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Abstract. Let $\alpha_{j}(z),$ $j=1,2,$ $a_{i}(z),$ $i=1,2$ , –, 6 be meromorphic functions. Suppose the differential
equation $(*)w^{\prime 3}+\alpha_{2}(z)w^{\prime 2}+\alpha_{1}(z)w^{\prime}=a_{6}(z)w^{6}+\cdots+a_{1}(z)w+a_{0}(z)$ possesses an admissible solution $w(z)$ . If
$\eta(z)$ is a solution of $(*)$ and small with respect to $w\langle z$) and if $t*$ ) is irreducible, then $\eta(z)$ is a deficient or a
ramified function for $w(z)$ .

1. Introduction.

We use here standard notations in Nevanlinna theory $[2][6][8]$ . Let $f(z)$ be a
meromorphic function. In this paper the term “meromorphic” will mean meromorphic
in $|z|<\infty$ . As usual, $m(r, f),$ $N(r, f)$ , and $T(r, f)$ denote the proximity function, the
counting function, and the characteristic function of $f(z)$ , respectively. Let $\overline{N}(r, f)$ be
the counting function for distinct poles off$(z)$ . Put $N_{1}(r, f)=N(r, f)-\overline{N}(r, f)$ . For $\alpha\in \mathbb{C}$ ,
the following quantities are defined

$\delta(\alpha, f)=\lim_{r\rightarrow}\inf_{\infty}\frac{m(r,1/(f-\alpha))}{T(r,f)}$ (deficiency)

and

$\theta(\alpha, f)=\lim_{r\rightarrow}\inf_{\infty}\frac{N_{1}(r,1/(f-\alpha))}{T(r,f)}$ (ramification index) .

A function $\varphi(r),$ $ 0\leq r\leq\infty$ , is said to be $S(r,f)$ if there is a set $E\subset \mathbb{R}^{+}$ of finite
linear measure such that $\varphi(r)=o(T(r, f))$ as $r\rightarrow\infty,$ $r\not\in E$. A meromorphic function $a(z)$

is said to be small with respect to $f(z)$ if $T(r, a)=S(r, f)$ . We consider here the deficiency
and the ramification for a small function $a(z)$ instead of complex number $\alpha\in \mathbb{C}$ . We put,
for a meromorphic function $a(z),$ $m(r, a;f)=m(r, 1/(f-a)),$ $N(r, a;f)=N(r, 1/(f-a))$ ,
and $\overline{N}(r, a;f),$ $N_{1}(r, a;f),$ $\delta(a, f),$ $\theta(a, f)$ , etc., are defined in the same way as for a
complex number $\alpha\in \mathbb{C}$ , respectively. If $\delta(a, f)>0$ or $\theta(a, f)>0$ , then $a(z)$ is said to be a
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deficient or ramified function for $f(z)$, respectively.
Let $\mathscr{M}$ be a finite collection of meromorphic functions. A transcendental mero

morphic function $w(z)$ is admissible with respect to $\mathscr{M}$, if $T(r, a)=S(r, w)$ for any $a(z)$

$\mathscr{M}$ . Suppose a transcendental meromorphic function $w(z)$ is admissible with respec
to $\mathscr{M}$ . For $c\in \mathbb{C}\cup\{\infty\},$

$z_{0}$ is admissible c-point with respect to $\ovalbox{\tt\small REJECT}$ , if $z_{0}$ is c-point $0$

$w(z)$ and neither zero nor pole of $a(z)$ which belongs to $\ovalbox{\tt\small REJECT}$ . Suppose $N(r, c;f)\neq S(r, f)$

