Differentiability of Densities

Yoichi MIYATA

Waseda University Honjo Senior High School
(Communicated by K. Komatsu)

Abstract. Suppose that p_{θ} is a probability density of sample X, T is a mapping, $g_{\theta}(t)$ is an induced probability density by T and $k_{\theta}(x)$ is a conditional density given T = t. Then, the following results are proved under some conditions. (a) L^2 -differentiability of the family $(\sqrt{p_{\theta}})$ is equivalent to that of $(\sqrt{g_{\theta}})$ and $(\sqrt{k_{\theta}})$. (b) Regularity of the family (p_{θ}) is equivalent to that of (g_{θ}) and (k_{θ}) .

1. Introduction.

Let μ be a σ -finite measure on a σ -algebra \mathcal{F} of sets in a space \mathcal{X} . T is a mapping from \mathcal{X} into a space \mathcal{L} . ν_0 is the measure induced in \mathcal{L} on the σ -algebra \mathcal{A} ; i.e. \mathcal{A} is the σ -algebra of sets A in \mathcal{L} such that $T^{-1}A \in \mathcal{F}$, and $\nu_0(A) = \mu(T^{-1}A)$.

Notice that ν_0 is not necessarily σ -finite. But there always exists a σ -finite measure ν on $\mathcal A$ which dominates ν_0 . Indeed μ is dominated by some finite measure μ_1 and the measure induced in $\mathcal L$ from μ_1 is finite and dominates ν_0 . Let Θ be an open parameter set in $\mathbb R^k$, θ an element of Θ and p_θ a density function on $\mathcal X$. Put

$$Q_{\theta}(A) = \int_{T^{-1}A} p_{\theta}(x) d\mu \,, \quad A \in \mathcal{A} \,,$$
$$\nu(A) = 0 \Rightarrow \mu(T^{-1}A) = 0 \Rightarrow Q_{\theta}(A) = 0 \,.$$

Hence $\nu\gg Q_{\theta}$, and so by the Radon-Nikodym theorem there exists a function g_{θ} on $\mathcal L$ such that

$$\int_{T^{-1}A} p_{\theta} d\mu = Q_{\theta}(A) = \int_{A} g_{\theta} d\nu, \quad A \in \mathcal{A}.$$

We shall write $g_{\theta}(t) = E[p_{\theta}|T=t]$ which is the conditional expectation given T=t.

We denote an inner product by (\cdot, \cdot) , the transpose of a row vector \mathbf{a} by \mathbf{a}' and $|\mathbf{a}| = \sqrt{(\mathbf{a}, \mathbf{a})}$. $f \in L^p(\mu)$ (resp. $f \in L^p(Q_\theta)$) means $\int |f|^p d\mu < \infty$ (resp. $\int |f|^p g_\theta(t) d\nu < \infty$). We define

$$k_{\theta}(x) = \begin{cases} p_{\theta}(x)/g_{\theta}(T(x)) & \text{on } \{x : g_{\theta}(T(x)) \neq 0\} \\ 0 & \text{otherwise} \end{cases}.$$

Received July 28, 2001; revised October 22, 2001

This is a conditional density given T. It is well known that the family $(\sqrt{g_{\theta}})$ induced by T is L^2 -differentiable with the derivative $E[\dot{p}_{\theta}(x)|T]/(2\sqrt{g_{\theta}(t)})$ if the family $(\sqrt{p_{\theta}})$ is L^2 -differentiable. Recent references are Bickel, et al. [1] and Ibragimov and Hasminskii [4]. Further the family $(\sqrt{k_{\theta}})$ is smooth in the sense of conditional densities if the family $(\sqrt{p_{\theta}})$ is smooth. This result is proved by Kuboki [2], using Lebesgue Convergence Theorem and a concept of loosely convergence. The subject of this paper is to give some properties of L^2 -differentiability of the families $(\sqrt{p_{\theta}})$ and $(\sqrt{k_{\theta}})$. In Section 3, we shall prove L^2 -differentiability of $(\sqrt{k_{\theta}})$ under that of $(\sqrt{p_{\theta}})$ by a direct calculation (Theorem 3.1). Conversely, when both the families $(\sqrt{g_{\theta}})$ and $(\sqrt{k_{\theta}})$ are L^2 -differentiable respectively, is the family $(\sqrt{p_{\theta}})$ L^2 -differentiable? This is true. We shall prove this in Theorem 3.2 and also refer the factorization of Fisher information matrix. Furthermore, it is proved that under some conditions, regularity of (p_{θ}) is equivalent to that of (g_{θ}) and (k_{θ}) (Theorems 3.5 and 3.6). Section 4 deals with the proofs of these theorems.

2. Definition and properties of the conditional expectation.

To simply notations, we shall write $g_{\theta}(t)$ or $g_{\theta}T(x)$ for $g_{\theta}(T(x))$ and denote the square root of densities by $s_{\theta} := \sqrt{p_{\theta}}$, $q_{\theta} := \sqrt{g_{\theta}}$ and $r_{\theta} := \sqrt{k_{\theta}}$.

