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Abstract. Suppose that pθ is a probability density of sample X, T is a mapping, gθ (t) is an induced probability
density by T and kθ (x) is a conditional density given T = t . Then, the following results are proved under some
conditions. (a) L2-differentiability of the family (

√
pθ ) is equivalent to that of (

√
gθ ) and (

√
kθ ). (b) Regularity of

the family (pθ ) is equivalent to that of (gθ ) and (kθ ).

1. Introduction.

Let µ be a σ -finite measure on a σ -algebra F of sets in a space X . T is a mapping from
X into a space L. ν0 is the measure induced in L on the σ -algebra A; i.e. A is the σ -algebra
of sets A in L such that T −1A ∈ F , and ν0(A) = µ(T −1A).

Notice that ν0 is not necessarily σ -finite. But there always exists a σ -finite measure ν on
A which dominates ν0. Indeed µ is dominated by some finite measure µ1 and the measure
induced in L from µ1 is finite and dominates ν0. Let Θ be an open parameter set in R

k , θ an
element of Θ and pθ a density function on X . Put

Qθ(A) =
∫

T −1A

pθ(x)dµ , A ∈ A ,

ν(A) = 0 ⇒ µ(T −1A) = 0 ⇒ Qθ(A) = 0 .

Hence ν � Qθ , and so by the Radon-Nikodym theorem there exists a function gθ on L such
that ∫

T −1A

pθdµ = Qθ(A) =
∫

A

gθdν , A ∈ A .

We shall write gθ (t) = E[pθ |T = t] which is the conditional expectation given T = t .
We denote an inner product by (·, ·), the transpose of a row vector a by a′ and |a| =√

(a, a). f ∈ Lp(µ) (resp. f ∈ Lp(Qθ )) means
∫ |f |pdµ < ∞ (resp.

∫ |f |pgθ (t)dν < ∞).
We define

kθ(x) =
{

pθ(x)/gθ (T (x)) on {x : gθ (T (x)) �= 0}
0 otherwise

.
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This is a conditional density given T . It is well known that the family (
√

gθ ) induced by
T is L2-differentiable with the derivative E[ṗθ (x)|T ]/(2√

gθ (t)) if the family (
√

pθ) is L2-
differentiable. Recent references are Bickel, et al. [1] and Ibragimov and Hasminskii [4].
Further the family (

√
kθ ) is smooth in the sense of conditional densities if the family (

√
pθ)

is smooth. This result is proved by Kuboki [2], using Lebesgue Convergence Theorem and
a concept of loosely convergence. The subject of this paper is to give some properties of
L2-differentiability of the families (

√
pθ ) and (

√
kθ ). In Section 3, we shall prove L2-

differentiability of (
√

kθ ) under that of (
√

pθ ) by a direct calculation (Theorem 3.1). Con-
versely, when both the families (

√
gθ ) and (

√
kθ) are L2-differentiable respectively, is the

family (
√

pθ) L2-differentiable? This is true. We shall prove this in Theorem 3.2 and also
refer the factorization of Fisher information matrix. Furthermore, it is proved that under some
conditions, regularity of (pθ ) is equivalent to that of (gθ ) and (kθ) (Theorems 3.5 and 3.6).
Section 4 deals with the proofs of these theorems.

2. Definition and properties of the conditional expectation.

To simply notations, we shall write gθ (t) or gθT (x) for gθ (T (x)) and denote the square
root of densities by sθ := √

pθ , qθ := √
gθ and rθ := √

kθ .

DEFINITION 2.1. The family (
√

pθ) is L2-differentiable if there exists ṡθ ∈ L2(µ)

such that for every θ ∈ Θ ,∫
|√pθ+h(x) − √

pθ(x) − (ṡθ (x), h)|2dµ = o(|h|2) . (2.1)

DEFINITION 2.2. The family (
√

kθ ) is L2-differentiable in the sense of conditional
densities if there exists ṙθ ∈ L2(Qθ ) such that for every θ ∈ Θ ,∫

|√kθ+h(x) − √
kθ(x) − (ṙθ (x), h)|2gθ (T (x))dµ = o(|h|2) . (2.2)

We shall say that the family (
√

kθ ) is conditional L2-differentiable given T if the family
(
√

kθ) is L2-differentiable in the sense of (2.2). We shall prove in Theorem 3.1 that under
L2-differentiability of (

√
pθ), the family (kθ) satisfies (2.2) with the derivative

ṙθ (x) =
⎧⎨
⎩

ṡθ (x)

qθT (x)
− sθ (x)q̇θT (x)

qθT (x)2 on {x : gθT (x) �= 0}
0 otherwise

,

where q̇θ is L2-derivative of
√

gθ .

