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Ichiro HADA, Kazuo HASHIMOTO
and Shinnosuke OHARU

Waseda University

This paper is concerned with a measure theoretic characterization of
the duality mapping of the space $l^{\infty}$ of bounded sequences of real numbers.
The duality mapping of a Banach space $X$ is a possibly multi-valued
mapping $F$ from $X$ into its dual space $X^{*}$ which assigns to each $u\in X$

a subset of $X^{*}$ defined by

$F(u)=\{f\in X^{*}: \langle u, f\rangle=||u||^{2}=||f||^{2}\}$ ,

where $\langle u, f\rangle$ stands for the value of $f\in X^{*}$ at the point $u\in X$. The
mapping $F$ is well-defined on all of $X$ by means of the Hahn-Banach
theorem, and it is well-known ([1], [4], [9]) that $F(u)$ is weakly-star
compact and convex for each $u\in X$; and $F$ is weakly-star demi-closed in
the sense that if $u_{n}$ converges strongly to $u$ in $X,$ $f.eF(u.)$ , and $f$ is
a weak-star cluster point of the sequence $\{f_{n}:n\uparrow\infty\}$ , then $f\in F(u)$ . The
space $l^{\infty}$ is one of the typical non-reflexive classical Banach spaces in the
sense that it is a Banach lattice with respect to the usual ordering and
every separable Banach space can be embedded isometrically and isomor-
phically in $l^{\infty}$ . Accordingly, the duality mapping of $l^{\infty}$ is a prototype
of the duality mappings of general non-reflexive Banach spaces.

Here we investigate the structure and topological properties of the
duality mapping $F$ of $l^{\infty}$ . This problem was arised both in the study
of generalized derivatives of strongly absolutely continuous functions
which take values in non-reflexive Banach spaces and in the investigation
of nonlinear dissipative operators. The results obtained in this paper
will suggest not only typical properties possessed by the duality mapping
of a general nonreflexive Banach space but also counterexamples concern-
ing generalized derivatives and nonlinear dissipative operators.

Our work is mainly devoted to two problems: The first aim is to
investigate the structure of the values $F(u)$ , $u\in l^{\infty}$ ; and the second
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purpose is to give some topological properties of the multi-valued
mapping $F:l^{\infty}\rightarrow(l^{\infty})^{*}$ . Since the dual space $(l^{\infty})^{*}$ is identified with the
space $ba$ of bounded, finitely additive measures on the power set $\Sigma$ of
the set $N$ of all positive integers, we shall fully apply the theory of
integration with respect to finitely additive measures and characterize
$F(u)$ in terms of the finitely additive measure theory.

In this paper we shall employ three means to investigate the struc-
ture of the mapping $F$. The first means is the Jordan decomposition
of measures in $ba$ . In fact, a measure $\lambda$ in $F(u)$ is represented as $\lambda=$

$||\lambda^{+}||\nu^{+}-||\lambda^{-}||\nu^{-}$ , where $\lambda=\lambda^{+}-\lambda^{-}$ is the Jordan decomposition of $\lambda$ , and
$\nu^{+},$ $\nu^{-}$ are positive measures such that if $u^{+}=u0$ and $u^{-}=(-u)O$

then $||u^{+}||\nu^{+}\in F(u^{+})$ and $||u^{-}||\nu^{-}eF(u^{-})$ , respectively. Hence our problem
is reduced to the considerations of the values of $F$ for positive elements
$u\geqq 0$ . The second means is the Yosida-Hewitt decomposition. That is,
we shall employ the fact that every $\lambda$ in $ba$ is decomposed as the sum
of a countably additive measure $\lambda_{\iota}$ and a purely finitely additive measure
$\lambda_{p}$ . The Yosida-Hewitt decomposition is equivalent to the Dixmier de-
composition, since $ba$ is the third conjugate of the space $c_{0}$ of sequences
converging to $0$ , the $\lambda_{0}$ is regarded as an element of the space $l^{1}$ of
absolutely convergent sequences, and the $\lambda_{p}$ is regarded as an annihila-
tor of the closed subspace $c_{0}$ of $l^{\infty}$ . Now by means of this decomposition,
detailed properties of measures in $F(u)$ can be discussed along with
various types of bounded sequences $u$ in $l^{\infty}$ . The third means is the use of
0-1 measures. A 0-1 measure is a measure which assumes only the values
$0$ and 1, and such a measure is either countably additive or purely finitely
additive. Now extremal points of the weakly-star compact and convex
set $F(u)$ are characterized as 0-1 measures and the set of all extremal
points of $F(u)$ is described in terms of those of $F(u^{+})$ and $F(u^{-})$ . Ac-
cordingly, it turns out that the structure of $F(u)$ is determined through
Krein-Milman’s theorem by the 0-1 measures belonging to the $F(u)$ .

Applying the results concerning the above-mentioned facts, precise
structures of the unit balls in $l^{\infty}$ and $ba$ are obtained. We shall divide
the surface $S$ of the unit ball in $l^{\infty}$ into five zones and find a partition
of the surface $S^{*}$ of the unit ball in $ba$ which is associated through the
mapping $F$ with this partition of $S$ . In fact, it will be shown that $S^{*}$

shapes a “cylinder“ in the space $ba$ and is divided into three zones.
Besides, the range of $F$ will be considered with the aid of Bishop-Phelps’
theorem and James’ theorem. Moreover, the application of our results
enables us to characterize extremal points and smooth points of $S$; and
it is interesting to note that the set of smooth points of $S$, sm $S$, is
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open-dense in $S$ . These characterizations will play important roles to
discuss the topological properties of $F$.

Finally, topological properties of the mapping $F$ will be investigated
by restricting it on the surface $S$ of the unit ball in $l^{\infty}$ . After some
aspects of the weak-star demi-closedness of $F$ are given, it will be shown
that $F$ is single-valued and norm continuous on the open-dense subset
sm $S$ of S. $F$ is genuinely multi-valued on $S-smS$, the boundary of
$smS$. Now the value $F(v)$ of $F$ at each boundary point $v\in S-smS$

can be viewed as a “boundary value” of the single-valued mapping $F$

restricted on sm $S$ , since for every extremal point $\lambda$ of $F(v)$ there exists
a sequence $\{v_{n}\}$ in $smS$ such that $v$ is a strong cluster point of the
sequence $\{v_{n}:n\uparrow\infty\}$ and $\lambda$ is a weak-star cluster point of the sequence
$\{F(v_{n}):n\uparrow\infty\}$ in $S^{*}$ .

Section 1 contains some basic facts on finitely addit“ve measures
belonging to $ba$ . In this section we shall briefly review Yosida-Hewitt’s
theory. In Section 2 we discuss 0-1 measures in connection with the
duality mapping of $l^{\infty}$ . Section 3 concerns a general representation of
measures in $F(u)$ in terms of the Jordan decomposition. Section 4 treats
the characterization of $F(u)$ in terms of its extremal points. In this
section 0-1 measures will play an essential role. In Section 5 the struc-
ture of $F(u)$ will be discussed from the point of view of the Yosida-
Hewitt decomposition. In this section we shall give a complete relation-
ship between Yosida-Hewitt’s decomposition theorem and Dixmier’s
decomposition theorem. Section 6 concerns geometrical interpretations
of our results obtained in the previous sections. Moreover, in this
section, extremal points and smooth points of the unit sphere in $l^{\infty}$ will
be discussed. Finally, Section 7 treats topological properties of the
duality mapping $F$.

\S 1. Basic facts on the dual space $(l^{\infty})^{*}$ .
Let $N$ be the set of all positive integers, $\Sigma$ the power set of $N$, and

let $\mu(E)$ be the cardinality of $ E\in\Sigma$ . Then $l^{\infty}$ is regarded as the
Lebesgue space $L^{\infty}(N, \Sigma, \mu)$ and elements of $l^{\infty}$ are understood to be real-
valued function on $N$; the s-th element of the sequence $u\in l^{\infty}$ is denoted
by $u(s)$ . The norm of $l^{\infty}$ is denoted by $||\cdot||$ . By $(l^{\infty})^{+}$ we mean the
positive cone {$u\in l^{\infty}:u(s)\geqq 0$ for all $s\in N$ }. Every element $u$ in $l^{\infty}$ can
be decomposed as $u=u^{+}-u^{-}$ , where $u^{+}=u0$ and $u^{-}=(-u)O$ . In this
paper $S$ and $S^{*}$ denote the surfaces of the closed unit balls of $l^{\infty}$ and
$(l^{\infty})^{*}$ , respectively. By the definition of duality mapping $F,$ $F(O)$ is
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simply a singleton set consisting of the null functional $0$ on $l^{\infty}$ and
nothing interesting happens. Accordingly, in what follows, we shall
treat only the case $u\neq 0$ and restrict ourselves to the investigation of
the normalized duality mapping $F_{0}$ defined by

(1.1) $F_{0}(u)=\{x\in(l^{\infty})^{*}:\langle u, \lambda\rangle=||u||, ||\lambda||=1\}$ , $u\neq 0$

instead of $F$. For a given $K\subset l^{\infty},$ $F_{0}(K)$ denotes the union $\cup\{F_{0}(u):u\in K\}$ .
As is well-known, $(l^{\infty})^{*}$ is isometrically isomorphic to the space $ ba\equiv$

$ba(N, \Sigma, \mu)$ of bounded, finitely additive measures on $\Sigma$ ; hence the natural
pairing between $l^{\infty}$ and $ba$ is represented as

(1.2) $\langle u, \lambda\rangle=\int_{N}u(\epsilon)\lambda(ds)$ , $u\in l^{\infty}$ , $\lambda\in ba$ .

For the terminology and fundamental facts on the integration of $uel^{\infty}$

with respect to $\lambda\in ba$ , we refer to the treatise of Dunford-Schwartz [7],
Chapters 3 and 4.

Let $\lambda\in ba$ . We write $\lambda\geqq 0$ when $\lambda(E)\geqq 0forE\in\Sigma$ ; and for $\lambda$, veba,
we write $\lambda\geqq v$ provided $\lambda-v\geqq 0$ . $ba$ forms a vector lattice with respect
to this ordering. In fact, for every pair $\lambda,$ $v$ in $ba$ define the meet $\lambda\wedge v$

and the join $Ny$ by

(NA $\nu$)$(E)=\inf\{\lambda(T)+\nu(E-T):T\subset E\}$ , $ Ee\Sigma$

and $\lambda\nu=-$ ( $(-\lambda)$ A $(-\nu)$), respectively; then $\lambda\wedge v,$ $\lambda\nu$ belong to $ba$ and
give the greatest lower bound and the least upper bound of $\lambda,$ $v$ , respec-
tively. We shall use in later arguments the following simple fact:

(1.3) If $\lambda,$ $veba^{+}$ and $\lambda\wedge v=0$ , then $\alpha\lambda\wedge\beta\nu=0$ for $\alpha,$ $\beta\geqq 0$ ;

hence $\lambda\wedge v=0$ iff $\alpha\lambda\wedge\beta\nu=0$ for some $\alpha,$ $\beta>0$ .
In this paper, we denote by $ba^{+}$ the positive cone $\{\lambda\in ba;\lambda\geqq 0\}$ of

this vector lattice. For a given $\lambda\in ba$ , the representation $\lambda=\lambda^{+}-\lambda^{-}$ means
the Jordan decomposition of $\lambda$ , where $\lambda^{+}$ and $\lambda^{-}$ stand respectively for
the positive and negative variations of $\lambda$ , i.e., $\lambda^{+}=\lambda$ VO and $\lambda^{-}=(-\lambda)$ VO.
Note that $\lambda^{+}\wedge\lambda^{-}=0$ . For a given $E\in\Sigma,$ $v(\lambda, E)$ denotes the total variation
of $\lambda$ on $E$; hence $v(\lambda, E)=\lambda^{+}(E)+\lambda^{-}(E)$ . The norm of $\lambda$ is then defined
by $||\lambda||=v(\lambda, N)$ . Also, the relation

(1.4) $\lambda+v=(\lambda\nu)+(\lambda\wedge v)$

holds for $\lambda,$ $\nu eba$ . Now suppose that $\lambda,$ $\nu,$ $\gamma eba,$ $\lambda\wedge\gamma=\lambda\wedge v$ and NV $\gamma=$

$x\vee v$ ; then the application of (1.4) yields $\gamma=v$ . From this we infer with
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the aid of Bergmann’s theorem ([2], p. 134) that $ba$ forms a distributive
lattice. In fact, $ba$ forms a Banach lattice. For the detailed arguments,
see Birkhoff [2] and Yosida [12].

Let $\lambda\in ba$ . If every countably additive measure $\nu$ in $ba$ such that
$0\leqq\nu\leqq v(\lambda, )$ is identically zero, then $\lambda$ is said to be purely finitely addi-
tive (cf. [11], Theorem 1.17). We sometimes permit ourselves the common
abbreviations, c.a. measure and p.f. $a$ . measure, in referring respectively
to the countably additive and purely finitely additive measures. The
following Yosida-Hewitt’s decomposition theorem plays an important
role in this paper:

THEOREM 1.1 (Yosida-Hewitt). Let $\lambda\in ba$ . Then $\lambda$ is uniquely decom-
posed as the sum of $a$ c.a. measure $\lambda_{0}$ and $a$ p.f. $a$ . measure $\lambda_{p}$ , i.e.,
$\lambda=\lambda_{c}+\lambda_{p}$ . If in particular, $\lambda\geqq 0$ , then $\lambda_{p}\geqq 0$ and $\lambda_{0}\geqq 0$ .

The following lemma is also useful for our later arguments:

LEMMA 1.2. Let $\lambda\in ba$ and suppose that $\lambda$ is written as $\lambda=\lambda_{1}-\lambda_{2}$ ,
where $\lambda_{i}\in ba^{+},$ $i=1,2$ . If $\lambda_{1}\wedge\lambda_{2}=0$ , then this representation gives the
Jordan decomposition of $\lambda$ , i.e., $\lambda_{1}=\lambda^{+}$ and $\lambda_{2}=\lambda^{-}$ .

