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Abstract. We shall consider compact complex manifolds of dimension three which have subdomains
in a three dimensional projective space as their unramified even coverings. Assume that the subdomains
contain projective lines. Then any pair of such manifolds can be connected together complex analytically by
an analogue of Klein combinations [K1]. In this paper, we shall prove a (weak) analogue of two results of
B. Maskit [M] on the Lebesgue measures of the limit set of Kleinian groups (Theorems A and B).

In section 1, we shall give definitions of terms and precise statement of our result. In section 2, we shall
analyze the limit set by the same method as that of Maskit. Section 3 is devoted to proving Theorem 2.1.
As a corollary to Theorem 2.1, we obtain Theorem $A$ , which is an analogue of Combination Theorem I of
[M]. In section 4, we shall prove Theorem $B$ , which is an analogue of Combination Theorem II of [M].

1. Introduction.

A complex manifold $X$, dim$X=3$ , is of Class $L$ by definition, if $X$ contains a
subdomain onto which there is a biholomorphic map from a neighborhood ofa projective
line in a three dimensional complex projective space $P^{3}$ . The biholomorphic image in
$X$ of the projective line is called a line.

Klein combination of Class $L$ manifolds is defined as follows ([K2]). Let $X_{v},$ $v=1,2$ ,

be manifolds of Class $L$ . Let $\Sigma$ be a connected and simply connected smooth real
hypersurface in $P^{3}$ , and $W$ a tubular neighborhood of $\Sigma$ . Let $W_{1}^{\prime}$ and $W_{2}^{\prime}$ be the
connected components of $P^{3}\backslash \Sigma$ . Put $W_{1}=W_{1}^{\prime}\cup W$ and $W_{2}=W_{2}^{\prime}\cup W$. Suppose that
there are open holomorphic embeddings $j_{v}$ : $W_{v}\rightarrow X_{\nu}$ . Then the Klein combination
$Kl(X_{1}, X_{2}, j_{1}, j_{2}, \Sigma)$ of $X_{1}$ and $X_{2}$ is the union $x_{1}^{r}\cup X_{2}^{\#},$ $X_{v}^{\#}=X_{v}\backslash j_{\nu}(W_{\nu}\backslash W)$ , where
$j_{1}(x)\in j_{1}(W),$ $x\in W$, is identified with $j_{2}(x)\in j_{2}(W)$ . It is easy to check that a Klein
combination can be defined for a pair $X_{1},$ $X_{2}$ of Class $L$ manifolds if both $W_{1}^{\prime}$ and $W_{2}^{\prime}$

are of Class $L$ . Let $\Sigma_{0}$ denote the hypersurface in $P^{3}$ defined by

$|z_{0}|^{2}+|z_{1}|^{2}=|z_{2}|^{2}+|z_{3}|^{2}$ ,
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where $[z_{0} : z_{1} : z_{2} : z_{3}]$ is a system of homogeneous coordinates. The Klein combination
is called a connected sum denoted by Sum$(X_{1}, X_{2}, j_{1}, j_{2}, \Sigma)$ or Sum$(X_{1}, X_{2})$ for short,
if the domain $W$ is biholomorphic to a tubular neighborhood of $\Sigma_{0}$ . We can consider
a connected sum for any pair of Class $L$ manifolds and the resulting manifold is also
of Class $L$ .

Let $\Omega$ be a domain in $P^{3}$ . Assume that $\Omega$ is of Class $L$ . Then any holomorphic
automorphism of $\Omega$ extends to an element of $PGL_{4}(C)$ by [Kl, Lemma 3.2]. Let $\Gamma$ be
a group of holomorphic automorphism of $\Omega$ . We can assume that $\Gamma$ is a subgroup of
$PGL_{4}(C)$ without loss of generality. Assume further that the action of $\Gamma$ on $\Omega$ is free
and properly discontinuous and that the quotient manifold $\Gamma\backslash \Omega$ is compact. It is easy
to see that $\Gamma\backslash \Omega$ is also of Class L. In the following, acomplex manifoldX which can
be described as a quotient of a subdomain of $P^{3}$ is said to be covered by a subdomain
of $P^{3}$ .

It is easy to see that a Klein combination of two manifolds of Class $L$ which are
covered by subdomains in $P^{3}$ is also covered by a subdomain in $P^{3}$ (see [M] or [K2]).

Since a manifold of Class $L$ admits at most one holomorphically flat projective
structure ([Kl, Proposition 5.1]), the domain $\Omega$ can be recovered, up to compositions
of elements of $PGL_{4}(C)$ , from the quotient $\Gamma\backslash \Omega$ as the image of the development of
the projective structure. Therefore the complement $\Lambda=P^{3}\backslash \Omega$ is defined canonically by
$\Gamma\backslash \Omega$ up to translations by $PGL_{4}(C)$ . It is an easy consequence of a theorem of H. Hopf
that the cardinality of the connected component of $\Lambda$ is $0,1,2$ , or that of continuum.

Now we state our main result, which is a (weak) analogue of a part of Combination
Theorem I of B. Maskit [M].

THEOREM A. Let $X_{v},$ $v=1,2$ be compact manifolds of Class $L$ which are covered
by subdomains $\Omega_{v}$ of $P^{3}$ . Assume that the complements in $P^{3}$ of $\Omega_{\nu}$ have Lebesgue measure
zero for $v=1,2$ . Then Sum$(X_{1}, X_{2})$ is covered by a subdomain whose complement in $P^{3}$

has also Lebesgue measure zero.

The theorem above is a corollary to a little more general result (Theorem 2.1) of
Klein combination version of Theorem $A$ , which will be proved in section 3.

2. Decomposition of limit sets.

Let $X_{1}=(\Omega_{1}, \Gamma_{1}),$ $X_{2}=(\Omega_{2}, \Gamma_{2})$ be compact manifolds of Class $L$ which are covered
by subdomains $\Omega_{1},$ $\Omega_{2}$ of $P^{3}$ and let $X=Kl(X_{1}, X_{2}, j_{1}, j_{2}, \Sigma)$ be a Klein combination
of these two manifolds. Since $X$ is also covered by a subdomain, we can write $X=(\Omega, \Gamma)$ .
Set $\Lambda=P^{3}\backslash \Omega,$ $\Lambda_{1}=P^{3}\backslash \Omega_{1}$ and $\Lambda_{2}=P^{3}\backslash \Omega_{2}$ . Let $Vo1_{P^{3}}$ denote the volume (Lebesgue
measure) defined by a Riemannian metric on $P^{3}$ . Now we shall describe the condition
under which $Vo1_{P^{3}}(\Lambda_{\nu})=0,$ $v=1,2$ implies $Vo1_{P^{3}}(\Lambda)=0$ . If either $\Gamma_{1}$ or $\Gamma_{2}$ is a trivial
group, then the implication above holds obviously. Thus it is enough to consider the
case where both $\Gamma_{1}$ and $\Gamma_{2}$ are non-trivial groups.
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First we shall make the following

ASSUMPTION A.
Al. $W$ contains projective lines.

By Assumption Al, $\Omega$ contains a line. Since the action of $\Gamma$ on $\Omega$ is properly
discontinuous, we see that the limit of a line in $\Omega$ has no common points with $\Omega$ . Hence
$\Lambda$ contains a line. Thus let $l_{o}$ be a line such that

(1) $l_{0}$ is contained in $\Lambda$ .
We use the notation of section 1. Let $\check{j_{v}}$ : $W_{\nu}\rightarrow\Omega_{\nu}\subset P^{3}$ be a lift of $j_{v}$ . Since $W$

contains projective lines, $\check{j_{\nu}}$ extends to an element of $PGL_{4}(C)$ by [Kl, Lemma 3.2]. Put
$\check{W}_{v}=\check{j_{v}}(W_{v})$ and $\check{\Sigma}_{v}=\check{j_{v}}(\Sigma)$ . Let $F_{v}$ be a fundamental region for $\Gamma_{v}$ on $\Omega_{v}$ which contains
$\check{W}_{v}$ . Here we can assume that the $F_{\nu}$ are compact simplicial complexes embedded in

$\Omega_{v}$ , by considering triangulations of $X_{v}$ . By $\check{j_{v}}^{-1}$ , we regard $F_{\nu}$ as a subset in $P^{3}$ which
contains $W_{\nu}$ , and $\check{\Sigma}_{v}$ as $\Sigma$ . Put $F=(F_{1}\backslash W_{1}^{\prime})\cup(F_{2_{\vee}}\backslash W_{2}^{\prime})$ and $\Omega=\bigcup_{g\in\Gamma}g(F)$ , where
$\Gamma$ is the subgroup of $PGL_{4}(C)$ generated by $\check{j_{v}}^{-1}\Gamma_{v}j_{v},$ $v=1,2$ . Then it is easy to see
that $\Omega$ is an unramified even covering of $X$. Moreover, we can show easily that $F$ is
a fundamental region for $\Gamma$ and that $\Gamma$ is the free product $of\check{j_{v}}^{-1}\Gamma_{\nu}\check{j_{\nu}},$ $v=1,2$ by the
same argument as the proof of Maskit [$M$ , Proposition 1]. We follow an argument of
[M]. Our case is simpler than that of [M]. For a group $G$ , we indicate the set $G\backslash \{1\}$

by $G^{*}$ . Every element of $\Gamma^{*}$ can be written in the normal form
(2) $g=g_{n}\circ\cdots\circ g_{1}$ ,

where either $g_{2i}\in\Gamma_{1}^{*},$ $g_{2i+1}\in\Gamma_{2}^{*}$ , or $g_{2i}\in\Gamma_{2}^{*},$ $g_{2i+1}\in\Gamma_{1}^{*}$ . It is well-known that the number
of factors $n$ in the right hand side of (2) is determined by the element $g$ . We call $n$ the
length of $g$ , and denote the length by $|g|$ . We set $|1|=0$ . Furthermore, writing $g$ in the
normal form (2), we say that $g$ is positive $(g>0)$ if $g_{1}\in\Gamma_{1}^{*}$ , and we say that $g$ is negative
$(g<0)$ if $g_{1}\in\Gamma_{2}^{*}$ .

