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Abstract. Let q with |q| > 1 be an integer in an algebraic number field K given below, and {an} a periodic

sequence in K of period two, not identically zero. Let f (q) = ∑∞
n=1 an/(1 − qn). We prove that (i) If K is either

the rational number field � or an imaginary quadratic field, then f (q) /∈ K. (ii) For an algebraic integer q such that

|q| > 1 and |qσ | < 1 for any σ ∈ Aut(�/�) with qσ �= q, if k = �(q), then f (q) /∈ �(q). For example, the three
numbers

1 ,

∞∑
n=1

1

qn − 1
,

∞∑
n=1

1

qn + 1

are linearly independent over � for every q ∈ �with |q| ≥ 2. Further, irrationality results of the special values of
the functions

∞∑
n=1

zn

Ran+b
,

∞∑
n=1

zn

Ran+bRa(n+1)+b
(z ∈ � )

can be deduced, where a > 0, b ≥ 0 are integers and Rn is a certain binary recurrence.

1. Introduction and the results

For any fixed q ∈ C with |q| > 1 and z ∈ C, the q-logarithmic function Lq(z) and the
q-exponential Eq(z) are defined by

Lq(z) :=
∞∑

n=1

zn

qn − 1
=

∞∑
n=1

z

qn − z
(|z| < |q|) ,

Eq(z) := 1 +
∞∑

n=1

zn

(q − 1) · · · (qn − 1)
=

∞∏
n=1

(
1 + z

qn

)
,

respectively. Bézivin [2] showed that the numbers 1, E
(k)
q (αi) (i = 1, · · · ,m, k =

0, 1, · · · , l) are linearly independent over Q, where q ∈ Z \ {0, ±1} and αi ∈ Q× satisfy
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αi �= −qµ and αi �= αj q
ν for all µ, ν ∈ Z with µ ≥ 1 and i �= j . This implies that

∞∑
n=1

1

qn + α
/∈ Q ,

where q ∈ Z \ {0, ±1} and α ∈ Q× with α �= −qi (i ≥ 1). Under the same conditions on q

and α, Borwein [3], [4] obtained irrationality measures for the numbers
∑∞

n=1 1/(qn +α) and∑∞
n=1(−1)n/(qn + α). These results include the irrationality of L2(1) = ∑∞

n=1 1/(2n − 1)

proved by Erdös [10]. Furthermore, Bundschuh and Väänaänen [6], and Matala-Aho and
Väänänen [11] obtained quantitative irrationality results for the values of the q-logarithm both
in the Archimedean and p-adic cases. In [7], Duverney generalized certain results obtained
by Borwein [3], [4], and Bundschuh and Väänänen [6]. Recently, Van Assche [15] gave irra-
tionality measures for the numbers Lq(1) and Lq(−1) by using little q-Legendre polynomials.
In this paper, we prove irrationality results for certain Lambert series, which in particular im-
plies the linear independence of the numbers 1, Lq(1), Lq(−1) with q ∈ Z \{0, ±1} by
developing Borwein’s idea in [4].

Let Rn be a binary recurrence defined by

Rn+2 = A1Rn+1 + A2Rn (n ≥ 0) , A1, A2 ∈ Q×, R0, R1 ∈ Q .

André-Jeannin [1] proved for some Rn the irrationality of the value of the function f (x) =∑∞
n=1 xn/Rn at a nonzero rational integer x in the disk of convergence of f , which gave the

first proof of the irrationality of the numbers
∑∞

n=1 1/Fn and
∑∞

n=1 1/Ln, where Fn and Ln

are Fibonacci numbers and Lucas numbers, respectively. Prévost [13] extended this result to
any rational x in the domain of meromorphy of f . Recently, Matala-aho and Prévost [12]
obtained for some type of Rn irrationality measures for the number

∑∞
n=1 γ n/Ran, where γ

belongs to an imaginary quadratic field, and a > 0 is an integer. We will prove for some
Rn the irrationality of the numbers

∑∞
n=1 γ n/Ran+b and

∑∞
n=1 γ n/Ran+bRa(n+1)+b, where

a > 0, b ≥ 0 are integers and γ is a certain number in a real quadratic field (see Corollaries
2 and 3, below).

For an algebraic number α, we denote by |α| the maximum of absolute values of its
conjugates and by denα the least positive integer such that α·denα is an algebraic integer. We
put N = {0, 1, 2, · · · }.