PROOF. The application of (1.4) yields $\lambda^{+}=\lambda 0=(\lambda_{1}-\lambda_{\mathfrak{g}})0=$

$(\lambda_{1}\lambda_{2})-\lambda_{l}=\lambda_{1}-(\lambda_{1}\wedge\lambda_{2})=\lambda_{1}-0=\lambda_{1}$ ; and $\lambda^{-}=\lambda_{2}$ in a similar way.
q.e. $d$ .

By means of this lemma, the variation of $\lambda$ is also decomposed in
accordance with the Yosida-Hewitt decomposition:

PROPOSITION 1.3. Let $\lambda eba$ and let $\lambda=\lambda_{\iota}+\lambda_{p}$ be the Yosida-Hewitt
decomposition of $\lambda$ . Then we have $||\lambda||=||\lambda_{e}||+||\lambda_{p}||$ .

PROOF. Consider the Jordan decomposition $\lambda=\lambda^{+}-\lambda^{-}$ and apply
Theorem 1.1 to get the decompositions $\lambda^{+}=\lambda_{l}^{+}+\lambda_{p}^{+}$ and $\lambda^{-}=\lambda_{\iota}^{-}+\lambda_{p}^{-}$ . Then
$\lambda$ can be written as $\lambda=(\lambda_{e}^{+}-\lambda_{\iota}^{-})+(\lambda_{p}^{+}-\lambda_{p}^{-})$ . Hence, if we set $\lambda_{\iota}=\lambda_{a}^{+}-\lambda_{c}^{-}$

and $\lambda_{p}=\lambda_{p}^{+}-\lambda_{p}^{-}$ , then $\lambda_{0}$ and $\lambda_{p}$ are respectively c.a. and p.f. $a$ . ([11],
Theorems 1.14 and 1.17). Moreover these two expressions give the
Jordan decompositions of $\lambda_{0}$ and $\lambda_{p}$ , respectively. In fact, noting that
$0\leqq\lambda_{0}^{+}\leqq\lambda^{+}$ and $0\leqq\lambda_{0}^{-}\leqq\lambda^{-}$ , we have $0\leqq\lambda_{\iota}^{+}\wedge\lambda_{c}^{-}\leqq\lambda^{+}\wedge\lambda^{-}=0$ , and so $\lambda_{\iota}^{+}\wedge$

$\lambda_{0}^{-}=0$ . From this and Lemma 1.2 we see that $\lambda_{0}=\lambda_{l}^{+}-\lambda_{e}^{-}$ gives the
Jordan decomposition of $\lambda_{\iota}$ . Similarly, $\lambda_{p}=\lambda_{p}^{+}-\lambda_{p}^{-}$ gives that of $\lambda_{p}$ .
Therefore, we have $||\lambda||=||\lambda^{+}||+||\lambda^{-}||=||\lambda_{\iota}^{+}||+||\lambda_{0}^{-}||+||\lambda_{p}^{+}||+||\lambda_{p}^{-}||=||\lambda_{\iota}||+$

$||\lambda_{p}||$ . q.e.d.
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We shall use the following notation: For a given $E\in\Sigma,$ $\chi_{B}$ denotes
the characteristic function of $E$; and $\chi_{B}$ is regarded as an element of $l^{\infty}$

in the sense that it defines a sequence $\{\chi_{B}(n)\}such$ that $\chi_{B}(n)=1$ for $neE$
and $=0$ for $neE^{\iota}$ . We then write

$\langle u\chi_{B}x\rangle=\int_{B}u(s)\lambda(ds)$ , and
(1.5)

$\langle|u|\chi_{B\prime}v(\lambda, )\rangle=\int_{B}|u(\epsilon)|v(\lambda, d\epsilon)$ .
Accordingly, $\lambda(E)=\langle x_{B}, x\rangle$ , $ v(\lambda, E)=\langle\chi_{B}v(\lambda, )\rangle$ , and the Lebesgue
dominated convergence theorem may be restated as follows:

THE DOMINATED CONVEBGENCE THEOREM. Let $\lambda\in ba$ and let $\{u_{n}\}$ be
a sequence in $l^{\infty}$ such that $||u_{\iota}||\leqq Mfo\gamma n\geqq 1$ and $u_{n}$ converges to $u\in l^{\infty}$

in N-measure, i.e., $\lim v(\lambda;\{s:|u_{n}(s)-u(s)|>\epsilon\})=0$ for $\epsilon>0$ . Then we have
the convergence

$\lim\langle u_{*}, N\rangle=\langle u, \lambda\rangle$ .
We shall also use the following fact: Let $Ee\Sigma,$ $u\in l^{\infty}$ and let $\lambda\in ba$ .

Then we have

(1.6) $|\langle ux_{E}, x\rangle|\leqq\langle|u|^{\chi_{B}}, v(\lambda, )\rangle$

$\leqq\sup_{\epsilon eB}|u(s)|v(\lambda, E)\leqq|u|v(\lambda, E)$ .
Finally, we shall frequently use extremal points and smooth points

of subset of $ba$ as well as $l^{\infty}$ . For a given a set $F$ in $l^{\infty}$ (or in $ba$), ext $F$

will denote the set of all extremal points of $F$ and sm $F$ will stand for
the set of all smooth points of $F$.

\S 2. 0-1 measures.

In this section we study 0-1 measures in $ba$ and give a method for
computing the values of the integrals of elements in $l^{\infty}$ with respect to
such measures.

To discuss the structure of the values $F_{0}(u)$ , we need a notion of
0-1 measure introduced by Yosida and Hewitt [11]. Let $\alpha=1$ or $-1$ .
By a O-a measure on $\Sigma$ we mean a nonzero element $\lambda\in ba$ which assumes
only the values $0$ and $\alpha$ . If $N$ in $ba$ is a 0-1 measure, it has the follow-
ing properties:

(i) If $N(E)=1$ and $E\subset M$, then $\lambda(M)=1$ .
(ii) If $\lambda(E)=0$ and $M\subset E$, then $\lambda(M)=0$ .
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(iii) $||\lambda||=\lambda(N)=1$ .
(iv) $\lambda(E)=1$ iff $\lambda(E^{\iota})=0$ .
(v) If $N(M)=\lambda(E)=1$ , then $M\cap E\neq\emptyset,$ $\lambda(M\cap E)=1$ and $\lambda(M\triangle E)=0$ ,

where $M\triangle E$ means the symmetric difference of $M$ and $E$.
A typical example of 0-1 measures is the so-called point mass: Let

$k\in N$ and define $\delta_{k}:\Sigma\rightarrow\{0,1\}$ by setting $\delta_{k}(E)=1$ if $k\in E$ and $\delta_{k}(E)=0$ if
$k\not\in E$ . Then $\delta_{k}\in ba$ in the sense that $\langle u, \delta_{k}\rangle=u(k)$ for $u\in l^{\infty}$ and it is a
0-1 measure on $\Sigma$ . Note that $\delta_{k}$ is countably additive. A general argu-
ment for the construction of 0-1 measures is given in [11], Theorem 4.1.
However for the sake of later arguments we here attempt to construct
such measures by means of ultrafilters on the set $N$. In fact, as sug-
gested by properties (i) through (v) mentioned above, one may obtain a
one-to-one correspondence between the class of all ultrafilters on $N$ and
that of 0-1 measures:

PROPOSITION 2.1. (a) For a given 0-1 $ measu\gamma e\lambda$ in $ba$ , let $\mathscr{G}^{-}=$

$\{E\in\Sigma;\lambda(E)=1\}$ . Then $\ovalbox{\tt\small REJECT}$ is an ultrafilter on N. (b) Conversely,
for every ultrafilter $\mathscr{F}$ on $N$, define $\lambda;\Sigma\rightarrow\{0,1\}$ by setting $N(E)=1$ if
$E\in \mathscr{G}^{-}$ and $\lambda(E)=0$ if $E\not\in \mathscr{F}$ Then $\lambda$ is a 0-1 measure in $ba$ .

Let $\ovalbox{\tt\small REJECT}$ be any nonempty family of nonempty subsets of $N$ such
that the intersection of any two sets, belonging to $\mathscr{A}$ contains a set
which belongs to $L\mathscr{A}$ Then Proposition 2.1 enables us to construct a 0-1
measure $\lambda$ such that $N(E)=1$ for all $E\in \mathscr{A}$, since there is at least one
ultrafilter which is finer than the filter generated by $\ovalbox{\tt\small REJECT}$

0-1 measures are classified into two types: 0-1 measures of the first
type are point masses, $\delta_{k},$ $k\in N$, and these are all countably additive.
0-1 measures of the second type are p.f. $a$ . $0-1$ measures. To describe
this, we introduce two kinds of ultrafilters on $N$: An ultrafilter $\mathscr{F}$ on
$N$ is said to be principal (resp. nonprincipal) $if\cap \mathscr{F}\neq\emptyset$ (resp. $\cap \mathscr{F}=\emptyset$ ).
If $\mathscr{F}^{\prime}$ is a principal ultrafilter on $N$, then there is one and only one
point $p\in N$ and $\mathscr{F}$ is written as $\mathscr{F}=\{E\in\Sigma;p\in E\}$ . Thus, there is a
one-to-one correspondence between the class of point masses $\delta_{k},$ $k\in N$,
and that of principal ultrafilters.

As compared with principal ultrafilters, any nonprincipal ultrafilter
$\mathscr{F}$ has the property that it contains no finite subsets in $N$; and this
property characterizes non-principal ultrafilters. More precisely, given
ultrafilter $\mathscr{F}$ the following conditions are equivalent:

(F1) $\ovalbox{\tt\small REJECT}$ is nonprincipal.
(F2) $\mathscr{G}^{-}$ contains the filter {$E\in\Sigma;E^{c}$ is finite}.
(F3) $\mathscr{F}$ contains no finite subsets of $N$.
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There are uncountably many nonprincipal ultrafilters on $N$. A typical
example of non-principal ultrafilters is an ultrafilter $\mathscr{G}^{-}$ which contains
$F_{0}=\{N-\{1,2, \cdots, n\}:n\geqq 1\}$ .

Now p.f. $a$ . $0-1$ measures are associated with non-principal ultrafilters
on $N$:

PROPOSITION 2.2. If $\lambda$ is $a$ p.f. $a$ . $0-1measur\cdot e$ on $\Sigma$ , then $L\swarrow\approx_{=}$

$\{Ee\Sigma;\lambda(E)=1\}$ is non-prineipal. Conversely $ fo\gamma$ every non-principal
ultrafilter $\mathscr{G}^{\rightarrow}$ define a measure $\lambda$ in the same way as in Proposition
2.1; then $\lambda i\epsilon$ p.f.a.

PROOF. Let $\lambda$ be a p.f. $a$ . $0-1$ measure on $\Sigma$ . Then $\lambda\wedge\delta_{k}=0$ for
$k\in N$, by [11], Theorem 1.16, where $\delta_{k}$ is the point mass concentrated
at $k$ . Hence in particular, $(N\wedge\delta_{k})(\{k\})=\min\{\lambda(\{k\}), 1\}=0$ or $\lambda(\{k\})=0$ for
$keN$. Thus, $\lambda(F)=0$ and $F\not\in \mathscr{G}^{-}$ for every finite subset $F$ of $N$. This
means that $\mathscr{G}^{-}$ satisfies condition (F3), so $\mathscr{G}^{-}$ is non-principal. Con-
versely, let $\mathscr{G}^{-}$ be any non-principal ultrafilter and $\lambda$ a 0-1 measure
defined as in Proposition 2.1. Then, every finite set $F$ in $N$ does not
belong to $\mathscr{G}^{-}$ by (F3); hence $\lambda(F)=0$ by definition. Now let $\nu$ be any
c.a. measure satisfying $ 0\leqq\nu\leqq\lambda$ . Then, $0\leqq\nu(F)\leqq\lambda(F)=0$ for every finite
set $F$ in $N$. Since $\nu$ is c.a., $||\nu||=\nu(N)=\sum_{k=1}^{\infty}\nu(\{k\})=0$ . This means that
$\lambda$ is p.f. $a$ . q.e.d.

Therefore, any 0-1 measure is either c.a. or p.f. $a$ .
In the remainder part of this section we discuss the integration of

elements of $l^{\infty}$ with respect to 0-1 measures.
First the value of the integral of any element $v$ of $l^{\infty}$ with respect

to a point mass $\lambda$ is simply given by

(2.1) $\langle v, \lambda\rangle=v(k)$ , provided that $N=\delta_{k}$ .
Next, by connecting non-principal ultrafilters on $N$ with the Bolzano-

Weierstrass property of bounded sequences in $R$ , we can characterize
the values of integrals of elements in $l^{\infty}$ with respect to p.f. $a$ . $0-1$

measures in terms of the filter theory.
Let $\mathscr{G}^{-}$ be a nonprincipal ultrafilter and let $v$ be a fixed element

of $l^{\infty}$ . We recall that every $E$ in $\mathscr{G}^{-}$ is an infinite set. Let $v(N)$ denote
the range of $v$ and let $\mathscr{L}_{v}=\{S:S\subset v(N), v^{-1}(S)\in \mathscr{G}^{-}\}$ . Then $\mathscr{L}_{v}$ forms an
ultrafilter on the set $v(N)$ .

