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Incompressibility of Measured Laminations in 3-Manifolds

Ken’ichi OHSHIKA

Tokyo Metropolitan University

Introduction. In this paper we study codimension-l measured lam-
inations in 3-manifolds. A lamination is a foliation in a closed subset
of a manifold. A codimension-l lamination is said to be measured when
it has a transverse invariant measure. The basic study of codimension-l
measured laminations was done by Morgan and Shalen in [2]. Our aim
is a further study of measured laminations in a 3-manifold, especially
about its incompressibility.

In 3-dimension there is close relationship between measured lamina-
tions and branched surfaces defined by Floyd and Oertel in [1]. In
Morgan-Shalen [2], it was proved that each leaf of a measured lamination
carried by an incompressible branched surface is incompressible. On the
other hand, our main theorem in this paper states that for any trans-
versely orientable measured lamination each of whose leaves is incom-
pressible and whose support is not the whole of the manifold, there
exists an incompressible branched surface carrying it. Note that as our
definition of measured laminations is different from that of Oertel [5], it
is not easy to see even that for a measured lamination, there exists a
branched surface carrying it. Hence first we must construct a branched
surface carrying the measured lamination using a handle decomposition
of the manifold. This constitutes the first half part of this paper.

After completing this paper, it was informed that A. Hatcher
proved that a lamination whose leaves are incompressible is carried by
an incompressible branched surface. (This result is still unpublished.)
But his definition of lamination is the same as that of Oertel and $dif$.
ferent from ours. D. Gabai and U. Oertel also proved the above result
with a little different method in a part of their work.

Throughout this paper we work in $C^{\infty}$-category. The symbol $M$

always denotes a closed orientable irreducible 3-manifold. By a term
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lamination we always mean codimension-llamination. A general reference
for laminations is Morgan-Shalen [2]. A lamination $L$ is a foliation on a
closed subset of $M$. For a lamination $L$ , there exists a system of co-
ordinate neighbourhoods $\{U\}$ where $U_{i}=V_{i}\times I$ for some open subset $V_{1}$

of $R^{2}$ , such that $L\cap U=V_{i}\times X_{i}$ for some closed subset $X_{i}$ of $I$, and
such that the leaf structures $\{V_{i}\times\{x\}\}(xeX_{i})$ and $\{V_{j}\times\{x\}\}(xeX_{\dot{f}})$ is
compatible for two coordinate neighbourhoods $U_{i}$ and $U_{\dot{f}}$ . The support
of $L$ is denoted by $|L|$ .

A lamination $L$ is said to be transversely orientable when there
exists an open subset $U\supset L$ and a nonsingular vector field on $U$ transverse
to $L$ .

A measured lamination is a lamination equipped with an invariant
transverse measure.

A branched surface is a C’-surface with singularities as depicted in
Figure 0.A. A fibred neighbourhood $N(B)$ of a branched surface $B$ is a
neighbourhood of $B$ fibred by intervals as Figure 0.B. The boundary of
$N(B)$ consists of the part transverse to fibres which is called the hori $\cdot$

zontal boundary denoted by $\partial_{h}N(B)$ and the part consisting of fibres
which is called the vertical boundary denoted by $\partial.N(B)$ . A branched
surface $B$ is said to be incompressible when the following three conditions
are satisfied.

1. The horizontal boundary $\partial_{h}N(B)$ is incompressible in $M$-int $N(B)$ ,

2. There are no disks of contact.

FIGURE 0.A FIGURE 0. $B$

disk of contact monogon
FIGURE 0. $C$
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3. There are no monogons.
See Floyd-Oertel [1] for details.
A measured lamination $L$ is said to be carried by a branched surface

$B$ when $L$ is isotoped so that $L$ is contained in $N(B)$ transversely to
fibres of $N(B)$ . A measured lamination is said to be incompressible when
it is carried by an incompressible branched surface.

In Morgan-Shalen [2], it was proved that every leaf of an incom-
pressible measured lamination is incompressible. Our purpose in this
paper is to prove that conversely a lamination whose leaves are incom-
pressible is carried by an incompressible branched surface under an as-
sumption that the measured lamination is transversely orientable.

THEOREM 1. Let $L$ be a transversely orientable measured lamination
in $M$ each of whose leaves is incompressible, and suppose $|L|\neq M$. Then
there exists an incompressible branched surface $B$ carrying $L$ .

