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1. Introduction.

The Hopf conjecture states that the Euler characteristic of a compact Riemannian
2n-manifold M of negative sectional curvature satisfies (— D*x(M)>0 [6]. Applying
the Chern-Gauss-Bonnet theorem gives the conjecture for n=1, 2, for spaces of constant
curvature, and for spaces of sufficiently pinched curvature [5]. Singer’s idea of instead
using the L2 index theorem to establish the Hopf conjecture has been successfully carried
out for Kihler manifolds by Gromov [18] (cf. [11]). It is worth noting that the first
examples of negatively curved manifolds not admitting metrics of constant negative
curvature are rather recent [20], [19].

Singer’s method depends on the vanishing of L? harmonic forms (except in the
middle dimension) on the universal cover of a compact negatively curved manifold, as
explained in §4. This raised the question of such vanishing for arbitrary simply connected
negatively curved manifolds. Anderson’s paper [1] shows that such vanishing results
are not possible without a pinching condition; however, his examples admit no compact
quotient, so Singer’s approach is not ruled out. One of our main results (Corollary 44)
is that for one-forms vanishing occurs except in the pinching region ruled out by
Anderson’s examples. In general, we obtain vanishing results and hence (— D"x(M)=0
(Theorem 4.5) for manifolds of pinched negative curvature, where the pinching constant
is more relaxed than in previous work, e.g. [5].

The vanishing theorems depend upon Witten’s deformation [, of the Laplacian-

‘on forms on M [21]. In contrast to Witten’s work, in which the Morse inequalities are

recovered by letting the deformation parameter t go to infinity, the vanishing theorems
arise through the study of small deformations. Moreover, instead of deforming the
Laplacian by a Morse function as in [21], we use the distance function to a point. The
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pinching condition comes in through the study of the Hessian of the distance function.
The use of the distance function and the Hessian comparison theorem for vanishing
theorems appeared previously in [12] in another form.

In §2 the Witten Laplacian and Bismut’s variant are introduced, and in §3 some
general vanishing results for the L? kernel of [, are obtained. In §4 the main result is
proven. In §5, it is shown that in all dimensions an L? harmonic form on M which
decays exponentially in distance from a point must vanish, if the decay constant is
sufficiently large. As explained in §5, this is another indication of the difficulty of
proving the Hopf conjecture by Singer’s approach.

We would like to thank X. M. Li for her helpful remarks, and A. Kasue for recently
showing us another proof of the crucial result Theorem 4.3 @1v).

2. The Witten Laplacian.

Let M be a complete n-dimensional Riemannian manifold. Suppose A: M—R is
C 2‘. Following Witten [21], define the modifications d,, T € R, to exterior differentiation
2.1 d,=e™de~™"
with formal adjoint d¥ and corresponding deformed Laplacian
2.2) O.,=dd¥+d*d,.

In general, when E is a vector space and 4 an endomorphism of E there are
induced linear maps A*4: AE— A’E and (d\)'4: A\? E- \"E defined by

ANTAQ A - AVD)=Av A - A A2

and

. .
@ANVA@'A - AVD= 3 0y A AV AADAD A AL,
ji=1

Write A4 and (d /\)A4 for the corresponding direct sums acting on A\E.
From [8, Proposition 11.13, equation (11.35), Theorem 12.10],

(2.3) O.=A+12||dh||> — (AR +2(d A)(VZh)*)

where A is the Laplace-Beltrami operator (i.e. O,) and (V2h)*: T*M— T*M is the
adjoint of the Hessian (V?h),: T, M—>T M.