$c\in \mathbb{C}\cup\{\infty\}$ . We denote by $n_{C1}^{*}(r,$ $ c;f\gamma$ , the number of c-point $z_{O}$ of $f(z)$ in $|z|\leqq rs\langle$

that $z_{0}$ satisfies some condition Cl. $N_{C1}^{*}(r, c;f)$ is defined in the usual way. We use th $($

word “almost all” c-point satisfy the condition Cl, if

$N(r, c;f)-N_{C1}^{*}(r, c;f)=S(r, f)$ .
REMARK 1. Let $\mathscr{M}$ be a finite collection of meromorphic functions. Suppose $j$

transcendental meromorphic function $w(z)$ is admissible with respect to $\parallel$ . Let $\eta(\angle\cdot$

be rational of members of $\mathscr{M}$ and their derivatives. Then we have $ T(r, \eta)\leq$

$K\sum_{a_{v}\in}\nu\alpha T(r, a_{\nu})+S(r, w)$ , for some $K>0$ . Thus $\eta(z)$ is a small function with respect $t($

$w(z)$ . Assume that $N(r, w)\neq S(r, w)$ , then there exists an admissible pole of $w(z)$ witl
respect to $\mathscr{M}$ . If $\eta(z)$ vanishes at almost all poles of $w(z)$ , then $\eta(z)\equiv 0$ .

Let $\Omega(z, w, w^{\prime}, \cdots, w^{\{n)})$ be a differential polynomial of $w$ with meromorphi
coefficients and let $\mathscr{M}$ be the collection of coefficients of $\Omega$ . We call $w(z)$ an admissibl
solution of the equation

(1.1) $\Omega(z, w, w^{\prime}, \cdots, w^{\langle n)})=0$ ,

if $w(z)$ satisfies the above equation and $w(z)$ is admissible with respect to $\mathscr{M}$ .
Let $M$ be the field of meromorphic functions and let $\Omega(z, w, w^{\prime})$ be a $polynomi^{r}$

of $w$ and $w^{\prime}$ with meromorphic (possibly transcendental) coefficients. We call th
$differentialpolynomial\Omega(z, w, w^{\prime})irreducible,if\Omega(z, w, w^{\prime})isirreducible$ over the field $M$

We know the following theorem due to Mokho\’{n}ko [7]:

THEOREM A. Suppose the differential equation (1.1) possesses an admissible solutio
$w(z)$ . If $\eta(z)$ is a deficient or ramified small function for $w(z)$ , then $\eta(z)$ is a small solutio
of (1.1), i.e.

$\Omega(z, \eta, \eta^{\prime}, \cdots, \eta^{\langle n)})=0$ .

Our aim in this note is to get a converse of this result for the special case of (1.1
that is, for the equation of the form

(1.2) $P(z, w^{\prime})=Q(z, w)$ ,

where $P(z, w^{\prime})$ and $Q(z, w)$ are polynomials of $w^{\prime}$ and $w$ with meromorphic coefficient}
respectively. In [3], we obtained the following theorem for the case $p=\deg_{w^{\prime}}[P(z, w^{\prime})]=$

2.
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THEOREM B. Suppose the differential equation

(1.3) $w^{\prime 2}+\alpha_{1}(z)w^{\prime}=a_{4}(z)w^{4}+\cdots+a_{1}(z)w+a_{0}(z)$

possesses an admissible solution $w(z)$ , where the coefficients are meromorphic and
$|a_{4}|+|a_{3}|+|a_{2}|\not\equiv 0$ . If $\eta(z)$ is a small solution of (1.3), then $\eta(z)$ is a deficient or ramified
function of $w$ , unless (1.3) is reducible.

In this note, we treat the case $p=3$ in (1.2), and prove the following theorem.

THEOREM 1. Suppose the $d\iota fferential$ equation

(1.4) $w^{\prime 3}+\alpha_{2}(z)w^{\prime 2}+\alpha_{1}(z)w^{\prime}=a_{6}(z)w^{6}+\cdots+a_{1}(z)w+a_{0}(z)$

possesses an admissible solution $w(z)$ , where the coefficients are meromorphic and
$|a_{6}|+|a_{5}|+|a_{4}|+|a_{3}|\not\equiv 0$ . If $\eta(z)$ is a small solution of (1.4), then $\eta(z)$ is a deficient or
ramifiedfunction of $w$ , unless (1.4) is reducible.