DEFINITION 2.1. The family $(\sqrt{p_{\theta}})$ is L^2 -differentiable if there exists $\dot{s}_{\theta} \in L^2(\mu)$ such that for every $\theta \in \Theta$,

$$\int |\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)} - (\dot{s}_{\theta}(x), h)|^2 d\mu = o(|h|^2).$$
 (2.1)

DEFINITION 2.2. The family $(\sqrt{k_{\theta}})$ is L^2 -differentiable in the sense of conditional densities if there exists $\dot{r}_{\theta} \in L^2(Q_{\theta})$ such that for every $\theta \in \Theta$,

$$\int |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)} - (\dot{r}_{\theta}(x), h)|^2 g_{\theta}(T(x)) d\mu = o(|h|^2).$$
 (2.2)

We shall say that the family $(\sqrt{k_{\theta}})$ is *conditional* L^2 -differentiable given T if the family $(\sqrt{k_{\theta}})$ is L^2 -differentiable in the sense of (2.2). We shall prove in Theorem 3.1 that under L^2 -differentiability of $(\sqrt{p_{\theta}})$, the family (k_{θ}) satisfies (2.2) with the derivative

$$\dot{r}_{\theta}(x) = \begin{cases} \frac{\dot{s}_{\theta}(x)}{q_{\theta}T(x)} - \frac{s_{\theta}(x)\dot{q}_{\theta}T(x)}{q_{\theta}T(x)^2} & \text{on } \{x : g_{\theta}T(x) \neq 0\} \\ 0 & \text{otherwise} \end{cases}$$

where \dot{q}_{θ} is L^2 -derivative of $\sqrt{g_{\theta}}$.

DEFINITION 2.3. The family $(\sqrt{p_{\theta}})$ is continuous L^2 -differentiable if it satisfies (2.1) and the L^2 -derivative \dot{s}_{θ} is L^2 -continuous, i.e., for every $\theta \in \Theta$,

$$\int |\dot{s}_{\theta+h}(x) - \dot{s}_{\theta}(x)|^2 d\mu \to 0 \quad \text{as } |h| \to 0.$$
 (2.3)

DEFINITION 2.4. The family $(\sqrt{k_{\theta}})$ is continuous L^2 -differentiable if it satisfies (2.2) and the L^2 -derivative \dot{r}_{θ} is L^2 -continuous in the following sense.

For every $\theta \in \Theta$,

$$\int |\dot{r}_{\theta+h}(x) - \dot{r}_{\theta}(x)|^2 g_{\theta} T(x) d\mu \to 0 \quad \text{as } |h| \to 0.$$
 (2.4)

We sometimes denote that (p_{θ}) (resp. (k_{θ})) is *regular* if the family $(\sqrt{p_{\theta}})$ (resp. $(\sqrt{k_{\theta}})$) is continuous L^2 -differentiable.

REMARK 2.5. By the property of the conditional expectation (see Nabeya [5]), $E[\frac{p_{\theta}(x)}{g_{\theta}(t)}1_{[g_{\theta}>0]}|T] = \frac{1_{[g_{\theta}>0]}}{g_{\theta}(t)}E[p_{\theta}(x)|T] = 1_{[g_{\theta}>0]}$. Hence, it follows that $E[k_{\theta}(x)|T] = 1_{[g_{\theta}(t)>0]} \le 1$ a.e.v.

The score functions of X and a mapping T = t are defined respectively by

$$l_{\theta}(x) = \frac{\dot{p}_{\theta}(x)}{p_{\theta}(x)} 1_{[x:p_{\theta}>0]}, \quad l_{\theta}(t) = \frac{\dot{g}_{\theta}(t)}{g_{\theta}(t)} 1_{[t:g_{\theta}>0]},$$

where \dot{p}_{θ} (resp. \dot{g}_{θ}) is L^1 -derivative of p_{θ} (resp. g_{θ}). It is well-known that $l_{\theta}(x) = 2\dot{s}_{\theta}(x)/s_{\theta}(x)1_{[s_{\theta}>0]}$ and $l_{\theta}(t) = 2\dot{q}_{\theta}(t)/q_{\theta}(t)1_{[q_{\theta}>0]}$ if the family $(\sqrt{p_{\theta}})$ is L^2 -differentiable. See Bickel, et al. [1].

3. Main results.

First, we consider the following conditions.

CONDITION A. $\int |l_{\theta}(t)|^2 k_{\theta+h}(x) g_{\theta} T(x) d\mu$ exists for small h.

CONDITION B. $\int |l_{\theta+h}(x)|^2 k_{\theta+h}(x) g_{\theta} T(x) d\mu$ and $\int |l_{\theta+h}(t)|^2 g_{\theta} T(x) d\mu$ exist for small h, respectively.

The above conditions are needed as the integrability when we shall prove Theorems 3.1, 3.2 and so on. Condition A is a weak assumption. Actually, condition A is satisfied automatically from $\int k_{\theta}(x, y) dv \le 1$ in the case of $k_{\theta}(x, y) = p_{\theta}(x, y)/p_{\theta}(x)$. The detail is referred in Example 3.3.

