Coboundaries under Integrable Exponentiation

Karma DAJANI

University of North Carolina (Communicated by T.Nagano)

Abstract. It is known that if X is a Lebesgue probability space, $T: X \to X$ an ergodic measure preserving automorphism, and n a fixed nonzero integer, then a coboundary for the automorphism T^n is also a coboundary for T. In this paper, the result is extended to include the case where the exponent n = m(x) is an arbitrary integrable integer valued function on X.

1. Introduction.

For an invertible measure preserving transformation $T: X \to X$, a real-valued measurable function f of the form f(x) = g(x) - g(Tx) is called a coboundary for T. The measurable function g is called a transfer function. It is well known that if $f(x) = g(x) - g(T^n x)$, then f(x) = K(x) - K(Tx) where $K(x) = \sum_{i=0}^{n-1} g(T^i x)$ if n > 0 and $K(x) = -\sum_{i=1}^{n} g(T^{-i}x)$ if n < 0. That is, a coboundary for T^n is also a coboundary for T. A natural question one asks is what happens when the exponent is not a constant. More precisely, if S is an automorphism with $Sx = T^{m(x)}x$ for some measurable integer valued function m defined on X and f(x) = g(x) - g(Sx), is f a coboundary for T? In this paper we show that the result is true for integrable exponents.

Let T be an invertible ergodic measure preserving transformation on a Lebesgue probability space (X, \mathcal{B}, μ) . Let [T] denote the full group of T. That is, [T] consists of all invertible bimeasurable transformations S on X for which there exists an integer valued measurable function m on X such that for every $x \in X$, $Sx = T^{m(x)}x$.

DEFINITION 1.1. If $f: X \to \mathbb{R}$ is a measurable function, the T cocycle f^* of f is the measurable function defined on $Z \times X$ as follows:

$$f^*(n, x) = \begin{cases} \sum_{i=0}^{n-1} f(T^i x) & \text{if } n > 0 \\ -f(-n, T^n x) & \text{if } n < 0 \end{cases}$$

and we set $f^*(0, x) = 0$. Then f^* satisfies the so called cocycle identity: $f^*(n+m, x) = f^*(n, x) + f^*(m, T^n x)$.

DEFINITION 1.2. A T cocycle f^* is said to be a T coboundary if there exists a measurable function $g: X \rightarrow R$ such that

$$f^*(n, x) = q(x) - q(T^n x)$$
 for all $n \in \mathbb{Z}$ and a.e. $x \in X$.

The function g is called a transfer function of f^* . In this case we also refer to the generating function $f = f^*(1, \cdot)$ as T coboundary.

The following is a theorem due to K. Schmidt which appears as lemma 11.7 of [S] and gives necessary and sufficient conditions for a cocycle to be a coboundary.

THEOREM 1.3. A cocycle f^* is a coboundary if and only if for every $\varepsilon > 0$, there exists a positive real number A such that for each $n \in \mathbb{Z}$, $|f^*(n, x)| < A$ for all x in a set E_n of measure at least $1 - \varepsilon$.

2. The orbit equivalence case.

In this section we show that if [S] = [T] and $Tx = S^{m(x)}x$ with $m(x) \in L^1(X)$, then a coboundary for S is a coboundary for T. In this case one has, by Belinskaya' theorem [B], that $\int_X m(x)d\mu(x) = \mp 1$ and either m(x) - 1 = l(x) - l(Tx) if the integral is positive, or $m(x) + 1 = l(x) - l(T^{-1}x)$ if it is negative; see [K].

THEOREM 2.1. Let [S] = [T] with $Tx = S^{m(x)}x$ and $m(x) \in L^1(X)$. If f is an S coboundary, then f is a T coboundary.

PROOF. Let f(x) = g(x) - g(Sx) be an S coboundary. We shall assume that $\int_X m(x)d\mu(x) = 1$ (the other case is proved similarly). Then by the above discussion m(x) - 1 = l(x) - l(Tx). If $x \in X$, then for any nonzero integer n,

$$T^n x = S^{m^*(n,x)} x = S^{n+l(x)-l(T^n x)} x$$

where m^* denotes the T cocycle of m as defined in 1.1.

Let $0 < \varepsilon < 1/4$ be given. Choose A > 0 a sufficiently large integer so that the set

$$C = \left\{ x : |l(x)| < A \text{ and } \left| \frac{1}{n} (l(x) - l(T^n x)) \right| < \varepsilon \text{ for all } |n| \ge A \right\}$$

satisfies $\mu(C) > 1 - \varepsilon/16$. Applying the ergodic theorem to χ_C we can find an integer $B \ge A$ such that the set

$$D = \left\{ x \in C : \left| \frac{1}{n} \sum_{i=0}^{n-1} \chi_C(T^i x) - \mu(C) \right| < \varepsilon/2 \text{ for all } n \ge B \right\}$$

has measure greater than $1 - \varepsilon/8$.