By Assumption Al, there is a line $l_{\infty}$ in $W$. We consider the following sets of lines

$\mathscr{P}_{1}=\{l\subset P^{3} : g(l)=l_{\infty}, g>0\}$ , $\mathscr{P}_{2}=\{l\subset P^{3} : g(l)=l_{\infty}, g<0\}$ ,
and their supports

$|\mathscr{P}_{v}|=\bigcup_{l\in 9_{v}}$ Supp $l$ .

It is easy to see that the set $|\mathscr{P}_{v}|$ is contained in $P^{3}\backslash W_{v}$ .
In what follows, throughout this paper, we let $U$ denote the domain in $P^{3}$

defined by

$U=\{z=[z_{0} : z_{1} : z_{2} : z_{3}] : |z_{0}|^{2}+|z_{1}|^{2}<|z_{2}|^{2}+|z_{3}|^{2}\}$ .
We shall assume the following condition on $\Sigma$ .
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ASSUMPTION A (continued). There are subdomains $W_{v}^{\prime\prime},$ $v=1,2$ , which admit open
coverings $\{U_{\nu}^{1}, \cdots, U_{\nu}^{r_{v}}\}$ such that
A2. each $W_{\nu}^{\prime\prime}$ contains $W_{v}^{\prime},$ $u\Sigma$ ,
A3. each $U_{v}^{j}$ is biholomorphic to $U$,
A4. the closure of each $U_{v}^{j}$ does not intersect the closure of $|\mathscr{P}_{v}|$ ,
A5. each $U$‘ satisfies either $ U‘\cap U(l_{O})=\emptyset$ or $ U_{v}^{j}\cap U(l_{\infty})=\emptyset$ , where $U(l_{O})$ (resp. $U(l_{\infty})$)

is a small neighborhood of $l_{0}$ (resp. $l_{\infty}$).

It is easy to see that if there are open coverings which satisfy $A2,$ $\cdots$ , A4, we can
replace them by those which satisfy also A5. Note that Assumptions $A1,$ $\cdots$ , A5 are
obviously fulfilled in the case of connected sum. We shall prove the following

THEOREM 2.1. If $\Sigma$ satisfies Assumptions $A1,$ $\cdots$ , A5, then $Vo1_{P^{3}}(\Lambda_{1})=Vo1_{P^{3}}(\Lambda_{2})=$

$0$ implies $Vo1_{P^{3}}(\Lambda)=0$ .
This section and the next are devoted to proving the theorem above. To prove the

theorem, we decompose $\Gamma$ into the sets of positive elements, negative elements and the
identity element, and write

(3) $\Gamma=\{1\}+\sum_{n,m}p_{nm}+\sum_{n,m}q_{nm}$ ,

where $|p_{nm}|=|q_{nm}|=n,$ $p_{nm}>0$ , and $q_{nm}<0$ . For fixed $n>0$ , we set

(4) $T_{n}=\bigcup_{m}p_{nm}(W_{1}^{\prime})\cup\bigcup_{m}q_{nm}(W_{2}^{\prime})$ .

LEMMA 2.1. For $n\geq 1,$ $T_{n-1}\supset T_{n}$ holds.

$PR\infty F$ . Let $x\in T_{n}$ be any element. Suppose $x\in p_{nm}(W_{1}^{\prime})$ for some $p_{nm}>0$ . We write
$p_{nm}=g_{n}\circ\cdots\circ g_{1}$ in the normal form, where $g_{1}\in\Gamma_{1}^{*}$ . Since $g_{1}(W_{1}^{\prime})\subset W_{2}^{\prime}$ , we have

$p_{nm}(W_{1}^{\prime})\subset g_{n}\circ\cdots\circ g_{2}(W_{2}^{\prime})$ .

Since $|g_{n}\circ\cdots\circ g_{2}|=n-1$ and $g_{n}\circ\cdots\circ g_{2}$ is negative, we conclude $x\in T_{n-1}$ . We can
settle the case $x\in q_{nm}(W_{2}^{\prime})$ for some $q_{nm}<0$ in the same manner. $\square $

LEMMA 2.2. For any $ g\in\Gamma$ with $|g|\leq n,$ $n\geq 1,$ $g(T_{n})\subset T_{n-|g|}$ holds.

$PR\infty F$ . Take any $x\in T_{n}$ . We write $g=g_{k}\circ\cdots\circ g_{1}$ in the normal form, $k=|g|$ .
Then we see easily that $g(x)\in\bigcup_{l=n-k}^{n+k}T_{l}$ . Since $\{T_{n}\}$ is a descending sequence by Lemma
2.1, we have $g(x)\in T_{n-k}$ . $\square $

We set

$T=\bigcap_{n\geq 1}T_{n}$ .

As a corollary to Lemma 2.2, we have immediately



LEBESGUE MEASURE OF LIMIT SETS 103

LEMMA 2.3. For any $g\in\Gamma,$ $g(T)\subset T$ holds and hence $T$ is F-invariant.

LEMMA 2.4. For any $g\in\Gamma,$ $ T_{n}\cap g(F)=\emptyset$ holds for $n\geq|g|+1$ .

PROOF. It is clear by the definition that $ T_{1}\cap F=\emptyset$ . Since $\{T_{n}\}$ is a descending
sequence by Lemma 2.1, we have

(5) $ T_{n}\cap F=\emptyset$

for $n\geq 1$ . We shall prove the lemma by induction on $k=|g|$ . The lemma holds for $k=0$

by (5). Suppose that $k\geq 1$ . Put $g=g_{k}\circ h,$ $|h|=k-1,$ $g_{k}\in\Gamma_{v}^{*}$ , where $v=1$ or 2. Then we have

(6) $T_{n}\cap g(F)=T_{n}\cap g_{k}\circ h(F)=g_{k}(g_{k}^{-1}(T_{n})\cap h(F))$ .

For $n\geq 1$ , we have

$g_{k}^{-1}(T_{n})\subset T_{n-1}$

by Lemma 2.1. By the induction assumption, we have

$ T_{n-1}\cap h(F)=\emptyset$ .

Hence by (6), we have

$ T_{n}\cap g(F)=g_{k}(g_{k}^{-1}(T_{n})\cap h(F))\subset g_{k}(T_{n-1}\cap h(F))=\emptyset$ . $\square $

LEMMA 2.5. $ T\subset\Lambda$ .

PROOF. We shall prove the lemma by absurdity. Suppose there were a point $x\in T$

which were contained in $\Omega=P^{3}\backslash \Lambda$ . Let $K$ be a compact neighborhood of $x$ in $\Omega$ . By
the definition of $T$ and the fact that $\{T_{n}\}$ is a descending sequence,

(7) $x\in K\cap T_{n}$ for all $n\geq 1$ .

Since $K$ and $F$ are compact, and since $F$ is a fundamental region, there is a finite number
of elements, $g_{1},$ $g_{2},$ $\cdots,$ $ g_{r}\in\Gamma$ such that

$K\subset\bigcup_{j=1}^{r}g_{j}(F)$ and

$ K\cap g(F)=\emptyset$ for all $g\in\Gamma\backslash \{g_{1}, g_{2}, \cdots, g_{r}\}$ .

Hence, by (7),

$\bigcup_{j=1}^{r}g_{j}(F)\cap T_{n}\supset K\cap T_{n}\supset\{x\}\neq\emptyset$

for all $n\geq 1$ . On the other hand, by Lemma 2.4, we have $ T_{n}\cap g_{j}(F)=\emptyset$ for all integers
$n$ with

$n\geq\max_{j=1,\cdots,r}\{|g_{j}|+1\}$ .
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Thus we have a contradiction for such $n$ .

We set

$S_{n}=P^{3}\backslash T_{n}$ ,

Then we have

LEMMA 2.6. $\Lambda=(\Lambda\cap S)\cup T$.

$\square $

$S=\bigcup_{n}S_{n}$ .

PROOF. Since $P^{3}=S\cup T$, the lemma follows immediately from Lemma 2.5. $\square $

Following three lemmas follow immediately from Lemmas 2.1, 2.2 and 2.3.

LEMMA 2.7. For $n\geq 1,$ $S_{n-1}\subset S_{n}$ .