Equations (2.1), (2.2), (2.3) are satisfactory when considering d, and [, as operators
on smooth forms. To consider the L? theory, we will need to define [, as an essentially
self-adjoint operator on the space L2Q* of L? forms. A convenient way for us to do
this is via Bismut’s version [4] of the deformed Laplacian:

Let u, be the measure on M given in terms of the Riemannian measure dx by

u(dx) = e *



WITTEN LAPLACIAN 515

with L2Q%(u,) the corresponding Hilbert space of g-forms on M. Let §, be the formal
adjoint of d acting on C* forms with compact support in L2Q29(u,). Then

2.4) ‘ 0, =0 — 2tiy,

where 6 =d§ =, and i, is interior multiplication by a vector field Z. Define, on smooth
forms with compact support

A,=(d+6)*.
Then
(2.5) A‘t = d5, + 6td= A —_ ZTLVh

where L, ={i, d} (the anticommutator) is Lie differentiation in the direction of Z. The
operators A,, [, are related by the formula A, =e®,e ™" '

As in [7], d+ 96, is essentially self adjoint on L?Q*(u,) with core the space CyQ*
of C* forms with compact support, and so are all its powers. It therefore has a unique
self adjoint extension, which is its closure d+ &, as does the Laplacian, whose extension
we denote A, (cf. [3] for the case of functions). Moreover, it is easy to see that
d+6,=d+6,. Define T, on the usual L2 spaces by

™ — ,—thA ,th
O,=e " ™Ae™.

Then T, is self adjoint and is isospectral to A..

Note also that if »is the Hodge star operator then * [(1,=TI__*. Thus O, on g-forms
is isospectral to 00 _, on (n— g)-forms, and in particular the L? kernels of [J, on g-forms
and O_; on (n—q)-forms are isomorphic.

The L? cohomology for the measure g, is defined by

(Ker d on L2Q%(u,))
(Image d on L?Q7" ()

L2HY(M)=

Note that we do not take the closure of the image of d. The ordinary L? cohomology
groups LIH% M) will be denoted L2HY(M).

Let s#4(M) be the kernel of A, in L2Q%y,). As usual, ¢ e #%M) if and only if
¢ € L*Q(u,) and dp=0, 5,6=0. All such ¢ are C*. Moreover, if p€#YM) and
¢ =4d0, then <5,d0, y>,=0 for all Y e L2Q%(u,), so that ¢=0 (by setting ¥ =6). Thus
there is the injective map

Jg: HUAM)>LIHY(M) .

As usual, this is bijective if and only if d has closed range on L2Q7~1(u,).
The following_ is essentially taken from [10], where the case T=0 is considered.
We let d? denote d on g-forms, and similarly for A4
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LEMMA 2.6. .d?and d*~! have closed range if and only if inf{spec(A%) — {0}} > 0. If
so, both j, and j,_, are isomorphisms. '

ProoF. In [10, Prop. 6.2], Donnelly proves the abstract result that for any self
adjoint operator A4 the existence of a spectral gap at zero (i.e. inf{spec(4)—{0}}>0) is
equivalent to having closed range. We have A2=d?~1(d?~1)* + (d9)*d" as in [16, §2];
the proof there for =0 generalizes immediately for arbitrary z. Since this is a
p-orthogonal splitting, A2 has a spectral gap if and only if 42~ 1(d?~!)* and (d9)*d*
have closed range. This is easily seen to be equivalent to (d2~!)* and d? having closed
range. By Banach’s theorem, (4%~ !)* has closed range if and only if d2~! does, since
d*=d* automatically. |

Let A2 be the infimum of the spectrum of A_ on L2Q%(u,). The following proposition
enables us to obtain vanishing theorems for harmonic forms (at T =0) from the behavior
of A? as 7—0.

