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Let $M$ be a complex manifold of dimension $n$ and $E$ a holomorphic vector bundle of
rank $k$ over $M$ . If $s$ is a regular section of $E$ (cf. [F] B.3), it defines an analytic subspace $X$

of pure codimension $k$ in $M$ . It is “well-known” that, if $M$ is compact, then the top Chem
class $c_{k}(E)$ of $E$ corresponds to the homology class [X] of $X$ under the Poincar\’e duality
$P$ : $H^{2k}(M;C)\rightarrow\sim H_{2n-2k}(M;C)$ (in fact this holds with $Z$ coefficients). The nature of the
proof of this fact depends on how one defines the class $c_{k}(E)$ (cf. [G] \S 5 for the projective
non-singular case, [F] \S 14.1 for the general case in the algebraic category and [GH] Ch. 1, \S 1
for the case $k=1$ in the complex analytic category). In this article, we take up the definition
of Chem classes via the Chem-Weil theory and give a relatively elementary proof of a more
precise statement in the complex analytic category. Namely, we prove the following. Let
$V$ denote the support of $X$ , then there is a canonical localization $c_{k}(E, s)$ , in the relative
cohomology $H^{2k}(M, M\backslash V;C)$ , of $c_{k}(E)$ with respect to $s$ and, if $V$ is compact ($M$ may not
be), the class $c_{k}(E, s)$ corresponds to [X] under the Alexander duality

$A$ : $H^{2k}(M, M\backslash V;C)\rightarrow\sim H_{2n-2k}(V;C)$

(Theorem 4.2). If $M$ is compact, we have the commutative diagram

$H^{2k}(M, M\backslash V;C)\rightarrow^{i^{*}}$ $H^{2k}(M;C)$

$\iota\downarrow A$ $\iota\downarrow P$

$H_{2n-2k}(V;C)$ $\rightarrow^{i_{*}}H_{2n-2k}(M;C)$

where $i$ and $j$ denote the inclusions $V\rightarrow M$ and $(M, \emptyset)\simeq*(M, M\backslash V)$ , respectively. Since
$j^{*}(c_{k}(E, s))=c_{k}(E)$ , we recover the result we first mentioned. For an application, see [S2].

As related topics, we discuss intersections of analytic subspaces. We also prove a duality
theorem when $V$ as above may not be compact, considering $X$ as a relative cycle in $M$ modulo
$M\backslash S$ for a compact connected component $S$ of its singular set (Theorem 6.4). This fact is
effectively used in [BLSS]. The proofs of the above results are done in the framework of
\v{C}ech-de Rham cohomology.
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In Section 1, we recall the \v{C}ech-de Rham cohomology and integration theory on $i|$

describe the Poincar\’e and Alexander dualities and define the characteristic classes in the \v{C}ech
de Rham cohomology. In Section 2, we give a short discussion on the localization of the to]

Chem class of a vector bundle with respect to a section and the corresponding residue. $W($

express the residue at an isolated zero of the section in terms of the Grothendieck residu $($

in Section 3. This is used in Section 4 to prove the duality theorem mentioned above. $Il$

Section 5, we discuss (refined) intersections of analytic subspaces. Combined with results $il$

the previous sections, we reprove that the global intersection number of divisors intersectinl
at isolated points is the sum of local intersection numbers. Finally, in Section 6 we prove th $($

other type of duality theorem mentioned above.
The author would like to thank the referee for several valuable comments, which helpe $($

improve the presentation of the article greatly.

1. Preliminaries.

For the background on the \v{C}ech-de Rham cohomology, we refer to [BT]. The integratio]
theory on the \v{C}ech-de Rham cohomology is developed in [Le1-4]. For the Chem-Weil theor
of characteristic classes of vector bundles, we refer to [BB], [B], [GH] and [MS]. See also [Sl
for the material in this section.

(A) \v{C}ech-de Rham cohomology. Let $M$ be a (connected) oriented $c^{\infty}$ manifold $0$

dimension $m$ . For an open set $U$ in $M$ , we denote by $A^{q}(U)$ the space of complex valued $C^{\alpha}$

q-forms on $U$ . Let $\mathcal{U}=\{U_{\alpha}\}_{\alpha\in I}$ be an open covering of $M$ and set $U_{\alpha_{0}\cdots\alpha_{p}}=U_{\alpha_{0}}\cap\cdots\cap U_{\alpha_{p}}$

We assume that $I$ is an ordered set such that, if $ U_{\alpha_{0}\cdots\alpha_{p}}\neq\emptyset$ , the induced order on the subse
$\{\alpha_{0}, \cdots , \alpha_{p}\}$ is total. We let $I^{(p)}$ be the set of $(p+1)$ -tuples $(\alpha_{0}, \cdots , \alpha_{p})$ with $\alpha_{0}<\cdots<\alpha_{l}$

and denote by $C^{p}(\mathcal{U}, A^{q})$ the direct product

$C^{p}(\mathcal{U}, A^{q})=\prod_{\alpha_{p}(\alpha_{0},\cdots,)\in I^{(p)}}A^{q}(U_{\alpha_{0}\cdots\alpha_{p}})$
.

Thus an element $\sigma$ in $C^{p}(\mathcal{U}, A^{q})$ assigns to each $(\alpha_{0}, -- , \alpha_{p})$ in $I^{(p)}$ an element $\sigma_{\alpha_{0}\cdots\alpha}$

in $A^{q}(U_{\alpha_{0}\cdots\alpha_{p}})$ . The coboundary operator $\delta$ : $C^{p}(\mathcal{U}, A^{q})\rightarrow C^{p+1}(\mathcal{U}, A^{q})$ is defined as $il$

the usual \v{C}ech cohomology theory. This together with the exterior derivative $d$ makes th $($

collection $C^{\cdot}(\mathcal{U}, A^{\cdot})$ a double complex. The simple complex associated to this is denote $($

by $(A^{\cdot}(\mathcal{U}), D)$ or simply by $A(\mathcal{U})$ . Thus $A^{r}(\mathcal{U})=\oplus_{p+q=r}C^{p}(\mathcal{U}, A^{q})$ and the differentia
$D$ : $A^{r}(\mathcal{U})\rightarrow A^{r+1}(\mathcal{U})$ is given by

$(D\sigma)_{\alpha_{0}\cdots\alpha_{p}}=\sum_{v=0}^{p}(-1)^{\mathcal{V}}\sigma_{\alpha_{0}\cdots\alpha_{v}^{\wedge}\cdots\alpha_{p}}+(-1)^{p}d\sigma_{\alpha_{0}\cdots\alpha_{p}}$ .

We denote by $H^{r}(A(\mathcal{U}))$ the cohomology of $(A^{\cdot}(\mathcal{U}), D)$ and call it the \v{C}ech-de Rham co
homology associated to the covering $\mathcal{U}$ . It is known (e.g., [BT]) that the restriction ma]
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$A^{r}(M)\rightarrow C^{0}(\mathcal{U}, A^{r})\subset A^{r}(\mathcal{U})$ induces an isomorphism

(1. 1) $H^{r}(M;C)\rightarrow H^{r}(A(\mathcal{U}))$ ,

where $H^{r}(M;C)$ denotes the de Rham cohomology of $M$ .
We define the “cup product”

$A^{r}(\mathcal{U})\times A^{s}(\mathcal{U})\rightarrow A^{r+s}(\mathcal{U})$

by assigning to $(\sigma, \tau)$ in $A^{r}(\mathcal{U})\times A^{s}(\mathcal{U})$ the element $\sigma$ $\tau$ in $A^{r+s}(\mathcal{U})$ given by

$(\sigma\cup\tau)_{\alpha_{0}\cdots\alpha_{p}}=\sum_{v=0}^{p}(-1)^{(r-v)(p-v)}\sigma_{\alpha_{0}\cdots\alpha_{v}}\wedge\tau_{\alpha_{\nu}\cdots\alpha_{p}}$ .

Then $\sigma$ $\tau$ is linear in $\sigma$ and $\tau$ and we have

$ D(\sigma \tau)=D\sigma$ $\tau+(-1)^{r}\sigma$ $ D\tau$ .

Thus it induces the cup product

$H^{r}(A(\mathcal{U}))\times H^{s}(A(\mathcal{U}))\rightarrow H^{r+s}(A^{\cdot}(\mathcal{U}))$

compatible, via (1.1), with the usual cup product in the de Rham cohomology.
In what follows, we use the following convention. Let $(\alpha_{0}, \cdots , \alpha_{p})$ be an element in

$I^{p+1}$ . If $U_{\alpha_{1}\cdots\alpha_{p}}$ is non-empty and if the $\alpha_{i}’ s$ are distinct, there is a permutation $\rho$ such that
$(\alpha_{\rho(0)}, \cdots , \alpha_{\rho(p)})$ is in increasing order. Then we set $\sigma_{\alpha_{0}\cdots\alpha_{p}}=sign\rho\cdot\sigma_{\alpha_{\rho(0)}\cdots\alpha_{\rho(p)}}$ . Other-
wise, we set $\sigma_{\alpha_{0}\cdots\alpha_{p}}=0$ . Note that this is consistent with the definitions of the coboundary
operator and the cup product.