LEMMA 2.8. For any $ g\in\Gamma$ and $n\geq 1,$ $g(S_{n})\supset S_{n-|g|}$ holds.

LEMMA 2.9. For any $g\in\Gamma,$ $g(S)\subset S$ holds and hence $S$ is F-invariant.

It is easy to verify the following.

LEMMA 2.10. If $x\in P^{3}$ satisfies
(8) $x\not\in\bigcup_{g\in\Gamma}g(\Lambda_{1})\cup\bigcup_{g\in\Gamma}g(\Lambda_{2})$

,

then

(9) $g(x)\in\Omega_{1}\cap\Omega_{2}$ for all $ g\in\Gamma$ .

LEMMA 2.11. $S\subset\Omega\cup\bigcup_{g\in\Gamma}g(\Lambda_{1})\cup\bigcup_{g\in\Gamma}g(\Lambda_{2})$ .
$PR\infty F$ . $Takex\in Ssatisfying(8)$ . $Itisenoughtoshowthatx\in\Omega$ . $Sincex\in Sand$

$\{S_{n}\}$ is ascending, there is an integer $n_{0}$ such that $x\in S_{n_{O}}\backslash S_{n_{O}-1}$ . Then $x\in T_{n_{O}-1}=$

$P^{3}\backslash S_{n_{O}-1}$ . Therefore either there is a point $w_{1}\in W_{1}^{\prime}$ and an element $p_{n_{O}-1m}>0$ in $\Gamma$ with
$x=p_{n_{0}-1m}(w_{1})$ , or there is a point $w_{2}\in W_{2}^{\prime}$ and an element $q_{n_{O}-1m}<0$ in $\Gamma$ with $x=$

$q_{n_{O}-1m}(w_{2})$ . Suppose the former case holds; the proof of the latter case is similar. If
$w_{1}\in T_{1}$ , then there is a point $v_{2}\in W_{2}^{\prime}$ and $q\in\Gamma_{2}^{*}$ such that $w_{1}=q(v_{2})$ . Henoe we have
$x=p_{n_{O}-1m}\circ q(v_{2})$ . Since $p_{n_{O}-1m}\circ q$ is negative and has length $n_{O}$ , we see that $x\in T_{n_{O}}$ . But
this contradicts $x\in S_{n_{O}}$ . Hence $w_{1}\not\in T_{1}$ , i.e., $w_{1}\in S_{1}$ . Namely, for every element $x\in S_{n}$

with $n>1$ , there is an element $ g\in\Gamma$ such that $g(x)\in S_{1}$ . On the other hand, by the choice
of $x$ and by Lemma 2.10, we also have $g(x)\in\Omega_{1}\cap\Omega_{2}$ . If $g(x)\not\in W_{1}^{\prime}\cup W_{2}^{\prime}$ , i.e., $ g(x)\in\Sigma$ ,

then $g(x)\in F$. Hence $ x\in\Omega$ . If $g(x)\in W_{2}^{\prime}$ , then $g(x)\not\in W_{1}^{\prime}$ . Since $g(x)\in\Omega_{1},$ $g_{1}\circ g(x)\in F_{1}$ holds
for some $g_{1}\in\Gamma_{1}$ . Suppose that $g_{1}\circ g(x)\in W_{1}^{\prime}$ . Then we have $g_{1}\neq 1$ and $ g(x)=g_{1}^{-1}(g_{1}\circ$

$g(x))\in g_{1}^{-1}(W_{1}^{\prime})\subset T_{1}$ . This contradicts $g(x)\in S_{1}$ . Therefore $g_{1}\circ g(x)\in F_{1}\backslash W_{1}^{\prime}=F$. Hence
$ x\in\Omega$ . The remaining case $g(x)\in W_{1}$ can be settled similarly. $\square $

LEMMA 2.12. $\Lambda\supset\bigcup_{g\in\Gamma}g(\Lambda_{1})\cup\bigcup_{h\in\Gamma}h(\Lambda_{2})$ .
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PROOF. Since $\Lambda$ is $\Gamma$-invariant, it is enough to show that $\Omega\subset\Omega_{\nu}$ . We consider
the case $v=1$ . The proof works also for $v=2$ . Recall that $\Omega=\bigcup_{g\in\Gamma}g(F)$ and $\Omega_{1}=$

$\bigcup_{g\in\Gamma_{1}}g(F_{1})$ . The lemma follows immediately from the following.

SUBLEMMA 2.1. Let $g$ be an element of $\Gamma$ and put $k=|g|$ . If $g$ is positive, then
$g(F)\subset F_{2}\cap\Omega_{1}$ for odd $k$ , and $g(F)\subset F_{1}$ for even $k$ . If $g$ is negative, then $g(F)\subset F_{1}$ for
odd $k$ , and $g(F)\subset F_{2}\cap\Omega_{1}$ for even $k$ .

PROOF. Consider the case $g$ positive. We shall prove the sublemma by induction
on $k$ . If $k=1$ , then $g\in\Gamma_{1}^{*}$ . Hence $g(F)\subset g(F_{1})\subset F_{2}\cap\Omega_{1}$ . If $k=2$ , then $g=g_{2}\circ g_{1}$ for
some $g_{1}\in\Gamma_{1}^{*}$ and $g_{2}\in\Gamma_{2}^{*}$ . Hence

$g(F)\subset g_{2}\circ g_{1}(F_{1})\subset g_{2}(F_{2}\cap\Omega_{1})\subset g_{2}(F_{2})\subset F_{1}$ .
Suppose that $k\geq 3$ . Write $g$ as $g=g_{k}\circ h,$ $h=g_{k-1}\circ\cdots\circ g_{1}$ . If $k$ is odd, then $g_{k}\in\Gamma_{1}^{*}$ and
$h(F)\subset F_{1}$ by induction assumption. Hence $g(F)=g_{k}\circ h(F)\subset g_{k}(F_{1})\subset F_{2}\cap\Omega_{1}$ . If $k$ is even,
then $g_{k}\in\Gamma_{2}^{*}$ and $h(F)\subset F_{2}\cap\Omega_{1}$ by induction assumption. Hence

$g(F)=g_{k}\circ h(F)\subset g_{k}(F_{2}\cap\Omega_{1})\subset g_{k}(F_{2})\subset F_{1}$ .

The case $g$ negative can be settled similarly. $\square $

PROPOSITION 2.1. $\Lambda=\bigcup_{g\in\Gamma}g(\Lambda_{1})\cup\bigcup_{h\in\Gamma}h(\Lambda_{2})\cup T$.

PROOF. By Lemmas 2.6 and 2.11, we have

$\Lambda\subset(\Omega\cup\bigcup_{g\in\Gamma}g(\Lambda_{1})\cup\bigcup_{h\in\Gamma}h(\Lambda_{2}))\cup T$ .

Hence, by $\Omega\cap\Lambda=\emptyset$ , we obtain

$\Lambda\subset\bigcup_{g\in\Gamma}g(\Lambda_{1})\cup\bigcup_{h\in\Gamma}h(\Lambda_{2})uT$
.

The other implication follows from Lemmas 2.12 and 2.5. $\square $

REMARK 2.1. By Assumption Al and the definition of $T,$ $T$ contains lines.

3. Volume of limit sets.

We use the notation in the earlier sections. Let $[z_{0} : z_{1} : z_{2} : z_{3}]$ be a system of
homogeneous coordinates on $P^{3}$ such that the two lines $l_{0},$ $l_{\infty}$ in Assumptions $A2,$ $\cdots$ , A5
are given by

$l_{0}$ : $z_{0}=z_{1}=0$ , $l_{\infty}$ : $z_{2}=z_{3}=0$ .

Recall that

(10) $l_{0}$ is contained in $\Lambda$ ,
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(11) $l_{\infty}$ is contained in $W$ .
By a small displacement $ofl_{\infty}$ ifnecessary, we can assume without loss ofgenerality that

(12) $l_{\infty}$ is mapped bijectively into $ X=\Gamma\backslash \Omega$

by the canonical projection. Every line in $P^{3}\backslash l_{\infty}$ can be written uniquely in the form
$z^{\prime}=Xz^{\prime\prime}$

where $z^{\prime}={}^{t}(z_{0}, z_{1}),$ $z^{\prime\prime}=^{t}(z_{2}, z_{3})$ and $X$ is a $2\times 2$ matrix with complex components,
$X\in M_{2}(C)$ . Consider the subgroup in $SL_{4}(C)$ defined by

$\tilde{\Gamma}=$ { $\tilde{g}\in SL_{4}(C)$ : $\tilde{g}$ represents an element $ g\in\Gamma$ }.

Set
$\tilde{\Gamma}^{*}=$ { $\tilde{g}\in\tilde{\Gamma}:\tilde{g}$ is not a scalar matrix} .

Note that the equality

(13) $\det(AC^{-1}DC-BC)=1$

holds for anyg $=\left(\begin{array}{ll}A & B\\c & D\end{array}\right)\in SL_{4}(C)with\det C\neq 0,$ where A, $B,$ $C,$ $D\in M_{2}(C)$ . We identify

the set of quaternions with the set of $2\times 2$ matrices

$H=\{X=\left(\begin{array}{ll} & -\\x_{1} & -x_{2}\\ & -\\x_{2} & x_{1}\end{array}\right)$ : $x_{1},$ $x_{2}\in c\}$ .