For proving Theorem 1, we need several lemmas. As first of them,
we prove the following lemma characterizing transversely orientable
measured laminations in the 3-ball.

LEMMA 2. Let $L$ be a transversely orientable measured lamination
in a 3-ball $B^{3}$ which is transverse to $\partial B^{8}$ . Then $L$ is decomposed into
finite sets each of which consists of parallel compact leaves. Furthermore
suppose that each leaf of $L$ is incompressible, Then there are no leaves
contained in the interior of $B^{3}$ .

PROOF. By Proposition 4.1 in Morgan-Shalen [2], each leaf of $L$ is
compact. By Theorem 3.2 in the same paper, $L$ is decomposed into finite
subsets, each of which consists of parallel compact leaves. An incompressible
leaf of $L$ cannot be contained in the interior of $B^{a}$ because if it is con-
tained in the interior, it must be a closed incompressible surface, which
does not exist in $B^{3}$ . $\square $

The following definitions are due to Morgan-Shalen [3].
Let $h$ be a handle decomposition of $M$. The handle decomposition $h$

is said to be admissible when the following two conditions are satisfied.
1. For every distinct two 2-handles of $h$ , there is at most one 1-

handle meeting both of them.
2. Every l-handle meets two or three 2-handles.
For an m-handle $\sigma=D^{m}\times D^{8-m}$ , a disk $D^{m}\times\{y\}(yeD^{8-m})$ is called a

horizontal disk and a disk $\{x\}\times D^{3-m}(x\in D^{m})$ is called a vertical disk. Let
$h$ be an admissible handle decomposition of $M$. A measured lamination
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$L$ is said to be weakly normal with respect to $h$ when the following
condition is satisfied.

O For each handle $\sigma$ , any component of $\sigma\cap L$ is a disk transverse
to all vertical disks of $\sigma$ . Especially $L$ cannot intersect 3-handles.

Moreover $L$ is said to be normal with respect to $h$ when $L$ is weakly

normal with respect to $h$ and satisfies the following condition.
O For each handle $\tau$ of the handle decomposition of $\partial\sigma$ induced

from $h$ and each component $\lambda$ of $ L\cap\sigma$ , the intersection $\lambda\cap\tau$ is an in $\cdot$

terval.

LEMMA 3. Let $L$ be a transversely orientable measured lamination
each of whose leaves is incompressible, and suppose $|L|\neq M$. Then therc
exists an admissible handle decomposition of $M$ with respect to which $l$

is weakly normal.

PROOF. Construct first arbitrarily an admissible handle decomposition
$h$ of $M$. In the following, we will construct a subdivision of $h$ witf
respect to which $L$ is weakly normal. As $|L|\neq M$, it is easy to see that
we can isotope $L$ so that $L$ is disjoint from 3-handles of $h$ . Furthermort
as $|L|\neq M$, by isotoping $L$ or $h$ , we can assume that $L$ is transverse $t1$

boundaries of handles of $h$ . Then for any handle $\sigma$ of $h,$ $ L\cap\sigma$ is de
composed into finitely many subsets each of which consists of paralle
compact leaves by Lemma 2. They must be planar surfaces because leave
of $L$ are incompressible by the assumption.

Let $\sigma=D^{2}\times I$ be a 2-handle of $h$ . Suppose that there exists a subse
$\Delta$ of $ L\cap\sigma$ consisting of parallel disks which are not transverse to th $($

vertical intervals. (See Figure A.) Then for each component $\delta_{i}$ of $\Delta$

there exists a disk $\delta^{\prime}$ in $\partial D^{2}\times I$ such that $\delta_{i}\cup\delta_{i}^{\prime}$ bounds a 3-cell $B_{i}$ in $0$

Let $\delta_{n}$ be the outermost component of $\Delta$ such that $B_{n}$ contains all $th|$

other $B_{i}’ s$ . Then we can eliminate $\Delta$ from $\sigma$ together with component
of $ L\cap\sigma$ contained in $B_{n}$ by an isotopy. Hence we can assume that al
disk components of $ L\cap\sigma$ are transverse to the vertical intervals.

FIGURE A
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Let $S$ be the subset of $ L\cap\sigma$ consisting of all leaves which are not
disks. Our argument proceeds as follows. In (1), we assume that
$L\cap\sigma=S$ . In (2) we deal with the case without the assumption above.
We subdivide (1) into three parts (1) $-(a),$ (1) $-(b)$ , and (1) $-(c)$ . As we
proceed (a), (b), (c), we deal with more general case. So there are the
following relations between the parts: (1) $-(a)\subset(1)-(b)\subset(1)-(c)\subset(2)$ .