PROPOSITION 2.7. For fixed q with 1 <q<n suppose
(1) h(x)<O0 for all x in M,
(i) t2/A%>0ast]0.
Then there is no non-zero L? harmonic q-form w on M with igz,we L2,

PROOF. Suppose we L2Q7 and Aw=0. There exists £>0 such that 12>0 for
0 <t <é¢and therefore L2H?=0 for such 7. Since <0, we L?>Q%(u,) and so, since dw =0,
w=dp, for some B, L2Q?~1(y,), each 0<t<e. We can choose B, e (kerd)* =5,C Q"
However, since the closure d of d in L2Q9~1(u.) has closed range, because 1¢>0 and
using Lemma 2.6, so has 5. Thus we can write §,=48.0, for some 0§, Dom$,. If B, #0

|dB.12/| B, |2 =1d6.6,12/16.6,
>inf{| d5,.01%/|5,0)? : 0 Domdd, < L*Q%(u,)}
=inf{| d5,01?/|6.08|? : O (kerd,)* n Domds,}
=inf{| d6.01?/|6.8|? : 0 (kerd) n Domds,}
since L?H*=0. Thus
|dB. /| B.|? =inf{| A.012/<A.0, 8), : 6 (kerd) ~ Domds,}

>inf{|A,0|2/<A8, 6. : e DomA }

=inf{| A,0|2/<A8, 0), : 0e CFQY}

=inf{<A(A))'?0, (A)'/20)./<(A.)'?0, (A)'/*60), : O CLQT)

>A7.

This gives |w|?=|dp,|? > 24| B. ;.
Also Idﬂt |12= <W, dﬂt>t=<5tw9 ﬂt>t= —'2T<thW, Bt)t by (14) since ow=0. Thus



WITTEN LAPLACIAN 517

A1 B 12 <2t igyw .| B. 1., giving
|B:1.<2t(AD) ™ igyw . -
Putting these together,
|w? <27 igpw || B, | <4T>(AD ™ igw 7 .

By dominated convergence |iy,w|2—|iy,w|3 as 7| 0 and so also, by (ii)

w|§=lim|w|?=0. O
=0

To finish this section we gather together the results in a form which will be easy to use.

PROPOSITION 2.8. Suppose h(x)=0 for all x in M and that 11 >0 for some 1,>0.
Then,

(i) Forr=qorn—qif ¢ L?*Q" has e**pe L>Q" and A¢p =0, then ¢ =0.

(ii) If e**pe L*Q? and d¢ =0, then ¢ =db where e™"0ec L>Q1~ 1,

(i) If e **peL?Q" 1 and dp =0, then ¢ =dO where e **0e L?Q" 171,

(v) If also A1>16, for 0<t<71, and r=q or n—gq, then there is no non-zero
harmonic ¢ € L*Q" with |Vh|pe L*Q".

Proor. For (i), with r=g¢ note that e™*¢ e L? implies ¢ € L2, so that if A¢=0
then d¢=0. Our hypothesis together with Lemma 2.6 gives ¢ =d6 where 0e L*Q(u, ).
But then 0e L?, giving ¢ =0. From this the case r=n—gq follows by duality for the
L2Q* complex. Part (ii) is direct from Lemma 2.6 using the vanishing of L2H". Since
0<Af =42, we have

4
0=L2Hi~#% ~ " A~ H"

—1t0 —to

from which (iii) follows. For (iv) with r=n— q use Proposition 2.7 above with A replaced
by —h and g by n—gq. This shows that there is no non-zero harmonic ¢ € L2Q"~? with
ivy® € L>Q" 97! ‘and so in particular with | Vi |¢ € L2Q" 9 (since | igyW |12 » <| VA || W L2 ),
giving the result. The case r=gq follows by duality. O

3. A criterion for positivity.

Let vo(x) <v,(x)< - - <v,_(x) be the eigenvalues of the Hessian V2Ah of A at x.
For 6>0 and g=1, - -, n—1 consider the following condition on A:

CoNDITION A(q)?. vo(X)+ *** +Vp— g 1 (X) =V g(X)— - - - —V,_;(x) =6 forallxe M.
PROPOSITION 3.1. Suppose h satisfies A(q)° for some 6>0. Then, for t>0
3.2) M= +10=16
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and

(3.3) ATI> A5+ 16>16 .

