(E)=1 and
o (B )=¢"(E*)=0. Now let v+ e F,(u*) and vy~ ¢ Fy(w~). Then by Theorem
4.2, there exist generalized sequences {s:} and {¢;} such that ¢ ¢
co [ext Fy(u™)], 47 € co[ext F,(u™)] and {s;} and {¢;} converge respectively
to v* and v~ in the weak-star topology of ba. Hence we have Xty 93>=

«(E)=1, Xz, ¢5)=¢;(Ey)=1, and consequently, v*(E})= Xz}, v*)=
lim, Xz, v*>=1 and v~ (E;)=1im; ¢;(E;)=1. Thus, the first assertion is
obtained. The last assertion is now evident from the additivity of v*
and the fact that v*(N)=y~(N)=1. q.e.d.

PROPOSITION 4.4. Let wel”® be such that u*+0. If v*e F,(u*) and
v-e Fy(u™), then v* Ay~ =0 and {u*, v )={u", y*)=0.

ProoF. For E €, the application of Lemma 4.3 yields
(v+/\v‘)(E)=iTnf PHTNENH+v (T°NENE;)} (=0).
cE
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But, the right side turns to be 0 if we take T’=FENE;. Thus the first

assertion is obtained. The last assertion follows from Lemma 4.3 with
the aid of the relations

(4.3) (u*, vy =<u*Xp-, v7)=0
and (4.8) with «* and v~ replaced respectively by w~ and v*. q.e.d.

Using the results mentioned above, we obtain a converse of Theorem
3.5.

PrROPOSITION 4.5. Let uwel”—{0}, u=ut—u", vte Fy(u*), and v €
Fy(w™). Let @, B be any non-negative numbers satisfying a+pB=1 and

allut||+Bllu||=||u||, and define \=av*—Ly~. Then \e Fy(u), and in
this case, AT=avt and N =0y".

Proor. It follows from Proposition 4.4, (1.8) and Lemma 1.2 that
ay*t— Ry~ gives the Jordan decomposition of A, i.e., A =ayt and A" =Ly".
Hence, [|[M||=a||v*||+a||lv7||=1. On the other hand, we see from Proposi-
tion 4.4 and the restrictions on @, B that d(u,A)=alut,v*)+
B{uw=, v~ y>=||u||]. Thus, N € Fy(u), and the proof is complete.

Now combining Proposition 4.5, with Theorem 3.5, we give the main
result of this section:

THEOREM 4.6. For uel”—{0}, we have

(4.4) Fow)=U [aFy(u?)+BF(— u)l,

where the union 1is taken over all a, =0 satisfying a+L=1 and
allut||+Bllu~l|=||ul|. Therefore we have:

(1) If llw|I<|lul| then Fy(w)=Fo(u").

(ii) If [lu||<||u|| then Fy(u)=F(—u").

(iii) If [lu*||=llu"||=|lull, then Fy(u)=co[Fy(u")UF(—u7)] and

ext Fy(u)=ext Fy(u)Uext Fo(—u) .

Proor. Theorem 3.5 states that every element A of Fi(u) belongs to
the set ||| Fo(u™)+||IN || Fo(—u~), and so Fy(u) is contained in the right
side of (4.4). The converse inclusion follows from Proposition 4.5. We
now prove (i) through (iii). If |[ju~||<[|lu||, then only &¢=1 and =0 must
be taken; hence F(u) coincides with F(u*). Similarly, if ||u*||<||/u|| then
F(u)=—F,(u)=F,(—u"). However in case of |[u*||=||u"||=]||u|l, we ecan .
take any non-negative numbers «, 8 with a+g8=1. This means that
Fy(w)=co[Fy(u*)UF,(—u")]. To get the last assertion of (iii) we first
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observe that the set of extremal points of the set W=F,(u")UF,(—u")
is exactly the set of those of F,(u*) and F,(—u"), i.e.,

(4.5) ext W=ext Fy(ut)Uext Fi(—u") .