THEOREM 3.1. Suppose that $(\sqrt{p_{\theta}})$ is L^2 -differentiable and condition A is satisfied. Then the family $(\sqrt{k_{\theta}})$ is L^2 -differentiable in the sense of (2.2) with the derivative

$$\dot{r}_{\theta}(x) = \frac{\dot{s}_{\theta}(x)q_{\theta}T(x) - s_{\theta}(x)\dot{q}_{\theta}T(x)}{q_{\theta}T(x)^2} \mathbb{1}_{[x:g_{\theta}T(x)>0]}.$$

THEOREM 3.2. Suppose that the family $(\sqrt{k_{\theta}})$ is L^2 -differentiable in the sense of (2.2) with the derivative $\dot{r}_{\theta}(x)$, $(\sqrt{g_{\theta}})$ is L^2 -differentiable with the derivative $\dot{q}_{\theta}(t)$ and that condition A is satisfied. Then the family $(\sqrt{p_{\theta}})$ is L^2 -differentiable with the derivative

$$\dot{s}_{\theta}(x) = \dot{r}_{\theta}(x)\sqrt{g_{\theta}(T(x))} + \sqrt{k_{\theta}(x)}\dot{q}_{\theta}(T(x)).$$

 L^2 -differentiability of induced probability densities is common knowledge (see Bickel, et al. [1]). Hence, by combining Theorems 3.1 and 3.2, we can see that the family $(\sqrt{p_{\theta}(x)})$ is

 L^2 -differentiable iff $(\sqrt{g_{\theta}(t)})$ is L^2 -differentiable and $(\sqrt{k_{\theta}(x)})$ is conditional L^2 -differentiable given T.

EXAMPLE 3.3. Suppose that $\{\mathcal{X}, \mathcal{A}, \mu\}$ and $\{\mathcal{Y}, \mathcal{B}, \nu\}$ are two measure spaces. Let \mathcal{A} and \mathcal{B} be σ -algebras of subsets of \mathcal{X} and \mathcal{Y} , and μ and ν be σ -finite measures on \mathcal{X} and \mathcal{Y} , respectively. $\{\mathcal{X} \times \mathcal{Y}, \mathcal{A} \times \mathcal{B}, \mu \times \nu\}$ is the cartesian product space of $\{\mathcal{X}, \mathcal{A}, \mu\}$ and $\{\mathcal{Y}, \mathcal{B}, \nu\}$. Let (P_{θ}^{XY}) be probability distributions on $\mathcal{X} \times \mathcal{Y}$ with densities $p_{\theta}(x, y)$ relative to a σ -finite measure $\mu \times \nu$. Then the induced probability density by a mapping $T: \mathcal{X} \times \mathcal{Y} \to \mathcal{X}$ is marginal $p_{\theta}(x)$. Thus the family $(\sqrt{p_{\theta}(x,y)})$ is L^2 -differentiable iff both the families $(\sqrt{p_{\theta}(y)})$ and $(\sqrt{p_{\theta}(y|x)})$ are L^2 -differentiable. Here, L^2 -differentiability of $(\sqrt{p_{\theta}(y|x)})$ is correspond to (2.2), i.e., there exists $\dot{s}_{\theta}(y|x) \in L^2(P_{\theta}^X \times \nu)$ such that

$$\iint |\sqrt{p_{\theta+h}(y|x)} - \sqrt{p_{\theta}(y|x)} - (h, \dot{s}_{\theta}(y|x))|^2 p_{\theta}(x) d\mu d\nu = o(|h|^2).$$

The concept of L^2 -differentiability is available for a discrete probability function with an open parameter set since counting measure μ is σ -finite.

EXAMPLE 3.4. Suppose that the conditional density of x given k is

$$f_p(x|k) = \binom{n}{x - [k]} p^{x - [k]} (1 - p)^{n - x + [k]} \quad x = [k], [k] + 1, \dots, [k] + n$$

and a random variable k is according to $N(\mu, \sigma^2)$, where $[\cdot]$ is Gaussian integer and $0 , <math>\mu$ and σ are unknown parameters, that is $\theta = (p, \mu, \sigma)$. Since $p^{x-[k]}(1-p)^{n-x+[k]}$ is ordinary differentiable with respect to p, it is obvious that

$$\sum_{x=[k]}^{n+[k]} \left(\frac{\sqrt{f_{p+h}(x|k)} - \sqrt{f_p(x|k)}}{h} - \dot{s}_p(x|k) \right)^2 \to 0 \quad \text{as } |h| \to 0,$$
 (3.1)

where
$$\dot{s}_p(x|k) = \sqrt{\binom{n}{x-[k]}} \left(\frac{x-[k]-np}{2}\right) p^{\frac{x-[k]-2}{2}} (1-p)^{\frac{n-x+[k]-2}{2}}$$
. Furthermore, putting $w=x-[k]$, (3.1) does not depend on k . Thus it is verified that $(\sqrt{f_p(x|k)})$ is conditional L^2 -differentiable given k . On the other hand, it is well known that the normal density of k is

differentiable given k. On the other hand, it is well known that the normal density of k is L^2 -differentiable. Hence so is the joint density of (X, K).

Subsequently, we shall state the factorization of information matrix. We define the infor-

mation matrix of
$$p_{\theta}$$
, g_{θ} as
$$I_X(\theta) = 4 \int \dot{s}_{\theta}(x) \dot{s}_{\theta}(x)' d\mu , \quad I_T(\theta) = 4 \int \dot{r}_{\theta}(t) \dot{r}_{\theta}(t)' d\nu ,$$

respectively and the conditional information matrix of $k_{\theta}(x)$ given T as $I_{X|T}(\theta) = E[(\dot{k}_{\theta}\dot{k}'_{\theta})/k_{\theta}|T]$. It is known that $I_X(\theta) = E_{\theta}^T\{I_{X|T}(\theta)\} + I_T(\theta)$ under L^2 -differentiability of the family $(\sqrt{p_{\theta}})$. See Kuboki [2].