Let then $\overline{v(N)}$ be the closure of $v(N)$ in $R$ ; hence $\overline{v(N)}\subset[-||v||, ||v||]$

and $\mathscr{L}_{v}$ is a base for a filter on $\overline{v(N)}$ . Let [IZ be the filter generated
on $\overline{v(N)}$ by $\mathscr{L}_{v}$. Then $\overline{\mathscr{L}_{v}}$ forms an ultrafilter on $\overline{v(N)}$ in accordance
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with the following proposition:

LEMMA 2.3. Let $X$ be a nonvoid set and let $Y$ be any nonvoid sub-
set of X. If $\mathscr{G}^{-}$ is a filter on $Y,$ then $\ovalbox{\tt\small REJECT}$ is a base for a filter on $X$.
Let $\mathscr{G}$ be the filter generated on $X$ by $\mathscr{G}^{\sim}$ Then we have:

(a) For every $A\subset X$ with $ A\neq\emptyset$ , An Ye $\mathscr{F}^{-}$ iff $ A\in$ Elf.
(b) If $\mathscr{G}^{-}$ is an ultrafilter on $Y$, then $\mathscr{G}$ is an ultrafilter on $X$.
Now since $\overline{v(N)}$ is compact, $\overline{\mathscr{L}_{v}}$converges to some element $\alpha$ in $\overline{v(N);}$

and the limit a is unique as $\overline{v(N}$) is a metric space. Moreover, we have
just shown that given a non-principal ultrafilter $\mathscr{G}^{-}$ on $N$ and an
element $v$ of $l^{\infty}$ , the family $\mathscr{L}_{v}$ , and consequently $\overline{\mathscr{L}_{v}}$, was uniquely
determined. Hence we conclude that to every $\mathscr{G}^{-}$ and $v$ there corresponds
a unique real number $\alpha$ in $\overline{v(N)}$. We then consider the p.f. $a$ . $0-1$

measure $\lambda$ associated through Proposition 2.2 with .-S7‘ and characterize
the value of the integral of $v$ with respect to N.

PROPOSITION 2.4. Let $vel^{\infty},$ $\lambda$ any p.f. $a$ . $0-1$ measure, $\mathscr{G}^{-}$ the as-
sociated non-principal ultrafilter on $N$ in the sense of $P\gamma oposition2.2$ ,
and let $\overline{\mathscr{L}_{v}}$ be the ultrafilter on the compact set $\overline{v(N)}$ specified as above.
Then, the value $\langle v, \lambda\rangle$ is given as the limit of $\overline{\mathscr{L}}_{v}$ and $\langle v, \lambda\rangle e\overline{v(N).}$

PROOF. That $\overline{\mathscr{L}_{v}}$ converges to the limit a means that $U\cap\overline{v(N)}e\overline{\mathscr{L}_{v}}$

for every neighborhood $U$ of $\alpha$ . Hence by Lemma 2.3, $U\cap v(N)e\mathscr{L}_{v}$

for every neighborhood $U$ of $\alpha$ . We then set $U_{n}=\{\xi eR:|\xi-\alpha|<1/n\}$ ,
$S,$ $=U_{\hslash}\cap v(N)$ , and $E_{n}^{\prime}=v^{-1}(S_{n})$ . Then $S_{n}e\mathscr{L}_{v}$ (and hence $v(N)-S_{n}\not\in \mathscr{L}_{v}$).
So, $E_{n}^{\prime}\in \mathscr{F}^{-}$ and $N-E^{\prime},\not\in.\mathscr{F}$ Since each $E_{f}^{\prime}$ is an infinite set, one can
choose an infinite sequence $\{k_{n}\}$ such that $k_{n}\in E^{\prime}$. and $k_{n}\geqq k,.-1+1$ and
$ v(k,)\rightarrow\alpha$ as $ n\rightarrow\infty$ . Let $E_{n}=E_{*}^{\prime}-\{1,2, \cdots, k_{r\iota}-1\}$ for $n\geqq 1$ . Then $k_{n}=$

$\min E_{\pi}$ and $E_{n}\in \mathscr{G}^{-}$ for all $n\geqq 1$ . Next, define a sequence $\{v^{*}\}$ of simple
functions on $N$ by setting $v^{n}=v(k_{n})x_{B},$ ; and set $M_{n}^{*}=\{seN:|v^{\prime}(s)-v(\epsilon)|>\epsilon\}$

for $\epsilon>0$ and $n\geqq 1$ . Then noting that $\lambda(E_{n}^{c})=0$ and $|v^{n}(s)-v(s)|\leqq$

$|v(k_{n})-\alpha|+|\alpha-v(s)|<2/n$ for $seE,$ $(\subset E_{n}^{\prime})$ , we infer that $ 2/n<\epsilon$ implies

$v(\lambda, Ma)=v(\lambda, M_{\iota}^{e}\cap E_{\hslash}^{0})+v$ ($\lambda,$
$M_{\hslash}^{\epsilon}$ A $E.$) $=0$ ,

which means that $v^{n}$ converges to $v$ in $\lambda$-measure. Since $||v\cdot||\leqq||v||$ for
$n\geqq 1$ , the dominated convergence theorem yields

$\langle v, \lambda\rangle=\lim\langle v’, \lambda\rangle=\lim v(k_{n})=\alpha e\overline{v(N)}$ . q.e.d.

Finally, we give the following useful result as an application of
Proposition 2.4.
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PROPOSITION 2.5. Let $vel^{\infty}$ . Given $\epsilon>0$ let $E_{\epsilon}=v^{-1}(U_{\epsilon}(||v||))$ , where
$U_{\epsilon}(||v||)$ denotes the $\epsilon$-neighborhood in $R$ of $||v||$ . Then for every p.f. $a$ .
0-1 measure $N$ belonging to $F_{0}(v)$ , we have $\lambda(E_{\epsilon})=1$ for $\epsilon>0$ .

PROOF. Let $\overline{\mathscr{L}_{v}}$ be the ultrafilter on the compact set $\overline{v(N)}$ specified
as before. Then $\overline{\mathscr{L}_{v}}$ converges to the value $\alpha=||v||$ since $\langle v, \lambda\rangle=||v||$ for
every p.f. $a$ . $0-1$ measure in $F_{0}(v)$ . Hence it is seen from the proof of
Proposition 2.4 that $\lambda(E_{\epsilon})=1$ for $\epsilon>0$ . q.e.d.

\S 3. Representation of measures in $F_{0}(u)$ .
In this section we first establish two decomposition theorems for the

scalar products $\langle u, \lambda\rangle,$ $xeF_{0}(u)$ , and then give general representations
of measures in $F_{0}(u)$ in terms of the measures which belong to $F_{0}(u^{+})$

and $F_{0}(u^{-})$ . We start with the following

LEMMA 3.1. Let $uel^{\infty}-\{0\},$ $NeF_{0}(u)$ , and let $ E\in\Sigma$ . Then we have
$\langle u\chi_{E}x\rangle=\langle|u|\chi_{E}v(\lambda, )\rangle=||u||v(\lambda, E)$ .

PROOF. The desired relation is obtained by comparing the correspond-
ing terms in the estimate:

$||u||=\langle ux_{B}, x\rangle+\langle u\chi_{N-B}x\rangle\leqq\langle|u|\chi_{B}v(\lambda, )\rangle$

$+\langle|u|x_{N-E}, v(\lambda, )\rangle\leqq||u||v(\lambda, E)+||u||v(N, N-E)=||u||$ . q.e.d.

The first decomposition theorem for the scalar product $\langle u, N\rangle$ is given
in terms of the Jordan decompositions of $u$ and N.

PROPOSITION 3.2. Let $u\in l^{\infty}-\{0\},$ $xeF_{0}(u)$ , and let $ E\in\Sigma$ . Let $u=$

$u^{+}-u^{-}$ and $\lambda=\lambda^{+}-\lambda^{-}$ . Then we have $\langle ux_{B}, x\rangle=\langle u^{+\chi_{B}\lambda^{+}\rangle}+\langle u^{-\chi_{B}N^{-\rangle}}$ .
Moreover, if $E=N$ then each term on the right side of this relation can
be written as

$\langle u^{+}, \lambda^{+}\rangle=||u^{+}||||\lambda^{+}||=||u||||\lambda^{+}||$

and
$\langle u^{-}, \lambda^{-}\rangle=||u^{-}||||\lambda^{-}||=||u||||\lambda^{-}||$ ,

where we understand that $||u^{\pm}||<||u||$ implies $\lambda‘=0$ , respect,ively.

PROOF. First we infer that

(3.1) $\langle ux_{E}, x\rangle=\langle u^{+\chi_{B}x^{+}\rangle-\langle u^{+\chi_{B}x^{-\rangle}}}$,
$-\langle u^{-\chi_{B},\lambda^{+}\rangle+\langle u^{-}\chi_{B},x^{-}\rangle}$ .

On the other hand, we have
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(3.2) $\langle|u|\chi_{B}v(\lambda, )\rangle=\langle u^{+\chi_{B}\lambda^{+}\rangle}+\langle u^{+\chi_{B}x^{-\rangle}}$

$+\langle u^{-\chi_{E}\lambda^{+}\rangle+\langle u^{-\chi_{B}\lambda^{-\rangle}}},$ .
But, the left sides of (3.1) and (3.2) are equal by Lemma 3.1; hence
\langle $u^{+\chi_{B}N^{-\rangle}}+\langle u^{-\chi_{E}\lambda^{+}\rangle}=0$ from which, together with (3.1), we obtain the
first relation in the statement. To get the last assertion, apply the first
relation just obtained; then we have $||u||=\langle u^{+}, \lambda^{+}\rangle+\langle u^{-}, \lambda^{-}\rangle\leqq||u^{+}||||\lambda^{+}||+$

$||u^{-}||||\lambda^{-}||\leqq||u||||\lambda^{+}||+||u||||\lambda^{-}||=||u||$ since $||\lambda^{+}||+||\lambda^{-}||=||\lambda||=1$ . Comparing
the corresponding term, we get the last two relations in the statement.
Finally, the above estimate also means that if $||u^{\pm}||<||u||$ then $\lambda^{\pm}$ must
be identically zero, respectively. q.e. $d$ .

The following is an immediate consequence of Proposition 3.2:

COROLLARY 3.3. Let $u\in l^{\infty}-\{0\}$ and let $\lambda eF_{0}(u)$ . If $ue(l^{\infty})^{+}$ , then
$\lambda\geqq 0$ ; and if $-ue(l^{\infty})^{+}$ , then $\lambda\leqq 0$ .

This result also states that the duality mapping $F_{0}$ is order-preserv-
ing in the sense that $u_{2}-u_{1}\in(l^{\infty})^{+}$ implies $F_{0}(u_{l}-u_{1})\subset ba^{+}$ .

The second decomposition theorem for the scalar product $\langle u, \lambda\rangle$ is
described in terms of the Yosida-Hewitt decomposition.

PROPOSITION 3.4. Let $u\in l^{\infty}-\{0\},$ $\lambda\in F_{0}(u)$ , and let $\lambda=\lambda_{a}+\lambda_{p}$ . Then
we have $||u||=\langle u, \lambda_{e}\rangle+\langle u, \lambda_{p}\rangle$ ,

$\langle u, \lambda_{c}\rangle=\langle|u|, v(\lambda_{0}, )\rangle=||u||||\lambda_{a}||$ , and
$\langle u, \lambda_{p}\rangle=\langle|u|, v(\lambda_{p}, )\rangle=||u||||\lambda_{p}||$ .

PROOF. Employing the same idea as in the proof of Proposition 3.2,
the desired equalities are obtained by comparing the corresponding terms
in the estimate

$||u||=\langle u, \lambda_{e}\rangle+\langle u, \lambda_{p}\rangle\leqq\langle|u|, v(\lambda_{c}, )\rangle+\langle|u|, v(\lambda_{p}, )\rangle$

$\leqq||u||||\lambda_{0}||+||u||||\lambda_{p}||=||u||$ ,

where we used Proposition 1.3. q.e. $d$ .
We are now in a position to state the main theorem of this setion.

THEOREM 3.5. Let $u\in l^{\infty}-\{0\},$ $xeF_{0}(u)$ , and let $\lambda=\lambda^{+}-\lambda^{-}$ . Then $\lambda$

is written as $\lambda=||\lambda^{+}||\nu^{+}-||\lambda^{-}||\nu^{-}$ , where $\nu^{+}eF_{0}(u^{+})$ , $\nu^{-}eF_{0}(u^{-})$ and
$||\lambda^{+}||v^{+}\wedge||\lambda^{-}||\nu^{-}=0$ .

PROOF. First suppose that $\lambda^{+}=0$ . Then $||\lambda^{-}||=1$ and $\langle u^{-}, \lambda^{-}\rangle=||u^{-}||$
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by Proposition 3.2, i.e., $x^{-}eF_{0}(u^{-})$ . Therefore, letting $v^{-}=\lambda^{-}$ and $\nu^{+}$ be
any element of $F_{0}(u^{+})$ yields the desired representation for $\lambda$ . Similarly,
in case of $\lambda^{-}=0$ , we obtain the representation by taking $\nu^{+}=\lambda^{+}$ and an
arbitrary element $\nu^{-}$ of $F_{0}(u^{-})$ . Finally, assume that both $\lambda^{+}$ and $\lambda^{-}$

are nonzero. In this case, let $\nu^{+}=\lambda^{+}/||\lambda^{+}||$ and $\nu^{-}=\lambda^{-}/||N^{-}||$ . Then we
infer with the aid of Proposition 3.2 that $\langle u^{\pm}, \nu^{\pm}\rangle=||u^{\pm}||$ and $\nu^{\pm}eF_{0}(u^{\pm})$ ,
respectively. It is now clear that the representation is valid for these
measures $\nu^{+}$ and $\nu^{-}$ . q.e.d.

\S 4. Structure of the convex set $F_{0}(u)$ .
In this section we discuss the structure of the convex sets $F_{0}(u)$ in

terms of 0-1 measures. Since each of $F_{0}(u),$ $uel^{\infty}$ , is weakly-star
compact in $ba$ , the structure of $F_{0}(u)$ is determined through Krein-
Milman’s theorem by its extremal points. We first investigate the
extremal points of $F_{0}(u)$ in case of $u\geqq 0$ and then discuss the general
case.

THEOREM 4.1. Let $ue(l^{\infty})^{+}-\{0\}$ and let $\lambda\in F_{0}(u)$ . Then, $\lambda$ is an
extremal point of $F_{0}(u)$ iff it is a 0-1 $measu\gamma e$ .