2. Preliminary lemmas.

LEMMA 1 ([5]). Suppose (1.4) possesses an admissible solution $w(z)$ . If $w(z)$ satisfies
the Riccati equation or the $d\iota fferential$ equation

(2.1) $w^{\prime 2}+B(z, w)w^{\prime}+A(z, w)=0$

where $B(z, w)$ and $A(z, w)$ are polynomials of $w$ with small (w.r.t. $w(z)$) coefficients and
$\deg_{w}[B(z, w)]\leq 2,$ $\deg_{w}[A(z, w)]\leq 4$ , then (1.4) is reducible.

REMARK 2. Put $y=[a(z)w+b(z)]/[c(z)w+d(z)],$ $ad-bc\not\equiv O$ in (2.1), where $a(z)$ ,
$b(z),$ $c(z)$ and $d(z)$ are small (w.r. $t$ . $w(z)$) functions. Then $y(z)$ satisfies the Riccati equation
or the differential equation of the form

(2.1) $y^{\prime 2}+\tilde{B}(z, y)y^{\prime}+\tilde{A}(z, y)=0$

where $\tilde{B}(z, y)$ and $\tilde{A}(z, y)$ are polynomials of $y$ with small (w.r. $t$ . $y(z)$) coefficients and
$\deg_{y}[\tilde{B}(z, y)]\leq 2,$ $\deg_{y}[\tilde{A}(z, y)]\leq 4$ .

The equation (2.1) was treated by Steinmetz in [9] and by Eremenko in [1]. To
state Lemma 2, we define some notations (see [4]).

Let $f(z)$ be a transcendental meromorphic function and let $\alpha_{1}(z),$ $\cdots,$ $\alpha_{4}(z),$ $\beta_{1}(z)$,
$\beta_{4}(z),$ $\gamma_{1}(z),$ $\cdots,$ $\gamma_{4}(z),$ $\delta_{1}(z),$ $\cdots,$ $\delta_{4}(z),$ $\lambda_{1}(z)$ and $\lambda_{O}(z)$ be small functions with respect

to $f(z)$ , where $\lambda_{1}(z)^{2}-4\lambda_{0}(z)\not\equiv 0$ , $\alpha_{4}(z)^{2}-\lambda_{1}(z)\alpha_{3}(z)\alpha_{4}(z)+\lambda_{0}(z)\alpha_{3}(z)^{2}\not\equiv 0$ , $\beta_{4}(z)^{2}-$

$\lambda_{1}(z)\beta_{3}(z)\beta_{4}(z)+\lambda_{0}(z)\beta_{3}(z)^{2}\not\equiv 0$ , $\gamma_{4}(z)^{2}-\lambda_{1}(z)\gamma_{3}(z)\gamma_{4}(z)+\lambda_{0}(z)\gamma_{3}(z)^{2}\not\equiv 0$ , $\delta_{4}(z)^{2}-$

$\lambda_{1}(z)\delta_{3}(z)\delta_{4}(z)+\lambda_{0}(z)\delta_{3}(z)^{2}\not\equiv 0$ .
Let $z_{0}$ be a simple pole of $f(z)$ . We call $z_{0}$ strongly representable in the second kind

sense by $\alpha_{1}(z),$ $\cdots,$ $\alpha_{4}(z),$ $\beta_{1}(z),$ $\cdots,$ $\beta_{4}(z),$ $\gamma_{1}(z),$ $\cdots,$ $\gamma_{4}(z),$ $\delta_{1}(z),$ $\cdots,$ $\delta_{4}(z),$ $\lambda_{1}(z)$ and $\lambda_{0}(z)$ ,
if $f(z)$ is written in the neighbourhood of $z_{0}$ as:
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(2.2) $f(z)=\frac{R}{z-z_{0}}+\alpha+\beta(z-z_{0})+\gamma(z-z_{0})^{2}+\delta(z-z_{0})^{3}+O(z-z_{O})^{4}$

and

(2.3) $R^{2}+\lambda_{1}(z_{0})R+\lambda_{0}(z_{0})=0$ ,

$\alpha=\frac{\alpha_{1}(z_{O})R+\alpha_{2}(z_{0})}{\alpha_{3}(z_{0})R+\alpha_{4}(z_{0})}$ ,