A system of honey-comb cells adapted to $\mathcal{U}$ ([Le1-4]) is a collection $\{R_{\alpha}\}_{\alpha\in I}$ of m-
dimensional manifolds $R_{\alpha}$ with piecewise $c^{\infty}$ boundary in $M$ satisfying the following con-
ditions:

(1) $R_{\alpha}\subset U_{\alpha}$ and $M=\bigcup_{\alpha}R_{\alpha}$ .
(2) Int $ R_{\alpha}\cap$ Int $ R_{\beta}=\emptyset$ , if $\alpha\neq\beta$ .
(3) If $U_{\alpha_{0}\cdots\alpha_{p}}\neq\emptyset,$ $R_{\alpha_{0}\cdots\alpha_{p}}=\bigcap_{v=0}^{p}R_{\alpha_{v}}(=\bigcap_{v=0}^{p}\partial R_{\alpha_{v}})$ is an $(m-p)$ -dimensional

manifold with piecewise $ c\infty$ boundary.
(4) If the set $\{\alpha_{0}, \cdots \alpha_{p}\}$ is maximal, $R_{\alpha_{0}\cdots\alpha_{P}}$ has no boundary.
In the above, Int $R$ denotes the interior of a subset $R$ in $M$ and $\{\alpha_{0}, \cdots , \alpha_{p}\}$ being

maximal means that, if $ U_{\alpha,\alpha_{0},\cdots,\alpha_{p}}\neq\emptyset$ , then $\alpha\in\{\alpha_{0}, \cdots , \alpha_{p}\}$ . We orient $R_{\alpha_{0}\cdots\alpha_{p}}$ by the
following rules:

(1) Each $R_{\alpha}$ has the same orientation as $M$ and the boundary is oriented so that, if
$(x_{1}, \cdots , x_{m})$ is a positive coordinate system on an open set $U$ in $M$ with $R_{\alpha}\cap U=\{x_{m}\geq 0\}$ ,

then the coordinate system $(x_{1}, \cdots , x_{m-1})$ on $\partial R_{\alpha}$ is positive or negative according as $m$ is
even or odd.

(2) If $\rho$ is a permutation, $R_{\alpha_{\rho(0)}\cdots\alpha_{\rho(p)}}=sign\rho\cdot R_{\alpha_{0}\cdots\alpha_{p}}$ .
(3) $\partial R_{\alpha_{0}\cdots\alpha_{p}}=\sum_{\alpha}R_{\alpha_{0}\cdots\alpha_{p}\alpha}$ .



54 TATSUO SUWA

Let $\{R_{\alpha}\}$ be a system of honey-comb cells adapted to $\mathcal{U}$ . Suppose $M$ is compact, the]

each $R_{\alpha}$ is compact and we define the integration

$\int_{M}$ : $A^{m}(\mathcal{U})\rightarrow C$

by the sum

$\int_{M}\sigma=\sum_{p=0}^{m}(_{(\alpha_{0}},\cdots\sum_{\alpha_{p})\in I^{\langle p)}}\int_{R_{\alpha_{0}}}\cdots\alpha_{p}\sigma_{\alpha_{0}\cdots\alpha_{p}})$

for $\sigma$ in $A^{m}(\mathcal{U})$ . Then we see that it induces the integration on the cohomology

$\int_{M}$ : $H^{m}(A^{\cdot}(\mathcal{U}))\rightarrow C$ ,

which is compatible, via (1.1), with the usual integration on the de Rham cohomology.

(B) Duality theorems. If $M$ is a compact oriented $c^{\infty}$ manifold of dimension $m,$ $th($

bilinear pairing
$A^{l}(\mathcal{U})\times A^{m-l}(\mathcal{U})\rightarrow A^{m}(\mathcal{U})\rightarrow C$

defined as the composition of the cup product and the integration induces the Poincar\’e dualit.
$P_{M}$ : $H^{l}(M;C)\simeq H^{l}(A^{\cdot}(\mathcal{U}))\rightarrow\sim H^{m-l}(A^{\cdot}(\mathcal{U}))^{*}\simeq H_{m-l}(M;C)$ .

In the above isomorphism, a class $[\sigma]$ in $H^{l}(A^{\cdot}(\mathcal{U}))$ corresponds to the class $[C]il$

$H_{m-l}(M;C)$ such that
$\int_{M}\sigma\cdot\tau=\int_{C}\tau$

for all $\tau$ in $A^{m-l}(\mathcal{U})$ with $D\tau=0$ , where we choose the cycle $C$ in its homology class so tha
it is transverse to each $R_{\alpha_{0}\cdots\alpha_{p}}$ and the integral in the right hand side is defined by

$\sum_{p=0}^{m}(_{(\alpha_{0}},\cdots\sum_{\alpha_{p})\in I^{(p)}}\int_{R_{\alpha_{0}}\ldots\cap c^{T_{\alpha_{0}\cdots\alpha_{p}}}}\alpha_{p})$

We may define, for an r-chain $C$ transverse to each $R_{\alpha_{0}\cdots\alpha_{p}}$ and an s-cochain $\sigma$ in $A^{s}(\mathcal{U})$

an $(r-s)$ -chain $ C\leftrightarrow\sigma$ , which assigns to an $(r-s)$ -cochain $\tau$ in $A^{r-s}(\mathcal{U})$ the valeu $\int_{C}\sigma$ $\tau$

This induces the cap product
$H_{r}(M;C)\times H^{s}(A^{\cdot}(\mathcal{U}))\rightarrow H_{r-s}(M;C)$ .

Then we may write
$P_{M}([\sigma])=[M]\leftrightarrow[\sigma]$ ,

where $[M]$ denotes the fundamental class of $M$ .
Now let $M$ be an oriented manifold of dimension $m$ again and $S$ a closed set in $M$ . Le

$U_{0}=M\backslash S$ and $U_{1}$ a neighborhood of $S$ in $M$ and consider the covering $\mathcal{U}=\{U_{0}, U_{1}\}$ of $h$

with $0<1$ . We denote by $A^{r}(\mathcal{U}, U_{0})$ the kemel of the canonical projection $A^{r}(\mathcal{U})\rightarrow A^{r}(U_{0})$

It is not difficult to see that
$H^{r}(A^{\cdot}(\mathcal{U}, U_{0}))\simeq H^{r}(M, M\backslash S;C)$ .
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Let $\{R_{0}, R_{1}\}$ be a system of honey-comb cells adapted to $\mathcal{U}$ . Recall that, if $M$ is compact,

$\int_{M}\sigma=\int_{R_{0}}\sigma_{0}+\int_{R_{1}}\sigma_{1}+\int_{R_{01}}\sigma_{01}$

for $\sigma=(\sigma_{0}, \sigma_{1}, \sigma_{01})$ in $A^{m}(\mathcal{U})$ . Now suppose that only $S$ is compact ($M$ may not be). Then
we may assume that $R_{1}$ is compact and we still have the integration

$\int_{M}$ : $A^{m}(\mathcal{U}, U_{0})\rightarrow C$

given by

$\int_{M}\sigma=\int_{R_{1}}\sigma_{1}+\int_{R_{01}}\sigma_{01}$

for $\sigma=(0, \sigma_{1}, \sigma_{01})$ in $A^{m}(\mathcal{U}, U_{0})$ . This again induces the integration on the cohomology

$\int_{M}$ : $H^{m}(A(\mathcal{U}, U_{0}))\rightarrow C$ .

In the cup product $A^{l}(\mathcal{U})\times A^{m-l}(\mathcal{U})\rightarrow A^{m}(\mathcal{U})$ , we have

$(\sigma 0\sigma 1, \sigma 0\iota)\cdot(\tau\tau\tau)=(0011, (-1)^{r}001\tau)$ .

Hence, if $\sigma_{0}=0$ , the right hand side depends only on $\sigma_{1},$ $\sigma_{01}$ and $\tau_{1}$ . Thus we have a pairing
$A^{l}(\mathcal{U}, U_{0})\times A^{m-l}(U_{1})\rightarrow A^{m}(\mathcal{U}, U_{0})$ , which, followed by the integration, gives a bilinear
pairing

$A^{l}(\mathcal{U}, U_{0})\times A^{m-l}(U_{1})\rightarrow C$ .
If we further assume that $U_{1}$ is a regular neighborhood of $S$ , this induces the Alexander duality

(1.2) $A_{M_{S}}$ : $H^{l}(M, M\backslash S;C)\simeq H^{l}(A^{\cdot}(\mathcal{U}, U_{0}))\rightarrow\sim H^{m-l}(U_{1} ; C)^{*}\simeq H_{m-l}(S;C)$ .
Similarly we have

(1.3) $H^{m-l}(S;C)\simeq H^{m-l}(U_{1} ; C)\rightarrow\sim H^{l}(A(\mathcal{U}, U_{0}))^{*}\simeq H_{l}(M, M\backslash S;C)$ .
In the isomorphism (1.2), a class $[\sigma]=[(0, \sigma_{1}, \sigma_{01})]$ in $H^{l}(A(\mathcal{U}, U_{0}))$ corresponds to

the class $[C]$ in $H_{m-l}(S;C)$ such that

(1.4) $\int_{R_{1}}\sigma_{1}\wedge\tau_{1}+\int_{R_{01}}\sigma_{01}\wedge\tau_{1}=\int_{C}\tau_{1}$ ,

for all $\tau_{1}$ in $A^{m-l}(U_{1})$ with $d\tau_{1}=0$ . Also, in the isomorphism (1.3), a class $[\tau_{1}]$ in
$H^{m-l}$ ( $U_{1}$ ; C) corresponds to the class $[C]$ in $H_{l}(M, M\backslash S;C)$ such that

(1.5) $\int_{R_{1}}\sigma_{1}\wedge\tau_{1}+\int_{R_{01}}\sigma_{01}\wedge\tau_{1}=\int_{R_{1}\cap C}\sigma_{1}+\int_{R_{01}\cap C}\sigma_{01}$ ,

for all $\sigma=(0, \sigma_{1}, \sigma_{01})$ in $A^{l}(\mathcal{U}, U_{0})$ with $D\sigma=0$ . If $S$ is connected, then we have
$H_{m}(M, M\backslash S;C)\simeq H^{0}(S;C)=$ C. We denote by $[M_{S}]$ the class in $H_{m}(M, M\backslash S;C)$

corresponding to [1] in $H^{0}(S;C)$ . We may also define the cap product

$H_{r}(M, M\backslash S;C)\times H^{s}(M, M\backslash S;C)\rightarrow H_{r-s}(S;C)$
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as before. Then we may write

$A_{M_{S}}([\sigma])=[M_{S}]-[\sigma]$ .