In fact, it is clear that ext Wcext F,(u*)Uext F,(—u~). Conversely,
suppose that ¢ is an extremal point of, say, F,(u*). Assume then that
¢ is written as g=arn+ By for some a, 8>0 with a+8=1 and some
N yve W, First of all, both & and vy ean not belong to F,(—u~). Also
let xe Fy(u®), ve Fy(—u"), and let E¥ be the sets specified as in (4.2);
then (an+pY)(E;)=—B8<0 by Lemma 4.3. This contradicts the fact
that ¢ is 0-1 measure. Consequently, both ¥ and A must belong to F,(u*).
But, in this case A=v=4¢ since ¢ cext F,(u*). Thus, ext F,(u")Cext W.
Similarly, ext Fy(—u~)cext W; and so we have (4.5). We then show
that ext W=ext[co W]. Since both the set W and its weakly-star closed
convex hull are weakly-star compact, the only extremal points in co[W]
are points in W by [7], Lemma v. 8.5, p. 440. From this we see that
ext [co W]cext W. Conversely, let Aeext W. Then (4.5) states that
A belongs to ext Fy(u*) or ext F,(w™); we may assume without loss of
generality that e F(u"). Suppose now that n=axr,+ (1 —a)\, for some
a e (0,1) and some A, A,eco W. Then we must have \, € F(ut). In fact,
if N ¢ Fy(u*), then M=a,p+(1—a,)y, for some a,€[0,1) and g, € Fy(u")
and some v, € Fy(—u~), while N=a,p,+ (1 —a,)y, for some a,€[0, 1], p, €
Fy(u*) and v,e F(—u~). Let E; be the set specified as in (4.2), then
Lemma 4.3 yields that ME;)=—a(l—a,)—(1—a)l—a,;)<0. This con-
tradicts the assumption that A € F(u*). Therefore, N\, € F(w*). Similarly,
we have A, € Fy(ut). But, Meext Fy(u"); hence it follows that A=X,=X\,.
This means that A € ext [co W]. Consequently, combining the above-men-
tioned yields the last assertion of (iii). q.e.d.

§5. The Dixmier decomposition of ba.

In this section we first show that in the space ba, the Yosida-Hewitt
decomposition is equivalent to the Dixmier decomposition since ba is the
third conjugate of the space ¢, of sequences converging to 0. We then
discuss the structure of F,(u) from the point of view of the Yosida-
Hewitt decomposition.

LEMMA 5.1. Let ne€ba and let A=\,+\, be the Yosida-Hewitt de-
composition of n. Then v(\,, F')=0 for every finite subset F' of N.

PrOOF. We employ the same technique as in the proof of Proposi-
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tion 2.2. Let A,=\}—\, be the Jordan decomposition of \,; then \; and
), are non-negative, p.f.a. measures by definition. Now let ke N and
let 6, be the point mass concentrated at k. Then AJAd, =)\, Ad,=0 by
[11], Theorem 1.16. Hence in particular, we have 0=} Ad){k}=
min {\;({k}), 1}, or M ({k})=0; and A\, ({,})=0 in a similar way. Now the
finite additivity of A} and A, implies the assertion. q.e.d.

In the following let I' be the usual space of absolutely convergent
sequences with norm |[|-||,.

PROPOSITION 5.2. Let ne€ba and let N\=\,+\, denote the Yosida-
Hewitt decomposition. (a) Define a sequence f={f(k)} by setting f(k)=
N({k}) for ke N. Then fel', (u, fy={u, N,y for all wel>, and ||\,||=
| flli=22 | f(k)|. Therefore, n,€l* in the semnse of the natural embedding.
(b) <u, Apy=0 for all ucec,.

PROOF. (a) Since 1, is c.a., [IN|[=3 v(, (K] = IN({EDI=]f]l:; and
so fel'. Moreover, {(u, f)=3, ulk)f(k)=<{u, ».>, and so f is identified
in ba with ), in the sense of the natural embedding of I* in ba. (b) Given
neN, let F,={1,2,3,.--,n}. Then for every uec, the application of
Lemma 5.1 yields the estimate [C(u, M= u|Xn_p,, V(Np D=
(sup,=. [u(s))||n,|]| for ne N. Since the extreme right side goes to 0 as
n— o (w€e¢), we have (u, \,>=0. Thus (b) is obtained. q.e.d.

Dixmier’s decomposition theorem [6] states that if X is a Banach
space then the third conjugate X*** is decomposed as the direct sum of
X* and the closed subspace X" consisting of the functionals vanishing
on X. Accordingly, ba is decomposed as the direct sum ba=10'}¢t, ¢t =
{reba: {(u, \)=0 for all uee¢}. Thus combining this with Proposition
5.2, we have:

THEOREM 5.3. In the space ba, the Yosida-Hewitt decomposition is
equivalent to the Dixmier decomposition.

Now in the remainder part of this section we discuss the structure
of Fy(u) from the point of view of Theorem 5.3. First of all, we
consider two extreme cases.

PROPOSITION 5.4. Let uel”—{0}. Then Fiy(u)cCl*iff lim sup,_.. |u(k)|<
llull. Moreover in this case, Fy(u) is the convex closure of a finite
number of c.a. measures of the form o, or —o,.