DEFINITION 2.3. The family (
√

pθ ) is continuous L2-differentiable if it satisfies (2.1)
and the L2-derivative ṡθ is L2-continuous, i.e., for every θ ∈ Θ ,∫

|ṡθ+h(x) − ṡθ (x)|2dµ → 0 as |h| → 0 . (2.3)
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DEFINITION 2.4. The family (
√

kθ ) is continuous L2-differentiable if it satisfies (2.2)
and the L2-derivative ṙθ is L2-continuous in the following sense.

For every θ ∈ Θ ,∫
|ṙθ+h(x) − ṙθ (x)|2gθT (x)dµ → 0 as |h| → 0 . (2.4)

We sometimes denote that (pθ ) (resp. (kθ)) is regular if the family (
√

pθ) (resp. (
√

kθ))
is continuous L2-differentiable.

REMARK 2.5. By the property of the conditional expectation (see Nabeya [5]),

E[pθ (x)
gθ (t)

1[gθ>0]|T ] = 1[gθ >0]
gθ (t)

E[pθ(x)|T ] = 1[gθ >0]. Hence, it follows that E[kθ(x)|T ] =
1[gθ (t)>0] ≤ 1 a.e.v.

The score functions of X and a mapping T = t are defined respectively by

lθ (x) = ṗθ (x)

pθ (x)
1[x:pθ>0] , lθ (t) = ġ θ (t)

g θ (t)
1[t :gθ>0] ,

where ṗθ (resp. ġθ ) is L1-derivative of pθ (resp. gθ ). It is well-known that lθ (x) =
2ṡθ (x)/sθ(x)1[sθ>0] and lθ (t) = 2q̇θ (t)/qθ (t)1[qθ>0] if the family (

√
pθ ) is L2-differentiable.

See Bickel, et al. [1].

3. Main results.

First, we consider the following conditions.

CONDITION A.
∫ |lθ (t)|2kθ+h(x)gθT (x)dµ exists for small h.

CONDITION B.
∫ |lθ+h(x)|2kθ+h(x)gθT (x)dµ and

∫ |lθ+h(t)|2gθT (x)dµ exist for
small h, respectively.

The above conditions are needed as the integrability when we shall prove Theorems
3.1, 3.2 and so on. Condition A is a weak assumption. Actually, condition A is satisfied
automatically from

∫
kθ (x, y)dν ≤ 1 in the case of kθ (x, y) = pθ (x, y)/pθ(x). The detail is

referred in Example 3.3.

THEOREM 3.1. Suppose that (
√

pθ) is L2-differentiable and condition A is satisfied.
Then the family (

√
kθ ) is L2-differentiable in the sense of (2.2) with the derivative

ṙθ (x) = ṡθ (x)qθT (x) − sθ (x)q̇θT (x)

qθT (x)2
1[x:gθ T (x)>0] .

THEOREM 3.2. Suppose that the family (
√

kθ ) is L2-differentiable in the sense of (2.2)
with the derivative ṙθ (x), (

√
gθ ) is L2-differentiable with the derivative q̇θ (t) and that condi-

tion A is satisfied. Then the family (
√

pθ ) is L2-differentiable with the derivative

ṡθ (x) = ṙθ (x)
√

gθ (T (x)) + √
kθ (x)q̇θ (T (x)) .

L2-differentiability of induced probability densities is common knowledge (see Bickel,
et al. [1]). Hence, by combining Theorems 3.1 and 3.2, we can see that the family (

√
pθ (x)) is



156 YOICHI MIYATA

L2-differentiable iff (
√

gθ (t)) is L2-differentiable and (
√

kθ (x)) is conditional L2-differenti-
able given T .