PROOF. Letey, -, e,_, € T¥M be a complete orthonormal set of eigenvectors of
(V2h), with eigenvalues vy(x), - - -, v,_(x). For a g-form w we can write

Wi= D @€ A Ae

I=(i1,"iq)
i1<--<ig

ig °

Then
{—1(Ah+ 2(d/\)‘1(V2h)*)w, w),

=1y <("il v,-(x))(ail...,-qe,-1 AT A eiq)—Z( i v,-j)ail...,-qe,-l ARV w>
I x

i=0 i=1

S (G T . SR

i=0 21|ai,---iq|2

(since |wili=3,la;,.., %)

zr( -2 Y v,-(x))lwli

i=0 j=n—q
n—qg—1 n—1
=1:( Z vi(x)— Z Vj(x))l w Inzc
i=0 j=n—q
2w|wlit,

by hypothesis. The inequality (3.2) follows immediately by (2.3).

For t<0, note that we can equally well replace # by —h and keep t>0. The
eigenvalues are then —v,_(x)< - - - < —vy(x) so that condition A(g)? for 4 is condition
A(n—q)° for —h. Alternatively this follows by the duality formula * O,=0_.». O

NoTE. A(gq)? holds if vo(x) =48 and
n—qg—1
Vo 1(%) s(+) Vo)

for all xe M. It can never hold in the middle dimension, for even n, i.e. for n =2k and q==k.

4. A special case.

We are particularly interested in A(x) = + r(x) where r(x) is the distance of x from
some fixed point p of a simply connected negatively curved manifold. The eigenvalues
vi(x) occurring in condition A(g)* can be estimated using the Hessian comparison
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theorem [17]. For a simply connected manifold of constant curvature — c? the Hessian is:
V2r=(ccothcr)H+0 (r>0)

[17, p. 34, 35] when decomposed into radial and transverse components, with H the
identity transformation on the transverse component (i.e. the orthogonal complement
of Vr). Thus the comparison theorem gives us that if n,(M)=0 and —c?<Sect,, <
—c2<0 then for h(x)=r(x):

vO(x)=O s
cycothe,r <v;(x)<c,cotheyr, 1<j<n—1,

if r(x)#0. Near r(x)=0, we need to do some smoothing. For this define a C® map
f: [0, 0)—>[0, oo) with f(0)=0, f'(0)=0 and
0<r<a

S {1
r)=—
0

b<r<ow
for numbers 0 <a<b < oo to be chosen later. Thus

3r? 0<r<a

f= {

ar+ b<r<oo
with >0, f>0. Note that if accothch>1 then
4.1 f"(r< f'(r)ccother.
Indeed for 0 <r<a we know f'(r)ccothcr=rccothcr>1= f"(r) and for a<cr<cbh

f'(r)cother > accother >accotheb>1> f"(r)
while for b<r, f”=0.
LEMMA 4.2. Suppose n,(M)=0 and —1<Secty, < —1+¢& where
| e 1~ D—29-1)
(n—q—1)

for 2g<n—1. Set h(x)= f(r(x)), for f as above with a=(1—¢)~*? and b>a. Then h
satisfies A(q)° for some 6>0.

Proor. Since VA= f'(r)Vr and
V2h= f"(r)dr @ dr+ f'(r)V>r

each v; satisfies

v;(x)=min{f"(r), \/1—ef'(r)coth(\/1—er)} = f(r)
by (4.1), since a /1 —ecoth(,/1—eb)>coth((,/1—¢)b)>1. Thus ve(x)=f"(r) and
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f'(Na/1—¢ecotha,/1—er<v;(x)< f'(r) cothr, j=1, -, n—1.

This gives
Vot HVpo g1 — Va1 — " —Va-g
> f"(r)—qf’'(rcothr+(m—q—1)f'(r)\/1—ecoth/1—er
> f(r)+f'(N) cothr((n—q—1),/1—¢—q)
D).
If (n—g—1)/T—&>¢ then clearly 6 < inf, , D(r) > 0. 0

THEOREM 4.3. Suppose n,(M)=0 and —1<Sect,,<—1+¢, where e<1—
q%/(n—q—1)%. Take h(x)= f(r(x)) as above. Then if >0 and 2q<n—1,

(i) A7>0, -

(ii) if e"PpeL?*Q? and dp =0, then ¢ =db where e"0e L?*Q~ 1. In particular any
class [¢] in L2H? or in L2H"™? with e"¢ e L? is trivial,

(iii) if e "peL*Q" 1 and dp =0, then ¢ =dO where e""0e L?Q" 171

(iv) for p=gq or n—q there is no non-zero harmonic ¢ € L*QP.