(2.4)

$\gamma=\frac{\gamma_{1}(z_{0})R+\gamma_{2}(z_{0})}{\gamma_{3}(z_{0})R+\gamma_{4}(z_{0})}$ ,

$\beta=\frac{\beta_{1}(z_{O})R+\beta_{2}(z_{O})}{\beta_{3}(z_{0})R+\beta_{4}(z_{0})}$ ,

$\delta=\frac{\delta_{1}(z_{0})R+\delta_{2}(z_{0})}{\delta_{3}(z_{0})R+\delta_{4}(z_{0})}$ .

For the sake of brevity, we call such simple pole, SS2-kind pole.

LEMMA 2. Let $w(z)$ be a transcendental meromorphic function and let $\alpha_{1}(z),$ $\cdots$

$\alpha_{4}(z),$ $\beta_{1}(z),$ $\cdots,$ $\beta_{4}(z),$ $\gamma_{1}(z),$ $\cdots,$ $\gamma_{4}(z),$ $\delta_{1}(z),$ $\cdots,$ $\delta_{4}(z),$ $\lambda_{1}(z)$ and $\lambda_{0}(z)$ be small $function|$
with respect to $Mz$). We denote by $n_{\langle SS2\rangle}(r, w)$ the number of the SS2-kindpoles in $|z|\leqq r$

$N_{\langle SS2\rangle}(r, w)$ is defined in terms of $n_{\langle SS2\rangle}(r, w)$ in the usual way. If
(2.5) $m(r, w)+(N(r, w)-N_{\langle SS2\rangle}(r, w))=S(r, w)$ ,

then $w(z)$ satisfies a first order differential equation of the form (2.1).

The proof of Lemma2is given in [4].

LEMMA 3. Suppose the $d\iota fferential$ equation

(2.6) $u^{\prime}(u^{\prime}+\eta(z)u^{2})^{2}=b_{1}(z)u^{5}+\cdots+b_{5}(z)u+b_{6}(z)$

possesses an admissible solution $u(z)$ . If $u(z)$ satisfies
(2.7) $N_{1}(r, u)+m(r, u)=S(r, u)$ ,

then $u(z)$ satisfies the Riccati equation or an equation of the form (2.1).

$PR\infty F$ . We write (2.6),

(2.8) $U(z, u, u^{\prime})^{2}=V(z, u, u^{\prime})$ ,

where

$U(Z, u, u^{\prime})=u^{\prime}+\eta(z)u^{2}$ , $V(z, u, u^{\prime})=[b_{1}(z)u^{5}+\cdots+b_{5}(z)u+b_{6}(z)]/u^{\prime}$

Let $\mathscr{M}$ be the collection of coefficients of $U(z, u, u^{\prime})$ and $V(z, u, u^{\prime})$ . Let $z_{0}$ be $a1$

admissible (w.r. $t$ . $\mathscr{M}$) simple pole of $u$, and write in the neighbourhood of $z_{0}$ ,

(2.9) $u(z)=\frac{R}{z-z_{O}}+\alpha+O(z-z_{0})$ .

Since the order of pole of $V(z)=V(z, u(z),$ $u^{\prime}(z))$ at $z_{0}$ is at most three, by (2.8), the orde
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of pole of $U(z)=U(z, u(z),$ $u^{\prime}(z))$ at $z_{0}$ is at most one. Thus we have $-R+\eta(z_{0})R^{2}=0$ .
Hence $R$ is written by small function, that is, $R=1/\eta(z_{O})$ . For the sake of brevity, we
put $R(z)=1/\eta(z)$ in this proof.