We want to show that for each integer n the T cocycle f^* of f satisfies the hypothesis of theorem 1.2. This will only be done for positive integers since the cocycle identity or a similar proof gives the other case. Let $n > 10^{10}B$, since T is measure preserving

 $\mu(D \cap T^{-n}C) > 1 - \varepsilon/4$. If $x \in D \cap T^{-n}C$, then at least $(1 - \varepsilon)n$ of the points $\{x, Tx, \dots, T^{n-1}x\}$ lie in C. We first show that $\{T^{2A}x, \dots, T^{n-4A}x\} \subseteq \{x, Sx, \dots, S^{n-1}x\}$. To this end, if $T^ix \in C$ and $2A \le i \le n-4A$, then $|l(x)|, |l(T^ix)| < A$ which implies $i-2A \le l(x)-l(T^ix)+i \le 2A+i$ so that $T^ix \in \{x, Sx, \dots, S^{n-1}x\}$. Now let $r < \varepsilon n$ and i_1, i_2, \dots, i_r the indices for which $T^{i_k}x \notin C$ and $2A \le i_k \le n-4A$. If $2A \le i_k \le n(1-\varepsilon)$, then since $x \in C$ we have $(1/i_k)|l(x)-l(T^{i_k}x)| \le \varepsilon$, so that

$$0 < i_k(1-\varepsilon) < l(x) - l(T^{i_k}x) + i_k < i_k(1+\varepsilon) \le n(1-\varepsilon^2) < n$$
,

hence $T^{i_k}x \in \{x, Sx, \dots, S^{n-1}x\}$. On the other hand, if $n(1-\varepsilon) < i_k \le n-4A$, then since $T^nx \in C$ and $i_k-n < -A$, we have $|l(T^nx)-l(T^{i_k}x)| < (n-i_k)\varepsilon$. Then

$$|l(x)-l(T^{i_k}x)| \le |l(x)-l(T^nx)|+|l(T^nx)-l(T^{i_k}x)| < 2A+(n-i_k)\varepsilon$$
.

Now.

$$\begin{split} l(x) - l(T^{i_k}x) + i_k < 2A + (n - i_k)\varepsilon + i_k \\ &= 2A + n\varepsilon + i_k(1 - \varepsilon) \\ &\leq 2A + n\varepsilon + (n - 4A)(1 - \varepsilon) \\ &= 2A(2\varepsilon - 1) + n < n \;, \end{split}$$

and

$$l(x) - l(T^{i_k}x) + i_k > -2A - (n - i_k)\varepsilon + i_k$$
$$> -2A - n\varepsilon + n - n\varepsilon^2 > 0$$

if n is chosen sufficiently large. Hence, $T^{l_n}x \in \{x, Sx, \dots, S^{n-1}x\}$ and therefore $x \in D \cap T^{-n}C$,

$$\{T^{2A}x, \dots, T^{n-4A}x\} \subseteq \{x, Sx, \dots, S^{n-1}x\}.$$
 (*)

We now show that for $x \in D \cap T^{-n}C$, $\{S^{4A}x, \dots, S^{n-4A}x\} \subseteq \{T^{-A}x, \dots, T^{n+A}x\}$. So let $4A \le j < n-4A$, since [S] = [T] it follows that there exists an integer i such that

$$S^{j}x = T^{i}x = S^{l(x)-l(T^{i}x)+i}x$$
.

This implies that

$$4A \le j = l(x) - l(T^{i}x) + i \le n - 4A$$
 (1)

We show that (1) implies that $i \in \{-A, \dots, n+A\}$. For this we consider two cases: Case 1. If $T^i x \in C$, then $|l(T^i x)| < A$ and by (1)

$$-A < 2A < 4A - (l(x) - l(T^{i}x)) \le i \le n - 4A - (l(x) - l(T^{i}x)) < n - 2A < n + A$$
.

Case 2. Let $T^i x \notin C$. If i > n + A, then i - n > A and $T^n x \in C$ implies that

$$|l(T^ix)-l(T^nx)|<\varepsilon(i-n)$$

so that

$$|l(x)-l(T^{i}x)| \le |l(x)-l(T^{n}x)|+|l(T^{n}x)-l(T^{i}x)| < 2A+(i-n)\varepsilon$$
.

Thus by (1) we have

$$i \le n - 4A - (l(x) - l(T^i x)) < n - 2A + \varepsilon i - \varepsilon n$$

and hence $(1-\varepsilon)i < n(1-\varepsilon) - 2A$ which implies that $i < n-2A/(1-\varepsilon) < n+A$, a contradiction. On the other hand, if i < -A, then $|l(x)-l(T^ix)| < \varepsilon |i|$ and so by (1)

$$i \ge 4A - (l(x) - l(T^i x)) > 4A + \varepsilon i$$
.