On $M_{2}(C)$ , we define a norm by

$\Vert X\Vert=(\sum_{1\leq i,j\leq 2}|x_{ij}|^{2})^{1/2}$ ,

where $x_{ij}$ is the $(i, j)$-component of $X\in M_{2}(C)$ . Define a diffeomorphism

$\phi$ : $P^{3}\backslash l_{\infty}$ $\rightarrow H\times P^{1}$

(14)
$[z_{0} ; z_{1} : z_{2} ; z_{3}]\mapsto(X, z^{\prime\prime})$

by

$X=\left(\begin{array}{ll} & -\\z_{O} & -z_{1}\\ & -\\z_{1} & z_{O}\end{array}\right)\left(\begin{array}{ll}z_{2} & -\overline{z}_{3}\\z_{3} & \overline{z}_{2}\end{array}\right)$ , $z^{\prime\prime}=[z_{2} ; z_{3}]$ .

Let
$\pi:H\times P^{1}\rightarrow H$

be the projection to the first component. By the assumption (10), there is a $positiv\epsilon$

number $R$ such that the set
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$V_{R}=\pi^{-1}(\{\Vert X\Vert>R\})\cup l_{\infty}$

is contained in $\Omega$ . Note that $V_{R}$ is biholomorphic to the domain $U$. Further, if $R$ is
sufficiently large, then

(15) $ g(V_{R})\cap V_{R}=\emptyset$

holds for any $g\in\Gamma^{*}$ by the assumption (12). For later use, we put

$V_{R}^{*}=\pi^{-1}(\{\Vert X\Vert>R\})$ , $U_{R}=\pi^{-1}(\{\Vert X\Vert<R\})$ .

LEMMA 3.1. For any $\tilde{g}=\left(\begin{array}{ll}A & B\\c & D\end{array}\right)\in\tilde{\Gamma}^{*}$ , we have the following.

(16) $\det C\neq 0$

(17) $\det D\neq 0$

(18) $\Vert AC^{-1}\Vert\leq R_{0}$

(19) $\Vert C^{-1}D\Vert\leq R_{0}$

where $R_{0}$ is a positive number which is independent of $\tilde{g}$ .

PROOF. We fix an $R_{0}=R$ which satisfies (15).
Proof of (16). Suppose that det $C=0$ . Then there is a point $z$ on $l_{\infty}$ such that

$g(z)\in l_{\infty}$ . Thus $ g(l_{\infty})\cap l_{\infty}\neq\emptyset$ . Since $g\neq 1$ by assumption, this contradicts (15).

Proof of (17). Suppose that det$D=0$ . Then there is a point $z$ on $l_{0}$ such that $g(z)\in l_{\infty}$ .
Thus $ g(l_{0})\cap l_{\infty}\neq\emptyset$ . Since $ g(\Omega)=\Omega$ , this contradicts (10).

Proof of (18). The equation of the line $g(l_{\infty})$ is given by $z^{\prime}=AC^{-1}z^{\prime\prime}$ . Since
$ g(l_{\infty})\cap V_{R_{O}}=\emptyset$ by (15), we have $\Vert AC^{-1}\Vert\leq R_{0}$ .

Proof of (19). The equation of the line $g^{-1}(l_{\infty})$ is given by $z^{\prime}=A^{\prime}C^{\prime-1}z^{\prime\prime}$ , where

$g^{-1}=\left(\begin{array}{ll}A^{\prime} & B^{\prime}\\c’ & D^{\prime}\end{array}\right)$ . Since $A^{\prime}C^{\prime-1}=-C^{-1}D$ , we have $\Vert C^{-1}D\Vert\leq R_{0}$ by the argument

above. $\square $

For an element $\tilde{g}=\left(\begin{array}{ll}A & B\\c & D\end{array}\right)\in SL_{4}(C)$ , the composition $\overline{g}=\phi\circ\tilde{g}\circ\phi^{-1}$ is defined on

$(H\times P^{1})\backslash \mathscr{P}_{g}$ , where

$\mathscr{P}_{g}=\{(X, z^{\prime\prime})\in H\times P^{1} : (CX+D)z^{\prime\prime}=0\}$ .

In particular, every $\overline{g}$ with $\tilde{g}\in\tilde{\Gamma}$ is defined on $V_{R}^{*}$ . In the following, we write $\tilde{g}$ instead
ofg to avoid abuse of symbols. $OnH\times P^{1}$ , we introducea volume form dV by

(20) $dV=dv(X)\wedge\omega_{P^{1}}(z)$ ,

where



108 MASAHIDE KATO

$dv(X)=(\frac{\sqrt{-1}}{2})^{2}dx_{1}\wedge d\overline{x}_{1}\wedge dx_{2}\wedge d\overline{x}_{2}$ , $X=\left(\begin{array}{ll}x_{1} & -\overline{x}_{2}\\x_{2} & \overline{\chi}_{1}\end{array}\right)$ ,

and $\omega_{P^{1}}=\omega_{P^{1}}(z),$ $z=[z_{0} ; z_{1}]$ , is the Fubini-K\"ahler form

$i5\partial\log(|z_{0}|^{2}+|z_{1}|^{2})$

on $P^{1}$ . For a 2-vector $w=\left(\begin{array}{l}w_{1}\\w_{2}\end{array}\right)$ , we put $\Vert w\Vert=(|w_{1}|^{2}+|w_{2}|^{2})^{1/2}$ .

LEMMA 3.2. For $\tilde{g}=\left(\begin{array}{ll}A & B\\c & D\end{array}\right)\in SL_{4}(C)$ with det $C\neq 0$ , the pull-back of $dV$ is given

$by$

$\tilde{g}^{*}dV=(\frac{\Vert z^{\prime\prime}\Vert}{\Vert(X+C^{-1}D)z^{\prime\prime}\Vert})^{4}(\frac{\Vert z^{\prime\prime}\Vert}{\Vert(CX+D)z^{\prime\prime}\Vert})^{8}|\det(X+C^{-1}D)|^{2}dv(X)\wedge\omega_{P^{1}}(z^{\prime\prime})$

on $(H\times P^{1})\backslash \mathscr{P}_{9}$ , where the homogeneous coordinates $z^{\prime\prime}$ on $P^{1}$ are regarded as a 2-vector.
$PR\infty F$ . Any element $\tilde{g}$ with $\det C\neq 0$ can be written as a composition $\tilde{g}=$

$\tilde{g}_{5}\circ\tilde{g}_{4}\circ\tilde{g}_{3}\circ\tilde{g}_{2}\circ\tilde{g}_{1}$ of the following;

$\tilde{g}_{1}=\left(\begin{array}{ll}I & C^{-1}D\\0 & I\end{array}\right)$ , $\tilde{g}_{2}=\left(\begin{array}{ll}0 & I\\I & 0\end{array}\right)$ , $\tilde{g}_{3}=\left(\begin{array}{ll}B-AC^{-1}D & 0\\0 & I\end{array}\right)$ ,

$\tilde{g}_{4}=\left(\begin{array}{ll}I & 0\\0 & C\end{array}\right)$ , $\tilde{g}_{5}=\left(\begin{array}{ll}I & AC^{-1}\\0 & I\end{array}\right)$ .

It is easy to check that the volume form $dV$ is invariant by the translations $\tilde{g}_{1}$ and $\tilde{g}_{5}$ .
Let $\gamma(\tilde{g})=\gamma(\tilde{g}, X)$ denote the automorphism of $P^{1}$ induced by the linear map

$z\mapsto(CX+D)z$ , $z\in C^{2}$

Then, by somewhat tedious calculations, we have
$\tilde{g}_{2}^{*}dV=\Vert X\Vert^{-8}dv(X)\wedge\gamma(\tilde{g}_{2})^{*}\omega_{P^{1}}$ ,

$\tilde{g}_{3}^{*}dV=|\det(B-AC^{-1}D)|^{2}dv(X)\wedge\gamma(\tilde{g}_{3})^{*}\omega_{P^{1}}$ ,

$\tilde{g}_{4}^{*}dV=(\frac{||z^{\prime\prime}||}{\Vert Cz^{\prime}’\Vert})^{4}dv(X)\wedge\gamma(\tilde{g}_{4})^{*}\omega_{P^{1}}$ ,

$\tilde{g}_{1}^{*}(\Vert X\Vert)=\Vert z^{\prime\prime}\Vert^{-1}\Vert(X+C^{-1}D)z^{\prime\prime}\Vert$ .
By composition of these equations and (13), we obtain

$\tilde{g}^{*}dV=|\det C|^{-2}(\frac{||z^{\prime\prime}\Vert^{2}}{\Vert(X+C^{-1}D)z^{\prime}\Vert||(CX+D)z^{\prime\prime}\Vert})^{4}dv(X)\wedge\gamma(\tilde{g})^{*}\omega_{P^{1}}(z^{\prime\prime})$ .
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Since

$\gamma(\tilde{g})^{*}\omega_{P^{1}}(z^{\prime\prime})=|\det(CX+D)|^{2}(\frac{\Vert z^{\prime\prime}\Vert}{\Vert(CX+D)z^{\prime\prime}\Vert})^{4}\omega_{P^{1}}(z^{\prime\prime})$

we have the lemma. $\square $

PROPOSITION 3.1. $\sum_{g^{\sim}\in\tilde{\Gamma}^{*}}\Vert C(g)\Vert^{4}|$ det $ C(g)|^{-6}<\infty$ .

