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Let M be a complex manifold of dimension #» and E a holomorphic vector bundle of
rank k over M. If s is a regular section of E (cf. [F] B.3), it defines an analytic subspace X
of pure codimension k in M. It is “well-known” that, if M is compact, then the top Chern
class cx(E) of E corresponds to the homology class [X] of X under the Poincaré duality
P : H*(M; C) > Hz,—2(M; C) (in fact this holds with Z coefficients). The nature of the
proof of this fact depends on how one defines the class cx(E) (cf. [G] §5 for the projective
non-singular case, [F] §14.1 for the general case in the algebraic category and [GH] Ch. 1, §1
for the case k = 1 in the complex analytic category). In this article, we take up the definition
of Chern classes via the Chern-Weil theory and give a relatively elementary proof of a more
precise statement in the complex analytic category. Namely, we prove the following. Let
V denote the support of X, then there is a canonical localization cx(E, s), in the relative
cohomology H?*(M, M \ V; C), of cx(E) with respect to s and, if V is compact (M may not
be), the class cx (E, s) corresponds to [ X] under the Alexander duality

A:H*(M, M\ V;C) S Hy_21(V; C)

(Theorem 4.2). If M is compact, we have the commutative diagram

H*(M, M\ V:C) —— H*M;C)

zlA ZlP
Hyp_2i(V;C)  —2— Hppok(M; C)

where i and j denote the inclusions V < M and (M, @) — (M, M \ V), respectively. Since
J*(ck(E, 5)) = ck(E), we recover the result we first mentioned. For an application, see [S2].

As related topics, we discuss intersections of analytic subspaces. We also prove a duality
theorem when V as above may not be compact, considering X as a relative cycle in M modulo
M \ S for a compact connected component S of its singular set (Theorem 6.4). This fact is
effectively used in [BLSS]. The proofs of the above results are done in the framework of
Cech-de Rham cohomology.
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In Section 1, we recall the Cech-de Rham cohomology and integration theory on it,
describe the Poincaré and Alexander dualities and define the characteristic classes in the Cech-
de Rham cohomology. In Section 2, we give a short discussion on the localization of the top
Chern class of a vector bundle with respect to a section and the corresponding residue. We
express the residue at an isolated zero of the section in terms of the Grothendieck residue
in Section 3. This is used in Section 4 to prove the duality theorem mentioned above. In
Section 5, we discuss (refined) intersections of analytic subspaces. Combined with results in
the previous sections, we reprove that the global intersection number of divisors intersecting
at isolated points is the sum of local intersection numbers. Finally, in Section 6 we prove the
other type of duality theorem mentioned above.

The author would like to thank the referee for several valuable comments, which helped
improve the presentation of the article greatly.

1. Preliminaries.

For the background on the Cech-de Rham cohomology, we refer to [BT]. The integration
theory on the Cech-de Rham cohomology is developed in [Le1-4]. For the Chern-Weil theory
of characteristic classes of vector bundles, we refer to [BB], [B], [GH] and [MS]. See also [S1]
for the material in this section.

(A) Cech-de Rham cohomology. Let M be a (connected) oriented C*° manifold of
dimension m. For an open set U in M, we denote by A7 (U) the space of complex valued C*®
g-formson U. LetUd = {Uy}acs be an open covering of M and set Uay-ap = UggN---NUqg,,.
We assume that / is an ordered set such that, if Ug,...o . , the induced order on the subset
{@o, - -+ , &p}is total. We let 1(P) be the set of (p+1)-tuples (o, - - - , ap) Withap < - -+ < @)
and denote by C? (U, A?) the direct product

CPU, AN =[] A'Uepa,)-

(g, ,ap)el P

Thus an element o in CP (U, A?) assigns to each (ap, --- ,ap) in 1P an element Oag--ap
in A‘I(Uao...ap). The coboundary operator § : CP(U, A7) — CPt1(U, A?) is defined as in
the usual Cech cohomology theory. This together with the exterior derivative d makes the
collection C*(U, A®) a double complex. The simple complex associated to this is denoted
by (A*(UA), D) or simply by A®*(Uf). Thus A" () = ®p+q=, CPU, A7) and the differential
D : AT(U) — A"t1(U) is given by

P
(DO)ag-ay = ) (—1)"0aqyap + (—1)P 0. -
v=0 V

We denote by H" (A®(U{)) the cohomology of (A® (), D) and call it the Cech-de Rham co-
homology associated to the covering Y. It is known (e.g., [BT]) that the restriction map
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AT(M) — C°U, A") ¢ A" (U) induces an isomorphism
(1.1) H (M;C) > H'(A*U)),

where H" (M ; C) denotes the de Rham cohomology of M.
We define the “cup product”

ATU) x ASU) - AT WU)

by assigning to (o, t) in A" () x AS(U) the element o — 7 in A”TS () given by

J2
(0~ Taga, = Z(—l)(’_")(p_")aao...av A Tayap -
v=0

Then o - 7 is linear in 0 and v and we have
Do ~wt1t)=Do -1+ (—1)'0 ~ Dt.
Thus it induces the cup product
H™(A*U)) x H*(A*U)) - H™(A*WU))

compatible, via (1.1), with the usual cup product in the de Rham cohomology.