PROOF. Suppose that a=lim sup |u(k) <||u|l, and let E*={ke N:
|lu(k)|=||ull}. Then E* @ and E* is a finite set. We then write E*=
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ki, +++, ). Then (u, sgn (u(k)d,>=|u(k)|=|lul| and so sgn (u(k)o.,
1=¢=<l, belong to extF,(u) by Theorem 4.6. Now F,(u) has no other
extremal points. For, suppose that N is an extremal point of F(u),
different from sgn (u(k))d,,, 1<i=<!; then it follows from Theorem 4.6
that either A or —\ is a 0-1 measure; and either hel' or AMee¢i. But,
if v el', then A=04, for some k¢ E*, which contradicts the definition of
E*. Thus, » must belong to ¢i. Let e=(||u||—a)/2. Then there is an
n. such that n.=max {k;: 1<i<!} and n=n, implies |[u(n)|<a+e. Since
A is now p.f.a., one may find an Ee€X such that ECcN—{1,2, ---, n}
and [M(E)|=v(\, E)=1. Hence writing F, for the set {1, 2, ---, n,}, we

see with the aid of Lemma 3.1 that |u||l={u|Xx_p, 2O, )
(@+e)v(v, N—F,)<a+e<||u||. This contradiction shows that F,(u) has
no other extremal points than sgn (u(k,))0.,, L=7=l, and consequently, F,(u)
is the convex closure of these countably additive measure. Conversely,
assume that F(u)cC!l' and lim sup |u(k)|=||u||. Then, there exists a sub-
sequence {k;} such that lim |u(k;)|=||u||; one may assume without loss of
generality that w(k;)=0 and lim u(k;)=|u||]. Let E={k;: 7=1} and let
S ={E—F: F=g or card (F))<e}. Then there exists a nonprincipal
ultrafilter .4 which contains .9~ as its subfamily. Let A be the 0-1
measure associated with this ultrafilter .&. Then we infer with the aid
of Propositions 2.2 and 5.2 that nec¢i and »(\, E°UF)=0 for all finite
set F in N. Now for a given n € N, define a simple function %™ in [* by
setting u"=wu(k,)X;, and E,={k;: j =n}; note that AM(E,)=1 for n=1. Then
for every m, ||u"|<||u| and for a given >0 the set {k € E: |u*(k) —u(k)|>¢}
contains at most a finite number of k;’s. Hence noting that v(A, N—E)=0
and using Lemma 5.1, we infer that lim v(\, {k: |u"(k) —u(k)| >¢€})=0 for
every €¢>0. So, u" converges to # in A-measure and the dominated con-
vergence theorem yields (u, A)=Ilim {u*, \)=lim u(k,)\(&,)=]|u||. This
means that Ae Fy(u) and contradicts the assumption that F(w)cl'.
Therefore, we conclude that lim sup |u(k)| <||u||. q.e.d.

PROPOSITION 5.5. Let uel”—{0}. Then,F, (w)Cecq iff |u(k)|<||u|l for
all ke N.

PROOF. Suppose first that |u(k)|<||u|| for all ke N. Let A€ Fy(u)
and let A=X\,+, be the Yosida-Hewitt decomposition. Then by Proposi-
tion 3.4, we have the relation

|, 1w@1on, )=l = idioe, ds) ,

and so the countable additivity of A, yields
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0={_q1ull—u@hvon. doy=3 (ul—lu@Dir.e) -

But, ||u||—|u(k)|>0 for every k; hence \,({k})=0 for k€ N and this fact
implies that A»,=0, i.e., A is p.f.a. Thus, M e¢i by Proposition 5.2. To
get the converse, assume that |u(k)|=||lu|| for some ke N. Then we
have (|ul|, 6,>=|u(k)|=||u|| for the point mass d,, i.e., sgn (u(k)) € Fo(u).
Since sgn (u(k))d, is c.a., this contradicts the assumption that every
element of Fy(u) is p.f.a. q.e.d.

REMARK. If |u(-)| attains ||u|| at infinitely many points, say k., i=1,
then F,(u) contains infinitely many c.a. 0-1 (or 0-(—1)) measures since
for each 4 either d,, or —d,, is in ext Fy(u). In this case Fy(u) must also
have at least one p.f.a. 0-1 (or 0-(—1)) measure. In fact, suppose that
u(k,)=||u|| for =1 (we choose a subsequence of {k} if necessary) and
let E={k;:1=1}. Since the family <& ={E—F": F is finite} forms a base
for a filter on N, we may take a nonprincipal ultrafilter which is finer
than the filter generated by <. Then the p.f.a. 0-1 measure associated
with this ultrafilter is in Fy(u). If w(k;)= —||u|| for :=1, we get a p.f.a.
0-(—1) measure in a similar way.

We now consider the general case. The convex set Fy(u) is in
general a weakly-star .closed convex hull of a disjoint union of a subset
of I' and that of ¢; (cf. Theorem 5.3).

THEOREM 5.6. Let ucl”—{0}. Then Fy(u) 18 written as Fy(u)=
€o°"™ [CU P), where C is the set of all c.a. 0-1 or 0-(—1) measures in
Fy(u), P the set of all p.f.a. 0-1 or 0-(—1) measures in Fy(u), and €0’
means the wealkly-star closed convex hull of CU P.