(1). Assume that $L\cap\sigma=S$ . Then $S$ is a disjoint union of $S_{1},$
$\cdots,$

$S_{n}$

each of which is a parallel family of planar surfaces.
(1) $-(a)$ . We assume in (1) $-(a)$ that for a leaf $F_{i}$ of each $S_{i}$ , com-

ponents of $\partial F_{i}$ bound disjoint disks in $\partial D^{2}\times I$. Then the surface $F_{i}$

divides $\sigma$ into two components one of which is homeomorphic to a 3-cell
denoted by B. by the Schoenflies theorem. The 3-cell $B_{i}$ is regarded as
a regular neighbourhood of a tree $T_{i}$ embedded in $\sigma$ which is possibly
knotted such that the valencies of its vertices are at most 3. Let $\tilde{B}_{0}$

be the union of the outermost 3-cells $\{B_{n_{j}}\}$ bounded by $\tilde{F}_{0}=UF_{n_{j}}$ and let
$\pi:\tilde{F}_{0}\rightarrow\tilde{T}_{0}(=UT_{n_{j}})$ be a bundle projection which has a singularity at a
vertex and whose fibre is $S^{1}$ except on vertices. We can isotope $\tilde{T}_{0}$ so
that for the canonical projection $D^{2}\times I\rightarrow D^{2},$ $p|\tilde{T}_{0}$ is a generic immersion
all of whose double points are transverse. Each double point $x$ of $p(\tilde{T}_{0})$

corresponds to two circles $C_{x}^{1}$ and $C_{x}^{2}$ whose union is equal to $\pi^{-1}p^{-1}(x)$

in $\tilde{F}_{0}$ , and each vertex $y$ of $p(\tilde{T}_{0})$ corresponds to a closed curve $K_{y}=$

$\pi^{-1}p^{-1}(y)$ which has one double point. By cutting $\tilde{F}_{0}$ at $C_{x}^{i}(i=1,2)$ and
$K_{y}$ for every double point $x$ and every vertex $y$ of $p(\tilde{T}_{0})$ , we obtain a
family of unknotted annuli in $\sigma$ . For each annulus of this family, we
construct a complex consisting of three l-handles and 2-handles which
forms a regular neighbourhood of a triangular cylinder as depicted in
Figure B.

FIGURE $B$

At each $C_{x}^{i}(i=1,2)$ , we connect two complexes by attaching a complex
$\Gamma_{x}^{t}$ consisting of three O-handles and l-handles which forms a regular
neighbourhood of three sides of a triangle. After that we connect two
O-handles one of which is in $\Gamma_{x}^{1}$ and the other of which is in $\Gamma_{x}^{2}$ by a
l-handle vertical with respect to the projection $p$ . (See Figure C.) At
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each closed curve $K_{y}$ , we connect two complexes by a complex which
forms a regular neighbourhood of a saddle as depicted in Figure D. By
this construction, we obtain a 2-complex $\Sigma_{0}^{\prime}$ into which $\tilde{F}_{0}$ can be embedded
normally. Let $\Delta$ be one of the disks obtained by cutting $D^{2}$ at $p(\tilde{T}_{0})$ .
Then $Fr_{D^{2}}\Delta$ lifts to a circle or an arc in l-skeleton of $\Sigma_{0}^{\prime}$ which bounds
a disk (rel. $\partial D^{2}\times I$) in $D^{2}\times I-int(\Sigma_{0})$ which projects to $\Delta$ -int $N(Fr_{D^{2}}\Delta)$

by $p$ . We attach the disks for all the disks obtained by cutting $D^{2}$ at
$p(\tilde{T}_{0})$ and obtain $\Sigma_{0}$ . We take these disks disjointly. Then the outer
complement of $\Sigma_{0}$ in $\sigma$ consists of two 3-cells each of which is isotopic
to $D^{2}\times J$ where $J$ is a closed interval in $I$.