PROOF. Suppose first that $N$ is a 0-1 measure. Let $\alpha,$ $\beta>0,$ $\alpha+$

$\beta=1,$ $\lambda_{0},$ $\lambda_{1}\in F_{0}(u)$ , and let $\lambda=\alpha\lambda_{0}+\beta\lambda_{1}$ . We here note that $\lambda_{0}\geqq 0$ and
$\lambda_{1}\geqq 0$ by Corollary 3.3. Now let $E$ be an arbitrary element of $\Sigma$ . If
$\lambda(E)=0$ , then $\lambda_{0}(E)=\lambda_{1}(E)=0$ . Assume that $\lambda(E)=1$ . If $0\leqq h(E)<1$ ,
then $||N_{1}||\geqq\lambda_{1}(E)=\beta^{-1}(1-\alpha\lambda_{0}(E))>\beta^{-1}(1-\alpha)=1$ , which contradicts to the
fact that $||\lambda_{1}||=1$ . Hence, $\lambda_{0}(E)$ must be 1; and $\lambda_{1}(E)=1$ in a similar
way. This means that $\lambda=N_{0}=\lambda_{1}$ , i.e., $N$ is an extremal point of $F_{0}(u)$ .
Conversely, let $\lambda$ be an extremal point of $F_{0}(u)$ and assume that $0<$

$N(E_{0})<1$ for some $ E_{0}\in\Sigma$ . We then define two bounded additive set
functions $\lambda_{\iota}$ and $N_{2}$ on $\Sigma$ by setting $\lambda_{1}(E)=\lambda(E\cap E_{0})$ and $N_{2}(E)=\lambda(E\cap E_{0}^{\sigma})$

for $ Ee\Sigma$ . Then, $\lambda_{i}\geqq 0$ and $||\lambda_{i}||>0$ since $\lambda\geqq 0$ by Corollary 3.3. More-
over, noting that $\lambda(E)=\lambda_{1}(E)+N_{2}(E)$ for $ Ee\Sigma$ , we have $||\lambda||=||\lambda_{1}||+$

$||N_{2}||=1$ . Now define $\nu_{t}=\lambda_{i}/||N_{i}||$ for $i=1,2$ . Then we have $\nu_{i}\geqq 0,$ $||\nu_{:}||=1$ ,
and

(4.1) $\lambda=||\lambda_{1}||\nu_{1}+||\lambda_{2}||\nu_{2}$ .
We then demonstrate that $v_{i}eF_{0}(u),$ $i=1,2$ . Since $||u||=\langle u, \lambda_{1}\rangle+\langle u, \lambda_{2}\rangle\leqq$

$||u||||N_{1}||+||u||||\lambda_{2}||=||u||$ , we have $||\lambda_{i}||^{-\iota}\langle u, \lambda_{i}\rangle=||u||$ , i.e., $\langle u, \nu_{i}\rangle=||u||$ ,
from which it follows that $\nu_{:}eF_{0}(u)$ . But, $\lambda$ is an extremal point of
$F_{0}(u)$ , hence (4.1) implies that $ v_{1}=\nu_{l}=\lambda$ . Therefore, we have $0<\lambda(E_{0})=$
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$\nu_{2}(E_{0})=||\lambda_{2}||^{-1}\lambda(E_{0}\cap E_{0}^{c})=0$ , a contradiction. This means that $\lambda$ can not
take values between $0$ and 1, i.e., $\lambda$ is a 0-1 measure. q.e. $d$ .

The above theorem states that if $u\in(l^{\infty})^{+}-\{0\}$ , ext $F_{0}(u)$ consists of
only 0-1 measures. Since each of $F_{0}(u)$ in a convex and weakly-star
compact subset of $ba$ , the application of Krein-Milman’s theorem yields
the following characterization of the convex set $F_{0}(u)$ in terms of 0-1
measures.

THEOREM 4.2. If $u\in(l^{\infty})^{+}-\{0\}$ , then $F_{0}(u)$ contains at least one 0-1
measure, and $F_{0}(u)$ is a weakly-star closed convex hull of 0-1 measures
in $F_{0}(u)$ .

Next, let us consider the general case. Let $uel^{\infty},$ $u=u^{+}-u^{-}$ , and
assume that $||u^{+}||>0$ and $||u^{-}||>0$ . Moreover, let

$E_{0}^{+}=\{s:u(s)>0\}$ , $E_{0}^{-}=\{s:u(s)<0\}$ ,
(4.2)

$E^{+}=\{8\ddagger u(s)\geqq 0\}$ , $E^{-}=\{s:u(s)\leqq 0\}$ .
Clearly, $E_{0}^{+}$ and $E_{0}^{-}$ are disjoint. Employing these sets, we have:

LEMMA 4.3. If $v^{+}\in F_{0}(u^{+})$ and $v^{-}\in F_{0}(u^{-})$ , then $\nu^{+}(E_{0}^{+})=\nu^{-}(E_{0}^{-})=1$

and $\nu^{+}(E^{-})=\nu^{-}(E^{+})=0$ .
PROOF. First, $\phi^{+}(E_{0}^{+})=\phi^{-}(E_{0}^{-})=1$ for $\phi^{+}\in$ ext $F_{0}(u^{+})$ and $\phi^{-}\in$

ext $F_{0}(u^{-})$ . For if $\phi^{+}(E_{0}^{+})=0$ , then $||u^{+}||=\langle u^{+}, \phi^{+}\rangle=\langle u^{+\chi_{B^{-,\phi^{+}\rangle=0}}}$ and
we have a contradiction; furthermore, it is impossible to assume $\phi^{-}(E_{0}^{-})=0$

by the same reason. This fact also means that $\phi^{+}(E^{+})=\phi^{-}(E^{-})=1$ and
$\phi^{+}(E^{-})=\phi^{-}(E^{+})=0$ . Now let $\nu^{+}eF_{0}(u^{+})$ and $\nu^{-}\in F_{0}(u^{-})$ . Then by Theorem
4.2, there exist generalized sequences $\{\phi_{\alpha}^{+}\}$ and $\{\phi_{\beta}^{-}\}$ such that $\phi_{\alpha}^{+}\in$

co [ext $F_{0}(u^{+})$ ], $\phi_{\beta}^{-}\in$ co [ext $F_{0}(u^{-})$ ] and $\{\phi_{\alpha}^{+}\}$ and $\{\phi_{\beta}^{-}\}$ converge respectively
to $v^{+}$ and $\nu^{-}$ in the weak-star topology of $ba$ . Hence we have $\langle x_{B_{0}}+, \phi_{\alpha}^{+}\rangle=$

$\phi_{\alpha}^{+}(E_{0}^{+})=1$ , \langle $\chi_{B_{0}^{-,\phi_{\beta}^{-\rangle}}}=\phi_{\beta}^{-}(E_{0}^{-})=1$ , and consequently, $\nu^{+}(E_{0}^{+})=\langle x_{B_{0}}+, \nu^{+}\rangle=$

$\lim_{\alpha}\langle\chi_{B_{0}}+, \nu^{+}\rangle=1$ and $\nu^{-}(E_{0}^{-})=\lim_{\beta}\phi_{\beta}^{-}(E_{0}^{-})=1$ . Thus, the first assertion is
obtained. The last assertion is now evident from the additivity of $\nu^{\pm}$

and the fact that $\nu^{+}(N)=v^{-}(N)=1$ . q.e.d.

PROPOSITION 4.4. Let $uel^{\infty}$ be such that $u^{\pm}\neq 0$ . If $\nu^{+}\in F_{0}(u^{+})$ and
$\nu^{-}\in F_{0}(u^{-})$ , then $\nu^{+}\wedge\nu^{-}=0$ and $\langle u^{+}, v^{-}\rangle=\langle u^{-}, \nu^{+}\rangle=0$ .

PROOF. For $ E\in\Sigma$ , the application of Lemma 4.3 yields

$(\nu^{+}\wedge\nu^{-})(E)=\inf_{T\subset E}\{\nu^{+}(T\cap E_{0}^{+})+\nu^{-}(T^{c}\cap E\cap E_{0}^{-})\}$ $(\geqq 0)$ .
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But, the right side turns to be $0$ if we take $T=E\cap E_{0}^{-}$ . Thus the first
assertion is obtained. The last assertion follows from Lemma 4.3 with
the aid of the relations

(4.3) $\langle u^{+}, \nu^{-}\rangle=\langle u^{+\chi_{B^{-,\nu^{-}\rangle=0}}}$

and (4.3) with $u^{+}$ and $\nu^{-}$ replaced respectively by $u^{-}$ and $\nu^{+}$ . q.e.d.

Using the results mentioned above, we obtain a converse of Theorem
3.5.

PROPOSITION 4.5. Let $u\in l^{\infty}-\{0\},$ $u=u^{+}-u^{-},$ $\nu^{+}\in F_{0}(u^{+})$ , and $\nu^{-}\in$

$F_{0}(u^{-})$ . Let $\alpha,$ $\beta$ be any non-negative numbers satisfying $\alpha+\beta=1$ and
$\alpha||u^{+}||+\beta||u^{-}||=||u||$ , and define $N=\alpha\nu^{+}-\beta\nu^{-}$ . Then $\lambda\in F_{0}(u)$ , and in
this case, $\lambda^{+}=\alpha v^{+}$ and $\lambda^{-}=\beta\nu^{-}$ .

PROOF. It follows from Proposition 4.4, (1.3) and Lemma 1.2 that
$\alpha\nu^{+}-\beta\nu^{-}$ gives the Jordan decomposition of $\lambda$ , i.e., $\lambda^{+}=\alpha\nu^{+}$ and $\lambda^{-}=\beta\nu^{-}$ .
Hence, $||N||=\alpha||\nu^{+}||+\alpha||\nu^{-}||=1$ . On the other hand, we see from Proposi-
tion 4.4 and the restrictions on $\alpha$ , $\beta$ that $\langle u, \lambda\rangle=\alpha\langle u^{+}, \nu^{+}\rangle+$

$\beta\langle u^{-}, \nu^{-}\rangle=||u||$ . Thus, $\lambda\in F_{0}(u)$ , and the proof is complete.
Now combining Proposition 4.5, with Theorem 3.5, we give the main

result of this section:

THEOREM 4.6. For $uel^{\infty}-\{0\}$ , we have

(4.4) $F_{0}(u)=\bigcup_{\alpha.\beta}[\alpha F_{0}(u^{+})+\beta F_{0}(-u^{-})]$ ,

where the union is taken over all $\alpha,$ $\beta\geqq 0$ satisfying $\alpha+\beta=1$ and
$\alpha||u^{+}||+\beta||u^{-}||=||u||$ . Therefore we have:

(i) If $||u^{-}||<||u||$ then $F_{0}(u)=F_{0}(u^{+})$ .
(ii) If $||u^{+}||<||u||$ then $F_{0}(u)=F_{0}(-u^{-})$ .
(iii) If $||u^{+}||=||u^{-}||=||u||$ , then $F_{0}(u)=co[F_{0}(u^{+})UF_{0}(-u^{-})]$ and

ext $ F_{0}(u)=extF_{0}(u^{+})\cup$ ext $F_{0}(-u^{-})$ .
PROOF. Theorem 3.5 states that every element $N$ of $F_{0}(u)$ belongs to

the set $||\lambda^{+}||F_{0}(u^{+})+||\lambda^{-}||F_{0}(-u^{-})$ , and so $F_{0}(u)$ is contained in the right
side of (4.4). The converse inclusion follows from Proposition 4.5. We
now prove (i) through (iii). If $||u^{-}||<||u||$ , then only $\alpha=1$ and $\beta=0$ must
be taken; hence $F_{0}(u)$ coincides with $F_{0}(u^{+})$ . Similarly, if $||u^{+}||<||u||$ then
$F_{0}(u)=-F_{0}(u^{-})=F_{0}(-u^{-})$ . However in case of $||u^{+}||=||u^{-}||=||u||$ , we can
take any $non- ne\backslash $gative numbers $\alpha,$ $\beta$ with $\alpha+\beta=1$ . This means that
$F_{0}(u)=co[F_{0}(u^{+})\cup F_{0}(-u^{-})]$ . To get the last assertion of (iii) we first
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observe that the set of extremal points of the set $W\equiv F_{0}(u^{+})\cup F_{0}(-u^{-})$

is exactly the set of those of $F_{0}(u^{+})$ and $F_{0}(-u^{-})$ , i.e.,

(4.5) ext $ W=extF_{0}(u^{+})\cup$ ext $F_{0}(-u^{-})$ .
In fact, it is clear that ext $ W\subset extF_{0}(u^{+})\cup$ ext $F_{0}(-u^{-})$ . Conversely,
suppose that $\phi$ is an extremal point of, say, $F_{0}(u^{+})$ . Assume then that
$\phi$ is written as $\phi=\alpha\lambda+\beta\nu$ for some $\alpha,$ $\beta>0$ with $\alpha+\beta=1$ and some
$\lambda,$ $\nu\in W$. First of all, both $\lambda$ and $\nu$ can not belong to $F_{0}(-u^{-})$ . Also
let $\lambda\in F_{0}(u^{+}),$ $\nu\in F_{0}(-u^{-})$ , and let $E_{0}^{\pm}$ be the sets specified as in (4.2);
then $(\alpha N+\beta\nu)(E_{0}^{-})=-\beta<0$ by Lemma 4.3. This contradicts the fact
that $\phi$ is 0-1 measure. Consequently, both $\nu$ and $\lambda$ must belong to $F_{0}(u^{+})$ .
But, in this case $\lambda=\nu=\phi$ since $\phi\in$ ext $F_{0}(u^{+})$ . Thus, ext $F_{0}(u^{+})\subset extW$.
Similarly, ext $F_{0}(-u^{-})\subset extW$; and so we have (4.5). We then show
that ext $W=ext$ [co $W$]. Since both the set $W$ and its weakly-star closed
convex hull are weakly-star compact, the only extremal points in co $[W]$

are points in $W$ by [7], Lemma $v$ . $8.5$ , p. 440. From this we see that
ext [co $W$ ] $\subset extW$. Conversely, let $\lambda\in$ ext $W$. Then (4.5) states that
$\lambda$ belongs to ext $F_{0}(u^{+})$ or ext $F_{0}(u^{-})$ ; we may assume without loss of
generality that $\lambda\in F_{0}(u^{+})$ . Suppose now that $\lambda=\alpha\lambda_{1}+(1-\alpha)\lambda_{a}$ for some
$\alpha\in(0,1)$ and some $\lambda_{1},$ $\lambda_{2}\in$ co $W$. Then we must have $\lambda_{1}\in F_{0}(u^{+})$ . In fact,
if $\lambda_{1}\not\in F_{0}(u^{+})$ , then $\lambda_{1}=\alpha_{1}\mu_{1}+(1-\alpha_{1})v_{1}$ for some $\alpha_{1}\in[0,1$) and $\mu_{1}\in F_{0}(u^{+})$

and some $\nu_{1}\in F_{0}(-u^{-})$ , while $\lambda_{2}=\alpha_{2}\mu_{2}+(1-\alpha_{2})\nu_{2}$ for some $\alpha_{2}\in[0,1],$ $\mu_{2}\in$

$F_{0}(u^{+})$ and $v_{2}\in F_{0}(-u^{-})$ . Let $E_{0}^{-}$ be the set specified as in (4.2), then
Lemma 4.3 yields that $\lambda(E_{0}^{-})=-\alpha(1-\alpha_{1})-(1-\alpha)(1-\alpha_{2})<0$ . This con-
tradicts the assumption that $\lambda\in F_{0}(u^{+})$ . Therefore, $\lambda_{1}\in F_{0}(u^{+})$ . Similarly,
we have $\lambda_{2}\in F_{0}(u^{+})$ . But, $\lambda\in$ ext $F_{0}(u^{+})$ ; hence it follows that $N=\lambda_{1}=\lambda_{2}$ .
This means that $ N\in$ ext [co $W$]. Consequently, combining the above-men-
tioned yields the last assertion of (iii). q.e. $d$ .