EXAMPLE 3.3. Suppose that {X ,A, µ} and {Y,B, ν} are two measure spaces. Let A
and B be σ -algebras of subsets of X and Y , and µ and ν be σ -finite measures on X and Y ,
respectively. {X ×Y,A×B, µ×ν} is the cartesian product space of {X ,A, µ} and {Y,B, ν}.
Let (PXY

θ ) be probability distributions on X ×Y with densities pθ(x, y) relative to a σ -finite
measure µ × ν. Then the induced probability density by a mapping T : X × Y → X
is marginal pθ(x). Thus the family (

√
pθ (x, y)) is L2-differentiable iff both the families

(
√

pθ(x)) and (
√

pθ (y|x)) are L2-differentiable. Here, L2-differentiability of (
√

pθ(y|x)) is
correspond to (2.2), i.e., there exists ṡθ (y|x) ∈ L2(PX

θ × ν) such that∫∫
|√pθ+h(y|x) − √

pθ(y|x) − (h, ṡθ (y|x))|2pθ (x)dµdν = o(|h|2) .

The concept of L2-differentiability is available for a discrete probability function with
an open parameter set since counting measure µ is σ -finite.

EXAMPLE 3.4. Suppose that the conditional density of x given k is

fp(x|k) =
(

n

x − [k]
)

px−[k](1 − p)n−x+[k] x = [k], [k] + 1, · · · , [k] + n

and a random variable k is according to N(µ, σ 2), where [·] is Gaussian integer and 0 < p <

1, µ and σ are unknown parameters, that is θ = (p,µ, σ). Since px−[k](1 − p)n−x+[k] is
ordinary differentiable with respect to p, it is obvious that

n+[k]∑
x=[k]

(√
fp+h(x|k) − √

fp(x|k)

h
− ṡp(x|k)

)2

→ 0 as |h| → 0 , (3.1)

where ṡp(x|k) =
√(

n

x − [k]
) (

x−[k]−np
2

)
p

x−[k]−2
2 (1 − p)

n−x+[k]−2
2 . Furthermore, putting w =

x − [k], (3.1) does not depend on k. Thus it is verified that (
√

fp(x|k)) is conditional L2-
differentiable given k. On the other hand, it is well known that the normal density of k is
L2-differentiable. Hence so is the joint density of (X,K).

Subsequently, we shall state the factorization of information matrix. We define the infor-
mation matrix of pθ , gθ as

IX(θ) = 4
∫

ṡθ (x)ṡθ (x)′dµ , IT (θ) = 4
∫

ṙθ (t)ṙθ (t)
′dν ,

respectively and the conditional information matrix of kθ (x) given T as IX|T (θ) =
E[(k̇θ k̇

′
θ )/kθ |T ]. It is known that IX(θ) = ET

θ {IX|T (θ)} + IT (θ) under L2-differentiability
of the family (

√
pθ). See Kuboki [2].

THEOREM 3.5. Suppose that the family (
√

kθ ) is conditional L2-differentiable given
T and (gθ (t)) is L2-differentiable. Then,

IX(θ) = ET
θ {IX|T (θ)} + IT (θ) .



DIFFERENTIABILITY OF DENSITIES 157

PROOF. Applying Theorem 3.2, the family (
√

pθ ) is L2-differentiable from the as-
sumption. By noting ġ θ (t) = E[ṗθ (x)|T ] and ṙθ (x) = ṡθ (x)/qθ (t) − sθ (x)q̇θ (t)/(qθ (t)

2),
the assertion is proved. �

There are some papers which treat continuous L2-differentiability instead of mere L2-
differentiability because things are easier. Here we shall state the following theorems con-
cerned with regularity. Let a score function be lθ (x) = (ṗθ (x)/pθ (x))1[pθ>0].

THEOREM 3.6. Suppose that the family (pθ ) is regular and conditions A, B are satis-
fied. Then the family (kθ ) is regular in the sense of Definition 2.4.

THEOREM 3.7. Suppose that the family (gθ ) is regular, the family (kθ ) is regular in
the sense of Definition 2.4 with the derivative ṙθ and conditions A, B are satisfied. Then the
family (pθ ) is regular.

When the family (pθ ) is regular, regularity of induced probability densities by T is
proved by Bickel, et al. [1]. Hence, by combining Theorems 3.6 and 3.7, we can see that
under conditions A, B, regularity of the family (pθ ) is equivalent to that of (gθ ) and (kθ).