(the picture of l-skeleton)

FIGURE C FIGURE $D$

We do the similar construction for all of the $B_{i}’ s$ which are outermost
in $\tilde{B}_{0}$ . The differences from the case of $\tilde{B}_{0}$ are that we replace $\sigma$ by $\tilde{B}_{(}$

and that we must fill the spaces between $\partial\tilde{B}_{0}$ and the constructed complex
by 3-handles in the last step. We repeat this construction for the $B_{i}’ s$

from outward and obtain a 3-complex $\Sigma$ into which $S$ can be embedded
normally. We replace $\sigma$ by $\Sigma$ after subdividing l-handles surrounding $0$

so that $\Sigma\cup h-\sigma$ is a handle decomposition of $M$ .
(1) $-(b)$ . We assume that components of $\partial F_{i}$ bound disks in $\partial D^{2}\times l$

for each $S_{i}$ , but they may not be disjoint. Let $\{\delta_{i}^{j}\}$ be the disks in
$\partial D^{2}\times I$ bounded by the components of $\partial F_{i}$ . We attach the $\delta_{i}^{\dot{f}}’ s$ to $\partial F_{t}$

and push off into $\sigma$ so that if $\delta_{1}$ is contained in $\delta_{2}(\delta_{1}, \delta_{2}\in\{\delta_{i}^{\dot{f}}\}),$ $\delta_{1}$ is pushed
higher than $\delta_{2}$ . Then we obtain a family of disjoint spheres which bound
3-cells in $\sigma$ . Hence the closure of every component of $\sigma-\cup F_{i}$ is obtained
from a 3-cell with finite holes by finite processes of removing and adding
possibly knotted l-handles one of whose attaching disks is contained in
$\partial D^{2}\times I$. (See Figure E.)
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Let $\{h\}$ be the set of these l-handles. As $F_{t}-\bigcup_{h}h\cap F_{i}$ is an un-
knotted planar surface in $\sigma$ , it is easy to construct a 2-complex $K_{i}$ into
which $F_{i}-\bigcup_{h}h\cap F_{l}$ is embedded normally and such that each hole of $K_{i}$

is a regular neighbourhood of a triangle consisting of three l-handles and
O-handles. For each of these l-handles $h,$ $h\cap F_{i}$ is an annulus contained
in the closure of two components of $\sigma,$

$b^{1}$ and $b^{2}$ . If $h$ is a removed
l-handle for $b^{1}$ (resp. $b^{2}$), then it is an added l-handle for $b^{2}$ (resp. $b^{1}$).
For each component $B_{j}$ of $\sigma-\bigcup_{i}F_{i}$ , let $h_{j}^{1},$

$\cdots,$
$h_{\dot{g}}^{k}$ be the removed 1-

handles for $B_{j}$ . Then the handles $h_{f}!,$
$\cdots,$

$h_{\dot{f}}^{k}$ are regarded as regular
neighbourhoods of possibly knotted arcs in $ B_{j}\cup h_{j}^{1}U\cdots$ Uhj-which is ho-
meomorphic to a 3-cell with holes. Hence by the same method as in the
case (1)$-(a)$ using an isotopy and the canonical projection, we can construct
a 2-complex $\Sigma_{j}$ into which $h_{j}^{1},$

$\cdots,$
$h_{j}^{k}$ are embedded normally such that

$B_{j}-\Sigma_{j}$ is a union of 3-cells. By attaching the $K_{i}’ s$ to the $\Sigma_{j}s$ and filling
the complement by 3-handles, we obtain a 3-complex $\Sigma$ . We replace $\sigma$

by $\Sigma$ after subdividing l-handles surrounding $\sigma$ .

FIGURE E FIGURE $F$

(1) $-(c)$ . In this part we allow that some components of $\partial F_{i}$ are es-
sential in $\partial D^{2}\times I$. By the consideration similar to the case (1)$-(b)$ , we
can see that each component of $\sigma-\bigcup_{i}F_{i}$ is obtained by adding and re-
moving l-handles $\{h\}$ from 3-cells with holes bounded by 2-spheres and
normal disks in $\sigma$ . (See Figure F.) It is easy to construct a 2-complex
with triangular holes into which $F_{i}-\bigcup_{h}h$ is embedded normally. Hence
by the same construction as (1) $-(b)$ , we obtain a 3-complex $\Sigma$ into which
the $F_{i}’ s$ are embedded normally.