PROOF. For simplicity, put $A=A(g),$ $B=B(g),$ $C=C(g)$ and $D=D(g)$ . By (15), all
$g(V_{R}),$ $g\in\Gamma^{*}$ , are mutually disjoint and contained in the closure $[U_{R}]$ of $U_{R}$ . Therefore
we have

(21) $\sum_{g^{\sim}\in\tilde{\Gamma}^{*}}\int_{g\langle V_{R})}dV<\infty$

for any sufficiently large $R>0$ . Now we shall estimate the value $\int_{g\langle V_{R})}dV$ from below.

Letting $y^{\prime}=\gamma(\tilde{g})z^{\prime\prime}$ and $Y=X^{-1}=\left(\begin{array}{ll}y_{1} & -\overline{y}_{2}\\y_{2} & \overline{y}_{1}\end{array}\right)$ , we have by Lemma 3.2 that

(22) $\tilde{g}^{*}dV=|$ det $C|^{-2}(\frac{M(Y,y^{\prime})}{\Vert C^{-1}y’\Vert\Vert y’\Vert})^{4}dv(Y)\wedge\omega_{P^{1}}(y^{\prime})$ ,

where

(23) $M(Y, y^{\prime})=\Vert Y(I+C^{-1}DY)^{-1}C^{-1}y^{\prime}\Vert^{2}\Vert Y\Vert^{-2}$

For $\Vert Y\Vert<R^{-1},$ $R>2R_{0}$ , it follows from Lemma 3.1 that

$\Vert(I+C^{-1}DY)^{-1}-I\Vert\leq(1-R_{0}R^{-1})^{-1}R_{0}R^{-1}$

Hence, using the fact that $Y\Vert Y\Vert^{-1}\in SU(2)$ , we have

$M(Y, y^{\prime})\geq(\Vert YC^{-1}y^{\prime}\Vert-\Vert Y((I+C^{-1}DY)^{-1}-I)C^{-1}y^{\prime}\Vert)^{2}\Vert Y\Vert^{-2}$

$\geq(\Vert C^{-1}y^{\prime}\Vert-(1-R_{0}R^{-1})^{-1}R_{0}R^{-1}\Vert C^{-1}y^{\prime}\Vert)^{2}$

$=(1-R_{0}R^{-1})^{-1}(1-2R_{0}R^{-1})\Vert C^{-1}y^{\prime}\Vert^{2}$

Therefore we obtain

$\int_{g\langle V_{R})}dV=\int_{g\langle V_{R}^{*})}dV=\int_{V_{R}^{*}}\tilde{g}^{*}dV$

$\geq M_{1}|$ det $C|^{-2}\int_{0<||Y||<R^{-1},y’\in P^{1}}(\frac{\Vert C^{-1}y^{\prime}\Vert}{\Vert y’\Vert})^{4}dv(Y)\wedge\omega_{P^{1}}(y^{\prime})$

$=M_{1}|$ det $C|^{-6}\int_{||Y||<R^{-1}}dv(Y)\int_{y’\in P^{1}}(\frac{\Vert\tilde{C}y^{\prime}\Vert}{||y’||})^{4}\omega_{P^{1}}(y^{\prime})$ ,
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where $M_{1}>0$ is a constant independent of $g$ and $\tilde{C}$ is the cofactor matrix of $C$. By ar
elementary calculation, we have

$\int_{y^{\prime}\in P^{1}}(\frac{\Vert\tilde{C}y^{\prime}\Vert}{||y’||})^{4}\omega_{P^{1}}(y^{\prime})\geq\frac{\pi}{24}(6-\frac{9\pi^{2}}{16})\Vert C\Vert^{4}$

Thus we have

$\int_{g(V_{R})}dV\geq M_{2}|\det C(g)|^{-6}\Vert C(g)\Vert^{4}$ ,

where $M_{2}>0$ is a constant independent of $g$ . Combining this inequality with (21), we
obtain the proposition. $\subset$

Now recall Assumptions $A2,$ $\cdots$ , A5. Put

(24) $V_{\nu}=\bigcup_{j=1}^{r_{v}}U_{v}^{j}$ ,

(25)
$V_{\langle n)}=\bigcup_{m,p_{nm}>0}p_{nm}(V_{1})\cup\bigcup_{m,q_{nm}<0}q_{nm}(V_{2})$ ,

(26) $V^{\langle n)}=\bigcap_{k=1}^{n}V_{\langle k)}$ ,

(27) $V=\lim_{n}V^{(n)}$ .

Obviously, we have $V_{\nu}\supset[W_{\nu}]$ . Note that, the set $g(V_{1})$ (resp. $g(V_{2})$) is contained in
$P^{3}\backslash l_{\infty}$ for $g\in\Gamma^{*}$ with $g>0$ (resp. $g<0$) by Assumption A4.

LEMMA 3.3. The inequality

(28) $\int_{g\langle V_{v})}dV\leq M\Vert C(g)\Vert^{4}|\det C(g)|^{-6}$

holds for any $g\in\Gamma^{*}$ with $g>0$ if $v=1$ , andfor any $g\in\Gamma^{*}$ with $g<0$ if $v=2$ , where $M$ is
a positive constant which is independent of $g$ .

PROOF. Since $V_{v}$ is covered by finitely many $U_{v}^{j}’ s$ , it is enough to prove the case
$V_{v}=U_{\nu}^{j}$ ;

(29) $\int_{g\langle U_{v}^{j})}dV\leq M\Vert C(g)\Vert^{4}|\det C(g)|^{-6}$

First we consider the case where $ U_{v}^{j}\cap U(l_{\infty})=\emptyset$ . There exists an element
$P=\left(\begin{array}{ll}P_{1} & P_{2}\\P_{3} & P_{4}\end{array}\right)\in SL_{4}(C)$ which sends $U$ onto $U_{v}^{j}$ bijectively ([Kl, Lemma 3.2]). We

introduce a system of coordinates on $U$ by the restriction of the differeomorphism $\phi$
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(see (14)) to $U$. Note that $U=\pi^{-1}(\{\Vert X\Vert<1\})$ . The image (X, $x^{\prime\prime}$) $\in U_{\nu}^{j}$ of $(Z, z^{\prime\prime})\in U$ by
the map $P$ is determined by

$\left\{\begin{array}{l}Xx^{\prime\prime}=(P_{1}Z+P_{2})z^{\prime\prime}\\x^{\prime\prime}=(P_{3}Z+P_{4})z^{\prime\prime}\end{array}\right.$

where $X,$ $Z\in H$ . Letting $x^{\prime}=Xx^{\prime\prime}$ , from Lemma 3.2 we get

$\int_{g\langle U_{v}^{j})}dV=\int_{U}P^{*}g^{*}dV$

$=\int_{U}(\frac{||x^{\prime\prime}\Vert}{\Vert x^{\prime}+C^{-1}Dx^{\prime\prime}\Vert})^{4}(\frac{\Vert(P_{3}Z+P_{4})z^{\prime\prime}\Vert}{\Vert(C(P_{1}Z+P_{2})+D(P_{3}Z+P_{4}))z^{\prime\prime}\Vert})^{8}$

$\times|\det(X+C^{-1}D)|^{2}\rho(Z, z^{\prime\prime})dv(Z)\wedge\omega_{P^{1}}(z^{\prime\prime})$ ,

where $\rho(Z, z^{\prime\prime})$ is a differentiable function defined by

$dv(X)\wedge\omega_{P^{1}}(x^{\prime\prime})=\rho(Z, z^{\prime\prime})dv(Z)\wedge\omega_{P^{1}}(z^{\prime\prime})$ .

Obviously, $\rho(Z, z^{\prime\prime})$ is determined independently of $\tilde{g}$ and satisfies

(30) $m_{1}\leq\rho(Z, z^{\prime\prime})\leq m_{2}$

on $U$ for some positive numbers $m_{1},$ $m_{2}$ . Now we shall prepare two sublemmas.

SUBLEMMA 3.1. The inequality

$\Vert x^{\prime}+C(g)^{-1}D(g)x^{\prime\prime}\Vert\geq\delta_{1}\Vert x^{\prime\prime}\Vert$

holds on $U_{v}^{j}$ for any $g\in\Gamma^{*}with$ $g>0$ if $v=1$ , andfor any $g\in\Gamma^{*}with$ $g<0$ if $v=2$ , where
$\delta_{1}$ is a positive constant which is independent of $g$ .

PROOF. Suppose that, for each $n>0$ , there are $g_{n}\in\Gamma^{*}$ with $g_{n}>0$ (resp. $g_{n}<0$) if
$v=1$ (resp. $v=2$), and a point $[x_{n}^{\prime}, x_{n}^{\prime\prime}]$ in $U$‘ such that

(31) $\Vert x_{n}^{\prime}+C(g_{n})^{-1}D(g_{n})x_{n}^{\prime\prime}\Vert<(1/n)\Vert x_{n}^{\prime\prime}\Vert$ .