ProOF. Theorem 4.6 states that either ext F(u)=ext F,(u*) or
ext Fy(u)=ext Fy(—u~) or extFy(u)=ext F(u*)Uext F(—u"). Now
Theorem 4.1 says that ext F,(u*) consists of 0-1 measures, while
ext F,(—u~) consists of 0-(—1) measures. Thus ext Fy(u)cCUPCFy(u),
so that F,(u)=¢o° [CU P] by Theorem 4.2. q.e.d.

§6. Geometrical interpretations.

In this section we give some geometrical interpretations of our results
established so far in connection with the structures of the unit balls in
1 and ba. Moreover, the characterizations of extremal points and smooth
points of the unit ball in I* will be given as applications of our results.

We first divide the surface S={u €l~: ||lu||=1} of the unit ball in I~
into the following five zones:
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A, ={uel”:||lul|=1,u=0},
T.={uel*:u=u*—u", 0<||u"||<[lu*||=1},
T={uel*:u=u*—u", [[u*||=|lu"||=1},

T ={wel~: u=ut—u, 0<||ut||<|[u||=1},
A_={uel”: ||lu)|=1, u<0}.

We wish to consider the partition of the surface S*={\eba: |[\||=1}
of the unit ball in da, which is associated through the duality mapping
F, with the above-mentioned heuristic partition of S. The S* may be
divided into three zones which are defined as;

A*=batNS*={Ne€ba: M ebat, ||\|=1},
T¥={n€ba: ) satisfies condition (C)},
A*=—A*={neba: —\ecba™, ||]N|=1},

where ) is said to satisfy condition (C), if it is written in the form
r=ay,—By, for some v, v, in AY with v, A»,=0 and some «, 8€(0,1)
with @+ B8=1; note that ay,=\*, Bv,=A" and ||A||=1 by (1.3) and Lemma
1.2. Observe that T consists of proper convex combinations of A% and
those of A*. Also, we have S¥*=A*UTrUA*. In fact, let e S* and
let A=A*—X" be the Jordan decomposition of A. If any one of A+ and
A~ is a zero measure, we have either ne A% or e A*. If [[A*|[{A7]|>0,
then MtAXM"=0 and |AH|+|Ml=]|n|=1. So, if we set v,=A*/||]\*|| and
v,=A"/|A7|], then A=|]A|[v,—[[A7][v, € T

We now demonstrate that this partition is the desired one for S*.
First, Theorem 4.6 states that F, maps A,U T, into A}, and A_UT.
into A*; and secondly, F, maps T, into TF by Proposition 4.4 and
Theorem 4.6. That F,(A.UT,)=A* and F,(A_UT_)=A* hold follows
from the facts F,(Xy)=A* and F(—Xy=A*. Each of F,(w), ucS, forms
a “flat” part of the unit surface S* in the sense that it forms a part
of S* and is a weakly-star closed convex hull of 0-1 (or 0-(—1)) measures.
(In this sense each of F,(u) is called a face of S, see Phelps [10].) The
above facts, together with Theorem 4.2, state that A} and A* are flat
on S*. Therefore, extremal points of S* are all on the “edges” of the
closed convex sets A* and A*. This means that S* shapes a “cylinder”
in the space ba, and T turns to be a rich and complicated zone, in
contrast to the “thin” zone T,.

According to James’ theorem ([5], p. 12, Theorem 3), the range of
F,, R(F,)=U{F,(u): we S}, is a proper subset of S*. Hence, F, does not
map 7T, onto T*. On the other hand, Bishop-Phelps’ theorem [3] states
that R(F,) is norm-dense in the surface S*. (In fact, the subreflexivity
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of [” is equivalent to the norm-denseness of F,(S) in S*.) Moreover,
I'NS* lies in R(F,) since if A € I'N S* then 1=||\||=max {|{u, M)|: ||u||=1}=
(s M) =||%,|| for some u,€S by the Hahn-Banach theorem. Therefore,
we can say that the surfaces S* is (norm-) densely patched by the faces
Fy(u), wel>, in such a way that S*—R(F,)CT¢¥Nes. Although F(T)S T,
we can show that F(T,) covers Ty essentially:

PROPOSITION 6.1. Let v, v, be any 0-1 measures, and let a, 3>0
and a+pB=1. If v,Av,=0, then \=av,—pBy,c F(T,).