(2). In (1) we assumed that $ S=L\cap\sigma$ . Now we consider the case
when $S$ is a proper subset of $ L\cap\sigma$ . Let $\nu_{1},$ $\cdots,$ $\nu_{k}$ be the families of
the decomposition of leaves of $ L\cap\sigma$ which consists of parallel normal
disks. Let $N_{1},$

$\cdots,$ $N_{k}$ be disjoint 2-handles with the form $D^{2}\times J_{i}$ (where
$J\subset I)$ containing $\nu_{i}$ respectively, and such that $ N_{i}\cap S=\emptyset$ . Then consider
each of components $\sigma_{1},$ $\cdots,$ $\sigma_{k+1}$ of $\sigma-\bigcup_{i=1}^{k}N_{i}$ instead of $\sigma$ in the above
construction and we obtain $\Sigma_{1},$

$\cdots,$
$\Sigma_{k+1}$ . Let $\Sigma$ be the union of the $\Sigma_{i}s$ ,

the $N_{i}’ s$ regarded as 2-handles, and 3-handles filling $\sigma-int(\bigcup_{i}\Sigma_{l}\cup\bigcup_{j}N_{j})$ .
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We assumed that $\sigma$ is a 2-handle above. For l-handles and O-handles,

we do similar but simpler construction and we can make $S$ contained in
it normally.

The handle decomposition constructed above may not be admissible.
But it is easy to make it admissible by the small changes as depicted in
Figure G. $\square $

FIGURE $G$

LEMMA 4. Let $h$ be an admissible handle decomposition. Let $L$ be
a transversely orientable measured lamination which is weakly normal
with respect to $h$ and each of whose leaves is incompressible. Then we
can isotope $L$ so that $L$ is normal with respect to $h$ .

PROOF. What we have to do is to remove folds in l-handles and
O-handles as illustrated in Figure H. We call spaces between upper leaves
and lower leaves of folds gaps. Let $\sigma$ be a 2-handle such that a l-handle
or a O-handle surrounding $\sigma$ has folds coming from and returning to $\sigma$ .
Let $S_{\sigma}$ be the union of l-handles and O-handles surrounding $\sigma$ . We fix
a transverse orientation of $l$ so that the orientation of upper leaves is
upward.

FIGURE $H$

The set of the folds around $\sigma$ are decomposed into subsets $\Lambda_{1},$

$\cdots,$
$\Lambda_{k}$

each of which consists of parallel folds. If $\Lambda_{i}$ is inside of the gap of $\Lambda_{j}$ ,
the number of l-handles of $S_{\sigma}$ intersecting $\Lambda_{i}$ is greater than that of
$\Lambda_{j}$ . (See Figure I.) Let $I_{i}$ be an isotopy moving $\Lambda_{i}$ to the other side
$S_{\sigma}-(S_{\sigma}\cap\Lambda_{i})$ . (Figure J.) We define the fold removing move across $\sigma$ to
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be the composition of the $I_{i}’ s$ beginning from the innermost $\Lambda_{i}$ to the
outermost one. This move may produce new folds in l-handles of $S_{\sigma}$

coming from and returning to 2-handles $\sigma_{1},$ $\cdots,$ $\sigma_{j}$ adjacent to $\sigma$ . Then
we next carry out the fold removing moves across $\sigma_{1},$ $\cdots,$ $\sigma_{j}$ one after
another. We continue this process. If it terminates in finite steps, we
can remove the fold which we chose first, and the same procedure removes
all folds so that $L$ would be normal with respect to $h$ . Hence what we
must show is that this process terminates in finite steps. The set of fold
removing moves $\phi_{1},$ $\cdots,$ $\phi_{k}$ across $\sigma_{1},$ $\cdots,$ $\sigma_{k}$ where $\sigma_{i+1}$ is adjacent to $\sigma_{i}$

and such that $\phi_{l+1}$ is a move removing a fold made by $\phi_{i}$ is called a
sequence of fold removing moves. We only need to prove that there
are no infinite sequence of fold removing moves.

FIGURE I

$=$

FIGURE $J$

CLAIM 1. A sequence of fold removing moves cannot be continued
infinitely.

PROOF. Suppose that there is an infinitely long sequence of fold
removing moves. As there are only finitely many 2-handles, there exists
a 2-handle $\tau$ where the sequence returns infinitely many times. There
are two possibilities. One is that there are disjoint infinite gaps in $\tau$ ,
and the other is that the latter gap includes the former gap and that
there is a monotone increasing infinite sequence of gaps. In the first
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case leaves with opposite orientation approach infinitely. (See Figure K.)

