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Introduction

Let M}(c) be an n (n=2)-dimensional indefinite complex space form
of constant holomorphic curvature ¢ and of index 2s. Recently Romero
[6] proved that an indefinite complex hypersurface with parallel Riceci
tensor in Mic) (¢+#0) is Einstein. The purpose of this paper is to
study an indefinite complex hypersurface M in Mzrtl(c) satisfying the
condition :

(*) R(X, Y)S-—":O ’

for any vector fields X and Y of M, where R denotes the curvature
tensor, S is the Ricci tensor and R(X, Y) operates on the tensor algebra
as a derivation.. We shall prove the following

THEOREM. Let M be a complex hypersurface of indexr 2s in M} (c)
n=2). If ¢#0 and M satisfies the condition (x), then M is Einstein.

In the last section it is shown that there exist many examples of
Einstein complex hypersurfaces in an indefinite complex Euclidean space
different from those given by Romero [3].

The authors would like to express their thanks to the referee for
his valuable suggestions.

§1. Complex hypersurfaces in an indefinite complex space form.

Let M be a complex m-dimensional indefinite Kaehlerian manifold.
Then M is equipped with an almost complex structure J which is
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parallel, that is, VJ=0, and an indefinite Riemannian metric g which is
J-Hermitian:

gJX,JY)=g9(X, Y), for any vector fields X and Y.

The pair (g, J) is called an indefinite Kaehlerian structure of M. It
follows that J is integrable and the index of g is an even number 2s
(0=<s=<m). A holomorphic plane spanned by # and Ju is non-degenerate
if and only if it contains some v such that g(v, v)+0. The manifold M
is said to be of comstant holomorphic sectional curvature ¢, if all non-
degenerate holomorphic planes have the same constant sectional curvature
¢. A complete, simply connected and connected indefinite Kaehlerian
manifold M is called an indefinite complex space form, which is denoted
by M*(¢c), provided that it is of complex dimension m, of index 2s and of
constant holomorphic sectional curvature ¢. There are three kinds of types
about indefinite complex space forms [1], an indefinite complex projective
space PC, an indefinite complex Euclidean space C™ or an indefinite
hyperbolic space H*C, according as ¢ is positive, zero or negative.

Let M=M7;}¥c) be an indefinite complex space form, where a=0
or 1 and let M be an n-dimensional complex hypersurface of index 2s in
M. Let (g, J) be an indefinite Kaehlerian structure of M and (g, J) be
an indefinite Kaehlerian structure of M induced from (g, J). We choose
a local field {E,}={FE,, E,}, where E,.=JE,, of orthonormal frames de-
fined on a neighborhood of M in such a way that, restricted to M,
{E.}={E,, E,.} is tangent to M, and {E,, E|.} is normal to M. They satisfy

9(Ey, E))=9(Ew, Ex)=e=1 or -—1,
according as ¢a=0 or 1. The range of indices are as follows:

A B ---=0,1, -+, m,

a, b, =1,2 -+, m,

IJ, «o+=0,1, -+, m, 0%, 1%, -+, n*,
By Gy voe=1, coe,m, 1%, «uu, m* .

Let {&;}={®., W} be the local field of dual frames on M with respect
to the frame field {£;} chosen above. Namely they satisfy

1.1) W (E;)=¢l;; .
Then the indefinite Kaehlerian metric § can be expressed locally as

g=2, w,Qw; .
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Associated with the frame field {E,}, there exist linear forms w,, on M
and the structure equations of M can be given by

AW+, ;W Nw;=0 ,

Wry+W;;=0,

A1y + 3, exrx Ay =21;

‘Q-IJZ -3, (sxeLRIJKL/Z)'wK/\ Wi »

where ¢,i0,, are connection forms on M relative to {E,} and 2,, denote

the curvature forms on M, and R,,., are the components of the Rieman-
nian curvature tensor R of M. They satisfy

1.2)

{wob =W » Wopx = Wpox 4
’LT)ab = wa#bt N ’I,T)ab. = ?T)baar .

Since the almost complex structure J satisfies

J=Z SIerIJEI®wJ ’

the equation J®= —id. is equivalent to
(1.3) Zeszszwz—erau ’ jIJ+jJI:0 .