\S 5. The Dixmier decomposition of $ba$ .
In this section we first show that in the space $ba$ , the Yosida-Hewitt

decomposition is equivalent to the Dixmier decomposition since $ba$ is the
third conjugate of the space $c_{0}$ of sequences converging to $0$ . We then
discuss the structure of $F_{0}(u)$ from the point of view of the Yosida-
Hewitt decomposition.

LEMMA 5.1. Let $\lambda\in ba$ and let $\lambda=\lambda_{0}+\lambda_{p}$ be the Yosida-Hewitt de-
composition of N. Then $v(\lambda_{p}, F)=0$ for every finite subset $F$ of $N$.

PROOF. We employ the same technique as in the proof of Proposi-
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tion 2.2. Let $N_{p}=\lambda_{p}^{+}-\lambda_{p}^{-}$ be the Jordan decomposition of $x_{p}$ ; then $\lambda_{p}^{+}$ and
$\lambda_{p}^{-}$ are non-negative, p.f. $a$ . measures by definition. Now let $k\in N$ and
let $\delta_{k}$ be the point mass concentrated at $k$ . Then $\lambda_{p}^{+}\wedge\delta_{k}=\lambda_{p}^{-}$ A $\delta_{k}=0$ by
[11], Theorem 1.16. Hence in particular, we have $0=(\lambda_{p}^{+}\wedge\delta_{k})(\{k\})=$

$\min\{\lambda_{p}^{+}(\{k\}), 1\}$ , or $\lambda_{p}^{+}(\{k\})=0$ ; and $\lambda_{p}^{-}(\{k\})=0$ in a similar way. Now the
finite additivity of $\lambda_{p}^{+}$ and $\lambda_{p}^{-}$ implies the assertion. q.e. $d$ .

In the following let $l^{1}$ be the usual space of absolutely convergent
sequences with norm $||\cdot||_{1}$ .

PROPOSITION 5.2. Let $xeba$ and let $x=x_{\iota}+x_{p}$ denote the Yosida-
Hewitt decomposition. (a) Define a sequence $f=\{f(k)\}$ by setting $f(k)=$

$\lambda_{a}(\{k\})$ for $k\in N.$ Then $fel^{1},$ $\langle u, f\rangle=\langle u, \lambda_{\iota}\rangle fo\gamma$ all $u\in l^{\infty}$ , and $||\lambda_{0}||=$

$||f||_{1}=\sum_{k}|f(k)|$ . Therefore, $\lambda_{e}\in l^{1}$ in the sense of the natural embedding.
(b) $\langle u, \lambda_{p}\rangle=0$ for all $u\in c_{0}$ .

PROOF. (a) Since $\lambda_{0}$ is c.a., $||\lambda_{\iota}||=\sum_{k}v(\lambda_{\iota}, \{k\})=\sum_{k}|N_{\iota}(\{k\})|=||f||_{1}$ ; and
so $f\in l^{1}$ . Moreover, $\langle u, f\rangle=\sum_{k}u(k)f(k)=\langle u, \lambda_{\iota}\rangle$ , and so $f$ is identified
in $ba$ with $\lambda_{\iota}$ in the sense of the natural embedding of $l^{1}$ in $ba$ . (b) Given
$n\in N$, let $F_{n}=\{1,2,3, \cdots, n\}$ . Then for every $u\in c_{0}$ the application of
Lemma 5.1 yields the estimate $|\langle u, \lambda_{p}\rangle|\leqq\langle|u|\chi_{N-F_{\hslash}}v(\lambda_{p}, )\rangle\leqq$

$(\sup_{\epsilon\geqq}, |u(s)|)||\lambda_{p}||$ for $n\in N$. Since the extreme right side goes to $0$ as
$n\rightarrow\infty(u\in c_{0})$ , we have $\langle u, \lambda_{p}\rangle=0$ . Thus (b) is obtained. q.e. $d$ .

Dixmier’s decomposition theorem [6] states that if $X$ is a Banach
space then the third conjugate $X^{***}$ is decomposed as the direct sum of
$X^{*}$ and the closed subspace $X^{\perp}$ consisting of the functionals vanishing
on $X$. Accordingly, $ba$ is decomposed as the direct sum $ba=l^{1}+c_{0}^{\perp},$ $c_{0}^{\perp}=$

{ $\lambda\in ba:\langle u,$ $N\rangle=0$ for all $uec_{0}$}. Thus combining this with Proposition
5.2, we have:

THEOREM 5.3. In the space $ba$ , the Yosida-Hewitt decomposition is
equivalent to the Dixmier decomposition.

Now in the remainder part of this section we discuss the structure
of $F_{0}(u)$ from the point of view of Theorem 5.3. First of all, we
consider two extreme cases.

PROPOSITION 5.4. Let $u\in l^{\infty}-\{0\}$ . Then $F_{0}(u)\subset l^{1}$ iff $\lim\sup_{k\rightarrow\infty}|u(k)|<$

$||u||$ . $Mo\gamma eover$ in this case, $F_{0}(u)$ is the eonvex closure of a finite
number of c.a. measures of the form $\delta_{k}0\gamma-\delta_{k}$ .

PROOF. Suppose that $\alpha=\lim\sup|u(k)|<||u||$ , and let $E^{*}=\{keN$:
$|u(k)|=||u||\}$ . Then $ E^{*}\neq\emptyset$ and $E^{*}$ is a finite set. We then write $E^{*}=$
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$\{k_{1}, \cdots, k_{l}\}$ . Then \langle $u$ , sgn $(u(k_{i}))\delta_{k_{i}}\rangle$ $=|u(k_{i})|=||u||$ and so sgn $(u(k_{i}))\delta_{k_{i}}$ ,
$1\leqq i\leqq l$ , belong to $extF_{0}(u)$ by Theorem 4.6. Now $F_{0}(u)$ has no other
extremal points. For, suppose that $\lambda$ is an extremal point of $F_{0}(u)$ ,
different from sgn $(u(k_{i}))\delta_{k_{i}},$ $1\leqq i\leqq l$ ; then it follows from Theorem 4.6
that either $N$ or $-\lambda$ is a 0-1 measure; and either $\lambda\in l^{1}$ or $\lambda\in c_{0}^{\perp}$ . But,
if $\lambda\in l^{1}$ , then $\lambda=\delta_{k}$ for some $k\not\in E^{*}$ , which contradicts the definition of
$E^{*}$ . Thus, $N$ must belong to $c_{0}^{\perp}$ . Let $\epsilon=(||u||-\alpha)/2$ . Then there is an
$n_{\epsilon}$ such that $n_{\epsilon}\geqq\max\{k_{i}:1\leqq i\leqq l\}$ and $n\geqq n_{\epsilon}$ implies $|u(n)|\leqq\alpha+\epsilon$ . Since
$\lambda$ is now p.f. $a.$ , one may find an $ E\in\Sigma$ such that $E\subset N-\{1,2, \cdots, n_{\epsilon}\}$

and $|\lambda(E)|=v(\lambda, E)=1$ . Hence writing $F_{\epsilon}$ for the set $\{1, 2, \cdots, n_{\iota}\}$ , we
see with the aid of Lemma 3.1 that $||u||=\langle|u|\chi_{N-F_{\epsilon}}, v(N, )\rangle\leqq$

$(\alpha+\epsilon)v(\lambda, N-F_{\epsilon})\leqq\alpha+\epsilon<||u||$ . This contradiction shows that $F_{0}(u)$ has
no other extremal points than sgn $(u(k_{l}))\delta_{k_{i}},$ $1\leqq i\leqq l$ , and consequently, $F_{0}(u)$

is the convex closure of these countably additive measure. Conversely,
assume that $F_{0}(u)\subset l^{1}$ and $\lim\sup|u(k)|=||u||$ . Then, there exists a sub-
sequence $\{k_{j}\}$ such that $\lim|u(k_{j})|=||u||$ ; one may assume without loss of
generality that $u(k_{j})\geqq 0$ and $\lim u(k_{j})=||u||$ . Let $E=\{k_{j}:j\geqq 1\}$ and let
$\mathscr{A}=$ {$ E-F:F=\emptyset$ or card $(F)<\infty$ }. Then there exists a nonprincipal
ultrafilter $\mathscr{G}^{-}$ which contains $\ovalbox{\tt\small REJECT}$ as its subfamily. Let $\lambda$ be the 0-1
measure associated with this ultrafilter $LZ$ Then we infer with the aid
of Propositions 2.2 and 5.2 that $\lambda\in c_{0}^{\perp}$ and $v(\lambda, E^{0}UF)=0$ for all finite
set $F$ in $N$. Now for a given $n\in N$, define a simple function $u^{n}$ in $l^{\infty}$ by
setting $u^{\hslash}=u(k_{n})\chi_{B_{\hslash}}$ and $E_{n}=\{k_{j}:j\geqq n\}$ ; note that $\lambda(E_{n})=1$ for $n\geqq 1$ . Then
for every $n,$ $||u^{n}||\leqq||u||$ and for a given $\epsilon>0$ the set $\{k\in E:|u^{n}(k)-u(k)|>\epsilon\}$

contains at most a finite number of $k_{\dot{g}}’ s$ . Hence noting that $v(N, N-E)=0$
and using Lemma 5.1, we infer that $\lim v(\lambda, \{k:|u^{n}(k)-u(k)|>\epsilon\})=0$ for
every $\epsilon>0$ . So, $u^{n}$ converges to $u$ in $N$-measure and the dominated con-
vergence theorem yields $\langle u, \lambda\rangle=\lim\langle u^{n}, N\rangle=\lim u(k_{n})\lambda(E_{\tau\iota})=||u||$ . This
means that $\lambda\in F_{0}(u)$ and contradicts the assumption that $F_{0}(u)\subset l^{1}$ .
Therefore, we conclude that $\lim\sup|u(k)|<||u||$ . q.e.d.

PROPOSITION 5.5. Let $u\in l^{\infty}-\{0\}$ . $Then,F_{0}(u)\subset c_{0}^{\perp}iff|u(k)|<||u||$ for
all $k\in N$.

PROOF. Suppose first that $|u(k)|<||u||$ for all $k\in N$. Let $\lambda\in F_{0}(u)$

and let $\lambda=\lambda_{0}+\lambda_{p}$ be tbe Yosida-Hewitt decomposition. Then by Proposi-
tion 3.4, we have the relation

$\int_{N}|u(s)|v(\lambda_{\theta}, ds)=||u||||\lambda_{\iota}||=\int_{N}||u||v(\lambda_{0}, ds)$ ,

and so the countable additivity of $\lambda_{\iota}$ yields
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$0=\int_{N}(||u||-|u(s)|)v(\lambda_{0}, ds)=\sum_{k=1}^{\infty}(||u||-|u(k)|)|\lambda_{0}(\{k\})|$ .
But, $||u||-|u(k)|>0$ for every $k$ ; hence $\lambda_{\iota}(\{k\})=0$ for $k\in N$ and this fact
implies that $\lambda_{0}=0$ , i.e., $\lambda$ is p.f. $a$ . Thus, $\lambda\in c_{0}^{\perp}$ by Proposition 5.2. To
get the converse, assume that $|u(k)|=||u||$ for some $keN$. Then we
have $\langle|u|, \delta_{k}\rangle=|u(k)|=||u||$ for the point mass $\delta_{k}$ , i.e., sgn $(u(k))\in F_{0}(u)$ .
Since sgn $(u(k))\delta_{k}$ is c.a., this contradicts the assumption that every
element of $F_{0}(u)$ is p.f. $a$ . q.e.d.

REMARK. If $|u(\cdot)|$ attains $||u||$ at infinitely many points, say $k_{i},$ $i\geqq 1$ ,
then $F_{0}(u)$ contains infinitely many c.a. 0-1 (or $0-(-1)$) measures since
for each $i$ either $\delta_{k_{i}}$ or $-\delta_{k}$ , is in $extF_{0}(u)$ . In this case $F_{0}(u)$ must also
have at least one p.f. $a$ . $0-1$ (or $0-(-1)$) measure. In fact, suppose that
$u(k_{i})=||u||$ for $i\geqq 1$ (we choose a subsequence of $\{k_{i}\}$ if necessary) and
let $E=\{k_{i}:i\geqq 1\}$ . Since the family $\mathscr{B}=$ {$E-F:F$ is finite} forms a base
for a filter on $N$, we may take a nonprincipal ultrafilter which is finer
than the filter generated by ta. Then the p.f. $a$ . $0-1$ measure associated
with this ultrafilter is in $F_{0}(u)$ . If $u(k_{i})=-||u||$ for $i\geqq 1$ , we get a p.f. $a$ .
$0-(-1)$ measure in a similar way.