Finally, we shall introduce the useful theorem for checking L2-differentiability of re-
gression models. Let the conditional density of y given x be pθ (y|x) = pθ(x, y)/pθ (x) on
{x : pθ > 0} and 0 on {x : pθ = 0}. In some cases, it is difficult to check L2-differentiability
of (

√
pθ (y|x)) in measure PX

θ × ν even if (
√

pθ (y|x)) is L2-differentiable in measure ν. The
following Theorem 3.8 gives the sufficient condition of conditional L2-differentiability given
T : X × Y → X , i.e.,∫∫

|sθ+h(y|x) − sθ (y|x) − (ṡθ (y|x), h)|2dνdPX
θ = o(|h|2) for every θ .

This result is proved by Strasser [3], Theorem 3.4, p. 120. Suppose that for every x ∈ X , the
family (

√
pθ (y|x)) is L2-differentiable in measure ν, i.e.,∫

|sθ+h(y|x) − sθ (y|x) − (ṡθ (y|x), h)|2dν = o(|h|2) for every θ .

Note that we shall use the same notation ṡθ (y|x) for the L2-derivative in measure PX
θ × ν as

well as for the L2-derivative in measure ν. For the following theorem, we consider continu-
ous L2-differentiability instead of mere L2-differentiability. We denote Fisher’s information
matrix with respect to ν by IY |x(θ) := 4

∫
ṡθ (y|x)ṡθ (y|x)′dν. Let IY |x,h(θ) := IY |x(θ + h).

IY |x,h(θ) is called to be uniformly PX
θ -integrable if limM→∞ suph

∫
IY |x,h(θ)>M |IY |x,h(θ)|dPX

θ

= 0 for every θ ∈ Θ . If IY |x,h(θ) is uniformly PX
θ -integrable, it follows that

EX
θ {IY |x,h(θ)} → EX

θ {IY |x(θ)} as |h| → 0 . (3.2)

Of course, if there exist PX
θ -integrable functions Hh(x : θ) such that for any small h, IY |x,h(θ)

≤ Hh(x : θ) a.e. PX
θ and

∫
Hh(x : θ)dPX

θ → ∫
H(x : θ)dPX

θ as |h| → 0, then (3.2) holds
from Lebesgue Convergence Theorem. Let λ = ν × PX

θ . ṡθ (y|x) is called to be ν × PX
θ -

continuous if for every θ ∈ Θ , λ{(x, y) : |ṡθ+h(y|x) − ṡθ (y|x)| ≥ ε} → 0 as |h| → 0.
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THEOREM 3.8. Suppose that for every x ∈ X , the family (
√

pθ(y|x)) is continuous
L2-differentiable in measure ν with the derivative ṡθ (y|x). Let Fisher’s information matrix
with respect to ν be IY |x(θ). If the family of functions IY |x,h(θ) satisfies (3.2) and ṡθ (y|x) is
ν × PX

θ -continuous, then the family (
√

pθ(y|x)) is continuous L2-differentiable in the sense
of Definition 2.4.

EXAMPLE 3.9 (Normal Linear Model).

Yi = α + βxi + εi (i = 1, · · · , n)

where ε1, · · · , εn
i.i.d∼ N(0, σ 2), σ is known and α and β are unknown.

Suppose that random variables x1, · · · , xn are i.i.d with common density fθ which is
continuous L2-differentiable at θ with the expectation µ(θ) = EθXi , and each measure of
Yi, xi (i = 1, · · · , n) is Lebesgue measure. Let Y = (Y1, · · · , Yn)

′ and x = (x1, · · · , xn)
′.

Let z(·) be a density of standard normal distribution and the family (pα,β(y|x)) be the condi-
tional densities of Y given x. It is verified that pα,β(y|x) = σ−n

∏n
i=1 z((yi − α − βxi)/σ )

is continuous L2-differentiable in measure µY . (See Bickel, et al. [1], Proposition 2).

Since IY |x,h(α, β, θ) =
⎛
⎝ n/σ 2 ∑n

i=1 xi/σ
2 0∑n

i=1 xi/σ
2 ∑n

i=1 x2
i /σ 2 0

0 0 0

⎞
⎠ does not depend

on h and µ(θ) is continuous from L2-differentiability of fθ , EX{IY |x(α, β, θ)} =⎛
⎝ n/σ 2 nµ(θ)/σ 2 0

nµ(θ)/σ 2 n(σ 2 + µ(θ)2)/σ 2 0
0 0 0

⎞
⎠ satisfies (3.2).