Since M is of constant holomorphic sectional ecurvature ¢, the
Riemannian curvature tensor is given by (cf. [1])

(1.4) RIJ’KL = C{SISJ(BILBJK —0rx0sz) + jILjJK — J—IKJ_JL - 2jIJjKL}/4 .

The restriction of these forms w,; and w,, to M are simply denoted
by w; and w,; without bar, respectively. Hence we have w,=0 and
we=0. The metric on M induced from the indefinite Riemannian metric
g on M is given as g=3, ew,Qw,. Hence {E} is a local field of
orthonormal frames on M with respect to the metric, and w, ---, w,
are the canonical forms on M. In terms of the canonical forms w, and
the connection forms w,;, the structure equations of the hypersurface M
are given as follows:

dw;+ >, ewi i Aw;=0
wij+wji:0 ’

Q.= gia‘ — &(Wig A\ Woj +Wipr A\ Wesj) »
Q5= — 0 eeiRis/2)w A w,

where e=¢,=¢n, and 2,; (resp. R,;;) denotes the curvature form (resp.
the components of the curvature tensor R) on M. The components J,;

(1.5)
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of the almost complex structure J on M satisfy
(1.6) Siaadii=—¢edy ,
by means of (1.3). It follows from w,=0 and w,.=0 that

> eWei Aw; =0,
2 e;'wo.,-/\'w,-=0 .

By Cartan’s lemma, we see

Wes =2, S,'h‘,"w,' ’
Q.7 Woee =2, EshTW; ,
hi=h; , hE=h} .

Then the quadratic form
& 3. 6€i(hyw,QW;QE, + hiw,Qw;Q Es)

is called the second fundamental form of M._ Accordingly, by means of
the above structure equations of M and M the equation of Gauss is

obtained as

(1.8) Riju=clei(0udin—0u05)+ Jadj—Jud 51— 2J ;T ul/4
+ S(huhjk - h{kh.‘il + h:; ;k - h:]‘,h:l) .

For any point z in M, let T, (M) and T,(M) be tangent spaces at z to
M and M. Then T.(M) is by definition a non-degenerate subspace of
T. (M) and a direct sum decomposition T,(M)=T,(M)+N,( M) is given,
where N,M) is also non-degenerate and dim N,(M)=2, which is called
the normal space of M at x. Let X(M) and X*(M) be the submodules
of X(M) consisting of all vector fields tangent to M and normal to M,
respectively. By V and V the Levi-Civita connections of (M, g) and
(M, g) are denoted. Then the second fundamental form « is given by

V. Y=V,Y+alX, Y), X, YeX(M),

and the shape operator A, of M relative to the normal vector field & in
X1(M) is given by

9(A.X, Y)=9(a(X, Y), §) .

A, is the self-adjoint endomorphism of %(M) and Az, and Az are simply
denoted by A and A* for any orthonormal frame field {£,}. It satisfies
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(1.9) {a(X, Y)=a(Y, X),

) alJX, V=a(X, JY)=Ja(X, V),
(1.10) {hu=5(a(Eu E)), E)=g(AE, E;) ,

' 5=9(a(E, E,), Ex)=g(A*E, Ej) ,

and furthermore

A*=JA, A=-JA*,
(1.11) he=2. ex uhui
hii=—23. e uhii
and
AJ+JA=0, A*J+JA*=0,
1.12) {Z shihids =23 eshyhy;
>y ekhikhl’f;i: -3 exhiihi -

The Riceci tensor S of M is given by
(1-13) Si,': (n+1)06¢3“~/2—28 Z ekhikhk,’ .

§2. Proof of the theorem.

In this section, let M be an n-dimensional (n=2) indefinite complex
hypersurface in M?#!(c). Assume that ¢s0 and M satisfies the condition
(*). Then this condition is written as

(2.1) > Gz(Ru'szzm + Rt:imlSkl) =0.

For the sake of brevity, a tensor A% and a function A, on M for any
integer m (=2) are introduced as follows:

hi;=3] €y v eim;lhizlhiltg ce htm_li ’
hmzz €¢h3 .
By means of (1.8) and (1.18), (2.1) is reduced to
(2.3) ¢ X eilehidi—eduhbi+ehidn—edahb+> e (0w
- Jik Jr = 2ijJk'r)hf'l + (JirJil - Jtl ir = 2JtaJlr)hik}]/4
+e[h§lhik_hikhg'l+h3kh.'il_hilhg'k+z e{(hth}
—hihT)h:+ (RS —hERE)RE}]=0 .