We now consider the general case. The convex set $F_{0}(u)$ is in
general a weakly-star ,closed convex hull of a disjoint union of a subset
of $l^{1}$ and that of $c_{0}^{\perp}$ (cf. Theorem 5.3).

THEOREM 5.6. Let $u\in l^{\infty}-\{0\}$ . Then $F_{0}(u)$ is written as $F_{0}(u)=$

$\overline{co}^{\sigma tba,l^{\infty})}[C\cup P]$ , where $C$ is the set of all c.a. 0-1 or $0-(-1)$ measures in
$F_{0}(u),$ $P$ the set of all p.f. $a$ . $0-1$ or $0-(-1)$ measures in $F_{0}(u)$ , and $\overline{co}^{\sigma}$

means the weakly-star closed convex hull of $C\cup P$.
PROOF. Theorem 4.6 states that either ext $F_{0}(u)=extF_{0}(u^{+})$ or

ext $F_{0}(u)=extF_{0}(-u^{-})$ or ext $F_{0}(u)=extF_{0}(u^{+})\cup extF_{0}(-u^{-})$ . Now
Theorem 4.1 says that ext $F_{0}(u^{+})$ consists of 0-1 measures, while
ext $F_{0}(-u^{-})$ consists of $0-(-1)$ measures. Thus ext $F_{0}(u)\subset C\cup P\subset F_{0}(u)$ ,
so that $F_{0}(u)=\overline{co}^{\sigma}[C\cup P]$ by Theorem 4.2. q.e. $d$ .

\S 6. Geometrical interpretations.

In this section we give some geometrical interpretations of our results
established so far in connection with the structures of the unit balls in
$l^{\infty}$ and $ba$ . Moreover, the characterizations of extremal points and smooth
points of the unit ball in $l^{\infty}$ will be given as applications of our results.

We first divide the surface $S=\{u\in l^{\infty}:||u||=1\}$ of the unit ball in $l^{\infty}$

into the following five zones:
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$A_{+}=\{u\in l^{\infty}:||u||=1, u\geqq 0\}$ ,
$T_{+}=\{u\in l^{\infty}:u=u^{+}-u^{-}, 0<||u^{-}||<||u^{+}||=1\}$ ,
$T_{0}=\{u\in l^{\infty}:u=u^{+}-u^{-}, ||u^{+}||=||u^{-}||=1\}$ ,
$T_{-}=\{u\in l^{\infty}:u=u^{+}-u^{-}, 0<||u^{+}||<||u^{-}||=1\}$ ,
$A_{-}=\{u\in l^{\infty}:||u||=1, u\leqq 0\}$ .
We wish to consider the partition of the surface $S^{*}=\{\lambda\in ba:||\lambda||=1\}$

of the unit ball in $ba$ , which is associated through the duality mapping
$F_{0}$ with the above-mentioned heuristic partition of $S$ . The $S^{*}$ may be
divided into three zones which are defined as;

$A_{+}^{*}=ba^{+}\cap S^{*}=\{\lambda\in ba;\lambda\in ba^{+}, ||\lambda||=1\}$ ,
$\tau_{0}*=$ {$\lambda\in ba:\lambda$ satisfies condition $(C)$ },
$A_{-}^{*}=-A_{+}^{*}=\{\lambda\in ba:-N\in ba^{+}, ||\lambda||=1\}$ ,

where $\lambda$ is said to satisfy condition $(C)$ , if it is written in the form
$x=\alpha\nu_{1}-\beta\nu_{2}$ for some $\nu_{1},$ $\nu_{2}$ in $A_{+}^{*}$ with $\nu_{1}$ A $v_{2}=0$ and some $\alpha,$ $\beta e(0,1)$

with $\alpha+\beta=1$ ; note that a $\nu_{1}=\lambda^{+},$ $\beta\nu_{2}=\lambda^{-}$ and $||\lambda||=1$ by (1.3) and Lemma
1.2. Observe that $\tau_{0}*consists$ of proper convex combinations of $A_{+}^{*}$ and
those of $A_{-}^{*}$ . Also, we have $S^{*}=A_{+}^{*}\cup\tau_{0}*\cup A_{-}^{*}$ . In fact, let $\lambda\in S^{*}$ and
let $\lambda=\lambda^{+}-\lambda^{-}$ be the Jordan decomposition of $\lambda$ . If any one of $\lambda^{+}$ and
$\lambda^{-}$ is a zero measure, we have either $\lambda\in A_{+}^{*}$ or $\lambda\in A_{-}^{*}$ . If $||N^{+}||||\lambda^{-}||>0$ ,
then $\lambda^{+}$ A $\lambda^{-}=0$ and $||\lambda^{+}||+||\lambda^{-}||=||\lambda||=1$ . So, if we set $y_{1}=\lambda^{+}/||\lambda^{+}||$ and
$p_{2}=\lambda^{-}/||\lambda^{-}||$ , then $\lambda=||\lambda^{+}||v_{1}-||x^{-}||\nu_{2}\in\tau_{0}*$ .

We now demonstrate that this partition is the desired one for $S^{*}$ .
First, Theorem 4.6 states that $F_{0}$ maps $A_{+}\cup T_{+}$ into $A_{+}^{*}$ , and $A_{-}\cup T_{-}$

into $A_{-}^{*};$ and secondly, $F_{0}$ maps $T_{0}$ into $\tau_{0}*$ by Proposition 4.4 and
Theorem 4.6. That $F_{0}(A_{+}\cup T_{+})=A_{+}^{*}$ and $F_{0}(A_{-}\cup T_{-})=A_{-}^{*}$ hold follows
from the facts $F_{0}(\chi_{N})=A_{+}^{*}$ and $F_{0}(-\chi_{N})=A_{-}^{*}$ . Each of $F_{0}(u),$ $u\in S$, forms
a “flat’‘ part of the unit surface $S^{*}$ in the sense that it forms a part
of $S^{*}$ and is a weakly-star closed convex hull of 0-1 (or $0-(-1)$) measures.
(In this sense each of $F_{0}(u)$ is called a face of $S$ , see Phelps [10].) The
above facts, together with Theorem 4.2, state that $A_{+}^{*}$ and $A_{-}^{*}$ are flat
on $S^{*}$ . Therefore, extremal points of $S^{*}$ are all on the “edges” of the
closed convex sets $A_{+}^{*}$ and $A_{-}^{*}$ . This means that $S^{*}$ shapes a “cylinder”
in the space $ba$ , and $\tau_{0}*$ turns to be a rich and complicated zone, in
contrast to the “thin” zone $T_{0}$ .

According to James’ theorem ([5], p. 12, Theorem 3), the range of
$F_{0},$ $R(F_{0})=\cup\{F_{0}(u):u\in S\}$ , is a proper subset of $S^{*}$ . Hence, $F_{0}$ does not
map $T_{0}$ onto $\tau_{0}*$ . On the other hand, Bishop-Phelps’ theorem [3] states
that $R(F_{0})$ is norm-dense in the surface $S^{*}$ . (In fact, the subreflexivity
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of $l^{\infty}$ is equivalent to the norm-denseness of $F_{0}(S)$ in $S^{*}.$ ) Moreover,
$l‘\cap S^{*}$ lies in $R(F_{0})$ since if $\lambda\in l^{1}\cap S^{*}$ then $1=||\lambda||=\max\{|\langle u, \lambda\rangle|:||u||=1\}=$

$\langle u_{0}, \lambda\rangle=||u_{0}||$ for some $u_{0}\in S$ by the Hahn-Banach theorem. Therefore,
we can say that the surfaces $S^{*}$ is (norm-) densely patched by the faces
$F_{0}(u),$ $u\in l^{\infty}$ , in such a way that $S^{*}-R(F_{0})\subset T_{0}^{*}\cap c_{0}^{\perp}$ . Although $F_{0}(T_{0})\subsetneqq T_{0}^{*}$ ,
we can show that $F_{0}(T_{0})$ covers $\tau_{0}*essentially$ :

PROPOSITION 6.1. Let $\nu_{1},$ $\nu_{2}$ be any 0-1 measures, and let $\alpha,$ $\beta>0$

and $\alpha+\beta=1$ . If $\nu_{1}\wedge\nu_{2}=0$ , then $\lambda=\alpha\nu_{1}-\beta\nu_{2}\in F_{0}(T_{0})$ .
PROOF. First we note that $\lambda\in\tau_{0}*$ . If $v_{1},$ $\nu_{l}\in l^{1}$ then $v_{1}=\delta_{j}$ and $\nu_{2}=\delta_{k}$

for same $j,$ $keN$ with $j\neq k$ . Hence, if $u$ is a simple function $u=x_{tiI^{-}}\chi_{tkI}$ ,
then we have $u\in T_{0}$ and $\langle u, \lambda\rangle=1$ , i.e., $\lambda\in F_{0}(T_{0})$ . If $\nu_{1}el^{\infty}$ and $\nu_{2}\in c_{0}^{L}$ ,
then $\nu_{1}=\delta_{j}$ for some $j\in N$ and $v_{2}(E)=1$ for some $ E\in\Sigma$ with $j\not\in E$. Hence
in this case we take a simple function $u=x_{1iI^{-}}x_{B}$ ; then $u\in T_{0}$ and
$\langle u, \lambda\rangle=1$ , which means that $\lambda\in F_{0}(T_{0})$ . Similarly we also have $xeF_{0}(T_{0})$

if $\nu_{1}\in c_{0}^{L}$ and $\nu_{2}el^{1}$ . Suppose now that $\nu_{1},$ $\nu_{2}\in c_{0}^{\perp}$ . Since $\nu_{1},$ $\nu_{2}\in A_{+}^{*}$ , there
exist $u|,$ $u_{2}^{\prime}\in A_{+}$ such that $\nu_{i}\in F_{0}(u_{i}^{\prime})$ , $i=1,2$ . We may assume that
$\lim\sup_{k\rightarrow\infty}u_{:}^{\prime}(k)=1$ for $i=1,2$ , for otherwise, $\nu_{:}$ must belong to $l^{1}$ by
Proposition 5.4. Let $0<\epsilon<\min\{\alpha, \beta\}$ and set $E_{i}^{\prime}=\{s\in N:|u_{:}^{\prime}(s)-1|<\epsilon\}$ for
$i=1,2$ . Then we see from Proposition 2.5 that $v_{1}(E_{1}^{\prime})=1$ . Noting that
($\alpha v_{1}$ A $\beta v_{2}$) $(E_{1}^{\prime})=0$ , one can find a $ T\in\Sigma$ such that $T\subset E_{1}^{\prime}$ and $\alpha\nu_{1}(T)+$

$\beta v_{2}(E_{1}^{\prime}-T)<\epsilon$ . But, $\nu_{1}(T)=v_{2}(E_{1}^{\prime}-T)=0$ since $\nu_{1}$ and $\nu_{\mathfrak{g}}$ are 0-1 measures.
Thus, $v_{1}(E_{1}^{\prime}-T)=1$ and $v_{2}(E_{1}^{\prime}-T)=0$ . We then set $E_{1}=E_{1}^{\prime}-T$ and $E_{2}=$

$(E_{1}^{\prime}-T)^{\iota}\cap E_{2}^{\prime}$ . Then $ E_{1}\cap E_{2}=\emptyset$ and $\nu_{l}(E_{i})=1$ for $i=1,2$ . So, if we set
$u_{i}=\chi_{E}:u_{i}^{\prime}$ for $i=1,2$ and $u=u_{1}-u_{2}$ , then $u^{+}=u_{1},$ $u^{-}=u_{8},$ $u\in T_{0}$ and $\nu\in$

$F_{0}(u_{i})$ for $i=1,2$ . Moreover, $xeF_{0}(u)\subset F_{0}(T_{0})$ . q.e.d.

Now in the remainder of this section we discuss extremal points and
smooth points of the unit sphere $S$ . First, we characterize extremal
points of $S$ .

PROPOSITION 6.2. An element $uel^{\infty}$ is in ext $S$ iff $|u(s)|=1$ for all
$s\in N$.

PROOF. Suppose that $uel^{\infty}$ and $|u(s)|=1$ for $s\in N$. Assume then
that there exist $u_{1},$ $u_{2}\in S$ and $\alpha\in(0,1)$ such that $u=u_{1}+(1-\alpha)u_{2}$ . Let
$u(s)=1$ . Then we have $u_{1}(s)=u_{2}(s)=1$ , for if $u_{1}(8)<1$ then we get a
contradiction that $1=u(s)=\alpha u_{1}(\epsilon)+(1-\alpha)u_{2}(s)<\alpha+1-\alpha=1$ . Similarly, if
$u(s)=-1$ , it is shown that $u(8)=u_{1}(s)=u_{2}(s)=-1$ . Thus, we have $u=$

$u_{1}=u_{2}$ and this means that $ u\in$ ext $S$ . Conversely, suppose that $ue$ ext $S$ .
Assume that $|u(k)|<1$ for some $keN$ and define $u_{1},$ $u_{2}$ , and $\alpha$ by $u_{1}(\epsilon)=1$
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if $s=k,$ $u_{1}(s)=u(s)$ if $s\neq k;u_{2}(s)=-1$ if $s=k$ , and $u_{2}(s)=u(s)$ if $s\neq k$ ;
and $\alpha=(u(k)+1)/2’$ . Then $u_{1}\neq u_{2}$ , $u_{1},$ $u_{2}\in S$, a $e(0,1)$ , and $u=\alpha u_{1}+$

$(1-\alpha)u_{2}$ . This contradicts the assumption that $ u\in$ ext S. q.e. $d$ .
Next, we prepare the following lemma to characterize smooth points

of $S$.
LEMMA 6.3. Let $u\in l^{\infty}-\{0\}$ . If $ F_{0}(u)\cap c_{0}^{\perp}\neq\emptyset$ , then $F_{0}(u)$ contains

at least one p.f. $a$ . $0-1$ (or $0-(-1)$ ) measure; and in this case, $F_{0}(u)$ is an
infinite set.