When $M$ is compact, we have the commutative diagram

$H^{l}(M, M\backslash S;C)\rightarrow^{j^{*}}$ $H^{l}(M;C)$

(1.6) $\iota\downarrow A_{M_{S}}$ $\iota\downarrow P_{M}$

$i_{*}$

$H_{m-l}(S;C)$ $\rightarrow H_{m-l}(M;C)$ ,

where $i$ and $j$ denote, respectively, the inclusions $S\rightarrow M$ and $(M, \emptyset)\leftrightarrow(M, M\backslash S)$ .
We also describe the Alexander duality in another situation we consider later. Let $M$ be

a complex manifold of (complex) dimension $n$ and $V$ a compact analytic subvariety (reducec

analytic subspace) in $M$ . Let $S=Sing(V)$ be the singular set of $V$ . Also, let $U_{0}=M\backslash V,$ $U_{1}$

a sufficiently small tubular neighborhood of $V^{\prime}=V\backslash S$ and $U_{2}$ a sufficiently small regula]

neighborhood of $S$ in $M$ . We consider the coverings $\mathcal{U}=\{U_{0}, U_{1}, U_{2}\}$ of $M$ and $\mathcal{U}^{\prime}=$

$\{U_{1}, U_{2}\}$ of $U=U_{1}\cup U_{2}$ , which may be assumed to be a regular neighborhood of $V$ . An
element $\sigma$ in $A^{l}(\mathcal{U})$ is expressed as $(\sigma 0\sigma_{1}, \sigma 2, \sigma_{01}, \sigma 02, \sigma_{12}, \sigma_{012})$ . We denote by $A^{l}(\mathcal{U},$

$U_{0_{J}^{\backslash }}$

the subspace $\{\sigma\in A^{l}(\mathcal{U})|\sigma_{0}=0\}$ of $A^{l}(\mathcal{U})$ . The Alexander duality

(1.7) $H^{l}(M, M\backslash V;C)\simeq H^{l}(A^{\cdot}(\mathcal{U}, U_{0}))\rightarrow\sim H_{2n-l}(U;C)\simeq H_{2n-l}(V;C)$

is induced from the pairing
$B$ : $A^{l}(\mathcal{U}, U_{0})\times A^{2n-l}(\mathcal{U}^{\prime})\rightarrow C$

given by, for $\sigma=(0, \sigma_{1}, \sigma_{2}, \sigma_{01}, \sigma_{02}, \sigma_{12}, \sigma 0\iota 2)$ in $A^{l}(\mathcal{U}, U_{0})$ and $\tau=(\tau_{1}, \tau_{2}, \tau_{12})$ ir
$A^{2n-l}(\mathcal{U}^{\prime})$ ,

$B(\sigma, \tau)=\int_{R_{1}}\sigma_{1}\wedge\tau_{1}+\int_{R_{2}}\sigma_{2}\wedge\tau_{2}+\int_{R_{01}}\sigma_{01}\wedge\tau_{1}+\int_{R_{02}}\sigma_{02}\wedge\tau_{2}$

$+\int_{R_{12}}(\sigma_{1}\wedge\tau_{12}+\sigma_{12}\wedge\tau_{2})+\int_{R_{012}}(-\sigma_{01}\wedge\tau_{12}+\sigma_{012}\wedge\tau_{2})$ ,

where $\{R_{0}, R_{1}, R_{2}\}$ is a system of honey-comb cells adapted to $\mathcal{U}$ . Thus in the Alexande]

duality (1.7), the class $[\sigma]$ in $H^{l}(A^{\cdot}(\mathcal{U}, Uo))$ corresponds to the class $[C]$ in $H_{2n-l}(V;C_{4}^{\backslash }$

such that

(1.8) $B(\sigma, \tau)=\int_{R_{1}\cap C}\tau_{1}+\int_{R_{2}\cap C}\tau_{2}+\int_{R_{12}\cap C}\tau_{12}$ .

for all $\tau$ in $A^{2n-l}(\mathcal{U}^{\prime})$ with $D\tau=0$ .

(C) Characteristic classes in the \v{C}ech-de Rham cohomology. Let $M$ be a C’
manifold of dimension $m$ and $E$ a $c^{\infty}$ complex vector bundle of (complex) rank $r$ on $M$

For a connection $\nabla$ for $E$ and for $i=1,$ $\cdots$ , $r$ , we denote by $c_{i}(\nabla)$ the i-th Chem fom
defined by $\nabla$ . Thus it is a closed $2i$ -form on $M$ and its class $[c_{i}(\nabla)]$ in $H^{2i}(M;C)$ is the i-tl
Chem class $c_{i}(E)$ of $E$ .
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If we have $p+1$ connections $\nabla_{0},$ $\cdots$ , $\nabla_{p}$ for $E$ there is a $(2i-p)$-form $c_{i}(\nabla_{0}, \cdots , \nabla_{p})$

alternating in the $p+1$ entries and satisfying

(1.9) $\sum_{v=0}^{p}(-1)^{v}c_{i}(\nabla_{0}, \cdots \overline{\nabla_{v}}, \cdots \nabla_{p})+(-1)^{p}dc_{i}(\nabla_{0}, \cdots \nabla_{p})=0$

(cf. [B]. Here we use a different sign convention, see [S1] Ch.II, (7.10)).
Let $\mathcal{U}=\{U_{\alpha}\}_{\alpha\in I}$ be an open covering of $M$ as in (A). For each $\alpha$ , we choose a con-

nection $\nabla_{\alpha}$ for $E$ on $U_{\alpha}$ , and for the collection $\nabla_{*}=(\nabla_{\alpha})_{\alpha}$ , we define the element $c_{i}(\nabla_{*})$ in
$A^{2i}(\mathcal{U})$ by

$c_{i}(\nabla_{*})_{\alpha_{0}\cdots\alpha_{p}}=c_{i}(\nabla_{\alpha_{0}}, \cdots \nabla_{\alpha_{p}})$ .

Then we have $Dc_{i}(\nabla_{*})=0$ by (1.9). Moreover, it is shown that the class of $c_{i}(\nabla_{*})$ in
$H^{2i}(A(\mathcal{U}))$ does not depend on the choice of the collection of connections $\nabla_{*}$ . Comparing
with the class defined by a global connection, we see tht the class $[c_{i}(\nabla_{*})]$ corresponds to the
class $c_{i}(E)$ in $H^{2i}(M;C)$ under the isomorphism (1.1).

2. Localization of the top Chem class.

Let $\pi$ : $E\rightarrow M$ be a $c^{\infty}$ complex vector bundle of rank $r$ over an oriented $c^{\infty}$ manifold
$M$ of dimension $m$ as in the previous section. We say that a connection $\nabla$ for $E$ is trivial with
respect to a non-vanishing section $s$ (simply, s-trivial), if $\nabla(s)=0$ . Note that if $\nabla_{0},$ $\cdots$ , $\nabla_{p}$

are s-trivial connections, we have the vanishing (cf. [S1] Ch.II, Proposition 9.1)

(2.1) $c_{r}(\nabla_{0}, \cdots , \nabla_{p})=0$ .

Let $S$ be a closed set in $M$ and suppose we have a $c^{\infty}$ non-vanishing section $s$ of $E$

on $M\backslash S$ . Then, from the above fact, we will see that there is a localization $c_{r}(E, s)$ in
$H^{2r}(M, M\backslash S;C)$ of the top Chem class $c_{r}(E)$ in $H^{2r}(M;C)$ .

Letting $U_{0}=M\backslash S$ and $U_{1}$ a neighborhood of $S$ , we consider the covering $\mathcal{U}=\{U_{0}, U_{1}\}$

of $M$ . Recall the Chem class $c_{r}(E)$ is represented by the cocycle $c_{r}(\nabla_{*})$ in $A^{2r}(\mathcal{U})$ given by

$c_{r}(\nabla_{*})=(c_{r}(\nabla_{0}), c_{r}(\nabla_{1}),$ $c_{r}(\nabla_{0}, \nabla_{1}))$ ,

where $\nabla_{0}$ and $\nabla_{1}$ denote connections for $E$ on $U_{0}$ and $U_{1}$ , respectively. If we take as $\nabla_{0}$ an
s-trivial connection, then $c_{r}(\nabla_{0})=0$ and thus the cocycle is in $A^{2r}(\mathcal{U}, U_{0})$ and it defines a
class in the relative cohomology $H^{2r}(M, M\backslash S;C)$ , which we denote by $c_{r}(E.s)$ . It is sent to
the class $c_{r}(E)$ by the canonical homomorphism $j^{*}$ : $H^{2r}(M, M\backslash S;C)\rightarrow H^{2r}(M;C)$ . It
does not depend on the choice of the connection $\nabla_{1}$ or on the choice of the s-trivial connection
$\nabla_{0}$ ([S1]). We call $c_{r}(E, s)$ the localization of $c_{r}(E)$ at $S$ with respect to the section $s$ .