(2.2)

By summing up this result with respect to ¢ and I, it follows that
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c(hi—h.0:05/2n)=0 ,

by virtue of (1.11) and (1.12), which yields that hj;=h.e0,;/2 when c¢+#0.
This implies that M is Einstein provided that n=2. Consequently the
proof of the theorem is complete.

REMARK. This property is an extension of a theorem of Ryan [6]
in the case of complex hypersurfaces in an indefinite complex space
form. The proof is slightly different.

Assume that the ambient space is an indefinite complex Euclidean
space. Multiplying e,k for any integer m to (2.3) and summing up
this result for 72 and !, we obtain

h2mh§k=h2m+2h:‘k ’
which implies that
(2.4) hi.=Sh: for a function f on M,

if the set of points on M at which the function A, is zero is of measure
zero. Under this hypothesis, it follows from (1.11) that the equation
(2.3) is equivalent to (2.4).

A complex hypersurface M of index 2s in C;{; is said to be cylindri-
cal if M is a product manifold of C7~* and a complex curve in C} orthogonal
to C*! in C*! (r+t=s). It is evident that a cylinder M of index 2s in
C:i! satisfies the condition (x), but it is not Einstein.

REMARK. (1) Romero [3] showed that there exist complete complex
hypersurfaces in C»* which are Ricci-flat. These satisfy the condition
(x) and are not cylindrical. Other examples will be given in the next
section.

(2) In a definite case, Takahashi [7] proved that the cylindrical
hypersurface is the only complete complex hypersurfaces in C*** satisfying
the condition () except for C*. However, as shown in Remark (1), the
property can not be extended in an indefinite complex Euclidean space.
It is not known that whether or not there exist complex hypersurfaces
satisfying (*) in C**' which are not Einstein and not cylindrieal.

Next a complex hypersurface with parallel Ricei tensor in an indefinite
complex Euclidean space will be investigated. The components h,; and
h%. of the covariant derivative of the second fundamental form are
defined by
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D W=k ;— 3 6,(RyiWis + hywy;) +ehfw
2 ahfiw,=dhl =2 e, (hiywi +hiw,) —ehw

where w=w,.. Restricting the third equation of the structure equations
of M to the hypersurface, we have

AW+ €5Wei AW s+ EWos A Wors =2
from which together with w,=>, ¢;h,w; it follows
> eiehiw; Aw,=0 > eiehiiw Aw,=0 .
This means that
hie=hyu; h,=hk; .

On the other hand, since the hypersurface M has parallel Ricci tensor,
it follows that

(2'5) Z erhi:irh’rk =0.

PROPOSITION 2.1. Let M be a complex hypersurface of index 0 with
parallel Ricci temsor in CP*™. Then M 1is totally geodesic.

PrOOF. The component h;, of the covariant derivative V:a of Va
is defined by

> ethynwi=dh, 53— &l Wis + bW+ hwy,) +ehfw .
Differentiating > ¢,h,;,w, exteriorly, we obtain

Z Ex€ilij Wi AW, =2 eksrea((Rthkﬂ' + Rkirahik)/ 2
—hRogeps +ehihy YW, AW, ,

and hence
hiikl_ht.ﬂk: —Z sr(leirhM'-l_leirh’ir+2h‘;‘;'hkrh;'kl .
Substituting (1.8) into the result above and making use of

Z srslhir(hr.'ikl - hr.’ilk)hlm =0 ’
we have
Ml — PambS + himbos— B R
+ 2 6,8, (—hi bk b2+ B YRR — B BB
— R hYh b — 20y R R Y =0 .
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Summing up the relation with respect to m and h, we have
4hi;+hh ;=0

and hence
4hy+h,h,=0 .

Since the functions h,, h, and h, are all non-negative, h, must vanish
identically. This implies that M is totally geodesic.