First we treat the case $N(r, U)=S(r, u)$ . From (2.7), we have

$m(r, U)\leq m(r, u^{\prime}/u)+m(r, u)+m(r, u^{2})+S(r, u)$

$\leq 3m(r, u)+S(r, u)\leq S(r, u)$ .

Hence $U(z)$ is a small function with respect to $u(z)$ . Therefore $u(z)$ satisfies the Riccati
equation in this case.

Secondly we treat the case $N(r, U)\neq S(r, u)$ . We show that almost all admissible
poles of $u(z)$ are simple poles of $U(z)$ . By (2.7), we have to consider merely simple poles
$ofu(z)$ .

We denote by $n^{*}(r, u)$ the number of admissible simple poles of $u(z)$ in $|z|\leqq r$ which
are regular point of $U(z)$ . $N^{*}(r, u)$ is defined in the usual way. Suppose $N^{*}(r, u)\neq S(r, u)$ .
There exists an admissible simple pole $z_{1}$ of $u(z)$ , which is a regular point of $U(z)$ . The
order of pole of left-hand side of (2.6) at $z_{1}$ is at most two. If $|b_{1}|+|b_{2}|+|b_{3}|\not\equiv 0$ ,

then by the definition of admissible pole, the order of pole of right-hand side of (2.6)

at $z_{1}$ is at least three, which is a contradiction. Thus $b_{1}(z)=b_{2}(z)=b_{\dot{3}}(z)\equiv 0$ in (2.6).

Hence, by (2.6) $N(r, U)=S(r, u)$ , which is a contradiction. Therefore, $N^{*}(r, u)=S(r, u)$

which implies that almost all admissible simple poles of $u(z)$ are simple poles of $U(z)$ .
Let $z_{0}$ be an admissible simple pole of $u(z)$ and simple pole of $U(z)$ . The order of

pole ofleft-hand side of (2.6) at $z_{0}$ is four. If $b_{1}(z)\not\equiv 0$ , then by the definition of admissible
pole, the order of pole of right-hand side of (2.6) at $z_{0}$ is five, which is a contradiction.
Thus $b_{1}(z)\equiv 0$ , and from the above estimation, we have $b_{2}(z)\not\equiv 0$ . By simple calculation
in the neighbourhood of $z_{0}$ ,

$V(z)=\frac{q(z_{0})}{(z-z_{0})^{2}}+\frac{p_{1}(z_{0})+p_{2}(z_{0})\alpha}{z-z_{0}}+O(1)$ ,

$\frac{q(z)}{R(z)}u^{\prime}(z)=-\frac{q(z_{0})}{(z-z_{0})^{2}}+\frac{p_{3}(z_{0})}{z-z_{0}}+O(1)$ ,

where $q(z)=-b_{2}(z)R(z)^{3},$ $p_{1}(z)=-b_{2}^{\prime}(z)R(z)^{3}-b_{3}(z)R(z)^{2},$ $p_{2}(z)=-4b_{2}(z)R(z)^{2}$ and
$p_{3}(z)=-(q^{\prime}(z)R(z)-q(z)R^{\prime}(z))/R(z)$ .

Hence near $z_{0}$

(2.10) $V(z)+\frac{q(z)}{R(z)}u^{\prime}-\frac{p_{1}(z)+p_{3}(z)}{R(z)}u=\frac{p_{2}(z_{0})\alpha}{z-z_{0}}+O(1)$ .