Since $U$‘ does not intersect $U(l_{\infty})$ , there is a positive number $R$ such that
$U_{v}^{j}\subset\pi^{-1}(\{\Vert X\Vert\leq R\})$ . Hence, choosing a subsequence, we can assume that the sequence
$\{[x_{n}^{\prime}, x_{n}^{\prime\prime}]\}$ converges to a point $x_{0}=[x_{\acute{0}}, x_{\acute{\acute{0}}}]\in[U_{\nu}^{j}]$ , and $\{C(g_{n})^{-1}D(g_{n})\}$ converges to
some matrix $Q$ by Lemma 3.1. Then, in the limit, we have

$x_{\acute{0}}+Qx_{0}^{\prime\prime}=0$ .

Since the line $x^{\prime}+C(g_{n})^{-1}D(g_{n})x^{\prime\prime}=0$ is a member of $\mathscr{P}_{\nu}$ , the equality above implies that
the limit point $x_{0}$ is in $[|\mathscr{P}_{v}|]$ and consequently $[|\mathscr{P}_{\nu}|]\cap[U_{\nu}^{j}]\neq\emptyset$ . This contradicts
Assumption A4. $\square $



112 MASAHIDE KATO

SUBLEMMA 3.2. The inequality

$|\det((P_{1}Z+P_{2})+C(g)^{-1}D(g)(P_{3}Z+P_{4}))|\geq\delta_{2}$

holds on $\pi(U)$ for any $g\in\Gamma^{*}$ with $g>0$ if $v=1$ , and for any $g\in\Gamma^{*}$ with $g<0$ if $v=2$

where $\delta_{2}$ is a positive constant which is independent of $g$ .
$PR\infty F$ . Suppose that, for eachn $>0,$ $thereareg_{n}\in\Gamma^{*}withg_{n}>0$ (resp. $g_{n}<0$) $i1$

$v=1$ (resp. $v=2$), and a point $Z_{n}\in\pi(U)$ such that

(32) $|\det((P_{1}Z_{n}+P_{2})+C(g_{n})^{-1}D(g_{n})(P_{3}Z_{n}+P_{4}))|\leq 1/n$ .

Choosing a subsequence, we can assume that the sequence $\{Z_{n}\}$ converges to a poin $\cdot$

$Z_{0}\in[\pi(U)]$ , and $\{C(g_{n})^{-1}D(g_{n})\}$ converges to some matrix $Q$ by Lemma 3.1. Then ir
the limit, we have

$\det((P_{1}Z_{O}+P_{2})+Q(P_{3}Z_{0}+P_{4}))=0$ .
Hence there is a point $z_{\acute{\acute{0}}}\in P^{1}$ such that

$((P_{1}Z_{0}+P_{2})+Q(P_{3}Z_{0}+P_{4}))z_{\acute{\acute{0}}}=0$ .

Put $x_{n}^{\prime}=(P_{1}Z_{n}+P_{2})z_{\acute{\acute{0}}}$ and $x_{n}^{\prime\prime}=(P_{3}Z_{n}+P_{4})z_{\acute{\acute{O}}}$ . Since the limit line $x^{\prime}+Qx^{\prime\prime}=0$ is
contained in $[|\mathscr{P}_{\nu}|]$ and since the limit point $x_{0}$ of the sequence $\{x_{n}\},$ $x_{n}=[x_{n}^{\prime}, x_{n}^{\prime\prime}]$ , is
on the limit line, $x_{0}$ is in $[|\mathscr{P}_{\nu}|]$ . On the other hand, each $x_{n}$ is contained in the imagt
of $U$, i.e., $x_{n}\in U_{v}^{j}$ . Consequently, $\{x_{0}\}\subset[|\mathcal{P}_{v}|]\cap[U_{\nu}^{j}]\neq\emptyset$ . This contradicts

$Assump\subset$

tion A4.

Now we shall continue proving (29). Put

$F=(P_{1}Z+P_{2})+C^{-1}D(P_{3}Z+P_{4})$ .

By Sublemma 3.1, it follows from (30) that

(33) $\int_{g\langle U_{v}^{j})}dV\leq\int_{U}\delta_{1}^{-4}(\frac{\Vert(P_{3}Z+P_{4})z^{\prime\prime}\Vert}{\Vert CFz’\Vert})^{8}|\det(X(Z, z^{\prime\prime})+C^{-1}D)|^{2}$

$\times\rho(Z, z^{\prime\prime})dv(Z)\wedge\omega_{P^{1}}(z^{\prime\prime})$ ,

where $X(Z, z^{\prime\prime})$ indicates the X-coordinate of the point in $U_{\nu}^{j}$ which corresponds tc
$(Z, z^{\prime\prime})\in U$. Put $u^{\prime\prime}=CFz^{\prime\prime}$ . Then the right-hand side of the inequality above is equal to

$\int_{U}\delta_{1}^{-4}(\frac{\Vert(P_{3}Z+P_{4}X,CF)^{-1}u^{\prime\prime}\Vert}{\Vert u’\Vert})^{8}|\det(X(Z, (CF)^{-1}u^{\prime\prime})+C^{-1}D)|^{2}$

$\times\rho(Z, (CF)^{-1}u^{\prime\prime})(\frac{\Vert u^{\prime\prime}||}{\Vert(CF)^{-1}u’\Vert})^{4}|\det(CF)|^{-2}dv(Z)\wedge\omega_{P^{1}}(u^{\prime\prime})$ .

Since $U_{v}^{j}$ does not intersect a neighborhood of $l_{\infty}$ , there is a positive number $R$ such
that $U_{v}^{j}\subset\pi^{-1}(\{\Vert X\Vert\leq R\})$ . Therefore by Lemma 3.1, there is a positive constant $M\backslash $’
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which is independent of $g$ such that

(34) $|\det(X(Z, (CF)^{-1}u^{\prime\prime})+C^{-1}D)|\leq M_{3}$ .

By the same reason, it follows that

(35) $\Vert F\Vert=\Vert\tilde{F}\Vert\leq M_{4}$

holds for some $M_{4}>0$ . Hence, by Sublemma 3.2, we have

(36) det $F|^{-1}\leq\delta_{2}^{-1}$ ,

(37) $\Vert F^{-1}\Vert\leq M_{4}\delta_{2}^{-1}$

It is clear that

(38) $\Vert P_{3}Z+P_{4}\Vert\leq M_{6}$

holds for some $M_{6}>0$ . Thus combining the inequalities (30) and from (34) to (38), we
obtain from (33) that

$\int_{g\langle U_{v}^{j})}dV\leq M_{7}|$ det $C|^{-2}\int_{U}(\frac{\Vert C^{-1}u^{\prime\prime}\Vert}{\Vert u’\Vert})^{4}dv(Z)\wedge\omega_{P^{1}}(u^{\prime\prime})\leq M_{8}\Vert C\Vert^{4}|$ det $C|^{-6}$

holds, where $M_{7},$ $M_{8}$ are positive constants which are independent of $g$ . This proves
our lemma in the case where $ U_{v}^{j}\cap U(l_{\infty})=\emptyset$ .

The other case where $ U_{\nu}^{j}\cap U(l_{0})=\emptyset$ can be settled by the same manner by using
coordinates $(Y, z^{\prime})$ with $Y=X^{-1}$ and $z^{\prime}=[z_{0} : z_{1}]$ on $U_{\nu}^{j}$ instead of (X, $z^{\prime\prime}$). $\square $

We define the volume form on $P^{3}$ by

$dv_{P^{3}}=(\omega_{P^{3}})^{3}$ ,

and for a measurable set $E$, we put

$Vo1_{P^{3}}(E)=\int_{P^{3}}\chi_{E}dv_{P^{3}}$ ,

where $\chi_{E}$ is a characteristic function of $E$.

LEMMA 3.4. $Vo1_{P^{3}}(V)=0$ .
PROOF. For simplicity, we put

$v(E)=\int_{P^{3}\backslash l\infty}\chi_{E}\phi^{*}(dV(X)\wedge\omega_{P^{1}})$ ,

where $\chi_{E}$ is the characteristic function of $E$. Since $V\subset P^{3}\backslash l_{\infty}$ , it is enough to show

$\int_{P^{3}\backslash l\infty}\chi_{V}\phi^{*}(dV(X)\wedge\omega_{P^{1}})=0$ .
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By Proposition 3.1 and Lemma 3.3, we have

$\sum_{n}v(V_{(n)})\leq\sum_{n,p_{nm}>0}v(p_{nm}(V_{1}))+\sum_{n.q_{nm}<0}v(q_{nm}(V_{2}))$

$\leq M\sum_{g^{\sim}\in\tilde{\Gamma}}\Vert C(g)\Vert^{4}|\det C(g)|^{-6}<\infty$ .

Therefore we infer that

$\lim_{n}v(V_{\langle n)})=0$ .

