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1. Introduction.

Consider the Cauchy problem for the simplest Hamilton-Jacobi equation, namely,

ou/dt + f(u/dx) =0 in D:={t>0,x € R"}, 1)
u@0,x) =¢(x) on {t=0,x €R"}. ?)
Here, 0/0x := (d/0x1,---,0/0x,). Let Lip(_’ﬁ) := Lip(D) N C(D), where Lip(D) is the

set of all locally Lipschitz continuous functions u = u(¢, x) defined on D. A function u €
Lip(ﬁ) will be called a global solution of the Cauchy problem (1)—(2) if it satisfies (1) almost
everywhere in D, with u(0, -) = ¢. A global solution of (1)—(2) is given by explicit formulas
of Hopf [3] in the following two cases:

(a) f convex (or concave) and ¢ largely arbitrary; and

(b) ¢ convex (or concave) and f largely arbitrary.

It is unlikely that such restrictions, either on the Hamiltonian f = f(p) or on the initial
data ¢ = ¢(x), are really vital. A relevant solution is expected to exist under much wider
assumptions. According to Hopf, that he has been unable to get further is doubtless due to
a limitation in his approach: he uses the Legendre transformation globally, and this global
theory has been carried through only in the case of convex (or concave) functions (Fenchel’s
theory of conjugate convex (or concave) functions).

We shall often suppose in this note that n = n; + n; and that the variable p € R" is
separated into two as p = (p/, p”) with p’ € R", p” € R". (Similarly for x,z,--- €
R”. In particular, the zero-vector in R" will be 0 = (0’, 0”), where 0’ and 0” stand for
the zero-vectors in R and R"2, respectively.) Recall (see Rockafellar [6]) that a function
f = f(p', p”) is called concave-convex if it is concave in p’ € R"! for each p” € R™
and convex in p” € R"2 for each p’ € R". We have proposed in [7] to examine a class of
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concave-convex functions as a more general framework where the discussion of the global
Legendre transformation still makes sense. A Hopf-type formula for global solutions to non-
concave, non-convex Hamilton-Jacobi equations can thereby be considered.

If f is a (concave-convex) function given by a special representation

£, p") == Hi(p') + Ha(p”) on R"™ xR™,

with H; concave and H, convex, and ¢ is uniformly continuous, Bardi and Faggian [1] have
recently found explicit pointwise upper and lower bounds of Hopf type for the (unique) viscos-
ity solution of (1)—(2). The upper and lower bounds are, respectively, the min-max and max-
min of a common family of explicit functions (over finite-dimensional sets of parameters), so
they may be shown to coincide in some cases. In fact, using the “index of non-convexity” and
a classical minimax theorem, Bardi—-Faggian have thus obtained a representation formula for
the viscosity solution, at least for short times (when the upper and lower bounds are equal).
In this note, we extend Bardi—Faggian’s estimates to the case of general concave-convex
Hamiltonians. Along the way, some remarks on their estimates simplified in a particular case
where ¢ is Lipschitz continuous (cf. [1, Lemma 3.3]) will be given. The estimates we obtain
in this general case also shed some new light on the result we have previously obtained in [7].

2. Conjugate concave-convex functions.

We use | - | and (-, -) to denote the Euclidean norm and scalar product, respectively, in
R”. (It will cause no confusion if we use the same notation for the corresponding ones in R"1,
or R"2, or even in any other RV) Let f = f(p) be a differentiable real-valued function on
an open nonempty subset A of R". The Legendre conjugate of the pair (A, f) is defined to
be the pair (B, g), where B is the image of A under the gradient mapping df/dp, and g is the
function of z € B given by the formula

92) := (z, (3f/3p) "' @) — F((3f/3p) ™' (2)).
It is not actually necessary to have df/0p one-to-one on A in order that g be well-defined
(i.e., single-valued). It suffices if (z, p) — f(p) = (z, P) — f(p) whenever (3f/0p)(p) =
(0f/3p)(P) = z. Then the value g(z)—can be obtained unambiguously from the formula by
replacing the set (3f/3p)~!(z) by any of the vectors it contains.