In the above situation, suppose that $S$ is a compact set admitting a regular neighborhood.
Then we have the Alexander duality (1.2)

$A_{M_{S}}$ : $H^{2r}(M, M\backslash S;C)\rightarrow\sim H_{m-2r}(S;C)$ .
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Thus the class $c_{r}(E, s)$ defines a class in $H_{m-2r}(S;C)$ , which we call the residue of $c_{r}(E)$ a
$S$ with respect to $s$ and denote by ${\rm Res}_{c_{r}}(s, E;S)$ . This residue corresponds to what is callet
the “localized top Chem class” of $E$ with respect to $s$ in [F] \S 14.1.

Let $R_{1}$ be an m-dimensional manifold with $c^{\infty}$ boundary in $U_{1}$ containing $S$ in its inte
rior and set $R_{0}=M\backslash IntR_{1}$ so that $\{R_{0}, R_{1}\}$ is a system of honey-comb cells adapted to $\mathcal{U}$

Then the residue ${\rm Res}_{c_{r}}(s, E;S)$ is represented by an $(m-2r)$ -cycle $C$ in $S$ such that

$\int_{C}\tau_{1}=\int_{R_{1}}c_{r}(\nabla_{1})\wedge\tau_{1}+\int_{R_{01}}c_{r}(\nabla_{0}, \nabla_{1})\wedge\tau_{1}$

for any closed $(m-2r)$ -form $\tau_{1}$ on $U_{1}$ . In particular, if $2r=m$ , the residue is a comple;
number given by

(2.2) ${\rm Res}_{c_{r}}(s, E;S)=\int_{R_{1}}c_{r}(\nabla_{1})+\int_{R_{01}}c_{r}(\nabla_{0}, \nabla_{1})$ .

If we let $(S_{\lambda})_{\lambda}$ be the connected components of $S$ , we have

$H_{m-2r}(C;C)=\bigoplus_{\lambda}H_{m-2r}$ ( $S_{\lambda}$ ; C).

Hence, for each $\lambda,$ $c_{r}(E, s)$ defines a class in $H_{m-2r}$ ( $S_{\lambda}$ ; C), which we call the residue $0$

$c_{r}(E)$ at $S_{\lambda}$ with respect to $s$ and denote by ${\rm Res}_{c_{r}}(s, E;S_{\lambda})$ . From the commutativity of (1.6)

we have the following “residue formula”.

PROPOSITION 2.3. In the above situation, if $M$ is compact,

$\sum_{\lambda}(i_{\lambda})_{*}{\rm Res}_{c_{r}}(s, E;S_{\lambda})=[M]-c_{r}(E)$ in $H_{m-2r}(M;C)$ ,

where $i_{\lambda}$ denotes the inclusion $S_{\lambda}\rightarrow M$ .

3. Residue at an isolated zero.

Let $\pi$ : $E\rightarrow M$ be a holomorphic vector bundle of rank $n$ over a complex $manifol\langle$

$M$ of dimension $n$ . Suppose we have a section $s$ with an isolated zero at $p$ in $M$ . In thi
situation, we have ${\rm Res}_{c_{n}}(s, E;p)$ in $H_{0}(\{p\};C)=$ C. In the following, we compute thi
residue. Let $U$ be an open neighborhood of $p$ where the bundle $E$ is trivial with holomorphi $($

frame $(s_{1}, \cdots , s_{n})$ . We write $s=\sum_{i=1}^{n}f_{i}s_{i}$ with $f_{i}$ holomorphic functions on $U$ . In thi
case, we may express the residue in terms of the Grothendieck residue symbol.

THEOREM 3.1. In the above situation, we have

${\rm Res}_{c_{n}}(s, E;p)={\rm Res}_{p}\left\{\begin{array}{lll}df_{1}\wedge & \cdots & \wedge df_{n}\\f_{1} & \cdots & f_{n}\end{array}\right\}$ .

REMARK 3.2. The right hand side above is defined as

$\frac{1}{(2\pi\sqrt{-1})^{n}}\int_{\Gamma}\frac{df_{1}}{f_{1}}\wedge\cdots\wedge\frac{df_{n}}{f_{n}}$ ,
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where $\Gamma$ denotes the n-cycle in $U$ defined by

$\Gamma=\{q\in U||f_{1}(q)|=\cdots=|f_{n}(q)|=\epsilon\}$

for a small positive number $\epsilon$ . If we denote by $D_{j}$ the divisor in $U$ defined by $f_{i},$ $i=1,$ $\cdots$ , $n$ ,

then this is the (local) intersection number $(D_{1}\cdots D_{n})_{p}$ of $D_{1},$ $\cdots$ , $D_{n}$ at $p$ ([GH] Ch.5).

PROOF OF THEOREM 3.1. This is done similarly as for [S1] Ch.III, Theorem 5.5. The
techniques are originally due to [Le3]. Let $U_{0}=U\backslash \{p\}$ and $U_{1}=U$ . On $U_{0}$ , we let $\nabla_{0}$ be
an s-trivial connection for $E$ and, on $U_{1}$ , we let $\nabla_{1}$ be the connection for $E$ trivial with respect
to th$e$ frame $s=$ $(s_{1}, \cdots , s_{n})$ . We set

$R_{1}=\{q\in U||f_{1}(q)|^{2}+\cdots+|f_{n}(q)|^{2}\leq n\epsilon^{2}\}$

for a small positive number $\epsilon$ . Since $c_{n}(\nabla_{1})=0$ and $R_{01}=-\partial R_{1}$ , from (2.2) we have

(3.3) ${\rm Res}_{c_{n}}(s, E;p)=-\int_{\partial R_{1}}c_{n}(\nabla_{0}, \nabla_{1})$ .

Now we consider the covering $\mathcal{U}=\{U^{(1)}, \cdots , U^{(n)}\}$ of $U_{01}=U_{0}$ defined by

$U^{(i)}=\{q\in U_{0}|f_{i}(q)\neq 0\}$

and work on the \v{C}ech-de Rham cohomology with respect to $\mathcal{U}$ . On $U^{(i)}$ , we may replace $s$;

in the frame $s$ by $s$ to obtain a frame $s^{(i)}$ for $E$ . We denote by $\nabla^{(i)}$ th$e$ connection for $E$ on
$U^{(i)}$ trivial with respect to the frame $s^{(i)}$ . Then we define an element $\tau$ in $A^{2n-2}(\mathcal{U})$ by

$\tau_{i_{0}\cdots i_{k}}=c_{n}(\nabla_{0}, \nabla_{1}, \nabla^{(i_{0})}, \cdots \nabla^{(i_{k})})$ ,

which is a $(2n-k-2)$ -form on $U^{(i_{0})}\cap\cdots\cap U^{(i_{k})}$ . Since $\nabla_{0}$ and $\nabla^{(i)}$ are all s-trivial, we
have

(3.4) $c_{n}(\nabla_{0}, \nabla^{(i_{0})}, \cdots \nabla^{(i_{k})})=0$

for $k\geq 0$ . Also, if $0\leq k\leq n-2,$ $\nabla_{1}$ and $\nabla^{(i_{0})},$
$\cdots$ , $\nabla^{(i_{k})}$ are all $s_{i}$ -trivial for some $i$ . Hence

(3.5) $c_{n}(\nabla_{1}, \nabla^{(i_{0})}, \cdots \nabla^{(t_{k})})=0$ for $k=0,$ $\cdots$ , $n-2$ .
Now we compute $ D\tau$ . First for $k=0$ , we have, using (3.4) and (3.5),

$(D\tau)_{i}=dc_{n}(\nabla_{0}, \nabla_{1}, \nabla^{(i)})=-c_{n}(\nabla_{1}, \nabla^{(i)})+c_{n}(\nabla_{0}, \nabla^{(i)})-c_{n}(\nabla_{0}, \nabla_{1})$

$=-c_{n}(\nabla_{0}, \nabla_{1})$ .
For $k=1,$ $\cdots$ , $n-1$ , we have, by (3.4),

$(D\tau)_{i_{0}\cdots i_{k}}=\sum_{v=0}^{k}(-1)^{\mathcal{V}}c_{n}(\nabla_{0}, \nabla_{1}, \nabla^{(i_{0})}, \cdots \overline{\nabla^{(i_{\nu})}}, \cdots \nabla^{(i_{k})})$

$+(-1)^{k}dc_{n}(\nabla_{0}, \nabla_{1}, \nabla^{(i_{0})}, \cdots \nabla^{(i_{k})})$

$=-c_{n}(\nabla_{1}, \nabla^{(i_{0})}, \cdots \nabla^{(i_{k})})+c_{n}(\nabla_{0}, \nabla^{(i_{0})}, \cdots \nabla^{(i_{k})})$

$=-c_{n}(\nabla_{1}, \nabla^{(i_{0})}, \cdots \nabla^{(i_{k})})$ .
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Thus, using (3.5), we may summarize as

$\left\{\begin{array}{ll}(D\tau)_{\iota} & =-c_{n}(\nabla_{0}, \nabla_{1})\\(D\tau)_{i_{0}\cdots i_{k}} & =0, for k=1, \cdots n-2\\(D\tau)_{1\cdots n} & =-c_{n}(\nabla_{1}, \nabla^{(1)}, \cdots \nabla^{(n)}).\end{array}\right.$