In what follows, we use the following convention. Let («g, - - - , &) be an element in
P+l If Uq, .-, is non-empty and if the «;’s are distinct, there is a permutation p such that
(ap(0), -+ » @p(p)) 18 in increasing order. Then we set Oag-ap = sign p - oy 2(0) - p(p) Other-
wise, we set 0g...q = 0. Note that this is consistent with the definitions of the coboundary
operator and the cup product.

A system of honey-comb cells adapted to ¢/ ([Lel-4]) is a collection {Ry}qer Of m-
dimensional manifolds R, with piecewise C*° boundary in M satisfying the following con-
ditions:

(1) Ry CUyand M =, R,.

(2) Int Ry NIntRg =0, if a # B.

(3) I Usga, # B, Ragcr, = (Vo_ Rar, (= No_, 3Ry,) is an (m — p)-dimensional
manifold with piecewise C°° boundary.

(4) If the set {xp, - - - , ap} is maximal, Ry, has no boundary.
In the above, Int R denotes the interior of a subset R in M and {og, - - - , ap} being
maximal means that, if Ua,a9, 0, # @, then a € {ao, -+, ap}. We orient Rg...q, by the

following rules:
(1) Each R, has the same orientation as M and the boundary is oriented so that, if

(x1, - -+, xm) i1s a positive coordinate system on an open set U in M with R, NU = {x,, > 0},
then the coordinate system (xi,--- , xn—1) on 3R, is positive or negative according as m is
evenor odd.

(2) 1If p is a permutation, R, 20 p(p) = sign p - Ruy-ar-
(3) aRao...ap = Za Rao...apa.
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Let {R,} be a system of honey-comb cells adapted to ¢/. Suppose M is compact, then
each R, is compact and we define the integration

f AU > C
M

feos(L s f e

p_O ao'.‘.,ap)GI(P) xg---dp

for o in A™(U{). Then we see that it induces the integration on the cohomology
f : H™"(A*U)) — C,
M

which is compatible, via (1.1), with the usual integration on the de Rham cohomology.

by the sum

(B) Duality theorems. If M is a compact oriented C°>° manifold of dimension m, the
bilinear pairing
AU x A™ Uy > AmU) > C
defined as the composition of the cup product and the integration induces the Poincaré duality
v 2 H(M; C) ~ H' (A*(U)) > H™ 1 (A*(U))* ~ H,p_i(M; C).

In the above isomorphism, a class [o] in H Lcas @) corresponds to the class [C] in

H,,_;(M; C) such that
/ O ~T =/ T
M C

for all T in A™~!(f) with Dt = 0, where we choose the cycle C in its homology class so that
it is transverse to each Ry,...o - and the integral in the right hand side is defined by

m
E / Tog---ap
p=0 R"O -ap nc

(e, ,ap )eI @
We may define, for an r-chain C transverse to each Ry,...o, and an s-cochain o in A* (),
an (r —s)-chain C ~ o, which assigns to an (r —s)-cochain 7 in A" ~* (/) the valeu [, o - .
This induces the cap product
H,(M;C) x H*(A*U)) - H,_s(M; C).

Then we may write
Pu(lo]) = [M] ~ [o],
where [M] denotes the fundamental class of M.
Now let M be an oriented manifold of dimension m again and S a closed set in M. Let
Uop = M \ S and U, a neighborhood of S in M and consider the covering 4 = {Up, U;} of M
with 0 < 1. We denote by A" (U, Up) the kernel of the canonical projection A" ({) — A" (Up).
It is not difficult to see that

H (A*U,Up)) >H M, M\ S;C).
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Let {Ro, R} be a system of honey-comb cells adapted to ¢/. Recall that, if M is compact,

f0=f00+ 01+/ 001
M Ro Ry Ro1

for o = (09, 01, 091) in A™(U). Now suppose that only S is compact (M may not be). Then
we may assume that R is compact and we still have the integration

f AU, Uy) — C
M

[o=[ o[ o
M R, Ro1

for o = (0, 01, 001) in A™(U, Up). This again induces the integration on the cohomology

given by

f : H™"(A*(U, Up)) — C.
M

In the cup product A'(U) x A™ L (U) — A™U), we have

(00, 01, 001) ~ (0, T1, To1) = (00 A Tp, 01 A T1, (—1)7 00 A To1 + 001 A T1) -
Hence, if o9 = 0, the right hand side depends only on o1, gp; and 71. Thus we have a pairing
AU, Up) x A"~ L(Uy) - A™U, Up), which, followed by the integration, gives a bilinear
pairing

AU, Uy) x A™ L) - C.

If we further assume that U is a regular neighborhood of S, this induces the Alexander duality
(1.2)  Amg: H' (M, M\ S;C) ~ H' (A*U, Up)) > H™ ' (Uy; C)* = Hp—(S; C).
Similarly we have
(1.3) H™ (S, C) ~ H™'(U;; C) S5 H'(A*U, Up))* ~ Hi(M, M\ S;C).

In the isomorphism (1.2), a class [o] = [(0, 01, 001)] in H'(A* (U, Uy)) corresponds to
the class [C] in H,,_;(S; C) such that

(1.4) f o1 AT+ O’m/\‘[]:f‘tl,
Ry Roy C

for all t; in A™~!(U;) with dr; = 0. Also, in the isomorphism (1.3), a class [71] in
H™(Uy; ©) corresponds to the class [C] in H;(M, M \ S; C) such that

(1.5) / 61/\t1+f 001 ANT1 = 01+/ 001 ,
Ry Ro1 RiNC RoiNC

for all 0 = (0,01, 001) in A'U, Up) with Da’ = 0. If S is connected, then we have
H,(M,M \ S;C) ~ HO(S;C) = C. We denote by [Ms] the class in H,(M, M \ S; C)
corresponding to [1] in H%(S; C). We may also define the cap product

H,(M,M\ S;C) x H' (M, M\ S; C) > Hy_s(S; C)



56 TATSUO SUWA

as before. Then we may write

Aps([o]) = [Ms] ~.[0].