Proor. First we note that ne T¥. If v, y,el* then y,=4§; and v,=¢,
for same j, k€ N with j#k. Hence, if u is a simple function u=%X; —X ),
then we have we T, and (u, A\)=1, i.e.,, Ne F(T,). If v,el* and y,cc,
then y,=4; for some j€ N and y,(E)=1 for some F ¢ Y with j¢ E. Hence
in this case we take a simple function w=2X,;—X,; then ue T, and
{u, vy=1, which means that A\ e F(T,). Similarly we also have \ € F(T,)
if v,ec and y,el'. Suppose now that v, v,ccl. Since v, v, € A%, there
exist wu;,, u,€ A, such that vy, e Fy(u;), 1=1,2. We may assume that
lim sup, ... ui(k)=1 for +=1, 2, for otherwise, v, must belong to I' by
Proposition 5.4. Let 0<e<min {a, 8} and set E;={se N: |ui(s)—1|<e} for
1=1, 2. Then we see from Proposition 2.5 that y,(#;)=1. Noting that
(av,A\By,)(E})=0, one can find a TelS such that TcE, and av,(T)+
By, (Ei—T)<e. But, v, (T)=v,(E;—T)=0 since y, and v, are 0-1 measures.
Thus, »,(E—T)=1 and v,(E;—T)=0. We then set E,=E—T and E,=
(Bi—T)YNE;. Then E.NE,=2 and v(E)=1 for i=1,2. So, if we set
u;=Xgu; for ¢=1,2 and u=u,—u,, then u*=wu,, u =u, ueT, and y, ¢
Fy(u,) for i=1, 2. Moreover, \ € Fy(u)C Fy(T,). q.e.d.

Now in the remainder of this section we discuss extremal points and
smooth points of the unit sphere S. First, we characterize extremal

points of S.

PROPOSITION 6.2. An element wel” is im ext Siff lu(s)|=1 for all
seN.

PROOF. Suppose that w€l” and |u(s))=1 for s€N. Assume then
that there exist u,, u,€S and a€(0,1) such that u=u,+(1—a)u,. Let
u(s)=1. Then we have wu,(s)=u,8)=1, for if u,(8)<<1 then we get a
contradiction that 1=wu(s)=au,(8)+(1—a)u,(s)<a+1—a=1. Similarly, if
u(8)=—1, it is shown that u(s)=wu,(8)=u,(s)=—1. Thus, we have u=
u,=u, and this means that w eext S. Conversely, suppose that « c ext S.
Assume that [u(k)| <1 for some k€ N and define u,, u,, and @ by u,(s)=1
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if s=k, w,(s)=u(s) if s#k; u,(s)=—1 if s=k, and u,(s)=u(s) if s#k;
and a=(u(k)+1)/2. Then wu,*u, u, u,€S, @®c(0,1), and u=au,+
(l—a)u,. This contradicts the assumption that w cext S. qg.e.d.

Next, we prepare the following lemma to characterize smooth points
of S.

LEMMA 6.3. Let wel*—{0}. If Fyu)Nesy+Q, then Fy(u) contains
at least one p.f.a. 0-1 (or 0-(—1)) measure; and in this case, F,(u) is an
infinite set.

PrOOF. The first assertion is evident from Theorem 5.6. To get
the last assertion we may assume without loss of generality that |ju||=1
and Fy(w) contains a p.f.a. 0-1 measure ¢. Then g€ Fy(u*) and [ju*||=1
by Theorem 4.6. Let .# ={FE e I: ¢(E)=1} be the non-principal ultrafilter
associated with ¢ and let E,={s:1—-1/n=<u*(s)<1} for n=1. Then,
E,c.# for all n. For otherwise, ¢(#, =0 and so we get a contradiction
that

1= L u+(s)¢(ds)§SN_E” (1~—%->¢(ds)=1.——-—3?1,-<1 :

Hence, each E, is an infinite set, and a sequence {s,} of positive integers
can be chosen so that s,€ E, and s,,,>s, for n=1. Let E,={s,: n=1},
F.=E,NE,={s,: k=n} and define

Fi={s,: k=n, k is odd},
F:={s,:k=n, k is even}.

Clearly, FuNF;=© and F,=F,UF:for n=1. Now both of the sequences
{F.} and {F?} are monotone decreasing sequences of nonempty sets, and
so they form bases of filters on N. Let .#, and .&#, be any ultrafilters
which are finer than the filters generated by {F.} and {F}}, respectively.
Then #,+#. %, and &, .#, are non-principal. Hence, to the &, and &=,
there correspond p.f.a. 0-1 measures ¢, and ¢, respectively. We then
have ¢,, ¢,€ Fy(u™). In fact, since F:CFE, for n=1,

12| wen@s={, wendz], (1-2)ad=1-2

1
for all n=1, which means that {(u*, ¢,>=1 and ¢, € F,(u*). Similarly,
¢, € Fo(u™). Consequently, Theorem 4.6 yields that ¢, ¢,€ Fy(u). Now
the last assertion follows from the convexity of F,(u). q.e.d.
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THEOREM 6.4. Let wueS. Fy(u) 18 a singleton set iff there exists a
k,€ N such that \u(k,)|=1, |u(s)|<1 for s#k, and lim sup,_. |u(s)|<1.