Thus, (pα,β(y|x)) satisfies (2.2) and (2.4) from Theorem 3.8. Applying Theorem 3.6,
pθ,α,β (x, y) = σ−n

∏n
i=1 z((yi − α − βxi)/σ )fθ (xi) is continuous L2-differentiable.

4. Proofs.

In this section, we shall prove the theorems stated in Section 3. Let the partition of L,
Ah := {t : gθ (t) > 0 and gθ+h(t) > 0}, Bh := {t : gθ (t) > 0 and gθ+h(t) = 0} and
Ch := {t : gθ (t) = 0 and gθ+h(t) > 0}.

LEMMA 4.1. Suppose that the family (
√

pθ) is L2-differentiable and ξ(T (x)) is a
function such that

∫
ξ(t (x))kθ+h(x)gθT (x)dµ < ∞. Then the following holds

(i)
∫

(rθ+h(x) − rθ (x))2gθT (x)dµ = O(|h|2)

(ii)
∫

ξ(t (x))(rθ+h(x) − rθ (x))2gθT (x)dµ = o(1) .
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PROOF. First, we shall prove Lemma 4.1(i).

∫
T −1Ah

(
sθ+h(x)

qθ+hT (x)
− sθ (x)

qθT (x)

)2

gθT (x)dµ

≤
∫

T −1Ah

(qθ+hT (x) − qθT (x))2 pθ+h(x)

gθ+hT (x)
dµ +

∫
(sθ+h(x) − sθ (x))2dµ

=
∫

Ah

(qθ+h(t) − qθ(t))
2E

[ pθ+h(x)

gθ+hT (x)

∣∣∣∣ T ]
dν + O(|h|2) (4.1)

From L2-differentiability of (
√

gθ ) and Remark 2.5, we have (4.1) = O(|h|2). On the
other hand, it is easily verified that

∫
T −1Bh

|rθ+h(x) − rθ (x)|2gθ T (x)dµ = O(|h|2) and∫
T −1Ch

|rθ+h(x) − rθ (x)|2gθT (x)dµ = 0. Hence (i) is proved. Next, we shall prove Lemma
4.1(ii). By using the partition of integral domain, we have

∫
|ξ(T (x))| |√kθ+h(x) − √

kθ (x)|2gθT (x)dµ

≤
∫

T −1
[
t :|ξ(t)|> 1

|h|
] |ξ(T (x))| |√kθ+h(x) − √

kθ (x)|2gθT (x)dµ (4.2)

+ 1

|h|
∫

|√kθ+h(x) − √
kθ (x)|2gθT (x)dµ (4.3)

It holds from Lemma 4.1(i) that (4.3) → 0 as |h| → 0. Since we have E[kθ(x)|T ] ≤ 1 a.e. ν

for every θ from Remark 2.5, (4.2) is bounded above by

∫[
t :|ξ(t)|> 1

|h|
] |ξ(t)|gθ (t)(E[kθ+h(x)|T ] + E[kθ(x)|T ])dν

≤ 2
∫

|ξ(t)|1[
|ξ(t)|> 1

|h|
]gθ (t)dν . (4.4)

It follows from Lebesgue Convergence Theorem that (4.4) → 0 as |h| → 0. Hence (ii) is
proved. �

PROOF OF THEOREM 3.1. From rθ = sθ/qθ and rθ+h = sθ+h/qθ+h on T −1Ah, it
follows that∫

T −1Ah

|rθ+h(x) − rθ (x) − (h, ṙθ (x))|2gθ T (x)dµ

≤ 2
∫

T −1Ah

|sθ+h(x) − sθ (x) − (h, ṡθ (x))|2dµ (4.5)

+ 2
∫

T −1Ah

|(qθ+hT (x) − qθT (x))rθ+h(x) − (h, rθ (x)q̇θT (x))|2dµ . (4.6)
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It is clear that (4.5) = o(|h|2). (4.6) is bounded above by

4
∫

|qθ+hT (x) − qθT (x) − (h, q̇θ T (x))|2kθ+h(x)dµ (4.7)

+ 4
∫

|rθ+h(x) − rθ (x)|2
(

h,
q̇θT (x)

qθT (x)

)2

gθT (x)dµ . (4.8)

By Remark 2.5, it holds that (4.7) = o(|h|2). Setting lθ (t) = 2(q̇θT (x)/qθT (x)), it follows
from Lemma 4.1 (ii) that (4.8) = o(|h|2). Hence the assertion is proved. �

LEMMA 4.2. Suppose that the family (
√

kθ ) is conditional L2-differentiable given T.
Then, ∫

|√kθ+h(x) − √
kθ (x)|2gθT (x)dµ = O(|h|2) .