THEOREM 3.5. Suppose that the family $(\sqrt{k_{\theta}})$ is conditional L^2 -differentiable given T and $(q_{\theta}(t))$ is L^2 -differentiable. Then,

$$I_X(\theta) = E_{\theta}^T \{I_{X|T}(\theta)\} + I_T(\theta).$$

PROOF. Applying Theorem 3.2, the family $(\sqrt{p_{\theta}})$ is L^2 -differentiable from the assumption. By noting $\dot{g}_{\theta}(t) = E[\dot{p}_{\theta}(x)|T]$ and $\dot{r}_{\theta}(x) = \dot{s}_{\theta}(x)/q_{\theta}(t) - s_{\theta}(x)\dot{q}_{\theta}(t)/(q_{\theta}(t)^2)$, the assertion is proved.

There are some papers which treat continuous L^2 -differentiability instead of mere L^2 -differentiability because things are easier. Here we shall state the following theorems concerned with regularity. Let a score function be $l_{\theta}(x) = (\dot{p}_{\theta}(x)/p_{\theta}(x))1_{[p_{\theta}>0]}$.

THEOREM 3.6. Suppose that the family (p_{θ}) is regular and conditions A, B are satisfied. Then the family (k_{θ}) is regular in the sense of Definition 2.4.

THEOREM 3.7. Suppose that the family (g_{θ}) is regular, the family (k_{θ}) is regular in the sense of Definition 2.4 with the derivative \dot{r}_{θ} and conditions A, B are satisfied. Then the family (p_{θ}) is regular.

When the family (p_{θ}) is regular, regularity of induced probability densities by T is proved by Bickel, et al. [1]. Hence, by combining Theorems 3.6 and 3.7, we can see that under conditions A, B, regularity of the family (p_{θ}) is equivalent to that of (g_{θ}) and (k_{θ}) .

Finally, we shall introduce the useful theorem for checking L^2 -differentiability of regression models. Let the conditional density of y given x be $p_{\theta}(y|x) = p_{\theta}(x,y)/p_{\theta}(x)$ on $\{x: p_{\theta} > 0\}$ and 0 on $\{x: p_{\theta} = 0\}$. In some cases, it is difficult to check L^2 -differentiability of $(\sqrt{p_{\theta}(y|x)})$ in measure $P_{\theta}^X \times \nu$ even if $(\sqrt{p_{\theta}(y|x)})$ is L^2 -differentiable in measure ν . The following Theorem 3.8 gives the sufficient condition of conditional L^2 -differentiability given $T: \mathcal{X} \times \mathcal{Y} \to \mathcal{X}$, i.e.,

$$\iint |s_{\theta+h}(y|x) - s_{\theta}(y|x) - (\dot{s}_{\theta}(y|x), h)|^2 d\nu dP_{\theta}^X = o(|h|^2) \quad \text{for every } \theta.$$

This result is proved by Strasser [3], Theorem 3.4, p. 120. Suppose that for every $x \in \mathcal{X}$, the family $(\sqrt{p_{\theta}(y|x)})$ is L^2 -differentiable in measure ν , i.e.,

$$\int |s_{\theta+h}(y|x) - s_{\theta}(y|x) - (\dot{s}_{\theta}(y|x), h)|^2 d\nu = o(|h|^2) \quad \text{for every } \theta.$$

Note that we shall use the same notation $\dot{s}_{\theta}(y|x)$ for the L^2 -derivative in measure $P_{\theta}^X \times v$ as well as for the L^2 -derivative in measure v. For the following theorem, we consider continuous L^2 -differentiability instead of mere L^2 -differentiability. We denote Fisher's information matrix with respect to v by $I_{Y|x}(\theta) := 4 \int \dot{s}_{\theta}(y|x)\dot{s}_{\theta}(y|x)'dv$. Let $I_{Y|x,h}(\theta) := I_{Y|x}(\theta+h)$. $I_{Y|x,h}(\theta)$ is called to be *uniformly* P_{θ}^X -integrable if $\lim_{M\to\infty} \sup_h \int_{I_{Y|x,h}(\theta)>M} |I_{Y|x,h}(\theta)|dP_{\theta}^X$ = 0 for every $\theta\in\Theta$. If $I_{Y|x,h}(\theta)$ is uniformly P_{θ}^X -integrable, it follows that

$$E_{\theta}^{X}\{I_{Y|x,h}(\theta)\} \to E_{\theta}^{X}\{I_{Y|x}(\theta)\} \quad \text{as } |h| \to 0.$$
 (3.2)

Of course, if there exist P_{θ}^{X} -integrable functions $H_{h}(x:\theta)$ such that for any small h, $I_{Y|x,h}(\theta) \le H_{h}(x:\theta)$ a.e. P_{θ}^{X} and $\int H_{h}(x:\theta)dP_{\theta}^{X} \to \int H(x:\theta)dP_{\theta}^{X}$ as $|h| \to 0$, then (3.2) holds from Lebesgue Convergence Theorem. Let $\lambda = \nu \times P_{\theta}^{X}$. $\dot{s}_{\theta}(y|x)$ is called to be $\nu \times P_{\theta}^{X}$ -continuous if for every $\theta \in \Theta$, $\lambda\{(x,y): |\dot{s}_{\theta+h}(y|x) - \dot{s}_{\theta}(y|x)| \ge \varepsilon\} \to 0$ as $|h| \to 0$.

