Tokyo J. MATH.
VoL. 12, No. 1, 1989

On Two Variable p-Adic L-Functions and a
p-Adic Class Number Formula

Kazuhito KOZUKA

Kyushu University
(Communicated by H. Wada)

Introduction.

Let K be an imaginary quadratic field with class number 1 and
discriminant —dx lying inside the complex number field C, and denote
by O the ring of integers of K. Let E be an elliptic curve defined over
K with complex multiplication by O. We denote by + the Grossenchar-
acter of E over K, and by f the conductor of 4. Fix a Weierstrass
model for E

0.1) - YP=42—g,x—g,

such that 9. 9:€0 and the discriminant 4=g5—27g: of (0.1) is divisible
only by primes dividing 6f. Let P(z) be the Weierstrass pe-function as-
sociated with (0.1), and L the period lattice of P(z). Fix an element
2.¢€ L such that L=2.0.

Let p be a rational prime number prime to 6d.f and we assume that
p splits in K, say (p)=pp. We denote by K, the completion of K at p
and identify K, with the rational p-adic number field @,. Let C, be the
completion of the algebraic closure of K,, and denote by I the ring of
integers of C,. Let @ denote the algebraic closure of the rational number
field Q@ in C. Fixing an embedding of @ in C,, we regard Q also as a
field contained in C,.

If ¥ is a Grossencharacter of K, we denote by L(¥, s) the primitive
complex Hecke L-function attached to ¥. For each integral ideal a of
K, let R, denote the ray class field modulo a of K. If a is divisible by
the conductor of ¥, then, for each ¢ € Gal(R.,/K), we denote by L. o, 7, 8)
the partial zeta function attached to ¥ and o € Gal(R,/K).

If X is a primitive class character of K, we put
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0.2) Lo(* X, k)= (1 —~**7A(p)/ Np7*1)(1 —4*+3U(p)/ NP*)
X 2r/V Ag)iR.~*+ D L(y*¥X, k)

for integers 0<j<k. Damerell’s theorem states that the right hand
side of (0.2) lies in Q ([6]).

In the present paper, we shall construct a two variable p-adic power
series attached to X which interpolates essentially the values (0.2), and
show the p-adic class number formula for any finite abelian extension

of K.

§1. p-adic properties of Eisenstein series.

For each positive integer k, we write K, (z, s) for the analytic con-
tinuation to the whole complex s-plane of

K,(z, 8)+ E;J Z+ o) z+al™, Re(s)>1+k/2,

w#E—Z
and for integers k>7=0, we put
E; (2)=(k—1)12x/V dx)/|2.17%K, (2, k) .

We put further E, (z)=E,,(2).

Let o(z) be the Weierstrass o-function of L and put 6(z)=
4-exp(—68,2°)0(z)"*, where s,=lim, ..+ Dluer, 00 @ @] 7%

For any integral ideal a of K prime to f, we put

6(z, A)=0(2)""/6(y(a)z) ,

which is a rational function of P(z) with coefficients in K ([7] §4).

For any integral ideal a of K, we write E, for the group of points
of E(Q) of oxder dividing a. If a€O, we put E,=F,. Further, we put
E, o= U By, Egeo= Un=o Esmn. We write ¢, for the number of units in
O which are congruent to 1 modulo a.

Concerning E; ,(z), we have the following properties ([8] §2):

For any integer k>0, any a¢a€C\L and any integral ideal a of K
prime to f, '

(1.1) (d/dz)*log 6(z+a, 0)|.-o=12(—~1)*"{NaE,(a) =y (@) E(y(a)a)} .

If k>37=0, there is a pelynomial P; (X, ---, X,.;) € Z[X,, « -+, X44i)
such that deg P; ,<j+1, degy P; (X, -+, X;+))=J—1 and

(1.2) E; i (2)=(—E(2))E(2)+277P; J(E\(2), * -+, Ei442)) .
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For any g€ O and a«€g™'L\L,

(1.3) E; () € K(E,) .
If b is an integral ideal of K prime to gf, then
(1.4) E; (2./9)*5E® = E; ((y(0)2./9) .