PrOOF. By Proposition 3.1 and Lemma 4.2 we have 1%(f) > 16 for some 6 >0, for
all >0. Parts (i), (ii), (iii)) are immediate from Proposition 2.8. Also, by duality
AP —f)=A"9f)=15. Thus 12/A""Y—f)<16—0 as 7 | 0, and Proposition 2.7 shows
that there is no non-zero L? harmonic (n—g)-form with ig,we L2. Since |ig,w|2<
|VA| | W] < C|w|.. for some constant C, there is no non-zero L? harmonic (n— g)-
form, and so by duality no non-zero L? harmonic ¢ form. O

In contrast to (iv) above, Anderson [1] has shown that L> hamonic forms can
exist in dimension q if the pinching condition is relaxed past — 1 < Sect,, <(— 1)/(n—2q)>.
In particular, for g=1 both upper bounds for the curvature equal (— 1)/(n—2), showing
that in this dimension Anderson’s and our work give optimal results. |

COROLLARY 4.4. For n=2k, n,(M)=0, and

(k—1)*
—1<Sect,, < T
there are no non-zero L? harmonic q-forms for q#k.
THEOREM 4.5. For n=2k and M a compact smooth n-manifold with

k-1
Kz

—1<Sectgy<—

we have

(—D)*x(M)=0
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where y(M) is the Euler characteristic of M.

PROOF. As in [9], this follows immediately from Atiyah’s L? index theorem [2]
and the last corollary. Namely, define the L? Betti numbers on the universal cover M
of M by

B3= J p(x, x)dx
F

where F is a fundamental domain for M in M, and p%(x, y) is the kernel of the projection
of YLZQ‘I onto the kernel of A% Set x,(M)=)(— 1)98%. Atiyah’s theorem implies
xo(M)=y(#). Under the hypothesis of the corollary, we have y(M)=(—1)*p%. O

In n=4I/ and M has non-zero signature, then the L? index theorem applied to the
signature operator gives f3'#0, and so y(#M)>0 in this case.
In [12] Donnelly and Xavier proved the following:

THEOREM 4.6 (Donnelly and Xavier). Suppose M is simply connected with pinched
sectional curvatures —1<Secty,< —1+¢ for 0<e<l. If g<}(n—1) then

x%z—‘l‘—[(n—l)\/(l—e)—ijz

- fore<l1 —4q2/(n— 1)2.

The methods they used depend on an interesting integral inequality and, like ours,
on estimates of the eigenvalues of the Hessian of the distance function r. Their results
give vanishing of L2 harmonic forms except on the middle dimension when n is even
and also vanishing of L?>H? for g<3(n—1).

Our pinching is given by —1<Sect, < —1+¢ where e<1—g?/(n—g—1)?. This
is more relaxed than Donnelly and Xavier’s for all 0<g<#4(n—1). We get vanishing
of L? harmonic forms away from the middle dimension and growth conditions on
non-zero L? cohomology classes: however we do not obtain vanishing of L2H?.

Donnelly and Xavier give our Theorem 4.5 with their tighter pinching. They point
out that the stronger result (— 1)*y(#4) > 0 has been proved by Bourguignon and Karcher
[5] under the pinching & <3/(n+ 1), using the classical Chern-Gauss-Bonnet theorem,
and they observe that this is a more relaxed pinching than theirs. However it is tighter
than ours.

Essentially our pinching is more relaxed but we are getting somewhat weaker
conclusions than [5] or [12]. The growth conditions in the next section require no
pinching.
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5. Growth conditions via semigroup domination.