PrRoOOF. Assume that Fi(u) is a singleton set {¢}. Since ¢ is an
extremal point of F\(u), Theorem 4.6 implies that ¢ is a 0-1 (or 0-(—1))
measure. We may suppose that ¢ is a 0-1 measure. Now from Lemma
6.3 we see that ¢ can not be p.f.a. and hence ¢ is a c.a. 0-1 measure.
Thus, Proposition 5.4 yields that a unique %k, can be found such that
=0, |u(8)|<1l for s#k, and limsup,.., |u(s)|<1l. The converse is evident
from Propositions 5.4 and 5.5. q.e.d.

The above theorem can be rewritten in the following form.

COROLLARY 6.5. A point w on S is a smooth point, i.e., uesmS
iff lim sup, .. |u(8)|<1 and |u(-)| attains 1 at only ome point k,c N.

COROLLARY 6.6. sm S s open-dense in S.

PROOF. First we show that sm S is dense in S. Let #e€S and ¢>0.
Let E.={k: |u(k)|>1—c¢}; then E,#@. Fix any k.€ E, and define u, by

sgn u(k) k=k. ,
u.(5)={(1—¢) sgnu(k) ke kB —{k},
u(k) ke H. .

Then lim sup,_.. |4.(k)|<1—e<1 and |u.(-)| attains 1 only at k.. u.esm S
by Corollary 6.5. Also, it is clear from the definition of %, that
[|lu.—u||<e. This means that sm S is norm-dense in S. Next, we show
that sm S is open in S. Let u,ecsm S. Then there exists a k, such that
|uo(eo)| =1, |ue(k)| <1 for k+k, and a=lim sup |u,(k)|<1l. So, there is a Fk,
such that |u,(k)|<a+(1—a)/2=01+a)/2<1 for k=k,. Let

e=%min (L= ()| (o oy 1<To<]ey), (L—2)/2}(>0) ,

and let |lu—u)l<e. If 1<k<k, and k+#k, then |u(k)|<|u,(k)|+e=
L+ |u(k))/2<1; and if k=k,, then |u(k)|<(l+a)/2+(1—a)/di=B+a)/d4<1
and lim sup |[u(k)|<B+a)/4<1. If in addition w € S, then |u(k,)]=1. This
means that B.(u,) NScsm S, where B.(u,) denotes the e-spherical neighbor-
hood of u,. q.e.d.

PROPOSITION 6.7. sm S consists of a countable number of conmected
components C¥={uesm S: +u(k)=1}, k=1.
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PrOOF. First we see from Corollary 6.5 that sm S=U5., (Ci UCy).
Each of C; and C;, k=1, is convex and open by Corollary 6.6. Also,
these convex open sets are pairwise disjoint. q.e.d.

§7. Topological properties of Fi.

In this section we discuss topological properties of the duality
mapping F,. We start with the following

LEMMA 7.1. Let )\ and v be two distinct 0-1 measures. Then AAy=0
and |[Nxy||=2.

PROOF. Let % and .9 be the ultrafilters on N associated through
Proposition 2.1 with » and v, respectively. Since & .2¢; there exists
an E,€¢ & —. . Hence Eic. 2% — F; so ME,)=v(E)=1. Since MT)=
MTNE) and y(T)=vw(TNE;) for every TeX, we infer that MT)+
VWE—-T)=MTNE)+v(ENTNE;) for TCE. Hence if we take T'=FEN E;,
then M(T)+v(E—T)=0. This means that AAy=0. The last assertion
follows from the estimate 2=\(E,)+v(E)=|(MWEv)(E)|+|(ME0)(ED|I=
Wy, N) =My <]+ Iv]]=2. q.e.d.

LEMMA 7.2. Let {\,} be a sequence of 0-1 (resp. 0-(—1)) measures,
and let N be a weak-star cluster point of the sequence {N,:nl}. Then
N 18 also a 0-1 (resp. 0-(—1)) measure.

PROOF. For every Ee X, ¢>0 and p € N, there exists an » such that
n=p and |M.(E)—ME) <e. Hence, if 0<A(E)<1 and e=min {M(&), 1—
MEN}(>0), then A (E)—ME)|<e<l. But, A, (&) is either 1 or 0, we get
a contradiction. Thus, M(E) is either 1 or 0. q.e.d.

Lemma 7.2 states that a weak-star cluster point of a net consisting
of extremal points of S* is always an extremal point of S*. Now as
mentioned in the introduction, F, is weakly-star demi-closed in the sense
that if v,€8, |[v,—?||—0, N, € F,(v,) and if A\ is a weak-star cluster
point of the net {\,: nfc}, then v& S and : € F,(v). The following result
gives another aspect of the weak-star demi-closedness of Fi.