Denoting by $\iota$ the inclusion map $\partial R_{1}\rightarrow U_{0}$ , we let $\iota^{*}\mathcal{U}$ be the covering of $\partial R_{1}$ by the open
sets $\partial R_{1}\cap U^{(i)}$ . Then, as a system $\{R^{(i)}\}_{i=1}^{n}$ of honey-comb cells adapted to $\iota^{*}\mathcal{U}$ , we take

$R^{(i)}=$ {$q\in\partial R_{1}||f_{i}(q)|\geq|f_{j}(q)|$ for $j\neq i$ }

and, for $(i_{0}\cdots i_{k})$ with $1\leq i_{0}<\cdots<i_{k}\leq n$ , we set $R^{(i_{0}\cdots i_{k})}=R^{(i_{0})}\cap\cdots\cap R^{(i_{k})},$ orientee
as in Section 1 (A). Considering the integration

$\int_{\partial R_{1}}$ : $A^{2n-1}(\iota^{*}\mathcal{U})\rightarrow C$ ,

we see that

$0=\int_{\partial R_{1}}$ $DT=-\sum_{i=1}^{n}\int_{R^{\langle i)}}c_{n}(\nabla_{0}, \nabla_{1})-\int_{R^{\langle 1\cdots n)}}c_{n}(\nabla_{1}, \nabla^{(1)}, \cdots \nabla^{(n)})$ .

Hence we get, by (3.3),

${\rm Res}_{c_{n}}(s, E;p)=\int_{R^{\langle 1\cdots n)}}c_{n}(\nabla_{1}, \nabla^{(1)}, \cdots \nabla^{(n)})$ .

If we compute the connection matrix $\theta^{(i)}$ of $\nabla^{(i)}$ with respect to the frame $s$ , we see that $\theta^{(i_{J}^{t}}$

is an $n\times n$ matrix whose i-th row is given $by-\frac{1}{f_{i}}(df_{1}, \cdots df_{n})$ with all other rows equal tc
$(0, \cdots , 0)$ . Let $\tilde{\nabla}$ denote the connection for the bundle $E\times R^{n}$ over $\bigcap_{i=1}^{n}U^{(i)}\times R^{n}$ giver
by $\tilde{\nabla}=(1-\sum_{i=1}^{n}t_{i})\nabla_{1}+\sum_{i=1}^{n}t;\nabla^{(i)}$ . Then the connection matrix $\tilde{\theta}$ of $\tilde{\nabla}$ with respect tc
the frame $s$ is given by

$\tilde{\theta}=(t_{i}$ ,

where $\theta_{1}$ is the connection matrix of $\nabla_{1}$ with respect to the frame $s$ and is equal to zero
Denoting by $\tilde{\kappa}$ the curvature matrix of $\tilde{\nabla}$ , we compute

$c_{n}(\tilde{\kappa})=(-1)^{n}n!(dt_{1}\wedge\frac{df_{1}}{f_{1}})\wedge\cdots\wedge(dt_{n}\wedge\frac{df_{n}}{f_{n}})$

$=(-1)^{n+[n/2]}n!dt_{1}\wedge\cdots\wedge dt_{n}\wedge\frac{df_{1}}{f_{1}}\wedge\cdots\wedge\frac{df_{n}}{f_{n}}$ .

We denote by $\Delta^{n}$ the standard n-simplex in $R^{n}$ and by $\pi$ : $M\times\Delta^{n}\rightarrow M$ the projection
Since $\int_{\Delta^{n}}dt_{1}\wedge\cdots\wedge dt_{n}=1/n$ !, we get,

$c_{n}(\nabla_{1}, \nabla^{(1)}, \cdots \nabla^{(n)})=(\frac{\sqrt{-1}}{2\pi})^{n}\pi_{*}(c_{n}(\tilde{\kappa}))=\frac{(-1)^{[n/2]}}{(2\pi\sqrt{-1})^{n}}\frac{df_{1}}{f_{1}}\wedge\cdots\wedge\frac{df_{n}}{f_{n}}$ ,

where $\pi_{*}$ denotes the integration along the fibers of $\pi$ . Taking the orientations into account,

we have $\Gamma=(-1)^{[n/2]}R^{(1\cdots n)}$ . Hence we have the formula. $\square $
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REMARK 3.6. In th$e$ above situation, consider the $c^{\infty}$ functions $\rho_{i}=|f_{i}|^{2}/\Vert f\Vert^{2}$ ,
$\Vert f\Vert^{2}=|f_{1}|^{2}+\cdots+|f_{n}|^{2}$ , on $U_{0}$ . On $U^{(i)}$ , we have $\nabla^{(i)}(s_{l})=0$ for $l\neq i$ and $\nabla^{(i)}(s_{i})=$

$-1/f_{i}\cdot\sum_{j=1}^{n}df_{j}\otimes s_{j}$ . Thus we obtain an operator $\rho_{i}\nabla^{(i)}$ on $U_{0}$ by setting

$\rho_{i}\nabla^{(i)}(s_{l})=\left\{\begin{array}{ll}-\frac{\overline{f_{i}}}{\Vert f\Vert^{2}}\sum_{j=1}^{n}df_{j}\otimes s_{j}, & for l=j\\0, & for l\neq i.\end{array}\right.$

Moreover, from $\sum_{i=1}^{n}\rho_{i}\equiv 1$ , we see that $\nabla_{0}=\sum_{i=1}^{n}\rho_{i}\nabla^{(l)}$ is a connection for $E$ on $U_{0}$ .
Note that it is s-trivial, since $e$ach $\nabla^{(i)}$ is. If we take this connection $\nabla_{0}$ , as in the proof of
[S1] Ch.III, Theorem 4.4, we see that

$c_{n}(\nabla_{0}, \nabla_{1})=f^{*}\beta_{\eta}$ ,

where $f=$ $(f_{1}, -- , f_{n})$ and $\beta_{n}$ denotes the Bochner-Martinelli kemel on $C^{n}$ . This reproves
that the Grothendieck residue in the above theorem is equal to the mapping degree of $f$ (cf.
[GH] Ch.5, 1. Lemma).

4. The duality.

Let $M$ be a complex manifold of complex dimension $n$ and $E$ a holomorphic vector
bundle of rank $k$ over $M$ . Let $s$ be a regular section of $E$ . This means that, at any point $p$ in
the zero set $V$ of $s$ , the germs of the components of $s$ with respect to a holomorphic frame
near $p$ form a regular sequence in the ring $\mathcal{O}_{M,p}$ of germs of holomorphic functions at $p$

(cf. [F] B.3). Let $X$ be.the analytic subspace of $M$ defined by (the ideal generated by the
components of) $s$ . Thus, if $V\neq\emptyset,$ $X$ is a (possibly non-reduced) local complete intersection
of dimension $n-k$ whose support is $V$ . Let $V_{i},$ $i=1,$ $\cdots$ $r$ , be the irreducible components
of $X$ . Then we have $V=\bigcup_{i=1}^{r}V_{i}$ , which is considered as an analytic subvariety ($re$duced
analytic subspace) of $M$ . If $V$ is compact, $X$ defines a $2(n-k)$ -cycle $X=\sum_{i=1}^{r}m_{j}V_{i}$ , hence
a class $[X]=\sum_{i=1}^{r}m_{i}[V_{i}]$ in $H_{2n-2k}(M)$ or in $H_{2n-2k}(V)$ , where $m$ ; denotes the multiplicity
of $V_{i}$ in $X$ . In this situation, we prove the following

THEOREM 4.1. $IfM$ is compact, the class $c_{k}(E)$ corresponds to [X] under the Poincar\’e

duality $H^{2k}(M;C)\rightarrow\sim H_{2n-2k}(M;C)$ . Thus we have

$[M]\leftrightarrow c_{k}(E)=[X]$ in $H_{2n-2k}(M;C)$ .

In fact, this follows from the following more $pre$cise” theorem, where the things are
localized at $V$ and we need only the compactness of $V$ but not of $M$ itself (cf. (1.6) and the
introduction). Recall that we have the localization $c_{k}(E, s)$ in $H^{2k}(M, M\backslash V;C)$ of $c_{k}(E)$

with respect to the section $s$ , as discussed in Section 2.

THEOREM 4.2. LetX be an analytic subspace ofdimension $n-k$ in $M$ as above. Ifthe
support $VofX$ is compact, the class $c_{k}(E, s)$ corresponds to [X] under the Alexander duality
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$H^{2k}(M, M\backslash V;C)\rightarrow\sim H_{2n-2k}(V;C)$ . Thus we have

$[M_{V}]\leftrightarrow c_{k}(E, s)=[X]$ in $H_{2n-2k}(V;C)$ .