When M is compact, we have the commutative diagram
HI(M, M\ §;C) —— H'(M;C)
(1.6) | aws | Pu

Hp(S;C) —2s Hp_(M;C),

where i and j denote, respectively, the inclusions S < M and (M, @) — (M, M \ S).

We also describe the Alexander duality in another situation we consider later. Let M be
a complex manifold of (complex) dimension »n and V' a compact analytic subvariety (reduced
analytic subspace) in M. Let S = Sing (V) be the singular set of V. Also, let Uy = M\ V, U,
a sufficiently small tubular neighborhood of V' = V \ S and U, a sufficiently small regular
neighborhood of S in M. We consider the coverings U = {Up, Uy, Uz} of M and U =
{U1, Uz} of U = Uy U U,, which may be assumed to be a regular neighborhood of V. An
element o in A () is expressed as (09, 01, 02, 001, 002, 012, 0012). We denote by AU, Uy)
the subspace {0 € A'(U) | oo = 0} of A'(¥f). The Alexander duality

a.7) H'(M, M\ V;C) ~ H'(A*U, Up)) = Hzpn_1(U; C) ~ Hap_1(V; C)
is induced from the pairing
B: AlU,Up) x AT 'U) > C

given by, for o = (0, 61, 02, 601, 002, 012, 0012) in A'U, Up) and T = (11, 72, T12) in
A2n—l(u/)

B(G,t):/ orLNT + o) NANT) + 0'01A1'1+f o N1
Ry Roi Ro2

Ry

+ (o1 ATI2 + 012 AT2) + f (=001 A Ti12 + 0012 A T2),
Ri2 Ro12

where {Rg, R1, R>2)} is a system of honey-comb cells adapted to /. Thus in the Alexander
duality (1.7), the class [o] in H!'(A* U, Uyp)) corresponds to the class [C] in Hy,—;(V; C)
such that

(1.8) B(o,t) = / T1 +/ 19) +f T12.
' . JRINC RyNC R;oNC
for all T in A2"~! (") with Dt = 0.

(C) Characteristic classes in the Cech-de Rham cohomology. Let M be a C*®
manifold of dimension m and E a C* complex vector bundle of (complex) rank » on M.
For a connection V for E and fori = 1, ---,r, we denote by ¢;(V) the i-th Chern form
defined by V. Thus itis a closed 2i-form on M and its class [¢; (V)] in H% (M; C) is the i-th
Chern class ¢; (E) of E.
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If we have p + 1 connections Vy, - - - , V,, for E thereis a (2i — p)-form ¢; (Vg, - -, V})
alternating in the p + 1 entries and satisfying
p —
1.9 D (=D%i(Yo, . Uy, o+, V) + (=1)Pdci(Vo, -+, Vp) =0
v=0

(cf. [B]. Here we use a different sign convention, see [S1] Ch.IL, (7.10)).
Let U = {Uy}aer be an open covering of M as in (A). For each «, we choose a con-

nection V, for E on U, and for the collection V, = (V, )y, we define the element ¢; (V) in
A% U) by

Ci (V*)ao---otp =i (Vag - ) Vozp) .

Then we have Dc;(V,) = 0 by (1.9). Moreover, it is shown that the class of ¢;(V,) in
H% (A*(U)) does not depend on the choice of the collection of connections V,. Comparing
with the class defined by a global connection, we see tht the class [¢; (V)] corresponds to the
class ¢; (E) in H% (M; C) under the isomorphism (1.1).

2. Localization of the top Chern class.

Letm : E — M be a C* complex vector bundle of rank r over an oriented C° manifold
M of dimension m as in the previous section. We say that a connection V for E is trivial with
respect to a non-vanishing section s (simply, s-trivial), if V(s) = 0. Note that if Vo, --- , V,,
are s-trivial connections, we have the vanishing (cf. [S1] Ch.II, Proposition 9.1)

(2.1 ¢r(Vo, -+, Vp) =0.

Let S be a closed set in M and suppose we have a C* non-vanishing section s of E
on M \ S. Then, from the above fact, we will see that there is a localization cr(E s) in
H¥ (M, M\ S; C) of the top Chern class ¢, (E) in H¥ (M; C).

Letting Up = M\ S and U a neighborhood of S, we consider the covering i = {Up, U1}
of M. Recall the Chern class ¢, (F) is represented by the cocycle ¢,(V,) in AT (U) given by

cr(Vi) = (¢, (Vo), ¢ (V1), ¢ (Vo, V1)),

where Vj and V; denote connections for E on Uy and U, respectively. If we take as Vp an
s-trivial connection, then ¢, (Vp) = 0 and thus the cocycle is in A% (U, Up) and it defines a
class in the relative cohomology H r(M, M \ §; C), which we denote by ¢, (E.s). It is sent to
the class ¢, (E) by the canonical homomorphism j* : H 2r M, M\ S;C) > H 2r M;C). It
does not depend on the choice of the connection V; or on the choice of the s-trivial connection
Vo ([S1]). We call ¢, (E, s) the localization of ¢, (E) at S with respect to the section s.