Passing from (A, f) to the Legendre conjugate (B, g), if the latter is well-defined, is
called the Legendre transformation. The important role played by the Legendre transforma-
tion in the classical local theory of nonlinear equations of first-order is well-known. The
global Legendre transformation has been studied extensively for convex functions. If f and A
are convex, one can extend f to be a lower semicontinuous proper convex function on all of R"
with A as the interior of its effective domain. From [6, Theorem 26.4], we conclude that the
Legendre conjugate (B, g) of (A, f) is then well-defined. Moreover, B (namely the range of
df/dp) is a subset of dom f*, and gis the restriction of the Fenchel conjugate f* to B. Further
(cf. [6, Theorems 26.5-26.6]), when f is strictly convex on A := R" and is co-finite, g = f*
(i.e., B = R") should be everywhere differentiable, and (3f/9p)~!(z) = {(89/92)(2)}.
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All concave-convex functions f = f(p’, p”") under our consideration are assumed to be
finite and, except for the last section, to satisfy the following two “co-finiteness conditions.”

f',p"
p"|>+00  |p”|

i L@ P)
lp'l=>+00  |P']
Let f*2 = f*2(p’, 7") (resp. f*! = f*1(Z/, p”)) be, for each fixed p’ € R"! (resp. p” €
R"2), the Fenchel conjugate of a given p”-convex (resp. p’-concave) function f = f(p’, p”).
In other words,

= 400 foreach p’ e R™, 3

= —oo foreach p” e R", ()

2,7 = sup (", p")— FP', P} 5)
p/IGan

(resp. f*1(z, p") := . inf {(Z, p'y— F(P', PP (6)
p'eR™M

for (p',7") € R™ x R™ (resp. (Z/, p”) € R™ x R"2). If f is concave-convex, then (5)
(resp. (6)) actually implies the convexity (resp. concavity) of f*2 (resp. f*!) not only in
7" € R™ (resp. 7/ € R™) but also in the whole variable (p’, z”) € R™ x R"2 (resp. (z/, p”) €
R™ x R"). Moreover, under the condition (3) (resp. (4)), the finiteness of f clearly yields
that of f*2 (resp. f*!) with

f*2 (P/v Zl/)

l2|>+00  |2”|

*1 / /"
= +00 (resp. lim —f——(z’—p)=——oo)

|2/|>+00 1z’

locally uniformly in p’ € R™ (resp. p” € R"2).
If (4) (resp. (3)) is satisfied, then (5) (resp. (6)) gives

f*2(pl, zll) - _f(pl, OII)

T > T — +oo as |p'| &> +o0 @)
*1(z’, p o, p"
(resp. f l(;”lp ) < _f(lp”f ) > —0 as 1p"| — +oo) ®

uniformly in z” € R™2 (resp. 7/ € R™).

Now let f be concave-convex. Besides the Fenchel “partial conjugates” f*2 and f*!,
we shall consider the following two “total conjugates” of f. The first one, which we denote
by 7 = F (Z,2"), is defined as the Fenchel conjugate of the concave function R* > p’ >
—f*2(p’, 7"”) for each fixed z” € R"2; more precisely,

F@. 2= inf ((Z,p)+ 2, 7")}. ©)
pIERnl
The second, f* = f*(z’,z"), is defined as the Fenchel conjugate of the convex function
R™ > p” > — f*1(7/, p”) for each fixed z’ € R";i.e.,

fr@. 2" = sup (", p") + ¥, p")}. (10)
p”GR"2



234 NGUYEN DUY THAI SON

By (5)—(6) and (9)—(10), we have

@)= jnf swp (&, p)+ " p") = £, P}, (11)
p’'eR™ p"eR™2

[, 2"y = sup _inf {(Z,p)+ (", ")~ f(P', P")}. (12)

o p"eR"2 P'ER™

Therefore, the functions 7* and f * will usually be called the upper and lower conjugates,
respectively, of f. (Of course, (11)-(12) imply f~ > f*.) For any z’ € R™,

R" xR2 > (p', ")~ h(p',2") =, Py + 2. 2"
is a convex function. But (9) shows that 7*(2' , ) is the image Ah,
(AR (Z") :=inflh(p’, ") : AP, ") = 7"},

of h under the (linear) projection R™ x R"2 3 (p’, 7") — A(p/,7”) := 7". It follows from
[6, Theorem 5.7] that 7 (2, z”) is convex in z” € R"2. On the other hand, by definition,
F'(, 2" is necessarily concave in z € R". The upper conjugate f is hence a concave-
convex function on R"! x R"2. The same conclusion may dually be drawn for the lower
conjugate f*.