PROOF. The first assertion is evident from Theorem 5.6. To get
the last assertion we may assume without loss of generality that $||u||=1$

and $F_{0}(u)$ contains a p.f. $a$ . $0-1$ measure $\phi$ . Then $\phi\in F_{0}(u^{+})$ and $||u^{+}||=1$

by Theorem 4.6. Let $L\mathscr{F}=\{E\in\Sigma;\phi(E)=1\}$ be the non-principal ultrafilter
associated with $\phi$ and let $E_{n}=\{s:1-1/n\leqq u^{+}(s)\leqq 1\}$ for $n\geqq 1$ . Then,
$E_{n}e\ovalbox{\tt\small REJECT}$ for all $n$ . For otherwise, $\phi(E_{n})=0$ and so we get a contradiction
that

$1=\int_{N}u^{+}(s)\phi(ds)\leqq\int_{N-E_{n}}(1-\frac{1}{n})\phi(ds)=1-\frac{1}{n}<1$ .

Hence, each $E_{n}$ is an infinite set, and a sequence $\{s_{jl}\}$ of positive integers
can be chosen so that $s.eE_{n}$ and $s_{n+1}>s_{n}$ for $n\geqq 1$ . Let $E_{0}=\{s_{n}:n\geqq 1\}$ ,
$F_{n}=E_{0}\cap E_{n}=\{s_{k}:k\geqq n\}$ and define

$F_{n}^{1}=$ {$s_{k}:k\geqq n,$ $k$ is odd} ,
$F_{\hslash}^{2}=$ { $s_{k}:k\geqq n,$ $k$ is even}.

Clearly, $ F_{n}^{1}\cap F_{n}^{2}=\emptyset$ and $F_{n}=F^{1}\cup F_{n}^{2}$ for $n\geqq 1$ . Now both of the sequences
$\{F_{n}^{1}\}$ and $\{F^{2}.\}$ are monotone decreasing sequences of nonempty sets, and
so they form bases of filters on $N$. Let $\mathscr{F}_{1}^{\sim}$ and $\mathscr{F}_{2}$ be any ultrafilters
which are finer than the filters generated by $\{F_{*}^{1}\}$ and $\{F_{n}^{2}\}$ , respectively.
Then $\sim \mathscr{F}_{1}\neq \mathscr{G}_{2}^{-}$ and $\backslash \mathscr{F}_{1},$ $\mathscr{F}_{g}^{\sim}$ are non-principal. Hence, to the $\mathscr{F}_{1}^{\sim}$ and $\mathscr{G}_{2}^{\sim}$

there correspond p.f. $a$ . $0-1$ measures $\phi_{1}$ and $\phi_{2}$ , respectively. We then
have $\phi_{1},$ $\phi_{2}\in F_{0}(u^{+})$ . In fact, since $F_{n}^{1}\subset E_{n}$ for $n\geqq 1$ ,

$1\geqq\int_{N}u^{+}(s)\phi_{1}(ds)=\int_{F_{\hslash}^{1}}u^{+}(s)\phi_{1}(ds)\geqq\int_{p_{n}^{1}}(1-\frac{1}{n})\phi_{1}(ds)=1-\frac{1}{n}$

for all $n\geqq 1$ , which means that $\langle u^{+}, \phi_{1}\rangle=1$ and $\phi_{1}\in F_{0}(u^{+})$ . Similarly,
$\phi_{2}\in F_{0}(u^{+})$ . Consequently, Theorem 4.6 yields that $\phi_{1},$ $\phi_{g}\in F_{0}(u)$ . Now
the last assertion follows from the convexity of $F_{0}(u)$ . q.e.d.
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THEOREM 6.4. Let $u\in S.$ $F_{0}(u)$ is a singleton set iff there exists a
$k_{0}\in N$ such that $|u(k_{0})|=1,$ $|u(s)|<1$ for $s\neq k_{0}$ and $\lim\sup_{\iota\rightarrow\infty}|u(s)|<1$ .

PROOF. Assume that $F_{0}(u)$ is a singleton set $\{\phi\}$ . Since $\phi$ is an
extremal point of $F_{0}(u)$ , Theorem 4.6 implies that $\phi$ is a 0-1 (or $0-(-1)$)

measure. We may suppose that $\phi$ is a 0-1 measure. Now from Lemma
6.3 we see that $\phi$ can not be p.f. $a$ . and hence $\phi$ is a c.a. 0-1 measure.
Thus, Proposition 5.4 yields that a unique $k_{0}$ can be found such that
$\phi=\delta_{k_{0}},$ $|u(s)|<1$ for $s\neq k_{0}$ and $\lim\sup_{s\rightarrow\infty}|u(s)|<1$ . The converse is evident
from Propositions 5.4 and 5.5. q.e. $d$ .

The above theorem can be rewritten in the following form.

COROLLARY 6.5. A point $u$ on $S$ is a smooth point, i.e., $ue$ sm $S$

iff $\lim\sup_{\rightarrow\infty}|u(s)|<1$ and $|u(\cdot)|$ attains 1 at only one point $k_{0}eN$.
COROLLARY 6.6. sm $S$ is open-dense in $S$ .
PROOF. First we show that sm $S$ is dense in $S$ . Let $u\in S$ and $\epsilon>0$ .

Let $E_{\epsilon}=\{k:|u(k)|>1-\epsilon\}$ ; then $ E_{\epsilon}\neq\emptyset$ . Fix any $k_{\epsilon}\in E_{\epsilon}$ and define $u_{\epsilon}$ by

$u_{\epsilon}(k)=\left\{\begin{array}{ll}sgn u(k) & k=k_{\epsilon} ,\\(1-\epsilon) sgn u(k) & k\in E_{\epsilon}-\{k_{\epsilon}\} ,\\u(k) & k\not\in E_{\epsilon}.\end{array}\right.$

Then $\lim\sup_{k\rightarrow\infty}|u_{\epsilon}(k)|\leqq 1-\epsilon<1$ and $|u_{\epsilon}(\cdot)|$ attains 1 only at $k_{\epsilon}$ . $ u_{\epsilon}\in$ sm $S$

by Corollary 6.5. Also, it is clear from the definition of $u_{e}$ that
$||u_{\epsilon}-u||<\epsilon$ . This means that sm $S$ is norm-dense in $S$ . Next, we show
that sm $S$ is open in $S$. Let $ u_{0}\in$ sm S. Then there exists a $k_{0}$ such that
$|u_{0}(k_{0})|=1,$ $|u_{0}(k)|<1$ for $k\neq k_{0}$ and $a=\lim\sup u_{0}(k)|<1$ . So, there is a $k_{1}$

such that $|u_{0}(k)|<\alpha+(1-\alpha)/2=(1+\alpha)/2<1$ for $k\geqq k_{1}$ . Let

$\epsilon=\frac{1}{2}\min\{1-|u_{0}(k)|(k\neq k_{0},1\leqq k<k_{1}), (1-a)/2\}(>0)$ ,

and let $||u-u_{0}||<\epsilon$ . If $1\leqq k<k_{0}$ , and $k\neq k_{0}$ , then $|u(k)|<|u_{0}(k)|+\epsilon\leqq$

$(1+|u_{0}(k)|)/2<1$ ; and if $k\geqq k_{1}$ , then $|u(k)|<(1+\alpha)/2+(1-\alpha)/4=(3+\alpha)/4<1$

and $\lim\sup|u(k)|\leqq(3+\alpha)/4<1$ . If in addition $u\in S$ , then $|u(k_{0})|=1$ . This
means that $B_{\epsilon}(u_{0})\cap S\subset smS$, where $B_{\epsilon}(u_{0})$ denotes the $\epsilon$-spherical neighbor-
hood of $u_{0}$ . q.e.d.

PROPOSITION 6.7. sm $S$ consists of a countable number of connected
components $C_{k}^{\pm}=$ {$ u\in$ sm $S:\pm u(k)=1$}, $k\geqq 1$ .
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PROOF. First we see from Corollary 6.5 that sm $S=\bigcup_{k=1}^{\infty}(C_{k}^{+}\cup C_{k}^{-})$ .
Each of $C_{k}^{+}$ and $C_{k}^{-},$ $k\geqq 1$ , is convex and open by Corollary 6.6. Also,
these convex open sets are pairwise disjoint. q.e. $d$ .

\S 7. Topological properties of $F_{0}$ .
In this section we discuss topological properties of the duality

mapping $F_{0}$ . We start with the following

LEMMA 7.1. Let $\lambda$ and $\nu$ be two distinct 0-1 measures. Then $\lambda\wedge\nu=0$

and $||\lambda\pm\nu||=2$ .
PROOF. Let $\mathscr{G}^{-}$ and $\ovalbox{\tt\small REJECT}^{\nearrow}$ be the ultrafilters on $N$ associated through

Proposition 2.1 with $\lambda$ and $\nu$ , respectively. Since $\mathscr{G}^{-}\neq\ovalbox{\tt\small REJECT}^{\prime}$ there exists
an $E_{0}\in \mathscr{F}-\ovalbox{\tt\small REJECT}^{\prime}$ Hence $E_{0}^{0}e\ovalbox{\tt\small REJECT}^{\nearrow}-\mathscr{G}-$; so $\lambda(E_{0})=\nu(E_{0}^{\iota})=1$ . Since $\lambda(T)=$

$\lambda(T\cap E_{0})$ and $v(T)=\nu(T\cap E_{0}^{\iota})$ for every $ T\in\Sigma$ , we infer that $\lambda(T)+$

$\nu(E-T)=\lambda(T\cap E)+\nu(E\cap T^{\iota}\cap E_{0}^{\epsilon})$ for $T\subset E$. Hence if we take $T=E\cap E_{0}^{a}$ ,
then $\lambda(T)+\nu(E-T)=0$ . This means that $x\wedge\nu=0$ . The last assertion
follows from the estimate

$2=\lambda(E_{0})+\nu(E_{0}^{a})\leqq|(\lambda\pm\nu)(E_{0})|+|(\lambda\pm\nu)(E_{0}^{0})|.\leqq q.ed$.$(\lambda\pm v, N)=||\lambda\pm\nu||<||\lambda||+||v||=2$ .
LEMMA 7.2. Let $\{\lambda_{n}\}$ be a sequence of 0-1 (resp. $0-(-1)$) measures,

and let $\lambda$ be a weak-star cluster point of the sequence $\{\lambda_{n};n\uparrow\infty\}$ . Then
$\lambda$ is also a 0-1 (resp. $0-(-1)$) measure.

PROOF. For every $E\in\Sigma,$ $\epsilon>0$ and $p\in N$, there exists an $n$ such that
$n\geqq p$ and $|\lambda_{n}(E)-\lambda(E)|<\epsilon$ . Hence, if $0<\lambda(E)<1$ and $\epsilon=\min\{\lambda(E),$ $1-$

$\lambda(E)\}(>0)$ , then $|\lambda_{n}(E)-\lambda(E)|<\epsilon<1$ . But, $\lambda_{n}(E)$ is either 1 or $0$ , we get
a contradiction. Thus, $\lambda(E)$ is either 1 or $0$ . q.e.d.

Lemma 7.2 states that a weak-star cluster point of a net consisting
of extremal points of $S^{*}$ is always an extremal point of $S^{*}$ . Now as
mentioned in the introduction, $F_{0}$ is weakly-star demi-closed in the sense
that if $v_{n}\in S,$ $||v,$ $-v||\rightarrow 0,$ $\lambda_{n}\in F_{0}(v_{n})$ and if $\lambda$ is a weak-star cluster
point of the net $\{\lambda_{n};n\uparrow\infty\}$ , then $v\in S$ and $\lambda\in F_{0}(v)$ . The following result
gives another aspect of the weak-star demi-closedness of $F_{0}$ .

PROPOSITION 7.3. Let $\{v_{n}\}$ be a sequence contained in $S$ such that
$||v_{n}-v||\rightarrow 0$ . Let $\lambda_{n}\in$ ext $F_{0}(v_{n}),$ $n\geqq 1$ , and let $N$ be any weak-star ciuster
point of the sequence $\{\lambda_{n}:n\uparrow\infty\}$ . Then $\lambda\in$ ext $F_{0}(v)$ . If the sequence $\{N_{f}\}$

contains infinitely many 0-1 $(\gamma esp. 0-(-1))$ measures, then ext $F_{0}(v)$

contains at least one 0-1 (resp. $0-(-1)$ ) measure. If the $\{\lambda_{n}\}$ consists
of distinct elements, then it constains no strongly convergent subsequences.
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PROOF. The first two assertions follow from the weak-star demi-
closedness of $F_{0}$ and Lemma 7.2; and the last assertion is evident from
Lemma 7.1. q.e. $d$ .

It is well-known ([5], p. 22) that any single-valued selection of $F_{0}$

is norm to weak-star continuous from $S$ into $S^{*}$ at every smooth point
of $S$. But we have the following stronger result which is a direct
consequence of Theorem 6.4 and Proposition 6.7.

PROPOSITION 7.4. Let $C_{k}^{+}$ and $C_{k}^{-},$ $k\geqq 1$ , be the connected components
of sm $S$ mentioned as in Proposition 6.7. Then, $F_{0}$ is single-valued and
is constant on each of $C_{k}^{+}$ and $C_{k}^{-}$ in such a way that $F_{0}(u)=\{\delta_{k}\}$ for
$u\in C_{k}^{+}$ and $F_{0}(u)=\{-\delta_{k}\}$ for $u\in C_{k}^{-},$ $k\geqq 1$ . Therefore, $F_{0}$ restricted on
sm $S$ is norm-to-norm continuous from $S$ to $S^{*}$ .

Corollary 6.5 states that $F_{0}$ is multi-valued on $S-smS$. We then
show with the aid of Corollary 6.6 that the values of $F_{0}$ on the set
$S-smS$ can be viewed as boundary values of the restriction of $F_{0}$ on
the open set sm $S$.