We have

(2.11) $U(z)+\frac{R^{\prime}(z)}{R(z)}u=\frac{2\alpha}{z-z_{0}}+O(1)$ .
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From (2.10) and (2.11), put

(2.12) $\varphi(z)=2[V(z, u, u^{\prime})+\frac{q(z)}{R(z)}u^{\prime}-\frac{p_{1}(z)+p_{3}(z)}{R(z)}u]$

$-p_{2}(z)[U(z, u, u^{\prime})+\frac{R^{\prime}(z)}{R(z)}u]$ ,

then $\varphi(z)$ is regular at $z_{0}$ .
By (2.8), $V(z)$ is regular at zero of $u^{\prime}(z)$ . Thus, we have $N(r, \varphi)=S(r, u)$ . From (2.7)

and (2.8),

$m(r, \varphi)\leq m(r, V)+m(r, U)+4m(r, u)+S(r, u)$

$\leq 3m(r, U)+4m(r, u)+S(r, u)\leq S(r, u)$ .
Hence $\varphi(z)$ is a small function with respect to $u(z)$ . From (2.8) and (2.12), $u(z)$ satisfies
an equation of the form (2.1). Q.E.D.

3. Proof of Theorem 1.

Put $u=1/(w-\eta(z))$ in (1.4). Then by simple calculation (see [3])

(3.1) $\beta_{1}(z)u^{\prime}u^{4}+\beta_{2}(z)u^{\prime 2}u^{2}+\beta_{3}(z)u^{\prime 3}$

$=\Phi(z)u^{6}+b_{1}(z)u^{5}+\cdots+b_{5}(z)u+b_{6}(z)$ ,

where

$\beta_{k}(z)=(-1)^{k}\sum_{j=k}^{3}\left(\begin{array}{l}j\\k\end{array}\right)\alpha_{j}(z)\eta^{\prime}(z)^{j-k}$ , $\alpha_{3}(z)\equiv 1$ , $k=0,1,2,3$ ,

$b_{i}(z)=\sum_{j=i}^{6}\left(\begin{array}{l}j\\i\end{array}\right)al^{Z})\eta(z)^{j-i}$ , $i=0,1,$ $\cdots,$
$6$ ,

$\Phi(z)=b_{0}(z)-\beta_{0}(z)=\sum_{j=0}^{6}a_{j}(z)\eta(z)^{j}-\sum_{j=0}^{3}\alpha_{j}(z)\eta^{\prime}(z)^{j}$ .

We assume that $\eta(z)$ is a small solution of (1.4). Thus we have $\Phi(z)\equiv 0$ in (3.1). For the
proof of Theorem 1, we show that $w(z)$ satisPes (2.1) under the condition that $\eta(z)$ is
neither deficient nor ramified small function w.r. $t$ . $w(z)$, that is $\cdot$

(3.2) $m(r, u)+N_{1}(r, u)=S(r, u)$ .
Let $z_{0}$ be an admissible simple pole of $u(z)$ . Write $u(z)$ near $z_{0}$ as:

(3.3) $u(z)=\frac{R}{z-z_{0}}+\alpha+\beta(z-z_{0})+\gamma(z-z_{0})^{2}+\delta(z-z_{0})^{3}+O(z-z_{0})^{4}$
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From (3.1) and (3.3), since $\Phi(z)\equiv 0$ ,

(3.4) $\beta_{1}(z_{0})R^{2}-\beta_{2}(z_{O})R+\beta_{3}(z_{0})=0$ ,

(3.5) $[4\beta_{1}(z_{0})R-2\beta_{2}(z_{0})]\alpha=P_{1}(R;z_{0})$ ,

(3.6) $[3\beta_{1}(z_{0})R^{2}-3\beta_{3}(z_{0})]\beta=P_{2}(R, \alpha;z_{0})$ ,

(3.7) $[2\beta_{1}(z_{0})R^{2}+2\beta_{2}(z_{0})R-6\beta_{3}(z_{0})]\gamma=P_{3}(R, \alpha, \beta;z_{0})$ ,

(3.8) $[-\beta_{1}(z_{0})R^{4}-4\beta_{2}(z_{0})R^{3}+9\beta_{3}(z_{0})R^{2}]\delta=P_{4}(R, \alpha, \beta, \gamma;z_{0})$ ,

where $P_{j}($ . ; $z_{0})(j=1,2,3,4)$ are polynomials of corresponding arguments with small
coefficients.