We have previously seen that if the concave-convex function f is finite on R"! x R"2 and
satisfies (3)—(4), its partial conjugates f*2 and f*! must both be finite with (7)—(8) holding.
Thus, by (9)—(10), the “total conjugates” ?* and f* are then also finite; and hence they
coincide [6, Corollary 37.1.2]. In this situation, the Fenchel conjugate

fr=7F=f (13)
of f will simultaneously has the properties:

*/./ "
I |1 1 -f—(é”’l—Z) = +oo foreach 7/ e R™, 3%
Z'|—->+o00

7.,/ "
o le/’lz—-)- = —oco foreach 7z’ e R"2. 4%)
Z|=>+o0 Z

(If (3)(4) are not assumed, 7* and f * may not coincide. Then, in accordance with the
terminology of Rockafellar, any concave-convex function g that lies between ?* and f* is
called a conjugate of our Hamiltonian f.) o

A finite concave-convex function f = f(p’, p”) on R" x R™ is said to be strict if its
concavity in p’ € R™ and convexity in p” € R"2 are both strict. It will then also be called a
strictly concave-convex function on R™ x R"2. The global Legendre transformation in a class
of strictly concave-convex functions can be described via their Fenchel conjugates as follows.
(For the proofs, see [7, Chapter 10].)

LEMMA 1. Let f = f(p', p”) be a strictly concave-convex function on R™ x R™2
with (3) (resp. (4)) holding. Then its partial conjugate f*? = f*2(p’,z7") (resp. f*' =
X (', p")) defined by (5) (resp. (6)) is strictly convex (resp. concave) in p' € R™ (resp.



HOPF-TYPE ESTIMATES FOR VISCOSITY SOLUTIONS 235

p” € R"2) and everywhere differentiable in 7 € R" (resp. 77 € R™). Besides that,
8f*2/0z" (resp. 3f*1/087') is continuous on R™ x R"2 with
2, 2" = (", @f*2 /8" (p', ")) — f(P', @f*2/32") (P, 2"))
(resp. f*1(z', p") = (', 3f*1/32')(, p")) — F((@Bf*'/32") (<, p"), P")).

PROPOSITION 1. Let f = f(p/, p”) be a strictly concave-convex function on R"! x
R"2 with both (3) and (4) holding. Then its conjugate f* = f*(Z',7") defined by (9)-
(13) is likewise a concave-convex function satisfying (3*)—(4*). Moreover, f* is everywhere
continuously differentiable with

7@ = (z, @f*/02)(2)) — f((f*/32)(2)) .

3. A Hopf-type formula.

We now consider the Cauchy problem
du/ot+ fBu/dx) =0 in D:={t>0,x=(x,x") e R" x R"?}, (14)
u0,x) =¢(x) on {r=0,x € R" x R"?}. (15)
An explicit global solution of the problem can be found under the next three hypotheses.
(I) The initial function ¢ is continuous and the Hamiltonian f = f(p’, p”) is strictly
concave-convex on R"! x R™ with (3)—(4) holding.
(II) The equality Supycrm infyrerma £(2, x, y) = infyrcrm supyepm §(t, X, y) is sat-
isfied in D, where
@t x,y)i=¢() +1- fF((x—y)/1) (16)
for(t,x) €e D,y = (y,y") € R" xR"™, Here, f* denotes the conjugate defined by (9)—(13)

off.
(II) To each bounded subset V of D there corresponds a positive number M(V') so

that
min  sup ¢(t,x, w,w”) < sup ¢, x,w,y"),
|wlg|<e}§l(2V) w'eR™ w’eR"1
. . "
r,nzlilxnl ﬂmlt;”2 c, x,w,w’) > ”m{nz c,x,y, w’
lwq)éM(V)w © e

whenever (t, x) € V and min{|y’|, |y"|} > M(V).
Actually, we have proved in [7] the following:

THEOREM 1 [7, Theorem 10.4). Assume (I)-(III). Then the formula

u(t,x):= sup inf ¢(t,x,y)= inf sup (¢, x,y) a7n
y'eRM y"eR"2 y"”eR"2 y'eR™M

(for (¢, x) € D) determines a global solution of the Cauchy problem (14)—(15).