THEOREM 7.5. Let $veS-smS$. (1) If $N\in extF_{0}(v)\cap l^{1}$ , then $the\gamma e$

exists a sequence $\{v,\}$ in sm $S$ such that $||v,.-v||\rightarrow 0$ and $F_{0}(v,)=\{\lambda\}$ .
(2) If $\lambda\in$ ext $F_{0}(v)\cap c_{0}^{\perp}$ , then there exists a sequence $\{v_{*}\}$ ,in sm $S$ such
that $ fo\gamma$ every $s>0$ , there is a subsequence $\{v_{\epsilon.n}\}$ of $\{v_{n}\}$ with the following
$p\gamma ope\gamma ties$ :

(a) $||v_{\epsilon.n}-v||\leqq\epsilon$ for all $n$ ; and (b) $\lambda$ is a $ weak-sta\gamma$ cluster point of
the sequence $\{\lambda_{\epsilon.n};n\uparrow\infty\},$ where $\lambda_{\epsilon.*}=F_{0}(v_{\epsilon,,*})fo\gamma n\geqq 1$ .

PROOF. (1): Let $\lambda\in$ ext $F_{0}(v)\cap l^{1}$ . Then $\lambda$ is a signed point mass, so
that we may assume without loss of generality that $\lambda=\delta_{0}$ for some
$s_{0}\in N$. Note that in this case, $v(s_{0})=\langle v, \lambda\rangle=1$ . Let $\{\epsilon_{\pi}\}$ be any null
sequence contained in $(0,1/2$], and let $\{v_{n}\}$ be a sequence in $S$ such
$v_{n}(s_{0})=1,$ $|v_{n}(s)|\leqq 1-\epsilon_{n}fors\neq s_{0}$ and $|v,.(s)-v(s)|\leqq\epsilon_{n}$ for all $s$ . (We choose
for instance $\{v_{n}\}$ defined by setting $v_{n}(s)=v(s)-\epsilon_{\hslash}$ sgn $v(s)$ for $s\neq s_{0}$ and
$v.(s_{0})=1.)$ Then, lim sup, $\rightarrow\infty|v_{n}(s)|\leqq 1-\epsilon.,$ $v_{n}\in smS$ and $F_{0}(v_{\hslash})=\delta_{0}$ for all
$n$ . Therefore, $||v_{\hslash}-v||\rightarrow 0$ as $ n\rightarrow\infty$ and $\{\lambda\}=\{\delta_{0}\}=F_{0}(v.)$ for $n\geqq 1$ .

(2): Let $xe$ ext $F_{0}(v)\cap c_{0}^{\perp}$ . We shall give the proof of Assertion (2)
under the assumption that $\lambda\geqq 0$ , since the proof for the negative case
is similar. Since $\langle v, \lambda\rangle=1$ and $\lambda$ is a p.f. $a$ . $0-1$ measure, each of the
sets $E_{e}=v^{-1}(U_{e}(1))$ , $\epsilon>0$ , has N-measure 1 by Proposition 2.5, where
$U_{\epsilon}(1)$ denotes the e-spherical neighborhoood in $R$ of 1. Take any null
sequence $\{\epsilon_{p}\}$ contained in $(0,1/2$] and put $E_{1}=E_{\epsilon_{1}}$ and $\hat{E}_{p}=E_{\epsilon_{p}}$ –
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$\{1, 2, \cdots, \min\hat{E}_{p-1}\}$ for $p\geqq 2$ . Since $E_{\epsilon}’ s$ are infinite sets, $\{\hat{E}_{p}\}$ forms a
strictly monotone decreasing sequence $\{\hat{E}_{p}\}$ in $\Sigma$ such that $\lambda(\hat{E}_{p})=1$ for
$p\geqq 1$ and $\bigcap_{p\geq 1}\hat{E}_{p}=\emptyset$ . We then define a family $\{H_{p}\}$ of pairwise disjoint
elements of $\Sigma$ by setting $H_{p}=\hat{E}_{p}-\hat{E}_{p+1}$ for $p\geqq 1$ . Note that $ H_{p}\neq\emptyset$ ,
$\lambda(H_{p})=0$ , and $\hat{E}_{p}=\bigcup_{i\geq p}H_{i}$ for $p\geqq 1$ . Let $\{s_{n}\}$ be the increasing sequence
of natural numbers such that $\hat{E}_{1}=\{s_{n}:n\geqq 1\}$ ; and for $\epsilon_{n}$ with $s_{n}\in H_{p}$ ,
choose an element $v_{n}\in l^{\infty}$ so that $v_{n}(s_{n})=1,$ $|v_{\iota}(s)|<1-\epsilon_{p}$ for $s\neq s$. and
$|v_{n}(s)-v(s)|\leqq\epsilon_{p}$ for all $s$ . (For instance, we can take $v_{\hslash}$ satisfying
$v_{n}(s_{n})=1$ and $v_{n}(s)=v(s)-\epsilon_{p}$ sgn $v(s)$ for $s\neq s..$ ) Then $ v_{n}\in$ sm $S,$ $F_{0}(v_{n})=\delta.$ ,
for $n\geqq 1$ , and $||v_{n}-v||\leqq\epsilon_{p}$ for $s_{n}\in\hat{E}_{p}$ and $p\geqq 1$ . We now demonstrate that
this sequence $\{v_{n}\}$ is the desired sequence. Let $\epsilon>0$ and choose an $\epsilon_{p}$ such
that $\epsilon_{p}<\epsilon$ . Then, $\{v_{*}:s_{\iota}n\in\hat{E}_{p}\}$ is viewed as a subsequence of $\{v_{n}\}$ by enu-
merating the suffices of the elements in order; we denote this subsequence
by $\{v_{\epsilon,k}\}$ . First, it is clear that $||v_{\epsilon,k}-v||<\epsilon$ for all $k\geqq 1$ . Next, for $k\geqq 1$ ,
let $\lambda_{*,k}$ denote the element of the singleton set $F_{0}(v_{\epsilon,k})$ ; then $\lambda$ becomes a
weak-star cluster point of the net $\{\lambda_{\epsilon,k};k\uparrow\infty\}$ . To show this, let $\mathscr{F}$ be the
ultrafilter on $N$ associated with $N,$ $u\in l^{\infty}$ , and let $\overline{\mathscr{L}_{u}}$ be the non-principal
ultrafilter on the compact set $\overline{u(N)}$ specified as in Proposition 2.4; hence the
value $\alpha\equiv\langle u, \lambda\rangle$ is given as the limit of Y. Now recalling the proof of
Proposition 2.4, we set $U_{i}=\{\xi\in R:|\xi-\alpha|<1/i\},$ $S_{i}=U_{i}\cap u(N)$ , and $E_{i}^{\prime}=$

$u^{-1}(S_{\ell})$ for $i\geqq p$ . Then $E_{i}^{\prime}\cap\hat{E}_{i}\in \mathscr{G}^{-}$ for $i\geqq p$ and each $E_{i}^{\prime}n\text{{\it \^{E}}}_{\dot{t}}$ is an infinite
set, so that there is a sequence $\{s_{i}\wedge\}$ such that $s_{l}\wedge\in E_{i}\cap\hat{E}_{i},$ $ s_{i}>s_{i-1}\wedge\wedge$ for
$i\geqq p+1$ , and $ u(s_{i}\wedge)\rightarrow\alpha$ as $ i\rightarrow\infty$ . Set $E_{t}=E_{i}^{\prime}\cap\hat{E}_{l}-\{1,2, \cdots, s_{i}\wedge-1\}$ for
$’\dot{b}\geqq p$ (hence $s_{l}\wedge=\min E_{i}$ and $\lambda(E_{i})=1$ for $i\geqq p$) and define a sequence $\{u^{t}\}$

of simple functions on $N$ by $u^{\dot{i}}=u(s_{i})\chi_{B_{i}}(i\geqq p)$ . Moreover, put $M_{i}^{\delta}=$

$\{s\in N:|u^{i}(s)-u(s)|>\delta\}$ for $\delta>0$ and $i\geqq p$ . Then $\lambda(E_{i}^{o})=0$ and $|u^{i}(s)-u(s)|<$

$2/i$ for $s\in E_{i}$ by the same reason as in the proof of Proposition 2.4.
Therefore, if $ 2/i<\delta$ then $v(\lambda, E_{\check{i}}^{\epsilon})=v(\lambda, M_{t}^{\epsilon}\cap F_{:}^{0})+v(\lambda, M_{i}^{\epsilon}\cap E_{i})=0$ . That is,
$u^{i}$ converges to $u$ in $\lambda$-measure and $\langle u, \lambda\rangle=\lim u(s_{i}\wedge)=\lim\langle u, \delta_{l}^{\wedge}i\rangle$ . Since
$u$ was arbitrary in $l^{\infty}$ and each $ s_{i}\wedge$ belongs to the set $\hat{E}_{p}$ , it follows that
$\lambda$ is a weak-star cluster point of the net $\{\lambda_{e,n};n\uparrow\infty\}$ . q.e.d.

REMARK. Assertion (2) of the above theorem states that $v$ is only
a strong cluster point of the net $\{v_{n}:n\uparrow\infty\}$ . However, it is desirable to
choose a sequence $\{v_{n}\}$ in sm $S$ so that $v$ is the limit of $\{v_{n}\}$ . Although
the authors do not know at this moment whether or not this is possible
in general, they are able to give a necessary and sufficient condition for
given $v\in l^{\infty}andxe$ ext $F_{0}(v)\cap c_{0}^{\perp}$ to admit such a sequence $\{v_{n}\}$ .

PROPOSITION 7.6. Let $v\in S-smS,$ $\lambda\in$ ext $F_{0}(v)\cap c_{0}^{\perp}$ , and let $\lambda\geqq 0$ .
Then the following are equivalent:
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(1) There exists a sequence $\{v_{\#}\}$ in sm $S$ such that $||v.-v||\rightarrow 0$ as
$ n\rightarrow\infty$ and $\lambda$ is a weak-star cluster point of the sequence $\{\lambda_{n};n\uparrow\infty\}$ ,
where $\lambda_{n}=F_{0}(v_{n})$ and $\lambda_{n}\geqq 0$ for $n\geqq 1$ .

(2) There exists a sequence $\{s,\}$ in $N$ such that $v(s_{n})\rightarrow 1$ as $ n\rightarrow\infty$

and the set $\{s.:n\geqq 1\}$ has $\lambda$-measure 1.

PROOF. (2) $\Rightarrow(1)$ : Let $E=\{s.:n\geqq 1\}$ ; then $\lambda(E)=1$ . So, if we replace
$E_{\epsilon_{p}}(p\geqq 1)$ in the proof of Assertion (2) of Theorem 7.5 by $E\cap E_{\epsilon_{p}}(p\geqq 1)$ ,
then each of the sets $H_{p}(p\geqq 1)$ becomes a finite set, and consequently,
we can conclude that $||v_{n}-v||\rightarrow 0$ as $ n\rightarrow\infty$ and $\lambda$ is then a weak-star
cluster point of the net $\{\lambda_{n}\ddagger n\uparrow\infty\}$ .

(1) $\Rightarrow(2)$ : Given $n$ , let $s_{n}$ be a point in $N$ such that $v_{\iota}(s_{n})=1$ . Set
$E_{0}=\{s_{n}:n\geqq 1\}$ . Then $N_{n}(=F_{0}(v_{n}))$ is regarded as point mass $\delta_{n}$ . First,
we have that $v(s.)\rightarrow 1$ as $ n\rightarrow\infty$ since $|v(s_{n})-1|=|v(s_{\hslash})-v.(s_{n})|\leqq||v-v_{\hslash}||\rightarrow 0$ .
Next we show that $\lambda(E_{0})=1$ . Let $\mathscr{G}^{-}$ be the non-principal ultrafilter on
$N$ associated with $\lambda$ , and $E$ any element of $\ovalbox{\tt\small REJECT}$ Then $\langle\chi_{B}\lambda\rangle=\lambda(E)=1$ ;
and for every $\epsilon\in(0,1/2)$ and $n$ , there exists an $m$ such that $m\geqq n$ and
$|\langle\chi_{B}\delta_{n}\rangle-1|=|\langle\chi_{B}x_{m}-x\rangle|<\epsilon<1/2$ . This means that $ s_{m}\in x_{B}^{-1}(U_{e}(1))\cap E_{0}\subset$

$ E\cap E_{0}\neq\emptyset$ . Since $E$ was arbitrary and $\mathscr{F}$ is an ultrafilter on $N$, it
$E\cap E_{0}$ , i.e., follows that $E_{0}\in \mathscr{G}^{-}$ and $\lambda(E_{0})=1$ . q.e.d.

Particular examples will be useful to illustrate the above result.
First, let $v=x_{N}$ and $\{v_{n}\}$ a sequence in $S$ such that $||v_{n}-v||\rightarrow 0$ and
$F_{0}(v_{n})=\delta_{n}$ for $n\geqq 1$ (e.g., we choose $\{v_{n}\}$ defined as $v.(k)=1$ for $k=n$ and
$v.(k)=1-1/n$ for $k\neq n$). Observe that $v(k)\rightarrow 1$ as $ k\rightarrow\infty$ and Condition
(2) of Theorem 7.6 is satisfied. Then ext $F_{0}(v)$ is the set of all 0-1
measures on $\Sigma$ and ext $F_{0}(v)\cap c_{0}^{\perp}$ coinsides with the set of all weak-star
cluster point of the sequence $\{\delta_{n}:n\uparrow\infty\}$ . Second, if $v\in S$ and $\{v(k)\}$ is a
strictly monotone increasing, non-negative sequence convering to 1 (hence
Theorem 7.6 (2) holds), then a sequence $\{v_{\#}\}$ can be found in sm $S$ so that
ext $F_{0}(v)$ ( $\subset c_{0}^{\perp}$ by Proposition 5.5) is the set of all weak-star cluster
points of the sequence $\{\delta_{\iota}:n\uparrow\infty\}$ , where $\lambda_{n}=F_{0}(v_{\#}),$ $n\geqq 1$ . In fact, let
$H_{p},$ $p\geqq 1$ , be specified as in the proof of Assertion (2) of Theorem 7.5.
Then, $H_{p}’ s$ are all finite sets and $N-\hat{E}_{p}(=N-\bigcup_{i\geq p}H_{i})$ is also a finite
set. Hence, if $\{v_{n}\}$ is determined just in the same way as in the proof
of Theorem 7.5 (2), then $||v,$ $-v||\rightarrow 0$ and every element of ext $F_{0}(v)$ is
a weak-star cluster point of the sequence $\{\lambda_{n};n\uparrow\infty\}$ .
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