If the conductor of +**¢ divides g € O, then for any integral ideal b
of K prime to gf,

(1.5)  E; (v (0)2./9)=(k—1)1 2V dg) Q5%+ (g**7| Ngi)e, Ly(os, ¥, k)

where g=(g) and o,=(b, R,/K).

Let E be the formal group giving the kernel of reduction modulo p
on E. The parameter of E is t=—2x/y. We write n: E~G, for the
logarithm of E.

For any g€ O and any integers n, m=0, we put ¢,=gv(") and
Gn,m =gy (P"Pp").

PROPOSITION 1.1. Let g€ O be such that (g, p)=(). Then, for any
positive integer m,

P E(Ru/9n) €T .
If k=2, there is an integer 6(g, k) such that for all m>0,
PP E(Qu/gn) €L .

PROOF. In a similar way as in the proof of Theorem 10 of [7], we
see that, for any integral ideal a of K prime to pf, the Taylor series
expansion of O(\()+2./g., a) at t=0 has coefficients in K(&, )NI and
that the constant term ©(2../9., a) is a unit of I. Since )\'(¢) is a unit
power series of Z,[[t]],

(d/dz)*log O(2 + Ru/Gm, B)|,=0 v
=(\'(t)'d/dt)* log OO(E) + 2e/Grm, O)|s=0 € I .
By equation (1.1), we obtain
(1.6) NAE(2w/9n) — () E,(4v(0)2/9,) € I .

Choose a generator f of f. Putting a=1+f9,.), we see (Na—qr(a)*)x
E(2./9,) €I If k=1, then (Na—qr(a))/p™ € I*, and so, p"E(2./9.) € I. If
k=2, it is easy to see that there is an integer §(g, k) independent of m
such that p’“* ¢ (Na—qr(a)*)]. Hence, p*** E,(2./9,) lies in I for all m>0.
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From Proposition 1.1 and equation (1.2), we deduce the following

PROPOSITION 1.2. Let g € O be such that (g, p)=(1). Then for integers
k>37=0, there is an integer 6(g, k, J) satisfying

92 B3 1(Q0/9 )~ (— G nE(2e/9)) E(2/9.n) € D™ 5T .

PROPOSITION 1.3. Let g€ O be such that (g, p)=Q). Then, lim, ..
(— 9. E(R2.]9.) exists in I and is independent of g.

PRrROOF. For each m>0, choose a set B, of integral ideals of K such
that {y(b): be B,} is a set of representatives of 1+gp™ mod gp™*'. Then

E;EI(Qw/gm)=§:/«k(5)5 2 By (0)Qe/gns) -

We can choose a set B, with an additional condition that (b, pf)=(1) for
all be B,. Then, by (1.6), ¥(0)E,(2u/Gns)—E(¥(0)2e/gn+) € I. Further,
we have 3.5 ¥(b)=p (mod p~*'). Hence, by Proposition 1.1,

J;El(gw/gm) = E;/"l"(ﬁ) * pE1(~Qoo/gm+1) (mOd pm) ’
G/ (B) PE(Deo/Gmt1) = I 11 Ev( QoG )

and we see that lim,, ..(—¢,E.(2./9,)) exists in I.
Next, let us show that it is independent of g. Taking account of
Theorem 4.8 of [8], it is sufficient to show that

91 B (20/G1,m) = G111,mE(2/9141,m)  (mod Pm77)

holds for all ¢’ € O with (¢/, p)=(1) and integers {=0 and m>0. Choose
a set IB,, of integral ideals of K prime to pf such that {y(b):be B;,}
is a set of representatives 1+(g;,) mod(9i;, ). Then,

91 nE(R0]90 ) =1, m[v(P)* BZ. E (¢ (6)2/9141,m)

be 1,m

=g mlv(®): 3 V(O)E(2x/gls1,m) (mod p™)

BeBi'm

Gt /¥ (®) PE(RuGi41,m) (mod p™7) .

Hence
91 nEi(20/0m) =91 11,m B (R0/141,m)  (mod ™) .
Thus, we obtain the required result.

As shown in [8] §4, there exists an integer 7,=0 such that
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27" lim, ool — g Bi(20/9.)) € I* and we have 7,=0 for almost all p. Fur-
ther, we can choose an isomorphism 7 from E to the formal multiplicative
group G, over I such that n»(T)=0,T+---, where

(1.7) Q,=p" }ni_{n(—ﬂE'l(Qw/gm)) .