This gives that $i(1-\varepsilon) > 4A$ or $i > 4A/(1-\varepsilon) > 0$, which is a contradiction. Thus, for all $x \in D \cap T^{-n}C$

$${S^{4A}x, \cdots, S^{n-4A}x} \subseteq {T^{-A}x, \cdots, T^{n+A}x}.$$
 (**)

For $x \in D \cap T^{-n}C$, let

$$\alpha(x) = \{ -A \le i \le n + A : T^{i}x \notin \{S^{4A}x, \dots, S^{n-4A}x\} \}$$

and

$$\gamma(x) = \alpha(x) \cap \{2A, \cdots, n-4A\}.$$

Then by (**) we have

$$\{T^{i}x: -A \le i \le n+A\} = \{S^{i}x: 4A \le i \le n-4A\} \cup \{T^{i}x: i \in \alpha(x)\}.$$

Also, if $i \in \gamma(x)$, then by (*) $T^i x \in \{x, Sx, \dots, S^{4A-1}x\} \cup \{S^{n-4A}x, \dots, S^{n-1}x\}$ so that

$$f(T^{i}x) = a(S^{j(i)}x) - a(S^{j(i)+1}x)$$

for some $j(i) \in \{0, 1, \dots, 4A-1\} \cup \{n-4A, \dots, n-1\}$. If $i \in \alpha(x) \setminus \gamma(x)$, then

$$f(T^i x) = g(T^i x) - g(ST^i x)$$

for some $i \in \{-A, \dots, 2A-1\} \cup \{n-4A+1, \dots, n+A\}$. Then

$$\sum_{i=-A}^{n+A} f(T^{i}x) = \sum_{i=4A}^{n-4A} f(S^{i}x) + \sum_{i \in \gamma(x)} f(T^{i}x) + \sum_{i \in \alpha(x) \setminus \gamma(x)} f(T^{i}x)$$

$$= g(S^{4A}x) - g(S^{n-4A}x) + \sum_{i \in \gamma(x)} g(S^{j(i)}x) - g(S^{j(i)+1}x)$$

$$+ \sum_{i \in \alpha(x) \setminus \gamma(x)} g(T^{i}x) - g(ST^{i}x) . \tag{***}$$

Choose $\beta > 0$ sufficiently large so that the set $F = \{x \in X : |g(x)| < \beta\}$ has measure greater than $1 - \varepsilon/100A^2$. Since S is measure preserving $\mu(S^{-1}F) > 1 - \varepsilon/100A^2$. Let $F' = F \cap S^{-1}F$ and

$$F'' = \bigcap_{i=-A}^{2A} T^{-i}F' \cap \bigcap_{i=n-AA}^{n-1} T^{-i}F'.$$

Then $\mu(F'') > 1 - 7\varepsilon/50A$. Let

$$E_n = F'' \cap \bigcap_{i=0}^{4A} S^{-i} F \cap \bigcap_{i=n-4A}^{n-1} S^{-i} F \cap T^{-n} C \cap D.$$

Then $\mu(E_n) > 1 - \varepsilon$ and for $x \in E_n$ by (*), (**), and (***) we have

$$|f^*(n,x)| = \left| \sum_{i=0}^{n-1} f(T^i x) \right| = \left| \sum_{i=-A}^{n+A} f(T^i x) - \sum_{i=-A}^{-1} f(T^i x) - \sum_{i=n}^{n+A} f(T^i x) \right|$$

$$\leq \left| \sum_{i=-A}^{n+A} f(T^i x) \right| + \left| \sum_{i=-A}^{-1} f(T^i x) \right| + \left| \sum_{i=n}^{n+A} f(T^i x) \right|$$

$$\leq |g(S^{4A} x)| + |g(S^{n-4A} x)| + \sum_{i=0}^{4A-1} |g(S^i x)| + |g(S^{i+1} x)|$$

$$+ \sum_{i=n-4A}^{n-1} |g(S^i x)| + |g(S^{i+1} x)| + 2 \sum_{i=-A}^{2A-1} |g(T^i x)| + |g(ST^i x)|$$

$$+ 2 \sum_{i=n-4A+1}^{n+A} |g(T^i x)| + |g(ST^i x)|$$

$$< 2\beta + 8A\beta + 8A\beta + 12A\beta + 20A\beta = 50A\beta.$$

Therefore, by theorem 1.2 f is a T coboundary.