Let R7e End(£29) be the curvature term in the Weitzenbdck formula A=V*V 4 R?
for the Laplacian on g-forms. In particular R!=Ric. Consider the lower bound
y?. M—>R:

y¥x) =inf{KRUV), V. —2t<(dN)(V? RV, V), : Ve AT M and |V1,=1}

and let C?=inf{y¥(x) : xe M} > — 00. Assume C} > — 0. According to Bakry [3], this
ensures that the Brownian motion with drift tVA on M exists for all time or equivalently
that the probabilistically defined semigroup (the minimal semigroup) determined by
—3+A+1tVh maps the constant function 1 to itself.

From [13, §5 Remark (2)] there is the semigroup domination

| QUPI(V) | <e™ VDCHQ2( ¢ ) V|,

for ¢ € L2Q%u,), Ve \'T. M, where {Qf?: >0} is the semigroup e*3- on L2Q%(u,). In
fact in [14] this is given for Q7 and Q? the probabilistically defined semigroups on the
spaces of L* forms. However these semigroups agree on the intersection of their domains
given our assumption on C}, which ensures that the relevant stochastic process exists
for all time, and the assumption that C® > — oo (cf. [14, Ch. IV, Prop. 1A]; the uniform
boundedness of Q, is not needed there, as pointed out to us by X.-M. Li). As in [15]
for t=0, we have

PROPOSITION 5.1. If Cl> — o0 then
AI>C1+ 2.

Take h(x)= — f(r(x)) for f asin §4 so that f(r)=4r%for0<r<aand f(r)=oar+p
if r>b. From the proof of Lemma 4.2 we see

YUx)=Cl+21qf"(r(x)), xeM.
Thus
i) =Ch+2tq, O<r(x)<a.
Also if Sect,, < —k?<0, as in §4 we see
Pi(x)=C{+21f"(r(x)) + 21" (r(x))(q— 1)k cothkr(x)
> C%+21(q— 1)ak cothak
if r(x) = a. Thus, for this A,
(5.2 A1>C%+ A2 +tmin{2q, 2(q— 1)ak cothak} .

Using this we can get growth conditions on harmonic forms without pinching:
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THEOREM 5.3.  Suppose n(M)=0, Sect,, < —k?2 <0 for some k and Ric,, is bounded
below. If q#n, n—1 and 1> —infR"~9/2(n—q) then

(i) Forp=qorn—qif ¢ L?Q” has Ap=0 and e"¢p e L?, then ¢=0.

(ii) If e"$peL?Q? and dp =0, then ¢ =d6 where e"0e L?>Q97 1,

(i) If e "peL?>Q" * and dp =0, then ¢ =dO where e "0e L2Q" 971,

PrROOF. The case g=0 is trivial. Equation (5.2) plus duality gives
AT 4> CH+ A2+ tmin{2q, 2(g— 1)ak cothak} = C%+ 1% +12g

if g#1 and a is sufficiently large. Thus if we change g to n—gq and change the sign of
h to take h(x)= f(r(x)) we get 19> Ch~ "+A°+12(n q), g#n—1, whence A2>0. Now
apply Proposition 2.8. O

COROLLARY 5.4. Ifn,(M)=0, Secty, < —k? <0 for some k and R? is bounded be-
low for each gq, there exists t€[0, o0) such that any harmonic form ¢ with e"¢e L?
vanishes identically.

As pointed out in [9], harmonic (#/2)-forms on R" restrict to give L? harmonic
forms on hyperbolic n-space, thought of as the unit ball. It is easy to check that these
forms can decay exponentially in the distance, but not fast enough to violate Theorem
5.3. Anderson’s examples of L? harmonic forms outside his pinching range involve
similar forms of slow exponential decay. This indicates that existence proofs for L2
harmonic forms in the middle dimension (which is necessary to show that the Euler
characteristic of M is non-zero) may involve delicate estimates.
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