If F is a Galois extension of K containing K(E,~) (resp. K(E;=)), we
denote by k,: Gal(F/K)— Z,* (resp. k,: Gal(F/K)— Z,*) the homomorphism
giving the action of Gal(F/K) on E,~ (resp. Ej«).

We see from (1.6) that for any integral ideal a of K prime to pfg,

(1.8) «’F(G)Q»=p"’°lijg(—E,El(alf(a)f)w/gm)) .

By (1.4), we have, for any ¢ € Gal(K(¥ ;»)/K),
(1.9) k(0)2,=p™" Liﬂ(—EEl(Qw/gm)°) .

§2. Construction of two variable p-adic L-functions.

Let X be a class character of K and f, the conductor of X. We denote
by R, the subfield of R, corresponding to KerX. If F' is an abelian
extension of K containing R,;, we can regard X also as a character of
Gal(F'/K).

If v is a finite character of Z,*, vek, (resp. veok,) is a character of
Gal(K(E,=)/K) (resp. Gal(K(E;»)/K)). We denote by p, (resp. v;) the class
character of K induced by vok, (resp. vok,).

We can express X as X=X,(pw™),(p'w*);, where X, is a class character
of K with (f,, »)=(1), » and ¢’ are characters of the second kind of
Z,*, w is the Teichmiiller character and %,, 7, € Z/(p—1)Z. We put v,=pw"
and v;=¢ w™.

Let f,=g,p"*p"z, where (g, »)=(1), and write simply g for g,. Note
that g depends only on X, and (i, %), and that R, CK(E,). We fix a
generator g of g. It is easy to see that p"t (resp. p"x) is a conductor of
vy (resp. v%).

For any integer m>0, and any integral ideal a of K, G(z+2./9., a)
is a rational function of P(z) and P’(z) with coefficients in K(F, ), and
so, for each ¢ € Gal(K(F, )/K), we can define a function 6(z+2./9,, a)°
by applying o on the coefficients. We put

An(2, )= II O(2+2e/0m ),

0€Gal(K(Eg )/Ry (Epm)

which is a rational function of P(z) and P’(z) with coefficients in Ry (Eim).
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Let I, denote the set of integral ideals of K which are prime to
6pffy, and let

o, ={tt: Iy~ Z | (a)=0 for almost all ae I, and 3. p(a)(Na—1)=0}.

aeIZl
For each €4y, put
6(z; )= 11 6(z, )@ and 4.(z )= II 4a(z, )" .

a.elzl a 1

We put further
Con, (T)=Ap(r®)™MT); 1) and g, (T)=\(T)"'d/dT log,cn,(T) ,

which are in Ry (Em)[[T]] and also in I[[T]].
For each 7 € Gal(Ry(E;m)/K), k,(t) is well defined modulo p™, and so,
(1+ T)== is well defined modulo ((1+ T)*"—1).

PROPOSITION 2.1. For each o € Gal(R,/K), there exists a unique power
series g, T, T,) € I[[T,, T.]] such that

9..{T,, T,)= N I, (THA+ T2
:lelgalilzzl(Egm)/K)
11

mod((1+ T)*" —DI[[T,, T:1] .
PrOOF. From Lemma 6 of [1], we see that, for each m >0,

O+ Ru/Gmi1; 1) =60(2+ 2o/ I 1) -

7€GAL(R(E gy s 1)/ E(Egy)

It follows from the definition of g, .(7T) that
gm+1,pr(T)=gm,bp(T) .

reGal(Ry (Egp o )/ By, (Epp))
Hence, we deduce our assertion.

We write i: G,, % E for the inverse of #: E~G@G,, and put

h’p(Tv T2)= Zl xl—l(a)ga,p(i(Tl)) Tz) .
o€ Gal(Ry,/K)
It is known that each f(T, T,) € I[[T, T,]] corresponds to an I-valued
measure vy, on Z,} ([7] §6), and for each (4, 7,)c(Z/(p—1)Z), a I-
transform I'¢v#: Z *—1I is defined by

F?"h)(sl, sz) = S oo <xl>a1<x2>tzwt1(x1)a)'z((v2)d!)f ’
»?