It contradicts the assumption that $L$ is transversely orientable. In the
second case, by finiteness of the measure in $\tau$ , the measure of the upper
and the lower leaves must tend to zero. This happens only when the
transverse measure of the fold decreases while it returns to $\tau$ again by
continuing fold removing moves. The transverse measure of the fold
decreases only when it passes the situation illustrated in Figure L.
(Figure $L$ is the situation when the leaves above a gap which are

FIGURE $K$

FIGURE $L$

FIGURE $M$
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contained in a fold are divided into two parts flowing into different
2-handles.) As the transverse measure tends to zero, the situation illus-
trated in Figure $L$ must happen infinitely many times. As there are
only finite l-handles, there exists a l-handle which contains infinite sets
of leaves as Figure L. As there are only finite choices, we may assume
that they situate as Figure M. This yields a 2-handle as Figure $K$

adjacent to the l-handle. Thus it contradicts the transverse orientability
of L. $\square $

Let $B_{L}$ be a branched surface obtained by identifying leaves in
handles with the same disk types. Then obviously the branched surface
$B_{L}$ carries $L$ . The next step is to make $B_{L}$ an incompressible branched
surface. The argument is similar to that of Floyd-Oertel [1].

LEMMA 5. If $B_{L}$ carries a 2-sphere then there exists a disk $D\subset L$

and a subsurface $P\subset D$ yielding a surface of contact such that $\partial D\subset\partial P$.
PROOF. Let $N_{L}$ be a fibred neighbourhood of $B_{L}$ . We think of $L$

as is contained in $intN_{L}$ . Let $S$ be a 2-sphere carried by $B_{L}$ . We can
make $S$ transverse to $L$ and fibres of $N_{L}$ . Then $L\cap S$ consists of finite
families of parallel simple closed curves. We subdivide the familie $s$ so
that in a family all leaves of $L$ intersects $S$ from the same side. (The
side is determined by the fibering of $N_{L}.$ ) Moreover as $L$ is transversely
orientable, we can subdivide the families so that the induced transverse
orientations of all leaves of a family coincide.

Let $\Gamma$ be an innermost family in $S$. Let $\gamma_{1}$ be the outermost leaf
of $\Gamma$ and $\gamma_{2}$ the innermost leaf of $\Gamma$ . Let $\Delta_{i}$ be a disk on $L$ bounded
by $\gamma_{i}$ for $i=1,2$ . Let $D_{1}$ be a disk on $S$ bounded by $\gamma_{1}$ inside. If $\Delta_{1}$

intersects $S$ from inward (Figure $N(a)$), we let $\gamma$ be $\gamma_{1},$
$\Delta$ be $\Delta_{1}$ , and $D$

be a disk on $S$ which $\gamma_{1}$ bounds outside. Next suppose that $\Delta_{1}$ intersects
$S$ from outward (Figure $N(b)$). Then $\Delta_{1}\cup D_{1}$ is an embedded sphere as
$\Gamma$ is innermost and the transverse orientations of leaves of $\Gamma$ coincide.
Hence it bounds a 3-cell $B$ . Suppose that it bounds $B$ outside, i.e. $B$

contains $S-D_{1}$ . Perturb $L$ so that $\partial B\cap L=\Gamma$ , and the intersection is
transverse. Then by Lemma 2, $\partial\Delta_{1}$ is a boundary of a planar surface
which is a leaf of $B\cap L$ . But as $\partial B\cap L=\Gamma$ and there transverse orien-
tations of leaves of $\Gamma$ coincide, it must be a disk. This contradicts the
fact that there are no leaves of $L$ homeomorphic to spheres. Therefore
$\Delta_{1}\cup D_{1}$ bounds $B$ inside. By the same argument as above, $\gamma_{2}$ bounds a
disk in $B$ . Hence $\Delta_{2}$ also intersects $S$ from outward. We let $\gamma$ be $\gamma_{2}$ ,
$\Delta$ be $\Delta_{2}$ , and $D$ be a disk on $S$ which $\gamma_{2}$ bounds inside in this case. If
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int $\Delta\cap S\neq\emptyset$ , let $c$ be an innermost simple closed curve of $\Delta$ bounding $D^{\prime}$

in $S$ and $\Delta^{\prime}$ in $L$ . We choose $D$ ’ so that $D^{\prime}\cap\Delta^{\prime}$ is tangent to fibres.
We replace $S$ by $(S-D’)\cup\Delta^{\prime}$ . (More precisely we need to perturb
$(S-D^{\prime})\cup\Delta^{\prime}$ so that it is apart from $\Delta$

’ and transverse to $L$ . Notice
that this move makes no double points. From now on, cuts and pastes
always include this sort of perturbation implicitly.) If $ D^{\prime}\cap\Gamma\neq\emptyset$ , then
we replace $\Gamma$ by $\Gamma\cap(S-D’)$ . Repeating this, we can assume that
int $\Delta\cap S=\emptyset$ . Replacing $S$ by $ D\cup\Delta$ , we can eliminate $\Gamma$ from $S\cap L$ .