REMARK. (1) Here the complete different method from that of the
proof of a theorem due to Nomizu and Smyth [2] in the complex Euclidean
space C™*' is used. ‘

(2) Let M be an indefinite complex hypersurface with parallel Ricci
tensor of C*}!. Then the fact hj;=0 is proved by Romero (personal
communication) and the authors independently. Their method of the
proof is dependent on the complex version which is different from Romero’s
one.

§3. Examples.

This section is devoted to investigating some examples of Einstein
complex hypersurfaces in CX**'. Let h; be holomorphic functions of C.
In this section, the range of indices are given as follows:

i, 5, cee=1,c0,m,
a b, -+-=1+-4,8,

%, Y, =8+1, -0, m,
A B ---=1,---,2n.

For the complex coordinate system (24, 2,,+1) Of C:**', let M=M:"(h;; c;)
be the complex hypersurface in C!**' given by the equation

Zont1 =2 hi(2i+C525) i*=n+j -

for any complex number c¢;. Then M*(h;;c;) is a family of complex
hypersurfaces in C?*'.

REMARK. M?2*(z?;1) for any integer p (=2) is a complete complex
hypersurface given by Romero [3], which is Ricci-flat but not flat and of
index 2n.

For the simplicity, the calculation from the standpoint of the complex
version is used. For an isometric and holomorphic imbedding of C;" into
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C*! defined by
JRD=f(24 Zsn41) »  Zonnr =23 hi(z;+c;2) ,

it is easily seen that M=f(C?>") is a complete complex hypersurface in
C:**' and the natural basis of the tangent space T.(M) of M at any
point z=(z,, 2,,,,) is given as follows:

(8.1) Fa=, +++,1,0, ---,0, ),
where 0h;/0z;=h}, 0h;/0z;=hj=c;h;. Then
5‘——"(%;, _E’m ) '—Ea];d’z’ "“C,,E;, 1)

is a normal vector to M at z. Let g be the usual Kaehlerian flat metric
of index 2s on C!**'. By the same g is denoted an indefinite Kaehlerian
metric induced from the Kaehlerian flat metric in the ambient space.
Since ¢, satisfies

9¢. £)=1+3 (le. = DI+ 3 (le.*+ DAL,

the normal vector field £ is space-like and M is of index 2s in Ci+t
provided that ¢, satisfies |c,|=1 for any a. Furthermore, it is shown
that M;"(h;, ¢;) is a graph of a holomorphic function of C**, which means
that it is holomorphically diffeomorphic to C**. Thus we have

THEOREM 3.1. M?(h;; ¢;) is a complete connected complex hypersurface
of index 23 in CI"** if |c,|=21 for any a. Furthermore it is holomorphi-
cally diffeomorphic to C* .

By setting ¢.=¢,/|¢,|, where |¢,|=g(¢,, £.)%, & is a unit normal vector
field on M. Since the covariant derivatives of the vector field f4 In the
direction of f; are given as follows;

.ftj=(0: ) 0’ 5{.3’ ;’) ’
(3'2) fti“zfi*i:(o’ Y 07 ctaii :’) ’
.ft‘:"z(oy ° %y 0) cfatjh;') ’

where hj=0h;/0z;, the shape operator A associated with the unit normal
&' satisfies

g(Af, f)=0,h([\E|=h,; ,
(8.3) 9(Af, fi)=cd,hi]lE|=hy ,
9(Afw, fi)=030.hi[|E] =Ppje ,

where h,;, hs; and k., denote the components of the second fundamental
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form of M derived from the unit normal & reiative to the natural frame
{fJ. These formulas and the Gauss equation give an information about
the isometric structure for each hypersurface.

PROPOSITION 3.2. Under the same assumption of Theorem 3.1, two
indefinite hypersurfaces M>(h;; ¢;) and M*(h;; C;) are congruent to each
other if and only if ¢;=¢€;, hij=h}; and hiy=h} for any j up to an order.

On the other hand, it is easily seen by (3.3) that we have
(3.4) A.ﬂt = 6 5Af5

and it follows from the straightforward calculation that the coefficients
of

Af,.=3 Biifi+ 2 TuAf;
satisfy the following relationships:

(3.5) {t‘;‘,,Bib+'Yu,=0 for any b,

CyBiy—"y=0 for any ¥,

and for any fixed indices a and x

A+ (leal* = Dlka[)Bia+ 2. (lesP—1)hiheBi
—Evl (lesl* + DhyheBy= —duhe /I8l

A+ (leal*+ Dk — (lesl*—L)hh:By
+3 (e + DBy =,k I -

(3.6)

By giving attention to these equations, the following property is valid.