X
Zp™ X

where we put {(x)=z/w(x) for any x€Z,*. Fix a topological generator
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u of 1+pZ, Then, there exists a power series f'v#(T, T,) e I[[T, T.]]
such that

F}.‘il:jz) (31’ 82) — f(.ih.'iz) (u'l — 1’ u‘2 _— 1) R

If v, and p, are Dirichlet characters with conductors p* and p'
respectively, we put

pl1 ple

(2.1) f(v1 vz)(Tv )=z Cot) (v Cote)” Z_”Z

v @)y, (0 (G * (L +T) —1, L1+ T)—1) ,

where (,;; is an arbitrary primitive p'i-th root of unity and z(v,™, o=
2l v (@) o (3=1,2). The right hand side of (2.1) is independent of
the choice of {,;, and {,,, and it belongs to I[[T,, T:]]. We have

I§vid, (s, 8;)=f9v2(pu)ur—1, ' (w)u2—1)
and
Lie (8, 8)=I§tirtil(s, s,) .
We put ’
GEy(T,, T)=h, "2 (1+T)—1, A+T,)*—1).
Then, we have

G (Pwu—1, p'ww2—1)=IG40 . -6—1, —s) .

In what follows, we assume that for each positive integer %, a
primitive p"-th root of unity {,. is chosen to satisfy

(2.2) 1Cpn—1) = —2P(Qu/y(p™))/ P' (e y(¥™)) -

PROPOSITION 2.2. For all integers k,, k, such that k,>—k,=0 and
k,=k,=0 (mod p—1), we have

GEL2 (p(u)urr—1, @' (u)urz—1)
= —12g"1,(9)e [ K(E,): R*‘]., >, pa)(Na—ym(a)g*(a)X(a)

X (X)) (P ) (9 ) 2 (") (w7t Cpmy) 70702, R e — 1)1
X Lo(p*1=*2), k) .

For each f(T, T, € I[[T, T,]]l, we put
D;f(T, T)=Q+Tpd/dT;f(T, T,) (G=12),
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US(T, T)=f(T, T)—1/p 3 fFCQA+T)—1, T.)

and
U.f(T,, T)=f(T,, T)—1/p C;;I f(T, LA+T,)-1).

For integers n, m=0, we choose ¢,, a, €O such that ¢,y(p)=1 (mod
9", £.=0 (mod ), a,m=v(p") (mod fgp™), a, =g (mod p").
In order to prove Proposition 2.2, we show the following

PROPOSITION 2.8. Let n, m, a € Z with m, a>0, n=0 and (a, p)=(1).
Then, for each k>0 and 7€ Gal(K(E,, )/ K(E)),

Dy*log, ¢y, (UCsm* (1 + T1) —1))|r,=o
=12(—1)72, (B 3, pa) 3, {NaE(2c/Gn,m)

a Xy TeGﬂl(K(Eg"'m)/Rxl(E”n;M))

— (@) E(4(0)2ec/ g, )} ™ @mrm)e

where 0, =), K(E,,,)/K) and 7, is an element of Gal(K(E,, ,)/
K(E,,)) such that k,(z,)=a (mod p™).

PrROOF. From (2.2) and the definition of ¢, (T), we see

Co, (1L (1 + T) — 1)) = 4,7 (.02 oY (P™) +r(P) ™Mot T); L) .
Hence

D/*log, ¢, (1" A+ T)—1))|r=0
=0, (P)™*(d/dz)* log 4,7 (2 + €, A2 [y (P"); £)].=0
=0, p(P)™™* 3, ma) >, ) (d/dz)*log,6(z +

cEle TGG"I(K(Eﬂn,m)/Rll(Ep"'B"‘)

(6n™ Qo (D7) + Lo/ Gony @)=

Now, &, /v(dP)+1/g.=(,"gn+¥®"))/g.» and it is easy to see that
(™I m + V(™) = €."Fm +¥(p") and that ((e."gn +v(®"), K(E,, )/ K)=
((atn,m), K(E,, ,)/K). Hence by (1.1) and (1.4), we obtain our assertion.