PROOF. Let $S$ denote the singular set Sing(V) of $V$ . Also, as in the last paragraph $0$

Section 1 (B), let $U_{0}=M\backslash V,$ $U_{1}$ a sufficiently small tubular neighborhood of $V^{\prime}=V\backslash \iota^{t}$

and $U_{2}$ a sufficiently small regular neighborhood of $S$ in $M$ . We consider the covering
$\mathcal{U}=\{U_{0}, U_{1}, U_{2}\}$ of $M$ and $\mathcal{U}^{\prime}=\{U_{1}, U_{2}\}$ of $U=U_{1}\cup U_{2}$ . It suffices to prove that there $i$

a representative $\sigma,$ $D\sigma=0$ , of $c_{k}(E, s)$ in $A^{2k}(\mathcal{U}, U_{0})$ such that for any $\tau$ in $A^{2n-2k}(\mathcal{U}^{\prime})$ witl
$D\tau=0$ , we have (1.8) with $C=X$ . Now let $\sigma$ be an element in $A^{2k}(\mathcal{U}, U_{0})$ with $D\sigma=$ $\{$

so that we have

(4.3) $d\sigma_{1}=0$ , $d\sigma_{2}=0$ , $d\sigma_{01}=\sigma_{1}$ , $d\sigma_{02}=\sigma_{2}$ , $d\sigma_{12}=\sigma_{2}-\sigma_{1}$ , and
$d\sigma o12=-\sigma 12+\sigma 02-\sigma 01$ .

Also let $\tau$ be an element in $A^{2n-2k}(\mathcal{U}^{\prime})$ with $D\tau=0$ so that we have

(4.4) $d\tau_{1}=0$ , $d\tau_{2}=0$ and $d\tau_{12}=\tau_{2}-\tau_{1}$ .

Thus $\tau_{1}$ is a closed $2(n-k)$ -form on $U_{1}$ , which is a tubular neighborhood of $V^{\prime}=V\backslash S$

Denoting by $\pi$ the projection $U_{1}\rightarrow V^{\prime}$ , we have an isomorphism $\pi^{*}$ : $H^{2n-2k}(V^{\prime};C)\underline{\sim\backslash }$
’

$H^{2n-2k}$ ( $U_{1}$ ; C). Hence there is a closed $2(n-k)$ -form $\theta$ on V’ and a $(2n-2k-1)$ -form $\rho$

on $U_{1}$ such that

(4.5) $\tau_{1}=\pi^{*}\theta+d\rho_{1}$ .

Also, $\tau_{2}$ is a closed $2(n-k)$ -form on $U_{2}$ . Since $U_{2}$ is homotopically equivalent to $S$ , which $i$

less than $2(n-k)$ -dimensional, we have $H^{2n-2k}(U_{2}; C)=0$ . Hence there is a $(2n-2k-1)$

form $\rho_{2}$ on $U_{2}$ such that

(4.6) $\tau_{2}=d\rho_{2}$ .

Let $\{R_{0}, R_{1}, R_{2}\}$ be a system of honey-comb cells adapted to $\mathcal{U}$ such that $\partial R_{2}$ is trtsvers $($

to $V$ . Then, using (4.3) and the Stokes theorem and noting that $\partial R_{1}=-R_{01}+R_{12}t($

$\partial R_{01}=R_{012}$ , we compute

$\int_{R_{1}}\sigma_{1}\wedge d\rho_{1}=\int_{R_{1}}d(\sigma_{1}\wedge\rho_{1})=-\int_{R_{01}}\sigma_{1}\wedge\rho_{1}+\int_{R_{12}}\sigma_{1}\wedge\rho_{1}$ and

$\int_{R_{01}}\sigma_{01}\wedge d\rho_{1}=\int_{R_{01}}d\sigma_{01}\wedge\rho_{1}-\int_{R_{01}}d(\sigma_{01}\wedge\rho_{1})=\int_{R_{01}}\sigma_{1}\wedge\rho_{1}-\int_{R_{012}}\sigma_{01}\wedge\rho_{1}$ .
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Similary we have, noting that $\partial R_{2}=-R_{02}-R_{12},$ $\partial R_{02}=-R_{012},$ $\partial R_{12}=R_{012}$ , and
$\partial R_{012}=0$ .

$\int_{R_{2}}\sigma_{2}\wedge d\rho_{2}=-\int_{R_{02}}\sigma_{2}\wedge\rho_{2}-\int_{R_{12}}\sigma_{2}\wedge\rho_{2}$ ,

$\int_{R_{02}}\sigma_{02}\wedge d\rho_{2}=\int_{R_{02}}\sigma_{2}\wedge\rho_{2}+\int_{R_{012}}\sigma_{02}\wedge\rho_{2}$ ,

$\int_{R_{12}}\sigma_{12}\wedge d\rho_{2}=\int_{R_{12}}(\sigma_{2}-\sigma_{1})\wedge\rho_{2}-\int_{R_{012}}\sigma_{12}\wedge\rho_{2}$ and

$\int_{R_{012}}\sigma_{012}\wedge d\rho_{2}=\int_{R_{012}}(\sigma_{12}-\sigma_{02}+\sigma_{01})\wedge\rho_{2}$ .

Hence, if we denote by $I_{1}$ the left hand side of (1.8), we have

$I\iota=\int_{R_{1}}\sigma 1\wedge\pi^{*}\theta+\int_{R_{01}}\sigma 01\wedge\pi^{*}\theta-\int_{R_{12}}1\rho 12\int_{R_{012}}\sigma 01\wedge\rho 12$ ,

where $\rho_{12}=\rho_{2}-\rho_{1}-\tau_{12}$ , which is a $(2n-2k-1)$ -form on $U_{12}=U_{1}\cap U_{2}$ . Note that from
(4.4), (4.5) and (4.6), we have

$ d\rho_{12}=\pi^{*}\theta$ on $U_{12}$ .
The chain $R_{12}$ is in the interior of the $(2n-1)$ -dimensional manifold $U_{1}\cap\partial R_{2}$ , which may be
assumed to retract to $V\cap\partial R_{2}=R_{12}\cap V$ by the projection $\pi$ so that we have th$e$ commutative
diagram

$U_{1}\cap\partial R_{2}\rightarrow^{\sim i}U_{1}\cap U_{2}$

$\pi\downarrow$ $\pi\downarrow$

$V\cap\partial R_{2}\rightarrow^{i}V^{\prime}\cap U_{2}$ ,

where $i$ and $\sim i$ denote th$e$ inclusions. We have $di^{*}\rho_{12}\sim=\sim i^{*}d\rho_{12}=\sim i^{*}\pi^{*}\theta=\pi^{*}i^{*}\theta=0$ , sinc $e$

$ i^{*}\theta$ is a $2(n-k)$ -form on $V\cap\partial R_{2}$ , which is a $(2n-2k-1)$ -dimensional manifold. Hence
we see that there exist a $(2n-2k-1)$ -form $\rho$ on $V\cap\partial R_{2}$ and a $(2n-2k-2)$ -form $\omega_{12}$ on
$U_{1}\cap\partial R_{2}$ such that

(4.7) $\rho_{12}=\pi^{*}\rho+d\omega_{12}$ on $U_{1}\cap\partial R_{2}$ .
We have, as before

$\int_{R_{12}}\sigma 1\wedge d\omega_{12}=\int_{R_{012}}\sigma_{1}\wedge\omega_{12}$ and $\int_{R_{012}}\sigma_{01}\wedge d\omega_{12}=\int_{R_{012}}\sigma_{1}\wedge\omega_{12}$ .

Hence we obtain

(4.8) $ I_{1}=\int_{R_{1}}\sigma_{1}\wedge\pi^{*}\theta+\int_{R_{01}}\sigma_{01}\wedge\pi^{*}\theta-\int_{R_{12}}\sigma_{1}\wedge\pi^{*}\rho+\int_{R_{012}}\sigma_{01}\wedge\pi^{*}\rho$ .

Next, we compute the right hand side $I_{2}$ of (1.8) (with $C=X$). From
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$\int_{R_{1}\cap X}\tau_{1}=\int_{R_{1}\cap X}(\pi^{*}\theta+dp_{1})=\int_{R_{1}\cap X}\theta+\int_{R_{12}\cap X}\rho_{1}$ and

$\int_{R_{2}\cap X}\tau_{2}=-\int_{R_{12}\cap X}\rho_{2}$ ,

and using (4.7), we have

(4.9) $I_{2}=\int_{R_{1}\cap X}\theta-\int_{R_{12}\cap X}p$ .

We denote by $\pi_{1},$ $\pi_{01},$ $\pi_{12}$ and $\pi_{012}$ the restrictions of $\pi$ to $R_{1},$ $R_{01},$ $R_{12}$ and $R_{01_{\angle}^{\prime}}$

respectively. We may assume that $\pi_{1}$ : $R_{1}\rightarrow R_{1}\cap V$ and $\pi_{12}$ : $R_{12}\rightarrow R_{12}\cap V$ are close $($

$2k$-disk bundles and that $\pi_{01}$ : $R_{01}\rightarrow R_{1}\cap V$ and $\pi_{012}$ : $R_{012}\rightarrow R_{12}\cap V$ are $S^{2k-1}$ -bundles
Recall that the orientation of $R_{01}$ is opposite to that of $\partial R_{1}$ and that the orientation of $R_{012}i$

same as that of $\partial R_{12}$ . If we apply the projection formula in (4.8), we have

$I_{1}=\int_{R_{1}\cap V}((\pi_{1})_{*}\sigma_{1}+(\pi_{01})_{*}\sigma_{01})\cdot\theta-\int_{R_{12}\cap V}((\pi_{12})_{*}\sigma_{1}-(\pi_{012})_{*}\sigma_{01})\cdot p$ ,

where the $subscript*signifies$ the integration along the fibers. By [S1] Ch.II, Propositio
5.2, the function $(\pi)_{*}\sigma_{1}+(\pi_{01})_{*}\sigma_{01}$ is locally constant and thus constant on each $connecte_{1}$

component $R_{1}\cap V_{i}$ of $R_{1}\cap V$ . Now we let $\nabla_{0}$ be an s-trivial connection for $E$ on $U_{0}$ and le
$\nabla_{1}$ and $\nabla_{2}$ be arbitrary connections for $E$ on $U_{1}$ and $U_{2}$ , respectively. The class $c_{k}(E, s)i$

then represented by the cocycle $\sigma$ with $\sigma_{0}=c_{k}(\nabla_{0})=0,$ $\sigma_{1}=c_{k}(\nabla_{1})$ and $\sigma_{01}=c_{k}(\nabla_{0},$ $\nabla_{1_{J}^{\backslash }}$