(a) (b)

FIGURE $N$

Therefore we can assume that $ L\cap S=\emptyset$ by repeating the process
above. As $M$ is irreducible, $S$ bounds a 3-cell $B$ and by Lemma 2,
$ B\cap L=\emptyset$ . Then by the same argument as the proof of Claim 1 of
Floyd-Oertel [1] or Oertel [4], the proof of this lemma completes. $\square $

LEMMA 6. Suppose that $B_{L}$ has a disk of contact and that $B_{L}$ carries
no 2-spheres. Then $B_{L}$ has a disk of contact contained in $L$ .

PROOF. Let $D$ be a disk of contact for $B_{L}$ . We assume that $\partial D$ is
contained in $\partial(\partial_{v}B_{L})$ . Suppose that $ L\cap$ int $ D\neq\emptyset$ . Then $L\cap intD$ is de-
composed into finite families each of which consists of parallel simple
closed curves. Take an outermost simple closed curve $\gamma$ of $L\cap intD$.
The simple closed curve $\gamma$ bounds a disk $\Delta$ in $L$ and $\delta$ in $D$. The disk $\Delta$

may intersect with $D$ in the interior. Let $c$ be an innermost component
in $\Delta$ of int $\Delta\cap D$ bounding $\Delta^{\prime}$ in $\Delta$ and $D^{\prime}$ in $D$ . As $\Delta^{\prime}\cup D^{\prime}$ is a 2-sphere,
we can see that $\Delta^{\prime}\cup D^{\prime}$ must be tangent to fibres at $\Delta^{\prime}\cap D^{\prime}$ by the as-
sumption that $B_{L}$ carries no 2-spheres. Hence we can replace $D$ by
$(D-D^{\prime})\cup\Delta$

’ which is also a disk of contact. Repeating this we may
assume that int $ D\cap$ int $\Delta=\emptyset$ . Finally we replace $D$ by $(D-\delta)\cup\Delta$ . $Re$.
peating this for all outermost simple closed curves we can assume that
$ L\cap intD=\emptyset$ . The boundary $\partial D$ bounds a disk $G$ in $L$ . As $GUD$ is a
2-sphere and is not carried by $B_{L}$ by the assumption, $G$ is also a disk
of contact. $\square $

PROOF OF THEOREM 1. Suppose that $N_{L}$ contains a monogon. Then,
as is shown in Floyd-Oertel [1], there is a solid torus $V$ bounded by a



INCOMPRESSIBILITY 157

component of $\partial_{v}N_{L}$ and $\partial_{h}N_{L}$ . Isotope all leaves flowing along $V\cap\partial_{h}N_{L}$

across $V$ as is depicted in Figure $0$ . Then $L$ becomes not normal again,
but we can eliminate one monogon. We isotope $L$ as in the proof of
Lemma 4 and make it normal. If it stops again in a solid torus bounding
a monogon, then continue to isotope $L$ . By the same argument as in
the proof on Lemma 4, this process terminates in Pnite steps. We carry
out this isotopic move of $L$ for all monogons. After that we eliminate
sectors of $N_{L}$ which do not contain leaves of $L$ , and we can make $N_{L}$

have no monogons.

FIGURE $0$

Suppose that $N_{L}$ contains a disk of contact $D$. Then by Lemma 5
and Lemma 6, there exists a surface of contact $G$ contained in $L$ . We
eliminate $G\times I$ from $N_{L}$ . We carry out this operation for all disks of
contact of $N_{L}$ , and we obtain $\tilde{N}_{L}$ . By construction, $\tilde{N}_{L}$ contains no disks
of contact. Moreover as $\partial_{h}\tilde{N}_{L}$ can be regarded as a part of $L$ , it is
incompressible. The operation above does not make new monogons.
Therefore by letting $N$ be $\tilde{N}_{L}$ , we obtain an incompressible branched
surface carrying L. $\square $
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