PROOF OF PROPOSITION 2.2. We first have

Gl pumn—1, P ==\ zrn e

= (D1k1—1Dz—k2>(( U1 UZ)(hP)(yl'y’x"l))(Oi 0)
= (lel_lDz_kz)( Ul(h[l)(yx’y'x'—l))(o’ 0) .

If p,#1, then,
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Uil gy=(Tos T =) (T To)
and

(D7D, 2)(R) ,0-1,)(0, 0)
=lim 3 X0 2 DG 1" (U T g0 2y =0

m—oo oeGal(Rll/K) tEGal_(.Rzl(Eim)/K)
‘L‘IRZI-—G

X Dy #2((L+ T ) 5 rymo

pRY
=7(vr™, Lpny) 7t lim by LW )™ (7) 3 v a)
m—oo z'eGal(Rxl(Egm)/K) a=1

‘ X D#g, FG oL A T) = 1)) lr,mo
=7(vr7", Lpng) " lim S LT S @2,

m—rco T € Ga.l(RZl(E;m)/K

X D*1(108 1, " (4(Cpnz* (L + T) — 1)))7;=o
By Proposition 2.3, we obtain

Gy (p(u)urr—1, @' (w)yu*2—1)
= —1202,7M7 (v, Gyn) T lim ye(p) > X o)k, ()"

o€ Gal(X(EBy, . 1/K)

X 30 ) {NOE, (D/Gny,m) = V(@)1 By (Y(@) R/ G )} o)
=—122,7070n 7, G ™ 3 s@)(Na— (@) (a)X(a)
X 3'1_!'2 {9 B) ™™ Xy, )2 () ™

by by XN @)K (T) 2B, (Lo Gy, m)°} -

r€GalK (B, )/K)
By Propositions 1.2 and 1.3, and equations (1.5), (1.7) and (1.9), we see
},,iiﬁ y(p)~m* > X (@0)k(T) 2B, (Lo Grny,m)T

re Ga”K(E!’nz,m)/K)

=lim y(p)~* 2 TR THPR(T)R,)

reGal(R(Ey, )/

x gnx,m_sz—kz,kl(Qw/gnZ,m)r}
= pr”kzgpkz 1'1_12’ “p‘(ﬁ)_mhgnl,m-kz[K(Ey”,m): R(y,,x,m)]

x by XYk, — 1)1 2V dg) 22Q,,~ =k

reGal(R(g”x’m)/K)
| X (gnz,mkl_kz/Ngnx,m_kz)e(a”x,m)L(ﬂ”x,m)(T, "nl"kl_kz: kl)}
= piQ gl (p e [ K(E,): R,)(ky,—1)! La(y™ %X, k)
Now, it is easy to see X((@,,,n)) =X, (V);)(P")vx(g) for m=2, and (A

J(p)*r (mod p™). Hence, we obtain our assertion in the case p,#1.
If ))x=1, then
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Gine (p(wyur—1, o' (u)u*s—1)
=lim 5 X @k (DA~ 1P, T

m—o reGal(Ry (Epm)/K)

~1/p %, 0., GC A+ TY- D)} |

1—0

As in the previous case, we deduce

and

lim > X—I(T)lc2~k2(7)lel—l(gm,,f(":(T1)))|T1=o

m—o veGal (Rll(E’;‘m)/K)

=—12pnhQ, "t hghe [ K(E,): B] 3, {¢(@)(Na—(a)"4(a)*=x(a))

celxl

X (e, — 1)1 2r/V dg) "2~ 17 (L— 7Ry (p) NP*) L(y 7%, k.)}

im S X0 3 DA TG G L T~ D)y

m-—oo TE Gal(l?.z1 (E;m)/K)
= —12pekeQ htlgkie [ K(E,): R“]u e% pa)(Na—p(a) 1q-(a)*2X(a))
X ((ky — 1)1 @ /v d ) *2Q2 .~ % k2 () esp () ¥2X (b)
X (1 —gF =) (p)/ Np)(1 — = 52X (B)/ NP*) L(yF752), k,)

Hence, we see that our assertion holds also in the case y;=1.