In fact we have $\sigma_{2}=c_{k}(\nabla_{2})$ and so forth, but as we have seen above all the terms involvin
$\nabla_{2}$ cancel out. Then the value of the function $(\pi_{1})_{*}\sigma_{1}+(\pi_{01})_{*}\sigma_{01}$ at a point $p$ of $R_{1}\cap V$

is exactly the residue ${\rm Res}_{c_{k}}(s|_{U_{p}}, E|_{U_{p}} ; p),$ $U_{p}=\pi^{-1}(p)$ , and, by Theorem 3.1, it is th
multiplicity of $V_{i}$ in $X$ . By a similar argument, we also see that $(\pi_{12})_{*}\sigma_{1}-(\pi_{012})_{*}\sigma_{01}i$

constant on $R_{12}\cap V_{i}$ and its value is again the multiplicity of $V_{i}$ in $X$ . Comparing with $(4.9_{I}^{\backslash }$

we proved the theorem. $\square $

REMARKS 4.10. 1. Let $p$ be a point in $V^{\prime}$ . As in the proof of [S1] Ch.III, Theorer
4.4, it is possible to choose connections $\nabla_{0}$ and $\nabla_{1}$ above so that we have

$c_{k}(\nabla_{1})=0$ and $c_{k}(\nabla_{0}, \nabla_{1})=f^{*}\beta_{k}$ ,

in a neighborhood of $p$ , where $f=$ $(f_{1}, \cdots , f_{k})$ denote the components of $s$ with respect $t$

a suitable frame of $E$ near $p$ and $\beta_{k}$ the Bochner-Martinelli kemel on $C^{k}$ (cf. Remark 3.6).

2. Theorem 4.4 in [S1] Ch.III can be also proved as above. Namely, let $\pi$ : $E\rightarrow Mb$

a $c^{\infty}$ complex vector bundle of rank $r$ over an oriented $c^{\infty}$ manifold $M$ . We denote by $s_{l}$

the diagonal section of the pull-back bundle $\pi^{*}E$ over $E$ . The zero set of $s_{\Delta}$ is the image $c$

the zero section of $E$ , which is identified with $M$ . Thus we have the localization $c_{r}(\pi^{*}E,$
$s_{\Delta}$

in $H^{2r}(E, E\backslash M;C)$ of $c_{r}(\pi^{*}E)$ with respect to $s_{\Delta}$ . Recall that we have the Thom class $\Psi$,

$inH^{2r}(E, E\backslash M;C)andtheEulerclasse(E)inH^{2r}(M;C)$ ofE asareal bundle (cf. [Sl
Ch.II, 5). In this situation, we claim

$c_{r}(\pi^{*}E,$ $S_{\Delta)}=\Psi_{E}$ and $c_{r}(E)=e(E)$ .
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In fact, the second identity follows from the first. To show the first identity, let $p$ be an
arbitrary point of $M$ and let $i_{p}$ : $E_{p^{c}}\rightarrow E$ denote the inclusin of the fiber $E_{p}=\pi^{-1}(p)$ . Note
that the restriction $\pi^{*}E|_{E_{p}}\simeq C^{r}\times C^{r}$ admits a natural complex structure so that $s_{\Delta}|_{E_{p}}$ is
holomorphic. Then, from Theorem 3.1, we have $i_{p}^{*}c_{r}(\pi^{*}E, s_{\Delta})=c_{r}(\pi^{*}E|_{E_{p}}, s_{\Delta}|_{E_{p}})=1$ ,

which characterizes the Thom class.
The identity shows that, for a closed set $S$ in $M$ and a non-vanishing section $s$ of $E$ on

$M\backslash S$ ,

$c_{k}(E, s)=s^{*}\Psi_{E}$

(cf. [F] Example 19.2.6).
3. Let $V$ be the zero set of a holomorphic section $s$ of $E$ generically transverse to the

zero section. This means that, if $(f_{1}, -- , f_{k})$ denote th$e$ components of $s$ with respect to a
holomorphic frame on an open set $U$ in $M,$ $V$ is given by $f_{1}=\cdots=f_{k}=0$ in $U$ and
$df_{1}\wedge\cdots\wedge df_{k}\not\equiv 0$ on $V\cap U$ . In this case Sing(V) is given by $df_{1}\wedge\cdots\wedge df_{k}=0$ in
$V\cap U$ and the restriction $E|_{V}$ , of $E$ to the regular part $V^{\prime}=V\backslash Sing(V)$ coincides with the
normal bundle of V’ in $M$ . In fact the above condition for $s$ is equivalent to saying that $s$ is a
$re$gular section and that the analytic subspac$eX$ defined by $s$ is reduced; $X=V$ (cf. [T], [Lo,
VI.1.6]). In particular, $V$ is a local complete intersection as an analytic variety. By Theorem
4.2, the class $c_{k}(E, s)$ in $H^{2k}(M, M\backslash V;C)$ is Alexander dual to [V] in $H_{2n-2k}(V;C)$ . Thus
we may call $c_{k}(E, s)$ the Thom class of $V$ in $M$ (cf. [S2], where Theorem 4.2 is applied to
prove the Riemann-Roch theorem for the embedding $V\rightarrow M$).

5. Intersection of analytic subspaces.

Let $M$ be a complex manifold of dimension $n$ . Also, for $e$ach $j=1,$ $\cdots$ $q$ , let $E_{j}$ be a
holomorphic vector bundle of rank $k_{j}$ over $M$ and $s_{j}$ a regular section of $E_{j}$ . We denote by
$X_{j}$ th$e$ analytic subspac $e$ of $M$ defined by $s_{j}$ , which is pure $k_{j}$ -codimensional. Denoting by
$V_{j}$ th$e$ support of $X_{j}$ , we have the localization $c_{k_{j}}(E_{j}, s_{j})$ in $H^{2k_{j}}$ ($M,$ $M\backslash V_{j}$ ; C) of $c_{k_{j}}(E_{j})$

with respect to the section $s_{j}$ as in Section 2. Setting $S=\bigcap_{j=1}^{q}V_{j}$ and $k=\sum_{j=1}^{q}k_{j}$ , we
have the cup product

$H^{2k_{1}}(M, M\backslash V_{1} ; C)\times\cdots\times H^{2k_{q}}(M, M\backslash V_{q};C)\rightarrow H^{2k}(M, M\backslash S;C)$ .

Let $E$ be the direct sum $E=E_{1}\oplus\cdots\oplus E_{q}$ and $s$ the section of $E$ given by $s=s_{1}\oplus\cdots\oplus s_{q}$ .
Then th $e$ zero set of $s$ is $S$ and we have the localization $c_{k}(E, s)$ in $H^{2k}(M, M\backslash S;C)$ of
$c_{k}(E)$ with respect to $s$ . In th$e$ above cup product, we have

$c_{k_{1}}(E_{1}, s_{1})\cdots c_{k_{q}}(E_{q}, s_{q})=c_{k}(E, s)$ .

Suppose $S$ is compact ( $V_{j}$ may not be). Then we have the Alexander duality

$A_{M_{s}}$ : $H^{2k}(M, M\backslash S;C)\rightarrow\sim H_{2n-2k}(S;C)$ .

In view of Theorem 4.2, we define th$e$ (refined) intersection product $X_{1}\cdots X_{q}$ of the ana-
lytic subspaces $X_{1},$ $\cdots$ $X_{q}$ to be the homology class $A_{M_{s}}(c_{k}(E, s))={\rm Res}_{c_{k}}(s, E;S)$ in
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$H_{2n-2k}(S;C)$ (cf. [F] \S 8.1). Thus, if $(S_{\lambda})_{\lambda}$ denote the connected components of $S$ , its ,

component $(X_{1}\cdots X_{q})_{\lambda}$ is given by

$(X_{1}\cdots X_{q})_{\lambda}={\rm Res}_{c_{k}}(s, E;S_{\lambda})$ in $H_{2n-2k}$ ( $S_{\lambda}$ ; C)

and we have

(5.1)
$X_{1}\cdots X_{q}=\sum_{\lambda}(X_{1}\cdots X_{q})_{\lambda}=\sum_{\lambda}{\rm Res}_{c_{k}}(s, E;S_{\lambda})$ in $H_{2n-2k}(S;C)$ .

In particular, if $k=n,$ $H_{2n-2k}$ ( $S_{\lambda}$ ; C) $=C$ , hence ${\rm Res}_{c_{n}}(s, E;S_{\lambda})$ is a complex number. I
$s$ is also a regular section, then $X_{1}\cdots X_{q}$ is th$e$ analytic subspace defined by $s$ and $S$ is it
support.

