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Abstract. A local move called a Cn-move is related to Vassiliev invariants. It is known that two knots are
related by Cn-moves if and only if they have the same values of Vassiliev invariants of order less than n. In the link
case, it is shown that a Cn-move does not change the values of any Vassiliev invariants of order less than n. It is also
known that, if two links can be transformed into each other by a Cn-move, then the n-th coefficients of the Conway
polynomials of them, which are Vassiliev invariants of order n, are congruent to each other modulo 2. An SCn-move
is defined as a special Cn-move. It is shown that an SCn-move does not change the values of any Vassiliev invariants
of links of order less than n+ 1. In this paper, we consider the difference of the (n+ 1)-st coefficients of the Conway
polynomials of two links which can be transformed into each other by an SCn-move.

1. Introduction

In 1990, V. A. Vassiliev introduced a knot invariant called a Vassiliev invariant. It is
proved that many invariants derived from polynomial invariants are Vassiliev invariants. For
example, the n-th coefficient of the Conway polynomial and the n-th derivative of the Jones
polynomial at t =1 are Vassiliev invariants of order n ([1]). We can define a Vassiliev invariant
of links as the same way as that of knots. If two links cannot be distinguished by any Vassiliev
invariants of order less than or equal to n, then they are said to be Vn-equivalent ([11]).

K. Habiro defined a new local move called a Cn-move as indicated in Figure 1.1.

FIGURE 1.1
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A C1-move is defined as a crossing change. He also obtained the result that shows the
relationship between Vassiliev invariants and Cn-moves. The following theorem was proved
by M. N. Goussarov and Habiro independently:

THEOREM 1.1 ([4, 7]). Two oriented knots in S3 can be transformed into each other
by a finite sequence of Cn+1-moves if and only if they are Vn-equivalent.

In the case of links, the following result is known:

THEOREM 1.2 ([3, 12, 16]). If two oriented links in S3 can be transformed into each
other by a finite sequence of Cn+1-moves, then they are Vn-equivalent.

In [8], the author discussed the relationship between Cn-moves and polynomial invari-
ants which are Vassiliev invariants of order n. We take the n-th coefficient of the Conway
polynomial of a link L and the n-th derivative of the Jones polynomial of L at t = 1, denoted

by an(L) and V (n)(L) respectively, as Vassiliev invariants of order n. Then we can obtain the
following theorem:

THEOREM 1.3 ([8]). If two oriented links L and L′ in S3 can be transformed into each
other by a finite sequence of Cn-moves, then

an(L) − an(L
′) ≡ 0 (mod 2)

and

V (n)(L) − V (n)(L′) ≡ 0 (mod 6 · n!)
for any integer n > 2.

Recently Y. Ohyama and H. Yamada obtained the precise result for the change of the
n-th coefficient of the Conway polynomial under a Cn-move for a knot.

THEOREM 1.4 ([15]). If two oriented knots K and K ′ in S3 can be transformed into
each other by a Cn-move, then

an(K) − an(K
′) = 0 or ± 2

for any integer n > 2.

We define a special Cn-move which is called an SCn-move as follows: Let α1, . . . , αn+1

be the arcs shown in the tangle applied a Cn-move and c(αi) denote the component of the
link which contains αi for each i with i = 1, 2, . . . , n + 1. If there is an arc αk such that
c(αk) �= c(αi) for all i with i �= k, we call the Cn-move an SCn-move. We can describe
the necessary and sufficient condition for that two links are V2-equivalent or V3-equivalent
to each other in terms of Cn-moves and SCn-moves ([9]). With respect to SCn-moves, the
following result is also shown:

THEOREM 1.5 ([9, 13]). If two oriented links L and L′ in S3 can be transformed into
each other by a finite sequence of SCn-moves, then they are Vn-equivalent.



SCn-MOVES AND CONWAY POLYNOMIALS OF LINKS 397

Comparing Theorems 1.2 and 1.5, an SCn-move seems to be similar to a Cn+1-move. In
this paper, we will consider a relationship between an SCn-move and the (n+1)-st coefficient
of the Conway polynomial of a link which is a Vassiliev invariant of order n + 1 and prove
the following result:

THEOREM 1.6. If two oriented links L and L′ in S3 can be transformed into each
other by a finite sequence of SCn-moves, then

an+1(L) − an+1(L
′) ≡ 0 (mod 2)

for any integer n > 2.