REMARK 2.2. The assumption in theorem 2.1 that the exponent m(x) is integrable can be replaced by the weaker assumption that the cardinality of one of the sets $\{S^ix\}_{i\in\mathbb{N}}\Delta\{T^i\}_{i\in\mathbb{N}}$ or $\{S^ix\}_{i\in\mathbb{N}}\Delta\{T^{-i}\}_{i\in\mathbb{N}}$ is finite a.e.; for this implies that either m(x)-1=l(x)-l(Tx) or $m(x)+1=l(x)-l(T^{-1}x)$ (see [K]).

3. The general integrable case.

Let $S \in [T]$ with $Sx = T^{m(x)}x$ where $m(x) \in L^1(X)$. We first outline a technique employed by Katznelson in [K] to reduce the verification to the case m(x) > 0. In [K] it was shown that $\int_X m(x) d\mu(x) = p$ is an integer (which we will assume with no loss of generality that it is positive, otherwise the result will be proved for S and T^{-1} and hence for S and T; this says that p is the number of S orbits contained in a T orbit. Also, if for each $x \in X$ one considers q(x) to be the smallest positive integer such that $S_1x = T^{q(x)}x \in \{S^ix\}_{i \in Z}$, then one can easily show that $[S_1] = [S]$ and that the cardinality of the set $\{S_1^j\}_{j \in N} \Delta \{S^jx\}_{j \in N}$ is finite a.e. Thus by theorem 2.1 and remark 2.2, any coboundary for S is a coboundary for S_1 .

THEOREM 3.1. Let $S \in [T]$ with $Sx = T^{m(x)}x$. If $m(x) \in L^1(X)$, then any S coboundary is a T coboundary.

PROOF. By the above discussion we shall assume with no loss of generality that m(x) > 0 a.e. For $x \in X$ set $r_0(x) = s_0(x) = 0$. For $1 \le i \le p-1$, let $r_i(x)$ be the smallest positive integer such that

$$T^{r_i(x)}x \in \{T^jx\}_{j \in \mathbb{N}} \setminus \bigcup_{k \leq i-1} \{S^jT^{r_k(x)}x\}_{j \in \mathbb{N}},$$

and let $s_i(x)$ be the largest negative integer such that

$$T^{s_i(x)}x \in \{T^{-j}x\}_{j \in \mathbb{N}} \setminus \bigcup_{k < i-1} \{S^{-j}T^{s_k(x)}x\}_{j \in \mathbb{N}}.$$

Then
$$s_{p-1}(x) < \cdots < s_1(x) < 0 < r_1(x) < \cdots < r_{p-1}(x)$$
.

Let $\varepsilon > 0$ be given, choose a sufficiently large integer N > 0 so that each one of the sets $A = \{x \in X : r_{p-1}(x) \le N\}$ and $B = \{x \in X : s_{p-1}(x) \ge -N\}$ has measure greater than $1 - \varepsilon/4$. Let $|n| > 10^{10}N$ be a sufficiently large integer and let f(x) = g(x) - g(Sx) be a coboundary for S. Consider the T cocycle $f^*(n, x)$ of f, we shall assume without loss of generality that n > 0 since the other case is proved similarly. Since m(x) > 0, for each $x \in A \cap T^{-(n-1)}B$ we have

$$\{T^{i}x: 0 \le i \le n-1\} \Delta \{ST^{i}x: 0 \le i \le n-1\} = \{T^{r_{i}(x)}x, ST^{n-1+s_{i}(T^{n-1}x)}x: 0 \le i \le p-1\}$$

so that

$$f^*(n,x) = \sum_{i=0}^{n-1} g(T^i x) - g(ST^i x) = \sum_{i=0}^{p-1} g(T^{r_i(x)} x) - g(ST^{n-1+s_i(T^{n-1}x)} x)$$

and hence

$$|f^*(n,x)| \le \sum_{i=0}^{r_{p-1}(x)} |g(T^ix)| + \sum_{i=n+s_{p-1}(T^{n-1}x)-1}^{n-1} |g(ST^ix)|.$$

Now choose M>0 a sufficiently large real number so that the set $C=\{x:|g(x)|< M/2(N+1)\}$ has measure greater than $1-\varepsilon/4(N+1)$. Let $E_n=A\cap T^{-(n-1)}B\cap \bigcap_{i=0}^N T^{-i}C\cap \bigcap_{i=n-N-1}^{n-1} T^{-i}S^{-1}C$, then $\mu(E_n)>1-\varepsilon$ and for every $x\in E_n$ we have $|f^*(n,x)|< M$. Thus f^* is a T coboundary.

References

- [B] R. M. Belinskaya, Partitions of Lebesgue space in trajectories defined by ergodic automorphisms, Functional Anal. Appl., 2 (1968), 190-199.
- [K] KATZNELSON, unpublished preprint.
- [S] K. Schmidt, Cocycles of ergodic transformation group, MacMillen Lectures in Math., 1977.

Present Address:

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SOUTH ALABAMA MOBILE, AL 36688, U.S.A.