Hence

$\lim_{n}v(V^{\langle n)})=0$ ,

and consequently, we get $v(V)=0$ . $\square $

PROPOSITION 3.2. $Vo1_{P^{3}}(T)=0$ .
PROOF. Since $T\subset V$, this follows from the lemma above immediately. $\square $

$PR\infty F$ OF THEOREM 2.1. It is enough to show the equality $Vo1_{P^{3}}(\Lambda)=0$ under the
assumption

$Vo1_{P^{3}}(\Lambda_{1})=Vo1_{P^{3}}(\Lambda_{2})=0$ .
By Proposition 2.1, we have

$Vo1_{P^{3}}(\Lambda)\leq\sum_{g\in\Gamma}Vo1_{P^{3}}(g(\Lambda_{1}))+\sum_{h\in\Gamma}Vo1_{P^{3}}(h(\Lambda_{2}))+Vo1_{P^{3}}(T)$ .

Hence, by the assumption and by Proposition 3.2, we obtain $Vo1_{P^{3}}(\Lambda)=0$ . $\square $

$PR\infty F$ OF THEOREM A. Since Assumptions $A1,$ $\cdots$ , A5, are satisfied for connected
sum, Theorem A follows from Theorem 2.1 immediately. $\square $

REMARK 3.1. There are many examples of compact manifolds of Class $L$ covered
by a domain in $P^{3}$ whose complement is of volume zero. All examples treated in [K2]
have this property. There are compact non-singular quotient of a complement in $P^{3}$ of
a real 3 or 4-dimensional differentiable manifold (e.g. [K3]), which are twistor spaces
over a conformally flat 4-manifolds. Note also that connected sum in differential topology
between conformally flat 4-manifolds induces our (complex analytic) connected sum
between twistor spaces. But converse is not true.

4. Handle Attachment.

In this section, we consider volumes of limits in the case of handle attachments,
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which corresponds to Combination Theorem II in [M]. Let $X=(\Omega_{O}, \Gamma_{O})$ be a compact
manifold of Class $L$ which is covered by asubdomain $\Omega_{0}$ of $P^{3}$ . Let $\Sigma$ be aconnected
and simply connected smooth real hypersurface in $P^{3}$ , and $W$ a tubular neighborhood
of $\Sigma$ . Let $W_{1}^{\prime}$ and $W_{2}^{\prime}$ be the connected components of $P^{3}\backslash \Sigma$ . Put $W_{1}=W_{1}^{\prime}\cup W$ and
$W_{2}=W_{2}^{\prime}\cup W$. Suppose that there are open holomorphic embeddings $j_{v}$ : $W_{v}\rightarrow X$ such
that $[j_{1}(W_{1})]\cap[j_{2}(W_{2})]=\emptyset$ . We consider the quotient space $ x^{\iota}/\sim$ , where
$X^{r}=X\backslash (j_{1}(W_{1}\backslash W)\cup j_{2}(W_{2}\backslash W))$ , and $j_{1}(x)\in j_{1}(W),$ $x\in W$, is identified with $ j_{2}(x)\in$

$j_{2}(W)$ . The quotient space $ x^{r}/\sim$ is indicated by $Kl(X, j_{1}, j_{2}, \Sigma)$ and called a Klein
combination of the second type (The Klein combination $Kl(X_{1}, X_{2}, j_{1}, j_{2}, \Sigma)$ stated in
section 1 is said to be of first type, if there is any danger of confusion). If $W$ is
biholomorphic to a tubular neighborhood of $\Sigma_{0}$ , the Klein combination of the second
kind is called a handle attachment and denoted by Ha(X, $j_{1},$ $j_{2},$

$\Sigma$ ), or Ha(X) for short.
In this section, we shall prove the following.

THEOREM B. Let $X$ be a compact manifold ofClass $L$ which is covered by a subdomain
$\Omega_{0}$ of $P^{3}$ . Assume that the complement in $P^{3}$ of $\Omega_{0}$ has Lebesgue measure zero. Then
Ha(X) is covered by a subdomain whose complement in $P^{3}$ has also Lebesgue measure zero.

Similarly to the case of Klein combinations of the first type, there is a little more
general result, which we shall explain.

Let $\check{j_{v}}$ : $W_{\nu}\rightarrow\Omega_{0}\subset P^{3}$ be a lift $ofj_{v}$ .
ASSUMPTION B.

Bl. $W$ contains projective lines.

By Assumption Bl, $\Lambda$ contains a line as in the beginning of section 2. We let $l_{0}$

be a line such that

(39) $l_{0}$ is contained in $\Lambda$ .
Put $ W=\check{j}_{1}(W),\check{W}_{\nu}^{\prime}=\check{j_{\nu}}(W_{\nu}^{\prime}),\check{W}_{\nu}=j_{v}(W_{\nu})\vee$ , and $\check{\Sigma}_{\nu}=\check{j_{\nu}}(\Sigma)$ . Since $\Sigma$ is simply connected, there
is a fundamental region $F_{0}$ for $\Gamma_{0}$ on $\Omega_{0}$ which contains both $\check{W}_{1}$ and $\check{W}_{2}$ . Here we
can assume that $F_{O}$ is a compact simplicial complex embedded in $\Omega_{O}$ by considering
a triangulation of $X$. Since $\check{W}$ contains projective lines, the map $\check{j}_{2}\circ j_{1}^{-1}\vee$ defined on $\check{W}$

extends to an element $f$ of $PGL_{4}(C)$ by [Kl, Lemma 3.2], which sends $\check{W}_{1}^{\prime}$ onto the
complement of the closure of $\check{W}_{2}^{\prime}$ , and $\Sigma_{1}^{\vee}$ onto $\Sigma_{2}^{\vee}$ . Put $F=F_{0}\backslash (\check{W}_{1}^{\prime}\cup\check{W}_{2}^{\prime})$ and
$\Omega=\bigcup_{g\in\Gamma}g(F)$ , where $\Gamma$ is the subgroup of $PGL_{4}(C)$ generated by $\Gamma_{O}$ and $f$ Then it is
easy to see that $\Omega$ is an unramified even covering of Ha(X) $=Ha(X, j_{1}, j_{2}, \Sigma)$ . Moreover,
we can show easily that $F$ is a fundamental region for $\Gamma$ and that $\Gamma$ is the free product
of $\Gamma_{0}$ and $f$ by the same argument as the proof of Maskit [$M$ , Proposition 12]. Put
$\Lambda_{0}=P^{3}\backslash \Omega_{0}$ and $\Lambda=P^{3}\backslash \Omega$ .

We follow the argument of [$M$ , page $31\triangleright 313$]. Every element of $\Gamma^{*}$ can be written
in the normal form
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(40) $g=f^{a_{n}}\circ g_{n}\circ\cdots\circ f^{a_{1}}\circ g_{1}$ ,

where $g_{1}\in\Gamma_{0},$ $g_{2},$ $\cdots,$ $g_{n}\in\Gamma_{0}^{*}$ , and $a_{1},$ $\cdots,$ $a_{n-1}\neq 0$ .
The number $\sum_{i=1}^{n}|a_{i}|$ determined by $g$ is called the length of $g$ and is denoted by

$|g|$ . We set 1 $|=0$ . Writing $g$ in the normal form (40), we say that $g$ is positive, $g>0$ ,
(resp. non-negative, $g\geq 0$) if $g_{1}=1$ and $a_{1}>0$ (resp. $g_{1}\neq 1$ or $a_{1}\geq 0$), and negative, $g<0$ ,
(resp. non-positive, $g\leq 0$) if $g_{1}=1$ and $a_{1}<0$ (resp. $g_{1}\neq 1$ or $a_{1}\leq 0$). Note that $\Gamma_{O}^{*}$

coincides with the set of elements which are non-positive and non-negative, but
neither positive nor negative, and with the set of non-unit elements whose length are
zero.

By Assumption Bl, there is a line $l_{\infty}$ in $W$. We consider the following sets of lines
$\mathscr{Q}_{1}=\{l\subset P^{3} : g(l)=l_{\infty}, g\leq 0\}$ , $\mathscr{Q}_{2}=\{l\subset P^{3} : g(l)=l_{\infty}, g\geq 0\}$ ,

and their supports

$|\mathscr{Q}_{\nu}|=\bigcup_{l\in\ell_{v}}$ Supp $l$ .

It is easy to see that the set $|\mathscr{Q}_{\nu}|$ is contained in $\check{W}_{3-\nu}^{\prime}$ .

ASSUMPTION $B$ (continued). There are subdomains $\check{W}_{v}^{\prime\prime},$ $v=1,2$ , which admit open
coverings $\{U_{\nu}^{1}, \cdots, U_{\nu^{v}}^{r}\}$ such that
B2. each $\check{W}_{\nu}^{\prime\prime}$ contains $\check{W}_{v}^{\prime}\cup\Sigma_{\nu}^{\vee}$ ,
B3. each $U_{v}^{j}$ is biholomorphic to $U$,
B4. the closure of each $U_{\nu}^{j}$ does not intersect the closure of $\mathscr{Q}_{v}$

B5. each $U$‘ satisfies either $ U‘\cap U(l_{0})=\emptyset$ or $ U_{v}^{j}\cap U(l_{\infty})=\emptyset$ , where $U(l_{0})$ (resp. $U(l_{\infty})$)
is a small neighborhood of $l_{0}$ (resp. $1_{\infty}$ ).