PROOF.∫
|√kθ+h(x) − √

kθ (x)|2gθT (x)dµ

≤ 2
∫

|√kθ+h(x) − √
kθ (x) − (ṙθ (x), h)|2gθT (x)dµ + 2

∫
|(h, ṙθ (x))|2gθT (x)dµ

= O(|h|2) .

Thus, the lemma is proved. �
LEMMA 4.3. Suppose that (

√
kθ ) is L2-differentiable and

∫
ξ(t (x))kθ+h(x)gθT (x)dµ

< ∞ for small h. ∫
|ξ(T (x))| |√kθ+h(x) − √

kθ (x)|2gθT (x)dµ = o(1) .

PROOF. This is proved by the same argument as in the proof of Lemma 4.1 (ii). �
PROOF OF THEOREM 3.2. Since pθ(x) = kθ (x)gθ (t) on {x : gθ > 0}, we have∫

T −1Ah

|√pθ+h(x) − √
pθ(x) − (ṡθ (x), h)|2dµ

≤ 3
∫

|√kθ+h(x) − √
kθ (x) − (ṙθ (x), h)|2gθT (x)dµ (4.9)

+ 3
∫

|√gθ+hT (x) − √
gθT (x) − (q̇θT (x), h)|2kθ+h(x)dµ (4.10)

+ 3
∫

|√kθ+h(x) − √
kθ (x)|2(q̇θT (x), h)|2dµ . (4.11)

It is clear from the assumption that (4.9) = o(|h|2). Applying Remark 2.5, (4.10) = o(|h|2).
(4.11) does not exceed

3

4
|h|2

∫
|√kθ+h(x) − √

kθ(x)|2|lθ (t)|2gθT (x)dµ ,
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where lθ (t) = 2q̇θ (t)/qθ (t). It follows from Lemma 4.3 that (4.9) = o(|h|2). On the other
hand, we have pθ+h = 0 a.e. µ on T −1Bh since 0 = ∫

Bh
gθ+hdν = ∫

T −1Bh
pθ+hdµ. Hence

∫
T −1Bh

|√pθ+h(x) − √
pθ(x) − (ṡθ (x), h)|2dµ

≤
∫

T −1Bh

pθ (x)dµ +
∫

T −1Bh

|(ṡθ (x), h)|2dµ

≤
∫

Bh

gθ (t)dν + |h|2
∫

T −1Bh

|ṡθ (x)|2dµ

= o(|h|2) .

It is easily verified that
∫
T −1Ch

|√pθ+h(x) − √
pθ(x) − (ṡθ (x), h)|2dµ = o(|h|2). Thus, the

assertion is proved. �
LEMMA 4.4. Suppose that the family (

√
gθ ) is regular and

∫ |lθ+h(t)|2gθ T (x)dµ <

∞. Then the following holds

∫
|lθ+h(t) − lθ (t)

2gθT (x)dµ = o(1) .

PROOF.

4
∫

T −1Ah

∣∣∣∣ q̇θ+hT (x)

qθ+hT (x)
− q̇θT (x)

qθT (x)

∣∣∣∣
2

gθT (x)dµ

= 4
∫

T −1Ah

∣∣∣∣ q̇θ+hT (x)
qθT (x)

qθ+hT (x)
− q̇θT (x)

∣∣∣∣
2

dµ

≤ 2
∫

T −1Ah

|qθ+hT (x) − qθT (x)|2|lθ+h(t)|2dµ + 8
∫

|q̇θ+hT (x) − q̇θT (x)|2dν

= 4
∫

Ah

(
qθ+h(t)

qθ (t)
− 1

)2

|lθ+h(t)|2gθ (t)dν + o(1) . (4.12)