PROPOSITION 7.8. Let {v,} be a sequence contained in S such that
lv,—2||—0. Let \,ecext Fyv,), n=1, and let \ be any weak-star cluster
point of the sequence {\,: nloo}. Then Ncext Fy(v). If the sequence {\,}
contains infinitely many 0-1 (resp. 0-(—1)) measures, then ext Fy(v)
contains at least one 0-1 (resp. 0-(—1)) measure. If the {\,} comsists
of distinct elements, then it constains no strongly convergent subsequences.
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PROOF. The first two assertions follow from the weak-star demi-
closedness of F, and Lemma 7.2; and the last assertion is evident from
Lemma 7.1. q.e.d.

It is well-known ([5], p. 22) that any single-valued selection of F,
is norm to weak-star continuous from S into S* at every smooth point
of S. But we have the following stronger result which is a direct
consequence of Theorem 6.4 and Proposition 6.7.

PROPOSITION 7.4. Let Ci and Ci, k=1, be the connected components
of sm S mentioned as in Proposition 6.7. Then, F, is single-valued and
18 constant on each of Ci and C; in such a way that Fy(u)=1{0,} for
weCl and Fy(u)={—4d,} for weCy;, k=1.. Therefore, F, restricted on
sm S is norm-to-norm continuous from S to S*.

Corollary 6.5 states that F, is multi-valued on S—sm S. We then
show with the aid of Corollary 6.6 that the values of F, on the set
S—sm S can be viewed as boundary values of the restriction of F, on
the open set sm S.

THEOREM 7.5. Let veS—smS. (1) If neext F,(w)N1, then there
exisls a sequence {v,} in sm S such that ||v,—v||—0 and Fy(v,)={\}.
(2) If necext F(v)Nei, then there exists a sequemce {v.} in sm S such
that for every €>0, there is a subsequence {v,,} of {v,} with the following
properties:

@) ||ve,n—vl|=e for all n; and (b) ) is a weak-star cluster point of
the sequence {\.,:nlo}, where A, ,=F,(v,.) for n=1.

PROOF. (1): Let A eext F(v)NI*. Then X\ is a signed point mass, so
that we may assume without loss of generality that A=4d,, for some
8,€ N. Note that in this case, v(s)=<(v,\)=1. Let {¢,} be any null
sequence contained in (0, 1/2], and let {v,} be a sequence in S such
V.(80)=1, |v,(8)|=1—¢, for s+s, and |v,(s)—v(8)|<e¢, for all s. (We choose
for instance {v,} defined by setting v,(s)=v(s)—e, sgn v(s) for s#s, and
V.(8)=1.) Then, lim sup,_.., [v,.(8)|<1—¢,, v,€sm S and Fy(v,)=d,, for all
n. Therefore, |[v,—v||—0 as n— « and (A} ={0.}=Fy(v,) for n=1.

(2): Let veext Fy(w)Nei. We shall give the proof of Assertion (2)
under the assumption that A =0, since the proof for the negative case
is similar. Since (v, A)=1 and A is a p.f.a. 0-1 measure, each of the
sets E,=v'(U.(1)), €>0, has A-measure 1 by Proposition 2.5, where
U.(1) denotes the e-spherical neighborhoood in R of 1. Take any null
sequence {¢,} contained in (0,1/2] and put E’l:].’f?'el and E'p=E‘p—
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1,2, ---, min E',,_l} for p=2. Since E,’s are infinite sets, {Ep} forms a
strlctly monotone decreasing sequence {E,,} in 2 such that N(Ep) 1 for
»=1 and npglE @. We then define a family {H,} of pairwise disjoint
elements of ¥ by setting H, E Eﬂ,+1 for p=1. Note that H,+ O,
MH,)=0, and E' Uz, H; for p=1. Let {s,} be the increasing sequence
of natural numbers such that E,={s,:n=1}; and for s, with s,€H,,
choose an element v,e€l” so that v,(s,)=1, |v.(8)|]<1l—e¢, for s+s, and
|lv.(8)—v(8)|<e, for all s. (For instance, we can take v, satisfying
V.(8,)=1 and v,(s)=v(s) —¢, sgn v(s) for s+s,.) Then v, esm S, Fyv,)=9,,