2. Proof of Theorem 1.6

Let n be an integer more than 2 and L and L′ links which are transformed into each other
by an SCn-move. We can suppose that the difference of the diagrams between L and L′ is
illustrated in Figure 2.1.

FIGURE 2.1

LEMMA 2.1. Let v be a Vassiliev invariant of order k. Then

v(L) − v(L′) =
n∏

i=1

si
∑

ε2,ε3,...,εn=±1

n∏
i=2

εiv(L

(
1 2 · · · n

1 ε2 · · · εn

)
) ,

where s1 is the sign of the crossing c1 and si (i = 2, 3, . . . , n) is the sign of the crossing ci1 of

L, and L

(
1 2 · · · n

1 ε2 · · · εn

)
is the singular link with n double points that is obtained from

L by the following: Collapse the crossing to a double point at c1. If εi = 1, collapse the
crossing at ci1 and if εi = −1, switch the crossing at ci1 and collapse the crossing to a double
point at ci2 (i = 2, 3, . . . , n).

PROOF. Fix a natural number k. If n > k, then the equation holds because for any

ε2, ε3, . . . , εn = ±1, v(L

(
1 2 · · · n

1 ε2 · · · εn

)
) = 0 and a Cn-move does not change the
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value of any Vassiliev invariants of order less than n. If n = k, then the equation was proved
in [14]. Suppose n < k. We show the equation by induction on n. If n = 1, then we have

v(L) − v(L′) = v − v = s1v

by the Vassiliev skein relation. We suppose that the equation holds for n = l. Suppose
n = l + 1 and let L and L′ be two links as shown in Figure 2.1. Let M and M ′ be links which
are obtained from L and L′ respectively by a Cn−1-move (see Figure 2.2).

FIGURE 2.2

From the assumption of the induction,

v(L) − v(M) =
n−1∏
i=1

si
∑

ε2,ε3,...,εn−1=±1

n−1∏
i=2

εiv(L

(
1 2 · · · n − 1
1 ε2 · · · εn−1

)
)

and

v(L′) − v(M ′) =
n−1∏
i=1

si
∑

ε2,ε3,...,εn−1=±1

n−1∏
i=2

εiv(L′
(

1 2 · · · n − 1
1 ε2 · · · εn−1

)
) ,

where L′
(

1 2 · · · n − 1
1 ε2 · · · εn−1

)
is the singular link with n − 1 double points obtained from

L′ as the same way as L

(
1 2 · · · n − 1
1 ε2 · · · εn−1

)
obtained from L. On the other hand, we can

easily see that M and M ′ are ambient isotopic to each other. Hence we obtain

v(L) − v(L′)

=
n−1∏
i=1

si
∑

ε2,ε3,...,εn−1=±1

n−1∏
i=2

εi{v(L

(
1 2 · · · n − 1
1 ε2 · · · εn−1

)
) − v(L′

(
1 2 · · · n − 1
1 ε2 · · · εn−1

)
)} .

Here we have

v(L

(
1 2 · · · n − 1
1 ε2 · · · εn−1

)
) − v(L′

(
1 2 · · · n − 1
1 ε2 · · · εn−1

)
)
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= v − v

= snv + v − {snv + v }

= sn{v(L

(
1 2 · · · n − 1 n

1 ε2 · · · εn−1 1

)
− v(L

(
1 2 · · · n − 1 n

1 ε2 · · · εn−1 −1

)
}

by the Vassiliev skein relation. Therefore we obtain

v(L) − v(L′) =
n∏

i=1

si
∑

ε2,ε3,...,εn=±1

n∏
i=2

εiv(L

(
1 2 · · · n

1 ε2 · · · εn

)
) . �

We remark that Lemma 2.1 holds for L and L′ which are related by a Cn-move (it does not
need to be an SCn-move).

Using Lemma 2.1, we have

an+1(L) − an+1(L
′) ≡

∑
ε2,ε3,...,εn=±1

an+1(L

(
1 2 · · · n

1 ε2 · · · εn

)
) (mod 2) .

By the Vassiliev skein relation and the definition of the Conway polynomial,

ak = ak − ak = ak−1 .