THEOREM 3.8. Suppose that for every $x \in \mathcal{X}$, the family $(\sqrt{p_{\theta}(y|x)})$ is continuous L^2 -differentiable in measure v with the derivative $\dot{s}_{\theta}(y|x)$. Let Fisher's information matrix with respect to v be $I_{Y|x}(\theta)$. If the family of functions $I_{Y|x,h}(\theta)$ satisfies (3.2) and $\dot{s}_{\theta}(y|x)$ is $v \times P_{\theta}^{X}$ -continuous, then the family $(\sqrt{p_{\theta}(y|x)})$ is continuous L^{2} -differentiable in the sense of Definition 2.4.

EXAMPLE 3.9 (Normal Linear Model).

$$Y_i = \alpha + \beta x_i + \varepsilon_i \quad (i = 1, \dots, n)$$

where $\varepsilon_1, \dots, \varepsilon_n \stackrel{\text{i.i.d}}{\sim} N(0, \sigma^2)$, σ is known and α and β are unknown.

Suppose that random variables x_1, \dots, x_n are i.i.d with common density f_{θ} which is continuous L^2 -differentiable at θ with the expectation $\mu(\theta) = E_{\theta}X_i$, and each measure of $Y_i, x_i \ (i=1,\cdots,n)$ is Lebesgue measure. Let $Y=(Y_1,\cdots,Y_n)'$ and $x=(x_1,\cdots,x_n)'$. Let $z(\cdot)$ be a density of standard normal distribution and the family $(p_{\alpha,\beta}(y|x))$ be the conditional densities of Y given x. It is verified that $p_{\alpha,\beta}(y|x) = \sigma^{-n} \prod_{i=1}^n z((y_i - \alpha - \beta x_i)/\sigma)$ is continuous L^2 -differentiable in measure μ^Y . (See Bickel, et al. [1], Proposition 2).

Since
$$I_{Y|x,h}(\alpha,\beta,\theta) = \begin{pmatrix} n/\sigma^2 & \sum_{i=1}^n x_i/\sigma^2 & 0\\ \sum_{i=1}^n x_i/\sigma^2 & \sum_{i=1}^n x_i^2/\sigma^2 & 0\\ 0 & 0 & 0 \end{pmatrix}$$
 does not depend

on h and $\mu(\theta)$ is continuous from L^2 -differentiability of f_{θ} , $E^X\{I_{Y|x}(\alpha, \beta, \theta)\} = \begin{pmatrix} n/\sigma^2 & n\mu(\theta)/\sigma^2 & 0 \\ n\mu(\theta)/\sigma^2 & n(\sigma^2 + \mu(\theta)^2)/\sigma^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ satisfies (3.2).

Thus, $(p_{\alpha,\beta}(y|x))$ satisfies (2.2) and (2.4) from Theorem 3.8. Applying Theorem 3.6, $p_{\theta,\alpha,\beta}(x,y) = \sigma^{-n} \prod_{i=1}^n z((y_i - \alpha - \beta x_i)/\sigma) f_{\theta}(x_i)$ is continuous L^2 -differentiable.

4. Proofs.

In this section, we shall prove the theorems stated in Section 3. Let the partition of \mathcal{L} , $A_h := \{t : g_{\theta}(t) > 0 \text{ and } g_{\theta+h}(t) > 0\}, B_h := \{t : g_{\theta}(t) > 0 \text{ and } g_{\theta+h}(t) = 0\}$ and $C_h := \{t : g_\theta(t) = 0 \text{ and } g_{\theta+h}(t) > 0\}.$

LEMMA 4.1. Suppose that the family $(\sqrt{p_{\theta}})$ is L^2 -differentiable and $\xi(T(x))$ is a function such that $\int \xi(t(x))k_{\theta+h}(x)g_{\theta}T(x)d\mu < \infty$. Then the following holds

(i)
$$\int (r_{\theta+h}(x) - r_{\theta}(x))^2 g_{\theta} T(x) d\mu = O(|h|^2)$$

(i)
$$\int (r_{\theta+h}(x) - r_{\theta}(x))^2 g_{\theta} T(x) d\mu = O(|h|^2)$$

(ii)
$$\int \xi(t(x)) (r_{\theta+h}(x) - r_{\theta}(x))^2 g_{\theta} T(x) d\mu = o(1).$$

PROOF. First, we shall prove Lemma 4.1(i).

$$\int_{T^{-1}A_{h}} \left(\frac{s_{\theta+h}(x)}{q_{\theta+h}T(x)} - \frac{s_{\theta}(x)}{q_{\theta}T(x)} \right)^{2} g_{\theta}T(x)d\mu
\leq \int_{T^{-1}A_{h}} (q_{\theta+h}T(x) - q_{\theta}T(x))^{2} \frac{p_{\theta+h}(x)}{g_{\theta+h}T(x)} d\mu + \int (s_{\theta+h}(x) - s_{\theta}(x))^{2} d\mu
= \int_{A_{h}} (q_{\theta+h}(t) - q_{\theta}(t))^{2} E\left[\frac{p_{\theta+h}(x)}{g_{\theta+h}T(x)} \middle| T \right] d\nu + O(|h|^{2})$$
(4.1)