for n=1, and |jv,—v||<Ze¢, for s.€ E,and p=1. We now demonstrate that
this sequence {v,} is the desired sequence. Let ¢>0 and choose an ¢, such
that ¢,<e. Then, {v,,:8,¢€ E’p} is viewed as a subsequence of {v,} by enu-
merating the suffices of the elements in order; we denote this subsequence
by {v..}. First, it is clear that ||v.,—v|/<e for all k=1. Next, for k=1,
let A, denote the element of the singleton set F,(v..); then A becomes a
weak-star cluster point of the net {\.,:kT~}. To show this, let .# be the
ultrafilter on N associated with ), # €1, and let .52 be the non-principal
ultrafilter on the compact set w(IN) specified as in Proposition 2.4; hence the
value @={u, \) is given as the limit of .&%. Now recalling the proof of
Proposition 2.4, we set U,={¢eR: |t—a|<1/i}, S;=U,Nu(N), and E;=
w™'(8,) for i=p. Then E,NE,e.Z for i=p and each E,NE, is an infinite
set, so that there is a sequence {§,} such that §,-eE,.ﬂl77i, §,>8§,_, for
i=p+1, and u(8)—>a as i—o. Set E,=E,NnE—{1,2,---,85—1} for
1=p (hence §;,=min E;, and ME,)=1 for :=p) and define a sequence {u‘}
of simple functions on N by uizu(si)XEi (t=v). Moreover, put M=
{s € N: |u*(s)—u(s)|>6} for 6>0 and i=p. Then M) =0 and |u'(s) —u(s)|<
2/t for se E;, by the same reason as in the proof of Proposition 2.4.
Therefore, if 2/1<d then v(\, E)=v(\, M;NF)+v(\, M;N E;)=0. That is,
u* converges to % in A-measure and <{u, A)=lim u(8,)=1im {u, d;,). Since
% was arbitrary in ! and each §; belongs to the set E,, it follows that
A is a weak-star cluster point of the net {\..,: nlc}. q.e.d.

REMARK. Assertion (2) of the above theorem states that v» is only
a strong cluster point of the net {v,:nl~}. However, it is desirable to
choose a sequence {v,} in sm S so that » is the limit of {v,}. Although
the authors do not know at this moment whether or not this is possible
in general, they are able to give a necessary and sufficient condition for
given v el”and A eext F,(w)Ne+ to admit such a sequence {v,}.

PROPOSITION 7.6. Let veS—sm S, neext F,(w)Nei, and let A=0.
- Then the following are equivalent:
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(1) There exists a sequence {v,} im sm S such that ||v,—v||—0 as
n—oc and N is a weak-star cluster point of the sequemce {\,:n]co},
where N,=F,(v,) and N\, =0 for n=1.

(2) There exists a sequence {s8,} in N such that v(s,)—1 as n—
and the set {s,: n=1} has \-measure 1.

PrROOF. (2)—(1): Let E={s,: n=1}; then M(E)=1. So, if we replace
E. (p=1) in the proof of Assertion (2) of Theorem 7.5 by ENE. (p=1),
then each of the sets H, (p=1) becomes a finite set, and consequently,
we can conclude that [|v,—v||—0 as n— o and A is then a weak-star
cluster point of the net {\,: nf}.

(1)=(2): Given =, let s, be a point in N such that v,(s,)=1. Set
E,={s,: n=1}. Then A\, (=F,(v,) is regarded as point mass J, . First,
we have that v(s,) > 1 as n— oo since |v(s,) —1|=|v(8,) —v.(s,)|=||lv—w,|| — 0.
Next we show that M(E,)=1. Let .&# be the non-principal ultrafilter on
N associated with A\, and E any element of &#. Then {(X; A)=MNE)=1;
and for every ¢€ (0, 1/2) and n, there exists an m such that m>=n and
KXz, 8,0 —1|=|{Xp, Ny—AD|<e<1/2. This means that s, e Xz'(U.Q)NE,C
ENnE,+@. Since E was arbitrary and &% is an ultrafilter on N, it
ENE, i.e., follows that E,€.# and \&,)=1. q.e.d.

Particular examples will be useful to illustrate the above result.
First, let v=Xy and {v,} a sequence in S such that [[v,—v||—0 and
Fyv,)=a, for n=1 (e.g., we choose {v,} defined as v,(k)=1 for k=n and
v (k)=1—1/n for k+mn). Observe that v»(k) »1 as k—  and Condition
(2) of Theorem 7.6 is satisfied. Then ext Fy(v) is the set of all 0-1
measures on 3 and ext Fy(v)Ne¢i coinsides with the set of all weak-star
cluster point of the sequence {f,:nl}. Second, if veS and {v(k)} is a
strictly monotone increasing, non-negative sequence convering to 1 (hence
Theorem 7.6 (2) holds), then a sequence {v,} can be found in sm S so that
ext Fiy(v) (Ce+ by Proposition 5.5) is the set of all weak-star cluster
points of the sequence {5,: nfo}, where \,=F,(v,), n=1. In fact, let
H,, p=1, be specified as in the proof of Assertion (2) of Theorem 7.5.
Then, H,’s are all finite sets and N——E‘,,(=N—U,-Z,, H,) is also a finite
set. Hence, if {v,} is determined just in the same way as in the proof
of Theorem 7.5 (2), then |jv,—v||—0 and every element of ext F,(v) is
a weak-star cluster point of the sequence {\,: nfco}.
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