In the above situation, suppose that S is a compact set admitting a regular neighborhood.
Then we have the Alexander duality (1.2)

Apg : H" (M, M\ S; C) > Hp_2,(S;C).
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Thus the class ¢, (E, s) defines a class in H,,_3,(S; C), which we call the residue of ¢,(E) at
S with respect to s and denote by Res., (s, E; S). This residue corresponds to what is called
the “localized top Chern class” of E with respect to s in [F] §14.1.

Let R; be an m-dimensional manifold with C* boundary in U, containing S in its inte-
rior and set Ryp = M \ Int R; so that {Rg, R} is a system of honey-comb cells adapted to U/.
Then the residue Res,, (s, E; S) is represented by an (m — 2r)-cycle C in S such that

frl =f c,(Vl)/\t1+f cr(Vo, VI) ATy
C Ry Roy

for any closed (m — 2r)-form 71 on Uj. In particular, if 2r = m, the residue is a complex
number given by

2.2) Res,, (s, E; §) = f e (V1) + f ¢ (Vo, V1).
R Roi

If we let (S, ), be the connected components of S, we have

Hp_2:(C; C) = @D Hm-2,(5:; ©) .
A

Hence, for each A, ¢, (E, s) defines a class in H,,_5,(Sy; C), which we call the residue of
c-(E) at S, with respect to s and denote by Res,, (s, E; Si). From the commutativity of(l 6),
we have the following “residue formula”.

PROPOSITION 2.3. In the above situation, if M is compact,

Y (@)«Resc, (s, E; S)) = [M] ~ ¢, (E) in Hp—2,(M; C),
A

where i, denotes the inclusion S; — M.

3. Residue at an isolated zero.

Let # : E — M be a holomorphic vector bundle of rank n over a complex manifold
M of dimension n. Suppose we have a section s with an isolated zero at p in M. In this
situation, we have Res., (s, E; p) in Hp({p}; C) = C. In the following, we compute this
residue. Let U be an open neighborhood of p where the bundle E is trivial with holomorphic
frame (s1,---,s,). We write s = ZLI fisi with f; holomorphic functions on U. In this
case, we may express the residue in terms of the Grothendieck residue symbol.

THEOREM 3.1. In the above situation, we have

dfi /\"'/\dfn]
Resc, (s, E; p) = Res [ .
¢ p P fioooe s fa
REMARK 3.2. The right hand side above is defined as
L[ i

@rv/=Dr Jr R
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where I" denotes the n-cycle in U defined by

F={geU|lAi@l= - =1f@l=¢)
for a small positive number ¢. If we denote by D; the divisor in U defined by f;,i =1,--- ,n,
then this is the (local) intersection number (D1 - - - Dy)p of Dy, - -, Dy at p ((GH] Ch.5).

PROOF OF THEOREM 3.1. This is done similarly as for [S1] Ch.III, Theorem 5.5. The
techniques are originally due to [Le3]. Let Uy = U \ {p} and U; = U. On Uy, we let Vg be
an s-trivial connection for E and, on Uj, we let V| be the connection for E trivial with respect
to the frame s = (s1, - - - , 5,). We set

Ri={qeU|lA@P+ - +1fa(@? < ne?

for a small positive number ¢. Since ¢,(V1) = 0 and Rg; = —0 R, from (2.2) we have
(3.3) Res, (s, E; p) = —f cn(Vo, V).

R
Now we consider the covering U = {UD, ... U™} of Uy, = Up defined by

UD =g € Us| filg) # 0}

and work on the Cech-de Rham cohomology with respect to 4. On U®, we may replace s;
in the frame s by s to obtain a frame s for E. We denote by V) the connection for E on
U trivial with respect to the frame s)_ Then we define an element 7 in A2"~2(U) by

Tigir, = cn(Vo, V1, V(iO), cae V(ik)) ,

which is a 2n — k — 2)-form on U N ... N U, Since Vo and V@ are all s-trivial, we
have ‘

(3.4) cn(Vo, VIO ... vy =0

for k > 0. Also, if 0 <k <n—2,V;and VU0 ... VU are all s;-trivial for some i. Hence
(3.5) cn(V, V@ ... V@)Y =0 for k=0,---,n—2.

Now we compute Dt. First for k = 0, we have, using (3.4) and (3.5),
(Dv)i =dca(Vo, V1, V) = —ca(V1, VO) + cn (Yo, V) — ca(Vo, V1)
= —cn(Vo, V1).
Fork=1,---,n — 1, we have, by (3.4),

k e o
(DT)ig-iy =Z(—1)vcn(Vo, Vv, VO L Gy L. )y
v=0
+ (_l)kdcn (Mo, Vq, V(io_), cee, V(ik))
= —cn(V1, VO ... V) 4 ¢, (V, VIO ... vy

=—cn(V1, VO, ... VW),
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Thus, using (3.5), we may summarize as

(D1); = —c,(Vo, V1)
(Dt)lolk =0, fork: 1,... ,n__2
(DD n = —cn(Vy, VD Lo vy,

Denoting by ¢ the inclusion map dR; < Up, we let (*Uf be the covering of dR; by the open
sets 3R, N UY. Then, as a system {R¥Y}"_, of honey-comb cells adapted to (*U, we take