Recall that every divisor $D$ on $M$ is defined by a regular section of a line bundle. Thus
for divisors $D_{1},$ $\cdots$ , $D_{q}$ , we may define the intersection product $D_{1}\cdots D_{q}$ in $H_{2n-2q}(S;C)$

if $S=\bigcap_{j=1}^{q}|D_{j}|$ is compact, where $|D_{j}|$ denotes the support of $D_{j}$ . From (5.1) and Theoren
3.1, we have the following

THEOREM 5.2. Let $M$ be a complex mamfold of dimension $n$ and let $D_{1},$ $\cdots$ $D_{n}b($

divisors on M. If $S=\bigcap_{i=1}^{n}|D_{i}|$ consists offinite isolatedpoints, we have

$D_{1}\cdots D_{n}=\sum_{p\in S}(D_{1}\cdots D_{n})_{p}$
.

where $(D_{1}\cdots D_{n})_{p}$ is the local intersection number at $p$ (see Remark 3.2).

6. Duality for non-compact varieties.

Let $M$ be a complex manifold of dimension $n,$ $E$ a holomorphic vector bundle of rank /

over $M$ and $X$ an analytic subspace of codimension $k$ defined by a regular section $s$ of $E$ , a
before. Also, let $V_{i},$ $i=1,$ $\cdots$ $r$ , be th$e$ irreducible components of $X$ and $m_{i}$ the $multiplicit^{1}$.
of $V_{i}$ in $X$ . Denoting by $V$ the support of $X$ , we set $V^{\prime}=V\backslash Sing(V)$ . In this section, we $d($

not assume that $V$ is compact.
First we prove th$e$ following theorem. Let $R$ be a compact $c^{\infty}$ submanifold (withou

boundary) of $M^{\prime}=M\backslash Sing(V)$ of dimension $d$ transverse to $V^{\prime}$ . Then $X$ defines a $(d-2k)$

cycle $R\cap X=\sum_{i=1}^{r}m_{i}(R\cap V_{i})$ , hence a class $[R\cap X]=\sum_{i=1}^{r}m_{i}[R\cap V_{i}]$ in $H_{d-2k}(R)0$

in $H_{d-2k}(R\cap V)$ .
THEOREM 6.1. The class $ck(E|_{R}, s|_{R})$ corresponds to $[R\cap X]$ under the Alexande

duality $H^{2k}(R, R\backslash (R\cap V);C)\rightarrow\sim H_{d-2k}(R\cap V;C)$ . Thus the class $c_{k}(E|_{R})$ correspond
to $[R\cap X]$ under the Poincar\’e duality $H^{2k}(R;C)\rightarrow\sim H_{d-2k}(R;C)$ .

PROOF. Letting $U_{0}=M\backslash V$ and $U_{1}$ a sufficiently small tubular neighborhood of $V^{\prime}il$

$M$ with projection $\pi$ : $U_{1}\rightarrow V^{\prime}$ , we consider the covering $\mathcal{U}=\{U_{0}, U_{1}\}$ of $M^{\prime}$ . Let $R_{1}$ be $($

closed disk bundle in $U_{1}$ and $R_{0}=M^{\prime}\backslash IntR_{1}$ so that $\{R_{0}, R_{1}\}$ is a system ofhoney-comb cell
adapted to $\mathcal{U}$ . Also, letting $W_{i}=R\cap U_{i},$ $i=0,1$ , we consider the covering $\mathcal{W}=\{W_{0},$ $W_{1}$

of $R$ . If we set $T_{i}=R\cap R_{i},$ $i=0,1,$ $\{T_{0}, T_{1}\}$ is a system of honey-comb cells adapted $t\langle$
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$\mathcal{W}$ . Let $\nabla_{0}$ be an s-trivial connection for $E$ on $U_{0}$ and $\nabla_{1}$ an arbitrary connection for $E$ on
$U_{1}$ . Then the class $c_{k}(E|_{R}, s|_{R})$ is represented by the cocycle $(0, c_{k}(\nabla_{1}),$ $c_{k}(\nabla_{0}, \nabla_{1}))$ on $\mathcal{U}$ ,

restricted to $R$ . It suffices to prove (cf. (1.4))

(6.2) $\int_{T_{1}}c_{k}(\nabla_{1})\wedge\tau_{1}+\int_{T_{01}}c_{k}(\nabla_{0}, \nabla_{1})\wedge\tau_{1}=\int_{R\cap X}\tau_{1}$ ,

for any closed $(d-2k)$ -form $\tau_{1}$ on $W_{1}$ . We may assume that $W_{1}=\pi^{-1}(R\cap V)$ . Thus we
may write $\tau_{1}=\pi^{*}\theta+d\rho_{1}$ for some closed $(d-2k)$ -form $\theta$ on $R\cap V$ and a $(d-2k-1)$ -form
$\rho_{1}$ on $W_{1}$ . Then it suffices to prove

$\int_{T_{1}}c_{k}(\nabla_{1})\wedge\pi^{*}\theta+\int_{T_{01}}c_{k}(\nabla_{0}, \nabla_{1})\wedge\pi^{*}\theta=\int_{R\cap X}\theta$

for any closed $(d-2k)$ -form $\theta$ on $R\cap V$ . If we denote by $\pi_{1}$ : $T_{1}\rightarrow R\cap V$ and $\pi_{01}$ : $ T01\rightarrow$

$R\cap V$ the restrictions of $\pi$ to $T_{1}$ and $T_{01},$ $re$spectively, the left hand side above is equal to

$\int_{R\cap V}((\pi 1)c(\nabla\iota)+(\pi 0\iota){}_{*}Ck(\nabla\nabla))\cdot\theta$ .

As in the proof of Theorem 4.2, $(\pi_{1})_{*}c_{k}(\nabla_{1})+(\pi_{01})_{*}c_{k}(\nabla_{0}, \nabla_{1})$ is a function on $R\cap V$ ,

constant on each $R\cap V_{i}$ with value $m;$ , which proves th$e$ theorem. $\square $

REMARK 6.3. Let $V$ be th$e$ zero set of a holomorphic section $s$ of $E$ generically trans-
verse to the zero section (cf. Remark 4.10.3). Then the above theorem reproves the fact that
the Euler class $e(E|_{R})$ of $E$ restricted to a submanifold $R$ in $M^{\prime}$ as above is Poincar\’e dual to
the submanifold $R\cap V$ of $R$ .

Now let $S$ be a compact connected component of Sing(V) and $U_{1}$ a sufficiently small
$re$gular neighborhood of $S$ in $M$ . We may think of [X] as a class in $H_{2n-2k}(M, M\backslash S;C)$ . We
denote also by $c_{k}(E)$ the class $c_{k}(E|_{U_{1}})$ in $H^{2k}$ ( $U_{1}$ ; C) $\simeq H^{2k}(S;C)$ . Recall that we have
the duality (1.3)

$H^{2k}(S;C)\rightarrow\sim H_{2n-2k}(M, M\backslash S;C)$ .
THEOREM 6.4. The class $c_{k}(E)$ corresponds to [X] under the above duality.

PROOF. Let $c_{k}(E)$ also denote th$e$ Chem form with $re$spect to some connection for $E$

on $U_{1}$ . Let $U_{0}=M\backslash S$ and $\{R_{0}, R_{1}\}$ a system of honey-comb cells adapted to $\mathcal{U}=\{U0, U1\}$

such that $R_{01}(=-\partial R_{1})$ is compact and is transverse to $V$ . It suffices to show that

$\int_{R_{1}}\sigma_{1}\wedge c_{k}(E)+\int_{R_{01}}\sigma_{01}\wedge c_{k}(E)=\int_{R_{1}\cap X}\sigma_{1}+\int_{R_{01}\cap X}\sigma_{01}$

for any $\sigma=(0, \sigma_{1}, \sigma_{01})$ in $A^{2n-2k}(\mathcal{U}, U_{0})$ with $D\sigma=0$ (cf. (1.5)). We have $d\sigma_{1}=0$ and
may consider th$e$ class $[\sigma_{1}]$ in $H^{2n-2k}(U_{1} ; C)\simeq H^{2n-2k}(S;C)$ , which is zero, since $S$ is less
than $2(n-k)$ -dimensional. Hence th$e$re is a $(2n-2k-1)$ -form $\eta_{1}$ on $U_{1}$ such that $\sigma_{1}=d\eta_{1}$ .
We compute

$\int_{R_{1}}\sigma_{1}\wedge c_{k}(E)=-\int_{R_{01}}\eta_{1}\wedge c_{k}(E)$ and $\int_{R_{1}\cap X}\sigma_{1}=-\int_{R_{01}\cap X}\eta l$ .
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Hence it suffices to show

(6.5) $\int_{R_{01}}(\sigma_{01}-\eta_{1})\wedge c_{k}(E)=\int_{R_{01}\cap X}(\sigma_{01}-\eta_{1})$ .

From $\sigma_{1}-d\sigma_{01}=0$, we have $d(\sigma_{01}-\eta_{1})=0$ . Therefore, (6.5) follows from the second par
of Theorem 6.1 with $R=R_{01}$ . $\square $

REMARK 6.6. Let $C$ be a relative cycle representing a class in $H_{l}(M, M\backslash S;C)$

Suppose $C$ is transverse to $R_{01}$ and $V$ . Then, by a similar argument as above, we have

$\int_{R_{1}\cap C}\sigma_{1}\wedge c_{k}(E)+\int_{R_{01}\cap C}\sigma_{01}\wedge c_{k}(E)=\int_{R_{1}\cap C\cap X}\sigma_{1}+\int_{R_{01}\cap C\cap X}\sigma_{01}$

for any $\sigma=(0, \sigma_{1}, \sigma_{01})$ in $A^{l-2k}(\mathcal{U}, U_{0})$ with $D\sigma=0$ .
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