Applying the above relation to all singular points of L

(
1 2 · · · n

1 ε2 · · · εn

)
, we obtain

an+1(L) − an+1(L
′) ≡

∑
ε2,ε3,...,εn=±1

a1(L

(
1 2 · · · n

1 ε2 · · · εn

)
) (mod 2) ,

where L

(
1 2 · · · n

1 ε2 · · · εn

)
is a link obtained from L

(
1 2 · · · n

1 ε2 · · · εn

)
by smooth-

ing at all double points.
We recall that L is obtained from L′ by an SCn-move. Therefore there is an arc αk such

that c(αk) �= c(αi) for all i with i �= k. Here we consider the cases (i) k = 1, (ii) k = 2,
(iii) k = 3 and (iv) k ≥ 4.

Case (i). We already have

an+1(L) − an+1(L
′)

≡
∑

ε2,...,εn=±1

a1(L

(
1 2 · · · n

1 ε2 · · · εn

)
) (mod 2)

=
∑

ε4,...,εn=±1

{a1(L

(
1 2 3 4 · · · n

1 1 1 ε4 · · · εn

)
) + a1(L

(
1 2 3 4 · · · n

1 1 −1 ε4 · · · εn

)
)
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+a1(L

(
1 2 3 4 · · · n

1 −1 1 ε4 · · · εn

)
) + a1(L

(
1 2 3 4 · · · n

1 −1 −1 ε4 · · · εn

)
)} .

Fix ε4, . . . , εn = ±1 and set

L1 = L

(
1 2 3 4 · · · n

1 1 1 ε4 · · · εn

)
, L2 = L

(
1 2 3 4 · · · n

1 1 −1 ε4 · · · εn

)
,

L3 = L

(
1 2 3 4 · · · n

1 −1 1 ε4 · · · εn

)
, L4 = L

(
1 2 3 4 · · · n

1 −1 −1 ε4 · · · εn

)
.

Then L1, L2, L3 and L4 are identical except for the part corresponding to the arcs α2, α3 and
α4 in L. The difference of them depends on the orientation of the arcs α1, α2, α3 and α4. For
example if L is oriented as in the left of Figure 2.3, then L1, . . . , L4 are like in the figure. We
show the theorem in the case that L is oriented as in Figure 2.3. In the case that L is oriented
differently, we can prove similarly. Let Ti be a tangle of Li as shown in Figure 2.3 and we set
a tangle S = Li − Ti (remark that Li − Ti = Lj − Tj (i, j = 1,. . . ,4)).

FIGURE 2.3

The first coefficient of the Conway polynomial of a µ-component link is equal to the
linking number of the link if µ = 2 and zero otherwise. We consider possible connections of
arcs in the tangle S and calculate the linking number of Li (i = 1,. . . ,4) if �Li = 2, where �L

denotes the number of the components of a link L. The points a1 and a2 in Ti are connected
by an arc in S because this Cn-move is an SCn-move and k = 1 (we describe this situation
as a1 → a2). On the connection of b1, b2, c1, c2, d1 and d2 in S, we can consider the several
cases and define a type of S in the following:

type A : {b1 → b2, c1 → c2, d1 → d2}
type B : {b1 → b2, c1 → d2, d1 → c2}
type C : {b1 → c2, c1 → b2, d1 → d2}
type D : {b1 → c2, c1 → d2, d1 → b2}
type E : {b1 → d2, c1 → b2, d1 → c2}
type F : {b1 → d2, c1 → c2, d1 → b2} .



SCn-MOVES AND CONWAY POLYNOMIALS OF LINKS 401

For each type of S, we have

�L1 = �L3 =



1 + m if S is type A or E

2 + m if S is type B, C or F

3 + m if S is type D

and

�L2 = �L4 =



1 + m if S is type A or D

2 + m if S is type B, C or F ,
3 + m if S is type E

where m denotes the number of the components which are completely contained in S.
If S is type B, C or F and m = 0, then

a1(L1) + a1(L2) + a1(L3) + a1(L4) ≡ a1(L1) − a1(L2) − a1(L3) + a1(L4)

≡ 0 (mod 2)

by (A5), (A1) and (A3) in §4. If S is type A, D or E and m = 1, then the linking number of
Li does not depend on Ti (i = 1, 2, 3, 4). Hence we can obtain

a1(L1) = a1(L3), a1(L2) = a1(L4) ,

and

a1(L1) + a1(L2) + a1(L3) + a1(L4) ≡ 0 (mod 2) .