RO ={q € R |1 fi(@)| = | fj(g)|for j # i}

and, for (ip - - - ix) with 1 <ip < --- < iy < n, we set RGoi) = RG0) N ... N RUD oriented
as in Section 1 (A). Considering the integration

/ AU - C,
IR,

we see that
0= J . DF="- Zf %090 = [ (1,90, 9.
3R (1.-n)
Hence we get, by (3.3),
Res,, (s, E; p) = f cn(Vy, VD o vy
R(1--n)

If we compute the connection matrix %) of V) with respect to the frame s, we see that @
is an n X n matrix whose i-th row is given by ——}7 @dfi, .-+, dfn) with all other rows equal to
©,---,0). Let § denote the connection for the bundle E x R” over ﬂ, _ U® x R" given
by V=_0-=3",6)Vi+ 3", VD, Then the connection matrix 8 of V with respect to

the frame s is glven by

n n
0 = (1 — Zt,') 0 + Ztie(l) ,
i=1 i=1
where 6, is the connection matrix of V; with respect to the frame s and is equal to zero.
Denoting by « the curvature matrix of V, we compute

en®) = (=1)"n! (dtl A —f’fl) . (dt,, A %)

1 n
d
= (=D 2prdsy A - Adt, A i . 1L
fl fn
We denote by A" the standard n-simplex in R” and by 7 : M x A" — M the projection.
Since [, dt; A -+ Adt, = 1/n!, we get,

cn(Vy, VD oo vy = (———_1) T (cn(R)) =

(=2 df TN dfn
Qrv/—=D)" fi fn’
where 7, denotes the integration along the fibers of 7. Taking the orientations into account,
we have I = (—1)[?/21R(1"7) Hence we have the formula. [

27
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REMARK 3.6. In the above situation, consider the C* functions p; = | f;|?/|l fII3,
IFI? = 1f11? 4+ -+ + | £ul?, on Up. On UD, we have V@ (s;) = 0 for [ # i and VO (s;) =
—-1/fi - Z'}zl df; ® s;. Thus we obtain an operator p; V® on Uy by setting

fi © .
. df;i ®s;, forl =i
piVO(s) = ||f|lzjzz; 15 ®s;

0, for I #i .

Moreover, from ) /_; p; = 1, we see that Vo = Y 7, p; V®) is a connection for E on U.
Note that it is s-trivial, since each V) is. If we take this connection Vj, as in the proof of
[S1] Ch.III, Theorem 4.4, we see that

Cn(VO, Vl) = f*ﬁn 3

where f = (f1,---, fu) and B, denotes the Bochner-Martinelli kernel on C". This reproves
that the Grothendieck residue in the above theorem is equal to the mapping degree of f (cf.
[GH] Ch.5, 1. Lemma).

4. The duality.

Let M be a complex manifold of complex dimension n and E a holomorphic vector
bundle of rank k over M. Let s be a regular section of E. This means that, at any point p in
the zero set V of s, the germs of the components of s with respect to a holomorphic frame
near p form a regular sequence in the ring Oy , of germs of holomorphic functions at p
(cf. [F] B.3). Let X be.the analytic subspace of M defined by (the ideal generated by the
components of) s. Thus, if V # @, X is a (possibly non-reduced) local complete intersection
of dimension n — k whose supportis V. Let V;,i = 1, -- - , r, be the irreducible components
of X. Then we have V = | J;_; V;, which is considered as an analytic subvariety (reduced
analytic subspace) of M. If V is compact, X defines a 2(n — k)-cycle X = > [_, m;V;, hence
aclass [X] = Y>_T_; m;[V;]in Ha,_ox (M) orin Han_2;(V), where m; denotes the multiplicity
of V; in X. In this situation, we prove the following

THEOREM 4.1. IfM is compact, the class cy(E) corresponds to [X] under the Poincaré
duality H**(M; C) — Han_ox(M; C). Thus we have

[M] ~ c(E) = [X] in Hau—u(M;C).

In fact, this follows from the following more “precise” theorem, where the things are
localized at V and we need only the compactness of V but not of M itself (cf. (1.6) and the
introduction). Recall that we have the localization ck(E, s) in H*(M, M \ V; C) of cx(E)
with respect to the section s, as discussed in Section 2.

THEOREM 4.2. Let X be an analytic subspace of dimension n —k in M as above. If the
support V of X is compact, the class ci(E, s) corresponds to [X] under the Alexander duality
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H*(M, M\ V;C) S Han_2(V; C). Thus we have
[My] ~ck(E,s) =[X] in Hyu_x(V;C).