THEOREM 3.3. If all fumnctions h, are linear and if |c,|=1, then
M?>(h;; ¢;) is Ricci-flat. In particular, it is nmot flat provided that there
18 an indexr a such that h, 18 mot linear.

PROOF. Under the assumption the second equation of (3.6) is a
homogeneous system of linear equations with constant coefficients and
the matrix of the coefficients is regular. Accordingly it is easily seen
that we have ‘

Bta= _8iuh;’/|$| ’ Btz—':o ’
which yield that
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Afa:h’;'(_fa+aafa*)/l'§l ’

8.7 Af,=0.

Let w=(u4 %s,+,) in C"* be a tangent vector to M at z. Then it is
expressed as a linear combination

U=, Uusfa , w=>2, (u;+cu;h; ,

and moreover we have Au=3, u,Af,, which yields together with (3.4)
and (3.7) that

(3.8) Au=3] (U, +Col)hs(—fo+Cufu)/ €] .
Let P, be the tensor field of type (1, 1) defined by
Pa,u:(oy Tty 0; _(ﬁa+5a?’—zu*)y 0: c 0ty O’ Eu(ﬁa+5aﬂa*)r 0, tt O)

where u=(uy, u,,,,) denotes any tangent vector to M at z. Then (3.8)
means that the shape operator A can be decomposed into :

A=3 AP, , AJl)=h/(2)/l¢l,

and moreover it follows that operation P, satisfies the following properties:
(a) P, is the self-adjoint operator of the tangent space of M,
(b) P,oP,=0 for any a and b.
This implies Ao A=0, from which it turns out that M is Ricci-flat. Since
A does not vanish identically, the Gauss equation implies that M is not
flat.

In particular, if s=% and ¢,=1 for any ¢, then M satisfies the as-
sumption of the above theorem. Thus one finds the following

COROLLARY 3.4. M3(h,;; 1) is a complex hypersurface of index 2n of
C*' and it 1s Ricei-flat.

Now, for any integer » (=2), let M,(c;) be an indefinite complete
hypersurface of C?*' defined by the equation

Zont1= E (zj - cjzj*)p\ ’ !le =1.

Romero [3] studied the case ¢;=1 for each j, which is denoted by M,.
Then the normal vector is unit and hence, by taking account of (8.2),
the covariant derivatives of the vector fields f,; in the direction of f,
are given as follows:
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fu’k=(0’ -+, 0, 303{&}""’) ’

.ft'i'k*::(or 0 ctauatkh”') ’

from which it follows that for the components h,z, of the covariant
derivatives of the second fundamental form we have

hiix=20,0uh:" ,
hoj=him=hjp= ch0uhi’ ,
I’I

(hta,.,,—hit,k.—h‘,.k.—cﬁ“a, ’
h‘t:tkt == 0¢3“3“,h"’ .

3.9)

By means of Theorem 3.1 and Theorem 3.3 it is seen that M,(c;) is a
complete hypersurface of index 2»n of C:"*', which is Ricci-flat but not
flat. Furthermore it follows from (8.9) that the second fundamental
form is parallel provided that p=2 and also

(3.10) D ahiah =&+ |c¢|2)5¢i5¢kh;"ﬁ;: #0

provided that p=8. This means that M, (c;) (p=3) is not locally sym-
metric because of the Gauss equation. Thus one finds

THEOREM 3.5. M,(c;) is locally symmetric and M,(c;) is not locally
symmetric if p=3.

About the homogeneity of these examples M= M:"(h;, ¢;) with respect
to the induced Kaehlerian metric, one finds

THEOREM 3.6. If each function h; satisfies h;j(0)=0, then M;"(h;, c;)
18 mot homogeneous with respect to the induced indefinite Kaehlerian
metric.

Proor. For the point z, in M such that z,=—c,z; for all j, the
Gauss equation and (8.8) imply R(z,)=0. It means that M is not homo-
geneous; otherwise we have R=0 at every point. But it is impossible.
because M is not flat.
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