Therefore the proof is completed.
Case (ii). Fix ε4, . . . , εn = ±1 and set L1, L2, L3 and L4 as same as in Case (i). We

also use the notation Ti (i = 1,. . . ,4) and S as in Case (i). We prove in the case that L is
oriented as in Figure 2.3. The points b1 and b2 in Ti are connected in S because this Cn-move
is an SCn-move and k = 2. We define types of S as follows:

type A : {a1 → a2, c1 → c2, d1 → d2}
type B : {a1 → a2, c1 → d2, d1 → c2}
type C : {a1 → c2, c1 → a2, d1 → d2}
type D : {a1 → c2, c1 → d2, d1 → a2}
type E : {a1 → d2, c1 → a2, d1 → c2}
type F : {a1 → d2, c1 → c2, d1 → a2} .

For each type of S, we have

�L1 = �L3 =



1 + m if S is type A or E

2 + m if S is type B, C or F

3 + m if S is type D
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and

�L2 = �L4 =



1 + m if S is type A or D

2 + m if S is type B, C or F ,
3 + m if S is type E

where m denotes the number of the components which are completely contained in S.
If S is type B, C or F and m = 0, then a1(L1) + a1(L2) + a1(L3) + a1(L4) is even by

(A5), (A2) and (A4) in §4. If S is type A, D or E and m = 1, then

a1(L1) = a1(L3), a1(L2) = a1(L4)

as the cases of type A, D or E in Case (i).
Case (iii). We use the notations L1, . . . , L4, T1, . . . , T4 and S as in Case (i). We prove

in the case that L is oriented as in Figure 2.3. The points c1 and c2 in Ti are connected in S

because this Cn-move is an SCn-move and k = 3. We define types of S as follows:

type A : {a1 → a2, b1 → b2, d1 → d2}
type B : {a1 → a2, b1 → d2, d1 → b2}
type C : {a1 → b2, b1 → a2, d1 → d2}
type D : {a1 → b2, b1 → d2, d1 → a2}
type E : {a1 → d2, b1 → a2, d1 → b2}
type F : {a1 → d2, b1 → b2, d1 → a2} .

For each type of S, we have

�L1 = �L2 =



1 + m if S is type A or E

2 + m if S is type B, C or F

3 + m if S is type D

and

�L3 = �L4 =



1 + m if S is type A or D

2 + m if S is type B, C or F

3 + m if S is type E

,

where m denotes the number of the components which are completely contained in S.
If S is type B, C or F and m = 0, then a1(L1) + a1(L2) + a1(L3) + a1(L4) is even by

(A3), (A6) and (A4) in §4. If S is type A, D or E and m = 1, then

a1(L1) = a1(L2), a1(L3) = a1(L4)

as the cases of type A, D or E in Case (i).
Case (iv). We have
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an+1(L) − an+1(L
′)

≡
∑

ε2,...,εn=±1

a1(L

(
1 2 · · · n

1 ε2 · · · εn

)
) (mod 2)

=
∑

ε2,...,εk−2,εk+1,...,εn=±1

{a1(L

(
1 · · · k − 1 k · · · n

1 · · · 1 1 · · · εn

)
)

+ a1(L

(
1 · · · k − 1 k · · · n

1 · · · 1 −1 · · · εn

)
)

+ a1(L

(
1 · · · k − 1 k · · · n

1 · · · −1 1 · · · εn

)
) + a1(L

(
1 · · · k − 1 k · · · n

1 · · · −1 −1 · · · εn

)
)} .

Fix ε2, . . . , εk−2, εk+1, . . . , εn = ±1 and set

L1 = L

(
1 · · · k − 1 k · · · n

1 · · · 1 1 · · · εn

)
, L2 = L

(
1 · · · k − 1 k · · · n

1 · · · 1 −1 · · · εn

)
,

L3 = L

(
1 · · · k − 1 k · · · n

1 · · · −1 1 · · · εn

)
, L4 = L

(
1 · · · k − 1 k · · · n

1 · · · −1 −1 · · · εn

)
.

Then they are identical except for the part corresponding to the arcs αk−2, αk−1 and αk in L.
The difference of them is illustrated in Figure 2.4 for example.