REMARK 1. Ourhypotheses imply that a “saddle-point” of the function £ (¢, x, -) given
by (16) (with respect to maximizing over R”! and minimizing over R"2) exists. If f has a
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special representation f(p’, p”) := Hi(p') + H2(p”) on R™ x R™, with H; concave and
H, convex, then one can use the “index of non-convexity” and a classical minimax theorem
to give sufficient conditions for (II) to hold. (Concerning this question, see Bardi and Faggian

[11)
COROLLARY 1. Under Hypotheses (1)—~(I1), suppose that

xl’ x” .
IliTn inf ?_(_L_’CTI-_) > —00 locally uniformly in x' € R",
x"|—>+o00
. ¢(xl’ i) "
lim sup e < +00 locally uniformly in x" € R"2.
x| = +o00 X

Then (17) determines a global solution of the Cauchy problem (14)—(15).

REMARK 2. Ifn; = 0 or np = 0, the classical Hopf formula for convex or concave
Hamiltonians will be obtained from (17). In this case, (II) holds trivially. Thus, one can see
from Corollary 1 that our assumption on the initial data is weaker than that of Hopf: for the
inequalities in this corollary to hold, ¢ needs not be (globally) Lipschitz continuous (but it is
required so by Hopf [3] for the validity of his formula). We may easily check this, using the
following concrete examples: (i) ¢ (x) := []r; sinx?; and (ii) ¢ (x) := £/[x].

4. Hopf-type estimates for viscosity solutions.

We still consider the Cauchy problem (14)—(15), but throughout this section ¢ is uni-
formly continuous, and f = f(p/, p”) is a general finite concave-convex function. Then
this Hamiltonian f is continuous by [6, Theorem 35.1]. Therefore, it is known (see [2],
[4]) that the problem under consideration has a unique viscosity solution ¥ = u(t, x) in the
space U C, ([0, +00) x R") of the continuous functions which are uniformly continuous in x
uniformly in z.

Without (3) (resp. (4)), the partial conjugate f*2 (resp. f*!) defined in (5) (resp. (6)) is
still, of course, convex (resp. concave), but might be infinite somewhere. One can claim only
that

*2p,7") > —oco V(p',7") e RM x R™
(resp. f*1(Z, p") < +oo V(Z, p”) e R x R™).
Now, let
Dy:={Z e R": f*1(Z, p") > —o00 Vp” € R™?}

(18)
={Z €eR" :dom f*(',) =R™} = ()| dom f*'(, p),
p"€R™2
D2 c= {Z” € R’lz . f*2(pl’ Z”) < 400 Vp/ = R”l} (19)

= {z” € R" :dom f*2(-, /) =R"} = n dom f*2(p’, "),
p'eR™M
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and, for (¢, x) € D, set

u_(t,x):= sup min {p(x —1z) +¢- f*(2)}, (20)
ZeD, Z"€R™ =
up(t, %)= jnf max (6 —12)+1- T @), 1)

where the lower and upper conjugates, f* and 7", of the Hamiltonian f are the concave-
convex functions (with possibly infinite values) defined by (9)—(12). Clearly, if (¢, x) € D,
we also have

u-(t,x)= sup min {p(y) +¢- f*((x —y)/D},

y'ex'—t-Dy y"eR™2

upt,x) = inf ~ max {p(y)+1-F ((x = y)/D},

y”ex”—t-D2 y'e

cf. (16)—(17). Our estimates for viscosity solutions in the case of general concave-convex
Hamiltonians read as follows:

THEOREM 2. Let f be a ( finite) concave-convex function, and ¢ be uniformly con-
tinuous. Then the unique viscosity solution u € U C, ([0, +00) x R") of the Cauchy problem
(14)—(15) satisfies on D the inequalities

, u—(t,x) <u(,x) <uy(t,x),
where u_ and u are defined by (20)—(21).

PROOF. Foreachz € Dy,let F(p,z') = F(p', p",2)) :=(Z/, p') — f*1(z, p”). Then
F(-, Z) is a (finite) convex function on R” with its (Fenchel) conjugate F*(-, z’) given (cf.
(10)) by

F*(z,Z)) = sup {(z, p) — (, P') + (@, P}

pER”
oo if z=(,72") # &, 7", 22)
= _]f_*(él, Z/l) lf 7= (gl, Z/I) .