It is easy to see that if there are open coverings which satisfy $B2,$ $\cdots$ , B4, we can
replace them by those which satisfy also B5. Note that Assumptions $B1,$ $\cdots$ , B5 are
obviously fulfilled in the case of handle attachment. We shall prove the following.

THEOREM 4.1. If $\Sigma$ satisfies Assumptions $B1,$ $\cdots$ , B5, then $Vo1_{P^{3}}(\Lambda_{O})=0$ implies
$Vo1_{P^{3}}(\Lambda)=0$ .

To prove the theorem above, as in the section 2, we decompose $\Gamma$ into the set of
positive elements, negative elements and the identity element, and write

(41) $\Gamma=\{1\}\sum_{n.m}p_{nm}+\sum_{n,m}q_{nm}$ ,

where $|p_{nm}|=|q_{nm}|=n,$ $p_{nm}\geq 0$ , and $q_{nm}\leq 0$ .
For fixed $n\geq 0$ , we set

(42) $T_{n}=\bigcup_{m}q_{nm}(\check{W}_{1}^{\prime})\cup\bigcup_{m}p_{nm}(\check{W}_{2}^{\prime})$ .
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LEMMA 4.1. For $n\geq 2,$ $T_{n-1}\supset T_{n}$ holds.

PROOF. Let $x\in T_{n}$ be any element. Suppose $x\in q_{nm}(\check{W}_{1}^{\prime})$ for some $q_{nm}\leq 0$ . We write
$q_{nm}=f^{a_{k}}\circ g_{k}\circ\cdots\circ f^{a_{1}}\circ g_{1}$ in the normal form. If $a_{1}>0$ , put $q^{*}=f^{a_{k}}\circ g_{k}\circ\cdots\circ f^{a_{1}-1}$ .
Then, since $q_{1}=1$ , we have $f\circ g_{1}(\check{W}_{1}^{\prime})\subset\check{W}_{2}^{\prime}$ and $q_{nm}(\check{W}_{1}^{\prime})\subset q^{*}(\check{W}_{2}^{\prime})$ . Since $|q^{*}|=n-1$

and $q^{*}\geq 0$ , this implies that $x\in T_{n-1}$ . If $a_{1}<0$ , put $ q^{*}=f^{a_{k}}\circ g_{k}\circ\cdots$ . $f^{a_{1}+1}$ . Then, we
have $q_{nm}(\check{W}_{1}^{\prime})\subset q^{*}(\check{W}_{1}^{\prime})$ . Since $|q^{*}|=n-1$ and $q^{*}\leq 0$ , again we have $x\in T_{n-1}$ . We can
$settlethecasex\in p_{nm}(\check{W}_{2}^{\prime})forsomep_{nm}>0inthesamemanner$ . $\square $

We set

$T=\bigcap_{n\geq 1}T_{n}$ ,

and

$S_{n}=P^{3}\backslash T_{n}$ , $S=\bigcup_{n}S_{n}$ .

All lemmas 2.2, $\cdots,$ $2.9$ hold true also in this case, which can be proved by exactly the
same manner as before.

It is easy to verify the following.

LEMMA 4.2. If $x\in P^{3}$ satisfies
(43)

$x\not\in\bigcup_{g\in\Gamma}g(\Lambda_{0})$ ,

then

(44) $g(x)\in\Omega_{0}$ for all $ g\in\Gamma$ .
LEMMA 4.3. $\Lambda\supset\bigcup_{g\in\Gamma}g(\Lambda_{0})$ .

PROOF. Since $\Lambda$ is F-invariant, it is enough to show that $\Omega\subset\Omega_{0}$ . Take any element
$ g\in\Gamma$ and write $g$ in the normal form (40). Note that $f^{a}\circ g_{1}(F)\subset F_{0}$ for non-zero $a$ ,
$f^{a}\circ g_{1}(F_{0})\subset F_{0}$ for non-zero $a$ and $g_{1}\in\Gamma_{0}^{*}$ , and $f^{a}(\Omega_{0}\backslash F_{0})\subset F_{0}$ for non-zero $a$ . From
these three facts the implication $\Omega\subset\Omega_{0}$ follows immediately. $\square $

LEMMA 4.4. $S\subset\Omega\cup\bigcup_{g\in\Gamma}g(\Lambda_{0})$ .
PROOF. Take $x\in S$ satisfying (43). It is enough to show that $ x\in\Omega$ . Since $x\in S$

and $\{S_{n}\}$ is ascending, there is an integer $n_{0}$ such that $x\in S_{n_{0}}\backslash S_{n_{O}-1}$ . Then $ x\in$

$T_{n_{O}-1}=P^{3}\backslash S_{n_{O}-1}$ . Suppose that $x=q_{n_{O}-1m}(w_{1})$ holds for some point $w_{1}\in\check{W}_{1}^{\prime}$ and
an element $q_{n_{O}-1m}\leq 0$ in $\Gamma$ . The other case that $x=p_{n_{0}-1m}(w_{2})$ for some point
$w_{2}\in\check{W}_{2}^{\prime}$ with an element $p_{n_{O}-1m}\geq 0$ in $\Gamma$ can be settled similarly. For some $a>0$ ,
$y:=f^{a}(w_{1})\in P^{3}\backslash (\check{W}_{1}^{\prime}\cup\check{W}_{2}^{\prime})$ . If $y\in T_{1}$ , then either there are a point $v_{1}\in\check{W}_{1}^{\prime}$ and $h\in\Gamma^{*}$

such that $y=h(v_{1})$ with $h\leq 0$ , or there are a point $v_{2}\in\check{W}_{2}^{\prime}$ and $h\in\Gamma^{*}$ such that $y=h(v_{2})$
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with $h\geq 0$ . In the former case, $g^{*}:$ $=q_{n_{O}-1m}\circ f^{-a}\circ h$ is non-positive with $|q^{*}|\geq n_{0}$ , and
satisfies $x=g^{*}(v_{1})$ . Thus $x\in T_{n_{O}}$ . In the latter case, we also have $x\in T_{n_{O}}$ by the similar
argument. This contradicts $x\in S_{no}$ . Hence $w_{1}\not\in T_{1}$ , i.e., $w_{1}\in S_{1}$ . Namely, for every
element $x\in S_{n}$ with $n>1$ , there is an element $ g\in\Gamma$ such that $g(x)\in S_{1}$ . By Lemma 4.2,
we also have $g(x)\in\Omega_{0}$ . If $g(x)\not\in\check{W}_{1}^{\prime}\cup W_{2}$ , then $g(x)\in F$. If $g(x)\in W_{2}^{\prime}$ , then by Lemma 4.2,
$f^{-1}\circ g(x)\in\Omega_{0}\backslash \check{W}_{1}^{\prime}$ . Suppose $f^{-1}g(x)\in W_{2}$ , then $g(x)=f(f^{-1}\circ g(x))\in f(\check{W}_{2}^{\prime})\subset T_{1}$ . This
contradicts $g(x)\in S_{1}$ . Therefore $f^{-1}\circ g(x)\in\Omega\backslash (\check{W}_{1}^{\prime}\cup\check{W}_{2}^{\prime})=F$. Hence $ x\in\Omega$ . The
remaining case $g(x)\in\check{W}_{1}^{\prime}$ can be settled similarly. $\square $

PROPOSITION 4.1. $\Lambda=\bigcup_{g\in\Gamma}g(\Lambda_{0})\cup T$.
$PR\infty F$ . By Lemmas 2.6 and 4.4, we have

$\Lambda\subset\Omega\cup\bigcup_{g\in\Gamma}g(\Lambda_{0})\cup T$ .

Since $\Omega\cap\Lambda=\emptyset$ , we obtain

$\Lambda\subset\bigcup_{g\in\Gamma}g(\Lambda_{0})\cup T$ .

The other implication follows easily from Lemmas 4.3 and 2.5. $\square $

REMARK 4.1. By Assumption Bl and the definition of $T,$ $T$ contains lines.

$PR\infty F$ OF THEOREM 4.1. As in section 2, we choose a system of homogeneous
coordinates $[z_{0} : z_{1} : z_{2} : z_{3}]$ on $P^{3}$ such that the two lines $l_{\infty}\subset\check{W}$ and $l_{0}\subset f(\check{W})$ are given
by

$l_{0}$ : $z_{0}=z_{1}=0$ , $l_{\infty}$ : $z_{2}=z_{3}=0$ .

Then the whole argument in section 3 works without essential changes: The definition
of $V_{(n)}$ of (25) should be replaced by

(45) $V_{\langle n)}=\bigcup_{m,q_{nm}<0}q_{nm}(V_{1})\cup\bigcup_{m,p_{nm}>0}p_{nm}(V_{2})$ ,

and $\mathscr{P}_{\nu}shouldbereplacedby9_{\nu}$ . $\square $

PROOF OF THEOREM B. Theorem $B$ follows immediately form Theorem 4.1.

REMARK 4.2. A connected sum of a Class $L$ manifold $M$ with an L-Hopfmanifold
[K2, page 372] is a handle attachment of $M$. Converse seems to be false.
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