FIGURE 2.4

Let Ti be a tangle of Li as shown in Figure 2.4 and we set a tangle S = Li − Ti . We
prove in the case that L is oriented as in Figure 2.4. The points d1 and d2 in Ti are connected
in S because this Cn-move is an SCn-move and k ≥ 4. We define types of S as follows:

type A : {a1 → a2, b1 → b2, c1 → c2}
type B : {a1 → a2, b1 → c2, c1 → b2}
type C : {a1 → b2, b1 → a2, c1 → c2}
type D : {a1 → b2, b1 → c2, c1 → a2}
type E : {a1 → c2, b1 → a2, c1 → b2}
type F : {a1 → c2, b1 → b2, c1 → a2} .
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For each type of S, we have

�L1 = �L2 =



1 + m if S is type A or E

2 + m if S is type B, C or F

3 + m if S is type D

and

�L3 = �L4 =



1 + m if S is type A or D

2 + m if S is type B, C or F

3 + m if S is type E

,

where m denotes the number of the components which are completely contained in S.
If S is type B, C or F and m = 0, then a1(L1) + a1(L2) + a1(L3) + a1(L4) is even by

(A1), (A6) and (A2) in §4. If S is type A, D or E and m = 1, then

a1(L1) = a1(L2), a1(L3) = a1(L4)

as the cases of type A, D or E in Case (i) and the proof is completed.

3. Remark and Examples

In this section we make a few remarks on Theorem 1.6.
An SC1-move is a crossing change between mutually distinct components. For an integer

k, let L1,1(k) and L1,2(k) be two links as shown in Figure 3.1. The sign of the integer k is
equal to the sign of a crossing in the tangle.

FIGURE 3.1

Then we can see that L1,1(k) and L1,2(k) are transformed into each other by an SC1-move
and

a2(L1,1(k)) − a2(L1,2(k)) = k .

For an integer k, let L2,1(k) and L2,2(k) be two links as shown in Figure 3.2. Then we
can see that L2,1(k) and L2,2(k) are transformed into each other by an SC2-move and

a3(L2,1(k)) − a3(L2,2(k)) = k .
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FIGURE 3.2

The above examples show that SCn-moves and the (n+ 1)-st coefficients of the Conway
polynomials have no relation for n = 1 and 2.

For an integer k, let Ln,1(k) and Ln,2(k) (n = 3, 4, 5) be links as shown in Figure 3.3.

FIGURE 3.3

Then we can see that Ln,1(k) and Ln,2(k) are transformed into each other by an SCn-move
and

|an+1(Ln,1(k)) − an+1(Ln,2(k))| = 2|k| .
The above examples show that Theorem 1.5 is best possible for n = 3, 4 and 5.
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4. Table

In this section, we give a table which we need for the proof of Theorem 1.6.
L1, L2, L3 and L4 in each row of the table indicate four links which are identical except

for a neighborhood of one point. Non-identical part is illustrated by solid arcs and the connec-
tion outside the tangles by dotted arcs. Let x, y, z and w be oriented arcs indicated by dotted
arcs in the table. We give the sum of the signs of the crossing which is made from oriented
arcs x and y by Lk(x, y). Then for example, in the case of (A1), we have

a1(L1) =
{ 1

2 {Lk(x,w) + Lk(y,w) + Lk(z,w) − 2} if �L1 = 2
0 otherwise

.

By similar calculation for a1(L2),a1(L3) and a1(L4), we obtain

a1(L1) − a1(L2) − a1(L3) + a1(L4) =
{−Lk(x, y) if �L1 = 2

0 otherwise
.

This table is a list of a1(L1) − a1(L2) − a1(L3) + a1(L4).
(A1)

a1(L1) − a1(L2) − a1(L3) + a1(L4) =
{−Lk(x, y) if �L1 = 2

0 otherwise
.

(A2)

a1(L1) − a1(L2) − a1(L3) + a1(L4) =
{

Lk(x, y) if �L1 = 2
0 otherwise

.
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(A3)

a1(L1) − a1(L2) − a1(L3) + a1(L4) =
{

Lk(x, y) if �L1 = 2
0 otherwise

.

(A4)

a1(L1) − a1(L2) − a1(L3) + a1(L4) =
{ −Lk(x, y) if �L1 = 2

0 otherwise
.

(A5)

a1(L1) − a1(L2) − a1(L3) + a1(L4) = 0 .
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(A6)

a1(L1) − a1(L2) − a1(L3) + a1(L4) = 0 .
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