Next, consider the Cauchy problem
Yy /ot + F(dy/3x,2) =0 in {t > 0,x € R"},
¥(0,x,2) =¢(x) on {t=0,x €R"}.

This is the Cauchy problem for a convex Hamilton-Jacobi equation (with uniformly continu-
ous initial data). In view of (22), its (unique) viscosity solution ¥ (-, z’) can be represented [1,
Theorem 2.1] as

v, x,z)= min{¢(x —12) +1- F*(z,2)}
= min {¢p(x' — 12, x" —tz")+1t- f*(, 2)}. (23)

Z”ER"Z
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Since f(p',p") < (Z,p) — fA1(, p") = F(p', p”, 7)), we may prove that ¥ (-, 2)) is
a viscosity subsolution of (14)—(15). (In fact, let ¢ € C 1(D) be a test function such that
¥ (-, ) — ¢ has a local maximum at some (¢, x) € D. Then

d¢p/dt + f(d¢/dx) < d¢p/dt + F(3¢p/3x,Z') <0 at (t,x),

as claimed.)
Now, a standard comparison theorem for unbounded viscosity solutions (see [2]) gives

v, x,7) <u,x) V7 eD.

Hence, by (20) and (23), u— (¢, x) = supy¢p, ¥ (¢, x, 7)) <u(t,x)forall (¢, x) € D. Dually,
we have u (¢, x) > u(t, x) on D. O

REMARK 3. It can be shown that u_(resp. ) is a subsolution (resp. supersolution)
of (14)—(15) in the generalized sense of Ishii [5], provided D # @ (resp. Dy # #), cf. (18)-
(19). Further, let f(p’, p”) = H,(p") + H2(p"), with H; concave, H, convex (both finite).
As a consequence of Theorem 2, we then see that the (unique) viscosity solution u of the
Cauchy problem (14)—(15) satisfies on D the inequalities
max min {¢(x —1z) +¢ - (Hf(Z') + Hy (Z")} < u(t, x)

ZIGR"I ZIIER”Z

< min max {¢p(x —tz) + ¢ - (H'(Z) + HF¥ Z")}.

- Z"eR™2 Z'GR"I

These are essentially Bardi—Faggian’s estimates [1, (3.7)] (with only differences in notation).
Here, we follow Rockafellar [6, §30] to take

HY ()= inf {(Z,p')— Hi(p)}, while Hy(z"):= sup {(z", p") — Ha(p")}.
p'eR"1 p"eR™M
(Caution: in general, H # —(—H;)*. For the convex function G := —H]j, one has, not

H}(Z) = —G*(2), but H¥(z) = —G*(—2).)

Of course, for ¢ - (H}(z') + Hy (z")) not to be vague (and the desired estimates to hold),
we adopt the convention that 0 - (00) = 0, and we may set H(z') + Hy (z") = —00 4+ o0
to be any value in [—o0, +00] if 2’ ¢ dom Hf, z” ¢ dom Hy. However, “max” and “min”
in the above Bardi-Faggian estimates are actually attained on D; = dom H}" := {z’ € R" :
H{(z') > —oo} and D, = dom HJ := {z"” € R"? : H}(z") < +00}, respectively.

Going back to Theorem 1, we now have:

COROLLARY 2. Assume (I)-(II) (see §3), with ¢ uniformly continuous. Then (17)
determines the (unique) viscosity solution of the Cauchy problem (14)—(15).

REMARK 4. Since ¢ is uniformly continuous, the inequalities in Corollary 1 are sat-
isfied. This implies that the viscosity solution is locally Lipschitz continuous and solves (14)
almost everywhere. Notice also that here we have D; = R"! and D, = R"2 (cf. (18)(19)).
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If ¢ is Lipschitz continuous, then “min” and “max” in (20) and (21) can be computed
on particular compact subsets of R"2 and R™, respectively. In fact, we have the following,
where Lip(¢) stands for the Lipschitz constant of ¢.