For each z ¢ Z,*, let l(x) € Z, be such that {(x)=u'".
We put
A (T, T,)=—122,0"(9)[K(E,): R,J1+ T)"?
x 3, pe){Na— w1 (y(@)) 0 *(F @)X, (@) (1 + TY @ (1 + T F@}

“elll

Then, for all integers k,, k.,

(2.8)

Al (pwu—1, ' (Wu'—1)= —12(v0™")(9)g" e K(E,): R,]
X 3, p@){Na—y(a)y sy ()Xo, w5~ )(@)} .

aelxl

Let 8, ={rt€ 8y | #(a)=0 for all ae I, such that X,(a)+#1} and denote by
H{v® the ideal of Z,[[T,, T.]] generated by {442 (T, T,)| € 0oz} Then,
by using a method similar to the proof of Lemma 28 of [7], we obtain

the

following

PROPOSITION 2.4. Unless (i), 1,)=(0,0) or (1,1), H{r*=Z,[T, T.]l,

and HY" is the ideal of Z[[T, T,]]1 generated by T, and T,, and HE
18 the ideal generated by 1+ T,—u and 1+ T,—wu.
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THEOREM 2.5.' There exists a power series Gy(T, T,) e I[[T,, T,1] such
that for all integers k,, k, with k,>—k,=0 and k,=k,=0 (mod p—1),
2.9 Gr(ur—1, wh2—1) = prokegebs(pra) (v, Epny) "k, — 1) 12, Vat

X La(y*~*, k) .
PROOF. Put Gi(T, T,)=Giy= (T, T)/R2,Aln%(T,, T,). From Prop-

osition 2.2 and equation (2.3), we see that Gi(T, T,) is independent of
preo. We put further

GUT,y Tp)= (w2 ()L + T v
X G;‘ff’”’(@(u)(l +T)—1, @' (w)(1+T)—1) .

Then, equation (2.4) holds. It remains to prove G2 (T, T,) lies in
I[[T, T.,]]. Unless (3, 4,)=(0, 0) or (1, 1), it is obvious from Proposition
2.4 that Gyr*(T, T,) e I[[T, T.]I.

If (¢, %,)=(0, 0), then, Proposition 2.4 shows that both T.GY(T,, T,
and T.G{°(T, T,) are in I[[T, T,]I. Hence, G{(T, T,) itself belongs
to I[[T,, T.]I.

In a similar way, we see that G°(T, T,) e I[[T,, T.]].

REMARK. The case X=1 is already treated in [4] and [7]. See also

[2].
In what follows, we put

L,(8,, 85 X)=Gr(u*"1— 1, ui=2—1).

§3. Calculation of L,(1, 1; X).

As in the previous section, let L=%wn,005 vi=pw™, V,=9¢'w?,
fr=gp"p"x and (f, p)=(1). ,

For any integral ideal a of K, let Cl(a) denote the group of ray
classes modulo a of K. We write k. for the smallest positive integer in
a. For each C¢Cl(a), let ¢,(C)€ R, be the ray class invariant defined in
[6] §2. If f, divides a, we put

8P = o;%m XH(O)log, p,(C) e C, .
We put further SPX) =8P X).
THEOREM 3.1. If X+#1, then
L,1, 1; 0)=—1/12k,z (v, Cpnz))(l*X(p)/p)(l~x”.1(§))3"”(x) .
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Proor. We first have
Gy (p(u)—1, @' (W) — 1) =TG0,,.,-1(—1, 0)

-1
2, 'dy F—ty -
Sprprx ' g gavy™h

From the definition of h,(T,, T, and Lemma 4.1 of [4], we deduce

Gy (p(u)—1, @'(w)—1)
—er, G lim S e @{U S @)

m—oo reGal(Ry (£5m)/K)

X108, €, Cpm" (L + T — 1)}

T,=0
If vy,+#+1, then
Gy (p(w)—1, ' (w)—1)
. Pnx I\ e 1
=0,7(vr7Y Gpny) 7t lim DI M €A e (2 P ()
m—roo reGal(Rxl(E,m)/K) a=1
xlog, ¢y, (T(Cpn" — 1))

=2,7(vr", o) im by X7(7)

m—oo reGal(Ry, (Eynygm)/K)

X108, Ap(Eny™ R/ ¥(P™0); £)°
=2,7(wY Comy) Tt lim X p(a) > X (7)

m—oo nelxl rEGal(K(Eg”x,m)/K)