PROOF. Let S denote the singular set Sing(V) of V. Also, as in the last paragraph of
Section 1 (B), let Uy = M \ V, U; a sufficiently small tubular neighborhood of V' =V \ §
and U; a sufficiently small regular neighborhood of S in M. We consider the coverings
U = {Up, Uy, Uz} of M and U’ = {U,, Uz} of U = U; U U,. It suffices to prove that there is
a representative o, Do = 0, of cx(E, 5) in A%k (U, Up) such that for any 7 in A2=2k 4"y with
Dt = 0, we have (1.8) with C = X. Now let o be an element in A%/, Up) with Do = 0
so that we have

4.3) do1 =0, dop,=0, door=01, dop =02, dop=o02—01, and

dog12 = —012 + 02 — 001 -
Also let 7 be an element in A2"~2%(4’) with Dt = 0 so that we have
4.4) dry =0, dr;=0 and drp=1—15.
Thus 7; is a closed 2(n — k)-form on Uj, which is a tubular neighborhood of V/ = V \ S.
Denoting by 7 the projection U; — V’, we have an isomorphism 7* : H>*~2k(V’; C) 5
H?"=2k(U}; C). Hence there is a closed 2(n — k)-form 6 on V' and a 2n — 2k — 1)-form p;
on U such that
4.5) 71 =n*0 +dp; .
Also, 13 is a closed 2(n — k)-form on U,. Since U; is homotopically equivalent to S, which is
less than 2(n — k)-dimensional, we have H 2n=2k(U,: C) = 0. Hence thereis a 2n —2k —1)-
form p> on U; such that
4.6) T =dp;.
Let {Ro, Ry, R} be a system of honey-comb cells adapted to ¢/ such that d R, is transverse

to V. Then, using (4.3) and the Stokes theorem and noting that 9R; = —Rp; + Rj2 and
dRo1 = Rop12, we compute

f o1 Adpy = d(GlAP1)=—/ 0’1/\m+/ o1 Ap1 and
R Ry Ro) Ry2

/ oo1 A dpy =/ doo A p1 —f d(oo1 /\pl)=f o1 A p1 —f 001 A P1 -
Roi Roy Ro1 Roy Ro12
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Similary we have, noting that 3R, = —Rgpy — Riz, 9Rp2 = —Ro12, dR12 = Roiz, and

dRp12 = 0.
/sz\dp2=—/ 02/\;02—[ o2 NP2,
Ry Ro2 R

f o ANdpy = 02/\/02+/ o A P2,
Ro2 Roz Ro12

/ o2 ANdp =/ (02—01)/\,02—f o2 A p2 and
Rz Ry2 Ro12

/ 0012 Adpy = / (o12 — o2 +001) A p2.
Ro12 Ro12

Hence, if we denote by I; the left hand side of (1.8), we have

I = or]/\n*9+f 001/\7r*9—/ o1 A p12+ o001 N P12,
R, Roy Ri2 Ro12

where p12 = p2 — p1 — 712, whichis a (2n — 2k — 1)-form on U3 = U; N U,. Note that from
(4.4), (4.5) and (4.6), we have
dpip =n*0 on Uj,.

The chain R is in the interior of the (2n — 1)-dimensional manifold U; N d R;, which may be
assumed to retract to VNI R, = Rj2NV by the projection 7 so that we have the commutative
diagram ‘

Ui NOoR; —l> UyNnU;

dl dl
VN8R, —— V/NU,,
where i and i denote the inclusions. We have di*p12 = i*dp1a = i*7*60 = 7*i*0 = 0, since
i*0 is a 2(n — k)-form on V N 9 R,, which is a (2n — 2k — 1)-dimensional manifold. Hence

we see that there exist a (2n — 2k — 1)-form p on V N3 R; and a (2n — 2k — 2)-form w13 on
Ui N 3R; such that

4.7 pr2=n"p+dwip on U;NIR;.

We have, as before

f o1 ANdwip = / o1 Awiz and f 001 Ndwiy = f o1 Awiz.
Rz Ro12 Ro12 Ro1z

Hence we obtain

(4.8) Il=f 01/\7t*9+/ UOIAn*O—fGIAn*p+f ool AT p.
Ry Rop R Ro12

Next, we compute the right hand side /5 of (1.8) (with C = X). From



64 TATSUO SUWA

f r1=f (Jr*9+dp1)=f 9+/ p1 and
RiNX RiNX RiNX RipNX

[
RyNX RipNX

and using (4.7), we have

“4.9) L = / 6 —/ 0.
RiNX RipNX

We denote by 71, mp1, 12 and w12 the restrictions of & to Ry, Ro1, Ri2 and Rpi2,
respectively. We may assume that 71 : Ry > Ri NV and 72 : Ri2 — Rj2 NV are closed
2k-disk bundles and that rg; : Rgy — RNV and 7mo12 : Roia — Ri2 NV are S%~1-bundles.
Recall that the orientation of Ry is opposite to that of d R; and that the orientation of Rp; is
same as that of d Rj;. If we apply the projection formula in (4.8), we have

L = ((T1)x01 + (w01)+001) - 0 — / ((r12)x01 — (77012)+001) - P ,
RNV RpNV

where the subscript * signifies the integration along the fibers. By [S1] Ch.II, Proposition
5.2, the function (7)o + (7101)+001 is locally constant and thus constant on each connected
component R; N V; of Ry N V. Now we let Vg be an s-trivial connection for E on Uy and let
V| and V; be arbitrary connections for E on U; and Uj, respectively. The class cx(E, s) is
then represented by the cocycle o with og = cx(Vp) = 0, 01 = cx (V1) and 091 = cx(Vo, V1).
In fact we have 03 = cx(V2) and so forth, but as we have seen above all the terms involving
V, cancel out. Then the value of the function (71).01 + (7o1)«001 at a point p of Ry N'V;
is exactly the residue Resc,(s |, , E |y, ; P), Up = w~'(p), and, by Theorem 3.1, it is the
multiplicity of V; in X. By a similar argument, we also see that (;r12)x01 — (7012)x001 is
constant on Rjz N V; and its value is again the multiplicity of V; in X. Comparing with (4.9),
we proved the theorem. [

REMARKS 4.10. 1. Let p be a pointin V’. As in the proof of [S1] Ch.III, Theorem
4.4, it is possible to choose connections Vg and V; above so that we have

(V1) =0 and cx(Vo, V1) = f*Bk.,

in a neighborhood of p, where f = (f1, -, fx) denote the components of s with respect to
a suitable frame of E near p and B; the Bochner-Martinelli kernel on C* (cf. Remark 3.6).