LEMMA 2. Let¢ be (globally) Lipschitz continuous, f be ( finite and) concave-convex,
L > 0 be such that, for some r > Lip(¢),

lfP, ") = f, P < LIp" =" Vp eR™; p", 7" e R, |p"|,[P"| <r
(resp. |f (P, ") — f(P, P")| < LIp'—P'| ¥p" eR"™ p', P eR",|p|, [P <r).
Then (20) (resp. (21)) becomes
u_(t,x) = sup IEHBLW(x —tz)+t- f*(2)}

Z’GD] =

(resp. uy(t,x) = inf max{p(x —tz)+¢- ?*(z)}) .
2’eDy |Z|<L

To prove Lemma 2, we need the following preparations. Given any convex Hamiltonian
H = H(q), and any uniformly continuous initial data vo = vo(a) (a,q € RYM), as was
already mentioned, the Hopf formula '

v(t, @) = mligv{vo(a —tw)+t-H* (@)} (>0,aeRY) 24
we

determines the unique viscosity solution v = v(¢, ) in the space U C, ([0, +00) x RV) of the
Cauchy problem

dv/dt + H(dv/da) =0 in {t > 0, € RV},

v(0,a) = vo(a) on { =0, € RV}.

The next technical lemma is somehow related to the so-called “cone of dependence” for vis-
cosity solutions.

LEMMA 3. Let H be convex, vy be (globally) Lipschitz continuous. Assume that
|H@)-H@I|<Llg—-g) Yg.3eRY, Iql.lgl<r
for some L > 0, r > Lip(vg). Then (24) becomes

v(t, @) = lglli<nL{vo(a —tw)+1t-H*(w)} (¢ >0,aaeRY).

PROOF OF LEMMA 3. We may suppose ¢ > 0. Choose wg = wo(?, @) € RY so that
the value at (¢, @) of the viscosity solution v, determined by (24), is

vo(a — two) + ¢ - H*(wop) .
It suffices to prove |wp| < L. To this end, we first notice that

vola — twg) +t - H*(wp) < vo(ax — tw) + t - H*(w)



240 NGUYEN DUY THAI SON

for any w € RY. Hence,
H*(wo) < t7'[vo(e — tw) — vo(@ — two)] + H* (o)
< Rlw —wp| + H*(w) Yo eRV, (25)
where R := Lip(vp). Now, define
hig) = [+oo ff lgl > R,
(wo,q) if lg| <R.

Then h is a lower semicontinuous proper convex function on RY, with h*(w) = R|w — wp|.
So (25) implies

H(q) = (w0, q) — H*(w0) > (w0, q) — (h* + H*)(w)
for all w € RN Therefore,

H(q) = (w0, q) + sup {—(h* + H")(@)} = (w0, q) + (B* + H*)*(0) (26)

weRN

for any g € R¥. Next, consider the “infimum convolute” hOH given by the formula

(hOH)(g) := inf {h(g) + H(@)} = min {(wo,q) + H(g —¢)}.
q+9=q lgl<R

This infimum convolute [6, Theorem 16.4] is a (finite) convex function with (hOH)* = h* +
H*. It follows from (26) that

H(q) = (wo, q) + (hOH)**(0) = (wo, q) + (ROH)(0),
i.e. that
H(q) = (w0, q) + min {H(q) — (w0, q)},
lgI<R
for all g € RV . Thus, there exists ag € RY, |g] < R, such that
H(@) = H@ + (00,9 -7) VYgeR". (27)

Finally, assume, contrary to our claim, that |wg| > L. Then, for any fixed ¢ with 0 < ¢ <
(r— R)/|wo|, take g := q + ewo. Ofcourse,O < |g—q| = €lwo| < r —R. Hence |q|, [q| < r.
But, by (27), this g would satisfy

H(g) — H(@Q) = |wo| - |9 —q] > Llg — 11,
which contradicts the assumption of the lemma. The proof is thereby completed. O
PROOF OF LEMMA 2. For any temporarily fixed z’ € Dy,¢ > 0, x’ € R"™, let
H=H(p")=-f"(,p") and vo=vo(x"):=¢x —1z',x").

Obviously, H is a (finite) convex function on R”2, with H*(z") = f* (z’, Z) (in view of (10)).
For definiteness, suppose that

lf',p"— f@, ) <Llp" —P"| Vp' eR™;p",P"eR™, |p"|,1p"|<r (28)
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for some L > 0, r > Lip(¢) (= Lip(vp)). Then it can be shown that
|H(p") —H@") < LIp" -P7"| vp". " eR™, |p". 1P| <r. (29)

In fact, given arbitrary ¢ € (0, +00) and p”, p” € R"2, with |p”|, |p”| < r, since 7’ € Dy,
we could find (using (6) and (18)) a p’ € R™ such that