Since $|a_{6}|+|a_{5}|+|a_{4}|+|a_{3}|\not\equiv 0$ , the right-hand side of (3.1) does not vanish. Thus
we have

(3.9) $|\beta_{1}|+|\beta_{2}|+|\beta_{3}|\not\equiv 0$ .

First we treat the case $\beta_{1}(z)\equiv 0$ or $\beta_{3}(z)\equiv 0$ .
If $\beta_{1}(z)\equiv 0$ , then we have $\beta_{2}(z)\not\equiv 0$ and $\beta_{3}(z)\not\equiv 0$ . For, if $\beta_{2}(z)\equiv 0(\beta_{3}(z)\equiv 0)$ , then by

(3.4) $\beta_{3}(z_{0})=0(\beta_{2}(z_{0})=0)$ . By Remark 1, we have $\beta_{3}(z)\equiv 0(\beta_{2}(z)\equiv 0)$ , which contradicts
(3.9). Hence by (3.4) and (3.5), $R$ and $\alpha$ are written by small functions, which implies
that $u(z)$ satisfies the Riccati equation (see [9], pp. 47-48).

Similarly to the case $\beta_{1}(z)\equiv 0$ , if $\beta_{3}(z)\equiv 0$ , then $\beta_{1}(z)\not\equiv 0$ and $\beta_{2}(z)\not\equiv 0$ , and we obtain
that $u(z)$ satisfies the Riccati equation.

Secondly we treat the case $\beta_{1}(z)\not\equiv 0$ and $\beta_{3}(z)\not\equiv 0$ .
If $(-\beta_{2}(z)/\beta_{1}(z))^{2}-4(\beta_{3}(z)/\beta_{1}(z))\equiv 0$ , that is, $\beta_{2}(z)^{2}-4\beta_{1}(z)\beta_{3}(z)\equiv 0$ , then the form

of (3.1) is of the form (2.6). Thus by Lemma 3, $u(z)$ satisfies the Riccati equation or
an equation of the form (2.1).

Hence, in the below, we assume that $\beta_{2}(z)^{2}-4\beta_{1}(z)\beta_{3}(z)\not\equiv 0$ .
If any one of $\alpha,$ $\beta,$

$\gamma$ and $\delta$ is not written by the linear transformations ofRwith
small (w.r. $t$ . $u(z)$) coefficients, that is, if $4\beta_{1}(z_{0})R-2\beta_{2}(z_{0})=0,3\beta_{1}(z_{0})R^{2}-3\beta_{3}(z_{0})=0$ ,
$2\beta_{1}(z_{0})R^{2}+2\beta_{2}(z_{0})R-6\beta_{3}(z_{0})=0$ or $-\beta_{1}(z_{0})R^{4}-4\beta_{2}(z_{0})R^{3}+9\beta_{3}(z_{0})R^{2}$ in $(3.5)-$

(3.8), then by (3.4), $\beta_{2}(z_{0})^{2}-4\beta_{1}(z_{0})\beta_{3}(z_{O})=0$ for each case. Hence by Remark 1,
$\beta_{2}(z)^{2}-4\beta_{1}(z)\beta_{3}\langle z$) $\equiv 0$ , which contradicts our assumption.

Here we have that for any admissible simple poles $z_{O},$ $\alpha,$
$\beta,$

$\gamma$ and $\delta$ are written
by linear transformations of $R$ with coefficients of small (w.r. $t$ . $u(z)$) functions. Thus,
almost all admissible poles are SS2-kind poles. Hence by (3.2) and Lemma 2, $u(z)$ satisfies
the Riccati equation or a differential equation of the form (2.1). Thus by Remark 2,
$w(z)$ satisfies a differential equation of the form (2.1). Therefore by Lemma 1, (1.4) is
reducible, which implies that Theorem 1 is proved.

We would like to thank the refree for many comments and suggestions.
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