2. Theorem 4.4 in [S1] Ch.III can be also proved as above. Namely, letw : E — M be
a C* complex vector bundle of rank r over an oriented C° manifold M. We denote by sa
the diagonal section of the pull-back bundle 7* E over E. The zero set of sa is the image of
the zero section of E, which is identified with M. Thus we have the localization ¢, (7*E, sA)
in H¥ (E, E \ M; C) of ¢, (7* E) with respect to sa. Recall that we have the Thom class ¥z
in H¥ (E, E \ M; C) and the Euler class e(E) in H? (M; C) of E as a real bundle (cf. [S1]
Ch.II, 5). In this situation, we claim

cr(T*E,sp) =W and ¢, (E) = e(E).
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In fact, the second identity follows from the first. To show the first identity, let p be an

arbitrary point of M and leti, : E, <> E denote the inclusin of the fiber E, = 7~ 1(p). Note

that the restriction 7*E | g, =~ € x C" admits a natural complex structure so that s | g 18
p p

holomorphic. Then, from Theorem 3.1, we have i;‘,cr(n*E, sp) =c¢,(T*E ]Ep, SA |E,,) =1,
which characterizes the Thom class.
The identity shows that, for a closed set S in M and a non-vanishing section s of E on
M\ S,
ck(E,s) = s*¥g

(cf. [F] Example 19.2.6).

3. Let V be the zero set of a holomorphic section s of E generically transverse to the
zero section. This means that, if (f1, - -, fx) denote the components of s with respect to a
holomorphic frame on an open set U in M, V is given by f; = --+ = f = 0in U and
dfi AN+ ANdfy # 0on VNU. In this case Sing(V) is given by df;i A --- Adfr = 0in
V N U and the restriction E IV, of E to the regular part V' = V \ Sing(V) coincides with the
normal bundle of V' in M. In fact the above condition for s is equivalent to saying that s is a
regular section and that the analytic subspace X defined by s is reduced; X = V (cf. [T], [Lo,
VI.1.6]). In particular, V is a local complete intersection as an analytic variety. By Theorem
4.2, the class cx(E, s) in H**(M, M \ V; C) is Alexander dual to [V] in Hz,—_2(V; C). Thus
we may call cx(E, s) the Thom class of V in M (cf. [S2], where Theorem 4.2 is applied to
prove the Riemann-Roch theorem for the embedding V < M).

5. Intersection of analytic subspaces.

Let M be a complex manifold of dimension n. Also, foreach j =1,.-- ,q,let Ejbea
holomorphic vector bundle of rank k; over M and s; a regular section of E;. We denote by
X j the analytic subspace of M defined by s;, which is pure k;-codimensional. Denoting by
V; the support of X ;, we have the localization ck;(Ej, sj)in H*i(M, M\ Vj; C) of cx; (Ej)
with respect to the section s; as in Section 2. Setting S = ‘JI.=1 Viand k = Z‘,I‘=1 kj, we
have the cup product

H* (M, M\ V;;C) x --- x H* (M, M\ V;; C) > H*(M, M\ S;C).

Let E be the direct sum E = E; @ - - - ® E,; and s the section of E givenby s =51 ®- .- Ds,.
Then the zero set of s is S and we have the localization ¢ (E, s) in H**(M, M \ S; C) of
ck(E) with respect to s. In the above cup product, we have

¢k (E1, 1) -+ -k, (Eq, 5q) = ck(E, 5) .
Suppose S is compact (V; may not be). Then we have the Alexander duality
Ay, : H*(M, M\ S; C) S Hzp_2(S; C).

In view of Theorem 4.2, we define the (refined) intersection product X --- X, of the ana-
lytic subspaces Xy, ---, X, to be the homology class A, (ck(E,s)) = Res., (s, E; S) in
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Hap 2k (S; C) (cf. [F] §8.1). Thus, if (Sp). denote the connected components of S, its A
component (X1 --- X4), is given by

(X1-+-Xg)r =Resg, (s, E; Sp) in Hyp—2¢(Sy; C)
and we have

G X1 Xg=) (Xi---XQa=) Resq(s,E;S) in Hu-u(S;C).
A A

In particular, if k = n, Hy,—24(Sx; C) = C, hence Res,, (s, E; S,) is a complex number. If
s is also a regular section, then X - -- X, is the analytic subspace defined by s and S is its
support.

Recall that every divisor D on M is defined by a regular section of a line bundle. Thus,
for divisors Dy, - - - , Dy, we may define the intersection product D - - - Dy in Hp24(S; C),
if § = ﬂ?zl | Dj| is compact, where | D j| denotes the support of D ;. From (5.1) and Theorem
3.1, we have the following

THEOREM 5.2. Let M be a complex manifold of dimension n-and let Dy, --- , D, be
divisors on M. If S = ();_, | Di| consists of finite isolated points, we have

Dl"‘Dn=Z(D1"'Dn)p~
PES

where (Dy - - - Dy)p is the local intersection number at p (see Remark 3.2).