+OO > f*l (z/’ —ﬁ//) > (ZI, pl) _ f(p/’ ﬁ”) —¢c.
So, (6) together with (28) implies
f*} (z/, p//) - f*] (Z,, -ﬁl/) S f*l (Z/, p/l) _ <Z/, p/> + f(pl, ﬁ”) +8
<, p)=-f,.p") =, )Y+ f(P. D) +e
<If@,.p")—f@.P)+e<Llp" -7 +e.
Because ¢ € (0, 400) is arbitrarily chosen, we get
H@")-H@P") =1, p") - &7 < LIp" - P"l.
Similarly,
H(p")—H®@") <L|p" - p"|=LIp" - D"|.

Thus (29) has been proved. Therefore, we may apply Lemma 3 to these H and vp. (Here,
N := ny, while x” and 7" stand for a and w, respectively.) It follows that (for an arbitrary
x" e R"2)

min {¢p(x' —tz',x" — ")+t - f*(,2")}

ZIIERIIZ
= min {vo(x" —tZ") 4+t - H*(Z")} = min {vo(x”" —tZ") +1t - H*(Z"))}
7"eR"™2 |2”I<L
= min {¢px’ — 7, x" —t)+¢t- ¥, 7).
l2”|<L =

Hence, (20) gives us

u_(t,x) = sup min {$(x —12) +1- f*(2))

ZeDy 1Z"1=L

for any (¢, x) € D. Dually in the other case corresponding to (21). O
As an immediate consequence of Lemma 2, we have:

COROLLARY 3. Let ¢ be (globally) Lipschitz continuous, f(p’, p”) = Hi(p') +
Hy(p"), with Hy concave, H, convex (both finite). Let L1, Ly > 0 be such that, for some
r > Lip(¢),

|Hi(p') — Hi(P)| < Lilp' = P'| Vp',P €R",|p|,[PI<r,
|Hy(p") — Ho(P")| < Lalp” — D" Vp", P’ e R, |p"|,[p"| <r.
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Then the unique viscosity solution u € U C, ([0, +00) x R") of the Cauchy problem (14)—(15)
satisfies on D the inequalities

max min {¢p(x —12) +¢ - (H (@) + HY (Z")} < u(t, x)

I'|<Ly 12"1<L2
< min max {¢(x —t2) +1 - (H{(Z) + Hy(Z"))}.
Iz2”|1<L2 12/|<Ly
REMARK 5. The strict inequality in the hypothesis “r > Lip(¢)” of Lemma 2 and
Corollary 3 (or that in “r > Lip(vg)” of Lemma 3) is essential for the proofs. In this connec-

tion, Corollary 3 corrects a result by Bardi and Faggian (cf. [1, Lemma 3.3]), where they take
r := Lip(¢), but this is impossible, as the following example shows.

EXAMPLE 1. Letn;:=1=:nj,¢ =0, H = —(p)?/2, and H, = p”. In this case,
Lip(¢) = 0. Then any L1, L, > O surely satisfy all the hypotheses of [1, Lemma 3.3], but the
desired estimates become

max min {f- (3"|1) — (2)?/2)} < u(t, x)
|2'l<Lj 12"|<L2

< min max {t- (3"|1) — ()%/2)}

T 2=l 1Z1<Ly
that would not be true if # > O and L, < 1.

REMARK 6. “Duality” of the results in this section can be established for the case
where f is merely continuous, but ¢ = ¢ (x’, x”) is concave-convex and (globally) Lipschitz
continuous, as is done in [1] when ¢ (x’, x”) = u1(x") + u2(x”), with u; concave, u, convex
(both Lipschitz continuous).

EXAMPLE 2. Letn; = ny := k > 0, and fi(p) := (p/, p”) for p = (p/, p") €
R¥ x R¥. Then fi is trivially a concave-convex function. (One can also check directly that it
is neither convex nor concave.) There could not be any functions g1 = ¢1(p’), & = g(p”),
with f1(p) = g1(p’) + g2(p”). To find a (finite) concave-convex function f on R"1 x R"™2
with (3)—(4) holding, for which there do not exist any (concave) H; = H;(p’) and (convex)
H, = Hp(p") such that f(p) = Hi(p') + H2(p”), we can now take, for example,

£ =—1p 12+, p") + 1p"P? for p=(p,p") e R" x R™.
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