X 10g, 0(en,"Rec/ ¥ (9™ + 2o/ Gmy Q)7 -

From Theorem 1 and Proposition 10 of [5], we see

Q(Snl’"gm/,‘l,\(pnz) + Qm/gm’ a)kavnlim
= (q’av"ﬂ”‘(co)Na/?ganz;'n(cﬂ))““"Z»m) »Rgpnagm/K) |

where C, is the unit ray class of Cl(gp"p™) and C, is the class of Cl(gp™p™)
containing a. By Theorem 2 of [5], we obtain

Gy (p(w)—1, ¢'(w)—1)
=2t L) ™ 3 @) (Na—X@)Lim X(@ny,m))/ Kopniim

ae[xl

X > XH(7)log, Pepnrzm(Co)*

reGal(K{Eg, /K

=2,7(v, ‘Zzan;z)—1(751(1135);)(b"")l)zz(g)“;I}C p(a)(Na—X(a))
X liin [K(Ev,,x,m): Rav"zim](l/kap"x;?'”)sa(»p")z;"(x)

= 0,017, Lpn) UL @@ K(ED: B)] 3, pa)(Na—1(a)
X (1/k, ) (L —X*B)SP(X) ‘
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Taking account of equation (2.8) in the case k,=k,=0, and of the con-
struction of the power series Gy(T,, T,) in the proof of Theorem 2.5, we
obtain our assertion in the case p,=1.

Next, assume that y;,=1. Then,

Gy (p(uw)—1, @' (u)—1)
=0, 1}_{2 {1-1/p) > X7 (v)log, c,,,7(0)

e Gal(Ry (E5m)/K)

—1/p > X (o)log, ¢, (1L, —1))7} .

e Gal(Ry (Ey5m)/K)

As in the previous case, we deduce

X7 (z)log, . (0)

reGal(Rzl(Eim)/K)

= eu[K(Es): Ra] . g; .u(a)(Na - X(a))(l/ka;m)sa(?’%(x)
and
x_l(z-)l()gp cm,,u(’i(Cp - 1))f

t€Gal(Ry (Eyzm)/K)

= elK(E): B 3, 1) (Na—1@) L0 lyiom)Siin() -
By Theorem 2 of [5], we obtain
G2 (@) —1, (W~ ) =20l K(B): R)] 3, p(a)(Na—1(a)
X (1/k) (LX) D)L~ XIS (L) -

Hence, our assertion holds also in this case.

§4. One variable p-adic L-functions.

In the next section, we prove a p-adic class number formula using
two variable p-adic L-functions. However, for a character of which
conductor is prime to P, we must use a one variable p-adic L-funection.
Hence, in this section, we summarize the construction and basic properties
of a one variable p-adic L-function attached to a character X with (f,, p)=
(1). All the results in this section can be obtained by using methods
similar to §2 and §38 ([1], [2], [3]).

As in §2, we express X=X,(v;), with v,=@pw’ and let f,=gp* and
g=(g). For any integral ideal a of K, put

Az, @)= 1I O(z+2./g, a)° .

geGal(K(Eg) /Rxl)

For each p1ed,, we put
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Az =TI Az, a)*@, c(T)=4A0T); 1),

nelzl

9.(T)=\(T)"d/dTlog,c(T) and h(T)= 3, K))C{"(a)g,."('&(T)).

oeGal (Rzl/

Then, ¢ (T), 9.(T) and h,(T) belong to I[[T]]).
Each f(T) e I[[T]] corresponds to an I-valued measure v, on Z,, and
for each jeZ/(p—1)Z, a I'-transform I'Y:Z,—1I is defined by I'’(s)=

S (x)'@w?(x)dy;. Moreover, there is f"(T)elI[[T]] such that Irés)=
Z X
I ‘?’(u'——l). For any Dirichlet character » with conductor p', we put

£y =26, G § v @f G+ T)~1)

For each ped,, we put g% (T)=h, @ Q1+ T)-1).
PROPOSITION 4.1. For all integers k>0 with k=0 (mod p—1), we have
92 (@uyur—1) = — 12¢*X,(p")vx(9)e K(Ey): B,] e% (@)(Na—*(a)X(a))
X AP DT Cp»z)"!),‘""!‘?»""(kil)!(1*«#"1(10)/10)L(W k) .