6. Duality for non-compact varieties.

Let M be a complex manifold of dimension n, E a holomorphic vector bundle of rank k
over M and X an analytic subspace of codimension k defined by a regular section s of E, as
before. Also, let V;,i =1, -- -, r, be the irreducible components of X and m; the multiplicity
of V; in X. Denoting by V the support of X, we set V' = V \ Sing(V). In this section, we do
not assume that V is compact.

First we prove the following theorem. Let R be a compact C* submanifold (without
boundary) of M’ = M \ Sing(V) of dimension d transverse to V’. Then X defines a (d — 2k)-
cycle RNX =Y";_;mi(RNV;), henceaclass [RNX]=>"/_, m;[RNV;]in Hy_(R) or
in Hy_ 7 (RNYV).

THEOREM 6.1. The class cx(E | RS | R) corresponds to [R N X] under the Alexander
duality H?* (R, R \(RNYV); O = Hy 2, (RN V; C). Thus the class cy(E lR) corresponds
to [R N X] under the Poincaré duality H*(R; C) > Hy_(R; C).

PROOF. Letting Up = M \ V and U a sufficiently small tubular neighborhood of V' in
M with projection 7 : Uy — V', we consider the covering i = {Ug, U1} of M’. Let R be a
closed disk bundle in Uy and Ry = M’\IntR; so that {Ro, R} is a system of honey-comb cells

adapted to Y. Also, letting W; = RN U;, i = 0, 1, we consider the covering W = {W,, W}
of R. If wesetT; = RNR;,i =0,1, {Tp, T} is a system of honey-comb cells adapted to
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W. Let Vg be an s-trivial connection for E on Uy and V| an arbitrary connection for £ on
U;. Then the class ¢ (E RS [R) is represented by the cocycle (0, cx(V1), ck(Vo, V1)) on U,
restricted to R. It suffices to prove (cf. (1.4))

(6.2) / ca(Vi) AT +/ ck(Vo, Vi) AT = 71,
T Toi RNX

for any closed (d — 2k)-form 7; on W;. We may assume that W; = 7~ (RN V). Thus we
may write T; = m*0 +dp; for some closed (d —2k)-form # on RNV and a (d — 2k — 1)-form
p1 on W). Then it suffices to prove

f ck(V) ATT*6 +f cx(Vo, V) ATT*8 = / ]
T Tox RNX

for any closed (d — 2k)-form 6 on RNV. If wedenote by 71 : 71 — RNV and no1 : To1 —
R NV the restrictions of 7 to 77 and Ty, respectively, the left hand side above is equal to

f (@) xck (V1) + (o1)xck(Vo, V1)) - 6.
RNV

As in the proof of Theorem 4.2, (J'rli)*ck(Vl) + (mo1)«cx(Vo, V1) is a function on RNV,
constant on each R N V; with value m;, which proves the theorem. [J

REMARK 6.3. Let V be the zero set of a holomorphic section s of E generically trans-
verse to the zero section (cf. Remark 4.10.3). Then the above theorem reproves the fact that
the Euler class e(E | R) of E restricted to a submanifold R in M’ as above is Poincaré dual to
the submanifold R NV of R.

Now let S be a compact connected component of Sing(V) and U, a sufficiently small
regular neighborhood of S in M. We may think of [X] as a class in Hp,2x (M, M\ S; C). We
denote also by cix(E) the class cx(E ‘U1) in H2(U;; C) ~ H%*(S; C). Recall that we have
the duality (1.3)

H?(S; C) > Han-e(M, M\ S; C).
THEOREM 6.4. The class cy(E) corresponds to [X] under the above duality.

PROOF. Let ¢x(E) also denote the Chern form with respect to some connection for E
on Uj. Let Up = M \ S and {Rp, R} a system of honey-comb cells adapted to U = {Up, U1}
such that Rg; (= —3dR)) is compact and is transverse to V. It suffices to show that

f o1 A ck(E) +/ oo1 N cx(E) =/ o1 +/ ool
Ry Ro1 RiNX RoinNX

for any o = (0, o1, op1) in A"~ U, Uy) with Do = 0 (cf. (1.5)). We have do; = 0 and
may consider the class [o7] in H2"~2k(Uy; C) >~ H?*"~2k(S; C), which is zero, since S is less
than 2(n — k)-dimensional. Hence there is a (2n — 2k — 1)-form n; on U; such that o1 = dn;.
We compute

f Ul/\Ck(E)=—/ m Acg(E) and / 01=—/ n .
R Ro1 RINX RoiNX
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Hence it suffices to show

(6.5) (001 — 1) Acr(E) = / (001 — 1) -
Ro) RoiNX

From o1 —dog; = 0, we have d(oo; — n1) = 0. Therefore, (6.5) follows from the second part
of Theorem 6.1 with R = Rg;. O

REMARK 6.6. Let C be a relative cycle representing a class in H;(M, M \ S; C).
Suppose C is transverse to Ro; and V. Then, by a similar argument as above, we have

f o1 A ck(E) +f oo1 A ck(E) =/ o1 +f 001
RINC Ro1NC RiNCNX RoiNCNX

for any o = (0, 01, go1) in A~ U, Up) with Do = 0.
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