From L^2 -differentiability of $(\sqrt{g_\theta})$ and Remark 2.5, we have $(4.1) = O(|h|^2)$. On the other hand, it is easily verified that $\int_{T^{-1}B_h}|r_{\theta+h}(x)-r_{\theta}(x)|^2g_{\theta}T(x)d\mu=O(|h|^2)$ and $\int_{T^{-1}C_h}|r_{\theta+h}(x)-r_{\theta}(x)|^2g_{\theta}T(x)d\mu=0$. Hence (i) is proved. Next, we shall prove Lemma 4.1(ii). By using the partition of integral domain, we have

$$\int |\xi(T(x))| |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)}|^{2} g_{\theta} T(x) d\mu$$

$$\leq \int_{T^{-1} \left[t: |\xi(t)| > \frac{1}{|h|}\right]} |\xi(T(x))| |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)}|^{2} g_{\theta} T(x) d\mu$$

$$+ \frac{1}{|h|} \int |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)}|^{2} g_{\theta} T(x) d\mu$$
(4.2)

It holds from Lemma 4.1(i) that (4.3) $\to 0$ as $|h| \to 0$. Since we have $E[k_{\theta}(x)|T] \le 1$ a.e. ν for every θ from Remark 2.5, (4.2) is bounded above by

$$\int_{\left[t:|\xi(t)|>\frac{1}{|h|}\right]} |\xi(t)|g_{\theta}(t)(E[k_{\theta+h}(x)|T] + E[k_{\theta}(x)|T])d\nu
\leq 2\int_{\left[|\xi(t)|>\frac{1}{|h|}\right]} g_{\theta}(t)d\nu.$$
(4.4)

It follows from Lebesgue Convergence Theorem that (4.4) \rightarrow 0 as $|h| \rightarrow$ 0. Hence (ii) is proved.

PROOF OF THEOREM 3.1. From $r_{\theta} = s_{\theta}/q_{\theta}$ and $r_{\theta+h} = s_{\theta+h}/q_{\theta+h}$ on $T^{-1}A_h$, it follows that

$$\int_{T^{-1}A_{h}} |r_{\theta+h}(x) - r_{\theta}(x) - (h, \dot{r}_{\theta}(x))|^{2} g_{\theta} T(x) d\mu$$

$$\leq 2 \int_{T^{-1}A_{h}} |s_{\theta+h}(x) - s_{\theta}(x) - (h, \dot{s}_{\theta}(x))|^{2} d\mu$$

$$+ 2 \int_{T^{-1}A_{h}} |(q_{\theta+h} T(x) - q_{\theta} T(x)) r_{\theta+h}(x) - (h, r_{\theta}(x) \dot{q}_{\theta} T(x))|^{2} d\mu . \tag{4.6}$$

It is clear that $(4.5) = o(|h|^2)$. (4.6) is bounded above by

$$4\int |q_{\theta+h}T(x) - q_{\theta}T(x) - (h, \dot{q}_{\theta}T(x))|^2 k_{\theta+h}(x)d\mu$$
 (4.7)

$$+4\int |r_{\theta+h}(x) - r_{\theta}(x)|^2 \left(h, \frac{\dot{q}_{\theta}T(x)}{q_{\theta}T(x)}\right)^2 g_{\theta}T(x)d\mu. \tag{4.8}$$

By Remark 2.5, it holds that $(4.7) = o(|h|^2)$. Setting $l_{\theta}(t) = 2(\dot{q}_{\theta}T(x)/q_{\theta}T(x))$, it follows from Lemma 4.1 (ii) that $(4.8) = o(|h|^2)$. Hence the assertion is proved.

LEMMA 4.2. Suppose that the family $(\sqrt{k_{\theta}})$ is conditional L^2 -differentiable given T. Then,

$$\int |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)}|^2 g_{\theta} T(x) d\mu = O(|h|^2).$$

PROOF.

$$\int |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)}|^2 g_{\theta} T(x) d\mu$$

$$\leq 2 \int |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)} - (\dot{r}_{\theta}(x), h)|^2 g_{\theta} T(x) d\mu + 2 \int |(h, \dot{r}_{\theta}(x))|^2 g_{\theta} T(x) d\mu$$

$$= O(|h|^2).$$

Thus, the lemma is proved.

LEMMA 4.3. Suppose that $(\sqrt{k_{\theta}})$ is L^2 -differentiable and $\int \xi(t(x))k_{\theta+h}(x)g_{\theta}T(x)d\mu$ < ∞ for small h.

$$\int |\xi(T(x))| |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)}|^2 g_{\theta} T(x) d\mu = o(1).$$

PROOF. This is proved by the same argument as in the proof of Lemma 4.1 (ii). \Box

PROOF OF THEOREM 3.2. Since $p_{\theta}(x) = k_{\theta}(x)g_{\theta}(t)$ on $\{x : g_{\theta} > 0\}$, we have

$$\int_{T^{-1}A_{h}} |\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)} - (\dot{s}_{\theta}(x), h)|^{2} d\mu
\leq 3 \int |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)} - (\dot{r}_{\theta}(x), h)|^{2} g_{\theta} T(x) d\mu$$
(4.9)

$$+3\int |\sqrt{g_{\theta+h}T(x)} - \sqrt{g_{\theta}T(x)} - (\dot{q}_{\theta}T(x), h)|^2 k_{\theta+h}(x)d\mu$$
 (4.10)

$$+3\int |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)}|^2 (\dot{q}_{\theta}T(x), h)|^2 d\mu.$$
 (4.11)