By the same argument as Lemma 4.1 (ii), (4.12) tends to 0 as |h| → 0. It is verified that∫
T −1Bh

|lθ+h(t) − lθ (t)|2gθT (x)dµ = o(1) and
∫
T −1Ch

|lθ+h(t) − lθ (t)|2gθ T (x)dµ = 0.
Hence the assertion is proved. �

LEMMA 4.5. Suppose that the family (
√

pθ ) is regular and
∫ |lθ+h(x)|2kθ+h(x)gθ

T (x)dµ < ∞. Then, it follows that

∫
|lθ+h(x)rθ+h(x) − lθ (x)rθ (x)|2gθT (x)dµ = o(1) .
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PROOF. Since lθ (x)rθ (x) = ṡθ (x)/qθT (x), we have

4
∫

T −1Ah

∣∣∣∣ ṡθ+h(x)

qθ+hT (x)
− ṡθ (x)

qθT (x)

∣∣∣∣
2

gθ T (x)dµ

≤ 8
∫

T −1Ah

∣∣∣∣ ṡθ+h(x)

qθ+hT (x)
qθT (x) − ṡθ+h(x)

∣∣∣∣
2

dµ (4.13)

+ 8
∫

|ṡθ+h(x) − ṡθ (x)|2dµ .

Putting ξθ+h(t) := E[|lθ+h(x)rθ+h(x)|2 | T ], the following inequality holds in (4.13) by
the same argument as Lemma 4.1 (ii).

(4.13) ≤ 8
∫

T −1Ah

|qθ+hT (x) − qθT (x)|2|lθ+h(x)rθ+h(x)|2dµ

= 8
∫

Ah

|qθ+h(t) − qθ (t)|2E[|lθ+h(x)rθ+h(x)|2 | T ]dν

≤ 8

|h|
∫

|qθ+h(t) − qθ (t)|2dν + 8
∫

|ξθ+h(t)|> 1√|h|
|ξθ+h(t)|(gθ+h(t) + gθ (t)dν .

Therefore the assertion is proved. �
PROOF OF THEOREM 3.5. Since L2-differentiability of the family (

√
kθ) is proved in

Theorem 3.1, it is sufficient to prove L2-continuity of the derivative ṙθ (x). By using ṙθ (x) =
(lθ (x) − lθ (t))rθ (x), it follows that

∫
|ṙθ+h(x) − ṙθ (x)|2gθT (x)dµ

=
∫

|(lθ+h(x) − lθ+h(t))rθ+h(x) − (lθ (x) − lθ (t))rθ (x)|2gθT (x)dµ

≤ 2
∫

|lθ+h(x)rθ+h(x) − lθ (x)rθ (x)|2gθ T (x)dµ (4.14)

+ 2
∫

|lθ+h(t)rθ+h(x) − lθ (t)rθ (x)|2gθ T (x)dµ . (4.15)

It follows from Lemma 4.5 that (4.14) → 0 as |h| → 0. (4.15) does not exceed

4
∫

|lθ+h(t) − lθ (t)|2gθ (t)dν + 4
∫

|rθ+h(x) − rθ (x)|2|lθ (t)|2gθ (t)dµ . (4.16)

Using Lemma 4.3 and 4.4, (4.16) → 0 as |h| → 0. Therefore (4.15) → 0 as |h| → 0.
Hence the assertion is proved. �
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PROOF OF THEOREM 3.6. It is sufficient to prove that the L2-derivative ṡθ (x) is L2-
continuous since L2-differentiability is proved in Theorem 3.2. For ṡθ = ṙθ

√
gθ + √

kθ q̇θ ,∫
|ṡθ+h(x) − ṡθ (x)|2dµ

=
∫

|ṙθ+h(x)
√

gθ+h(t) + √
kθ+h(x)q̇θ+h(t) − ṙθ (x)

√
gθ (t) − √

kθ(x)q̇θ (t)|2dµ

≤ 4
∫

|ṙθ+h(x) − ṙθ (x)|2gθ T (x)dµ (4.17)

+ 4
∫

|√gθ+h(t) − √
gθ (t)|2|ṙθ+h(x)|2dµ (4.18)

+ 4
∫

|q̇θ+h(t) − q̇θ (t)|2kθ+h(x)dµ (4.19)

+ 4
∫

|√kθ+h(x) − √
kθ(x)|2|q̇θ (t)|2dµ . (4.20)

We have (4.18) → 0 as |h| → 0 by the same argument in (4.12). Applying Remark 2.5,
(4.19) → 0 as |h| → 0. By Lemma 4.3, (4.20) → 0 as |h| → 0. Hence the assertion is
proved. �
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