THEOREM 4.2. There i3 a power series g}, (T)e€ THI[[T]] such that
for all integers k>0 with k=0 (mod p—1), we have
g2 (@(u)u* —1) = P )X, (P )T (vr ™, Lom) T (K —1)!
X 2,74 H U= UDIDLGT, B

where af)=—1 if Xw,'=1 and a) =0 otherwise.
We put L,(s, X)=X,""(p"9)g5;(Pp(w)u'""—1).
THEOREM 4.8. If X#1, then
L1, X)=~(1/12ky,e,,t(v: ", Comn)) (A —X(®)/P)SP(X) .

§5. p-adic class number formula.

Let H be a finite abelian extension of K, and denote by h,, R (H),
dux, Wa and Gy, the class number of H, the p-adic regulator of H, a
generator of the relative discriminant of H over K, the number of the
roots of unity in H and the Galois group of H over K, respectively.
Each character X e @G, defines a primitive class character of K, which
we also denote by X.

For any a, B€C,*, let a~B mean a/Bel”.
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THEOREM 5.1. We have

(1 a-x@m-L,a o) T A-1@m L 1)

ZEGH ZGGH—{I}
pliy

NhH/ WH]/dH/KR(p)(H) .

ProOOF. Let f; be the conductor of H over K and write fz=[]%-, *,
where [, ---, [, are distinet prime ideals of K and ¢, ---, ¢, are positive
integers. For each ¢=(¢g, --¢,) € {0, 1}, we put f.=T]i, [’ and for each
o € Gal(R;,/K), we put

&= _IT 21(Co.)/21,(Co, ) 1™,

where C,. is the unit ray class of Ci(f). For each re€ Gy, choose an
extension ¥ of z to R,,. Then, N, a6 18 independent of the choice of
T. We put 7,=Ng & Le} ey be “the group generated by {7.|7z€Gg}.
Then, ¢, is a subgroup of the unit group E,; of H, and the regulator
R(eyz) of e satisfies

R(eyx)=det(log [7,7*). T eGg—11}
= II > X' logl(NmHzH H ,Pr(Co, ) Fra’M)7|

1e8g—i1) T¢6H
= 1II > tzkm/kf. > X (o) log |¢f.(co,s) | .
1eGg—1i1 £810:1) o eGal(Rgy/K)

If {,/f., a simple calculation shows

X (o) log | (C,,)’| =0 .

oeGal (R'H/K)

Hence, by Theorems 1 and 2 of [5], we see

Ren= T1 2k, 3 (ks )[Ruy Byl T A1=270)

xeCAy'H—{l) fx1fs &;=1
X 3, XA7(C)log loy,(C)l
CeCl(fy)
= JL ohgenlhe 3 ptoles) I =270

fxlfe ;=1

X > X™C) log |@.,(C)|

C €0y

= T 2kelke 3, 170 log @y ()

relg—1)
X tl;f[}( (@Pxl)+1—-X71(1))

where @, is the Euler function of K. A similar argument shows that
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the p-adic regulator R (g,) of e satisfies
R?(ex)= 11 ":hareuar/]‘chzeix'S(m(x)tl}_fl’:c (¢’K(I¢‘i)+1—x"‘(1¢)) ’

zeby—11}
and the equation R(ey)/R(H)=R"(¢y)/R”(H) holds, where R(H) is the
regulator of H. By Theorem 3 of [5],
(6.1) ( II >, X7HC) log |@y (C)l/ky) | R(H)

re@g—i1) €SCTUD
~( T SPW)/ke)/RD(H) ~ b/ W .

1e8y—i1)

For each Xe@H, regarding X as a class character of K, we write
L=X,(vn),(vy); as in §2. Choose a generator f; of f;. Then,

(5'2) H T(Dz, Cp"x)2 ~ H T(Dz, Cp“l)z-(vl—ly Cp"‘x) ~ H p"l
rey—i1 zely zely
o~ II fe~daxs
xe@H

Combining (5.1), (6.2) and Theorems 3.1 and 4.3, we obtain our assertion.

REMARK. We note that the index (F4: ey) is finite, because R(g;)#0
as is shown above.
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