It is clear from the assumption that $(4.9) = o(|h|^2)$. Applying Remark 2.5, $(4.10) = o(|h|^2)$. (4.11) does not exceed

$$\frac{3}{4}|h|^2 \int |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)}|^2 |l_{\theta}(t)|^2 g_{\theta} T(x) d\mu \,,$$

where $l_{\theta}(t) = 2\dot{q}_{\theta}(t)/q_{\theta}(t)$. It follows from Lemma 4.3 that $(4.9) = o(|h|^2)$. On the other hand, we have $p_{\theta+h} = 0$ a.e. μ on $T^{-1}B_h$ since $0 = \int_{B_h} g_{\theta+h} d\nu = \int_{T^{-1}B_h} p_{\theta+h} d\mu$. Hence

$$\begin{split} \int_{T^{-1}B_h} |\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)} - (\dot{s}_{\theta}(x), h)|^2 d\mu \\ & \leq \int_{T^{-1}B_h} p_{\theta}(x) d\mu + \int_{T^{-1}B_h} |(\dot{s}_{\theta}(x), h)|^2 d\mu \\ & \leq \int_{B_h} g_{\theta}(t) d\nu + |h|^2 \int_{T^{-1}B_h} |\dot{s}_{\theta}(x)|^2 d\mu \\ & = o(|h|^2) \, . \end{split}$$

It is easily verified that $\int_{T^{-1}C_h} |\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)} - (\dot{s}_{\theta}(x), h)|^2 d\mu = o(|h|^2)$. Thus, the assertion is proved.

LEMMA 4.4. Suppose that the family $(\sqrt{g_{\theta}})$ is regular and $\int |l_{\theta+h}(t)|^2 g_{\theta} T(x) d\mu < \infty$. Then the following holds

$$\int |l_{\theta+h}(t) - l_{\theta}(t)^2 g_{\theta} T(x) d\mu = o(1).$$

PROOF.

$$4 \int_{T^{-1}A_{h}} \left| \frac{\dot{q}_{\theta+h}T(x)}{q_{\theta+h}T(x)} - \frac{\dot{q}_{\theta}T(x)}{q_{\theta}T(x)} \right|^{2} g_{\theta}T(x) d\mu$$

$$= 4 \int_{T^{-1}A_{h}} \left| \dot{q}_{\theta+h}T(x) \frac{q_{\theta}T(x)}{q_{\theta+h}T(x)} - \dot{q}_{\theta}T(x) \right|^{2} d\mu$$

$$\leq 2 \int_{T^{-1}A_{h}} |q_{\theta+h}T(x) - q_{\theta}T(x)|^{2} |l_{\theta+h}(t)|^{2} d\mu + 8 \int |\dot{q}_{\theta+h}T(x) - \dot{q}_{\theta}T(x)|^{2} d\nu$$

$$= 4 \int_{A_{h}} \left(\frac{q_{\theta+h}(t)}{q_{\theta}(t)} - 1 \right)^{2} |l_{\theta+h}(t)|^{2} g_{\theta}(t) d\nu + o(1). \tag{4.12}$$

By the same argument as Lemma 4.1 (ii), (4.12) tends to 0 as $|h| \to 0$. It is verified that $\int_{T^{-1}B_h}|l_{\theta+h}(t)-l_{\theta}(t)|^2g_{\theta}T(x)d\mu=o(1)$ and $\int_{T^{-1}C_h}|l_{\theta+h}(t)-l_{\theta}(t)|^2g_{\theta}T(x)d\mu=0$. Hence the assertion is proved.

LEMMA 4.5. Suppose that the family $(\sqrt{p_{\theta}})$ is regular and $\int |l_{\theta+h}(x)|^2 k_{\theta+h}(x) g_{\theta}$ $T(x)d\mu < \infty$. Then, it follows that

$$\int |l_{\theta+h}(x)r_{\theta+h}(x) - l_{\theta}(x)r_{\theta}(x)|^2 g_{\theta}T(x)d\mu = o(1).$$

PROOF. Since $l_{\theta}(x)r_{\theta}(x) = \dot{s}_{\theta}(x)/q_{\theta}T(x)$, we have

$$4 \int_{T^{-1}A_{h}} \left| \frac{\dot{s}_{\theta+h}(x)}{q_{\theta+h}T(x)} - \frac{\dot{s}_{\theta}(x)}{q_{\theta}T(x)} \right|^{2} g_{\theta}T(x)d\mu$$

$$\leq 8 \int_{T^{-1}A_{h}} \left| \frac{\dot{s}_{\theta+h}(x)}{q_{\theta+h}T(x)} q_{\theta}T(x) - \dot{s}_{\theta+h}(x) \right|^{2} d\mu$$

$$+ 8 \int |\dot{s}_{\theta+h}(x) - \dot{s}_{\theta}(x)|^{2} d\mu . \tag{4.13}$$

Putting $\xi_{\theta+h}(t) := E[|l_{\theta+h}(x)r_{\theta+h}(x)|^2 | T]$, the following inequality holds in (4.13) by the same argument as Lemma 4.1 (ii).

$$(4.13) \leq 8 \int_{T^{-1}A_{h}} |q_{\theta+h}T(x) - q_{\theta}T(x)|^{2} |l_{\theta+h}(x)r_{\theta+h}(x)|^{2} d\mu$$

$$= 8 \int_{A_{h}} |q_{\theta+h}(t) - q_{\theta}(t)|^{2} E[|l_{\theta+h}(x)r_{\theta+h}(x)|^{2} |T] d\nu$$

$$\leq \frac{8}{|h|} \int |q_{\theta+h}(t) - q_{\theta}(t)|^{2} d\nu + 8 \int_{|\xi_{\theta+h}(t)| > \frac{1}{\sqrt{|h|}}} |\xi_{\theta+h}(t)| (g_{\theta+h}(t) + g_{\theta}(t) d\nu.$$

Therefore the assertion is proved.

PROOF OF THEOREM 3.5. Since L^2 -differentiability of the family $(\sqrt{k_{\theta}})$ is proved in Theorem 3.1, it is sufficient to prove L^2 -continuity of the derivative $\dot{r}_{\theta}(x)$. By using $\dot{r}_{\theta}(x) = (l_{\theta}(x) - l_{\theta}(t))r_{\theta}(x)$, it follows that

$$\int |\dot{r}_{\theta+h}(x) - \dot{r}_{\theta}(x)|^{2} g_{\theta} T(x) d\mu$$

$$= \int |(l_{\theta+h}(x) - l_{\theta+h}(t)) r_{\theta+h}(x) - (l_{\theta}(x) - l_{\theta}(t)) r_{\theta}(x)|^{2} g_{\theta} T(x) d\mu$$

$$\leq 2 \int |l_{\theta+h}(x) r_{\theta+h}(x) - l_{\theta}(x) r_{\theta}(x)|^{2} g_{\theta} T(x) d\mu$$

$$+ 2 \int |l_{\theta+h}(t) r_{\theta+h}(x) - l_{\theta}(t) r_{\theta}(x)|^{2} g_{\theta} T(x) d\mu. \tag{4.14}$$

It follows from Lemma 4.5 that $(4.14) \rightarrow 0$ as $|h| \rightarrow 0$. (4.15) does not exceed

$$4\int |l_{\theta+h}(t) - l_{\theta}(t)|^2 g_{\theta}(t) d\nu + 4\int |r_{\theta+h}(x) - r_{\theta}(x)|^2 |l_{\theta}(t)|^2 g_{\theta}(t) d\mu. \tag{4.16}$$

Using Lemma 4.3 and 4.4, (4.16) \rightarrow 0 as $|h| \rightarrow$ 0. Therefore (4.15) \rightarrow 0 as $|h| \rightarrow$ 0. Hence the assertion is proved.

PROOF OF THEOREM 3.6. It is sufficient to prove that the L^2 -derivative $\dot{s}_{\theta}(x)$ is L^2 -continuous since L^2 -differentiability is proved in Theorem 3.2. For $\dot{s}_{\theta} = \dot{r}_{\theta} \sqrt{g_{\theta}} + \sqrt{k_{\theta}} \dot{q}_{\theta}$,

$$\int |\dot{s}_{\theta+h}(x) - \dot{s}_{\theta}(x)|^{2} d\mu
= \int |\dot{r}_{\theta+h}(x)\sqrt{g_{\theta+h}(t)} + \sqrt{k_{\theta+h}(x)}\dot{q}_{\theta+h}(t) - \dot{r}_{\theta}(x)\sqrt{g_{\theta}(t)} - \sqrt{k_{\theta}(x)}\dot{q}_{\theta}(t)|^{2} d\mu
\leq 4 \int |\dot{r}_{\theta+h}(x) - \dot{r}_{\theta}(x)|^{2} g_{\theta}T(x) d\mu$$
(4.17)

$$+4\int |\sqrt{g_{\theta+h}(t)} - \sqrt{g_{\theta}(t)}|^2 |\dot{r}_{\theta+h}(x)|^2 d\mu$$
 (4.18)

$$+4\int |\dot{q}_{\theta+h}(t) - \dot{q}_{\theta}(t)|^2 k_{\theta+h}(x) d\mu \tag{4.19}$$

$$+4\int |\sqrt{k_{\theta+h}(x)} - \sqrt{k_{\theta}(x)}|^2 |\dot{q}_{\theta}(t)|^2 d\mu.$$
 (4.20)

We have $(4.18) \to 0$ as $|h| \to 0$ by the same argument in (4.12). Applying Remark 2.5, $(4.19) \to 0$ as $|h| \to 0$. By Lemma 4.3, $(4.20) \to 0$ as $|h| \to 0$. Hence the assertion is proved.

ACKNOWLEDGEMENTS. The author thanks the editor and the referee for their helpful comments which have improved the presentation of the present paper.

References

- [1] P. J. BICKEL, C. A. J. KLAASSEN, Y. RITOV and J. A. WELLNER, *Efficient and adaptive estimation for semiparametric models*, Johns Hopkins Univ. press (1993).
- [2] H. KUBOKI, A generalization of the relative conditional expectation, Ann. Inst. Statist. Math. 36 (1984), 181–197.
- [3] H. STRASSER, Differentiability of statistical experiment, Statistics & Decisions 16 (1998), 113–130.
- [4] I. A. IBRAGIMOV and R. Z. HAS'MINSKII, Statistical Estimation Asymptotic Theory, Springer (1981).
- [5] S. NABEYA, Mathematical Statistics (in Japanese), Kyōritu Press (1978).

Present Address:

WASEDA UNIVERSITY HONJO SENIOR HIGH SCHOOL, OKUBOYAMA NISHITOMITA, HONJO-SHI, SAITAMA, 367–0045 JAPAN. *e-mail*: ymiyata@mn.waseda.ac.jp