THEOREM 1. Let K be either Q or an imaginary quadratic field. Assume that q is an
integer in K with |q| > 1 and {an} a periodic sequence in K of period two, not identically
zero. Then

θ =
∞∑

n=1

an

1 − qn
/∈ K .
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COROLLARY 1. Let q ∈ Z with |q| ≥ 2 and {an}, {bn} be periodic sequences in Q of
period two, not identically zero. Then the numbers

1 ,

∞∑
n=1

an

qn − 1
,

∞∑
n=1

bn

qn − 1

are linearly independent over Q if and only if {an} and {bn} are linearly independent over Q.

PROOF. This follows immediately from Theorem 1.

EXAMPLE 1. Let q ∈ Z with |q| ≥ 2. Then

1 , Lq(1) =
∞∑

n=1

1

qn − 1
, Lq(−1) =

∞∑
n=1

(−1)n

qn − 1
=

∞∑
n=1

−1

qn + 1

are linearly independent over Q.

THEOREM 2. Let q be an algebraic integer such that |q| > 1 and |qσ | < 1 for any

σ ∈ Aut(Q/Q) with qσ �= q and {an} be a periodic sequence in Q(q) of period two, not
identically zero. Then

θ =
∞∑

n=1

an

1 − qn
/∈ Q(q) .

EXAMPLE 2. Let ε (> 1) be the fundamental unit in a real quadratic field Q(
√

m).
Then

1 ,

∞∑
n=1

1

εn − 1
,

∞∑
n=1

1

εn + 1

are linearly independent over Q(
√

m). For example, the following numbers are linearly inde-

pendent over Q(
√

2).

1 ,

∞∑
n=1

1

(1 + √
2)n − 1

,

∞∑
n=1

1

(1 + √
2)n + 1

.

THEOREM 3. Let q be a quadratic integer satisfying |q| > 1 and |qσ | < 1 for any σ ∈
Aut(Q/Q) with qσ �= q, γ a unit in Q(q) with |γ | ≤ 1, and α ∈ Q(q)× with (den(qlα))4 <

|q| for some l ∈ N. Then

ξ =
∞∑

n=1

γ n

1 − αqn
/∈ Q(q) ,

provided that αqn �= 1 for all n ≥ 1.
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In the following Corollaries 2 and 3, we consider the binary recurrences {Rn}n≥0 defined
by

Rn+2 = A1Rn+1 + A2Rn , A1, A2 ∈ Z \ {0} , R0, R1 ∈ Z .

We suppose that Rn �= 0 for all n ≥ 1, the corresponding polynomial Φ(X) = X2−A1X−A2

is irreducible in Q[X], and � = A2
1 + 4A2 > 0. We can write Rn as

Rn = g1ρ
n
1 + g2ρ

n
2 (n ≥ 0), g1, g2 ∈ Q(ρ1)

× , (1)

where ρ1 and ρ2 are the roots of Φ(X). We may assume |ρ1| > |ρ2| , since A1 �= 0 and
� > 0.

For a, b ∈ N with a �= 0, we define

R(z) =
∞∑

n=1

zn

Ran+b

(|z| < |ρ1|a) .

This function can be extended to a meromorphic function on the whole complex plane C with

poles {(ρn+1
1 /ρn

2 )a | n ≥ 0}, since

∞∑
n=1

zn

1 − αqn
=

∞∑
m=1

α−mz

z − qm
(|z| < |q|)

for any complex numbers q and α with |q| > 1 and |α| ≥ 1, and so

∞∑
n=1

zn

Ran+b

=
i∑

n=1

zn

Ran+b

− zi+1

g1ρ
ai+b
1

∞∑
n=0

(−(g2/g1)(ρ2/ρ1)
ai+b)n

z − ρa
1 (ρ1/ρ2)an

, (2)

where i is chosen as |(g2/g1)(ρ2/ρ1)
ai+b| < 1. We denote the function again by R(z).

COROLLARY 2. Let Rn be a binary recurrence given by (1) and a, b ∈ N with a �= 0.
Assume that g1/g2 and ρ1/ρ2 are units in Q(ρ1) and γ ∈ Q(ρ1)

× is not a pole of R(z) with

(den(ρa
1 /γ ))4 < |ρ1/ρ2|a . Then we have R(γ ) /∈ Q(ρ1).

PROOF. Apply Theorem 3 to the last sum in (2).

EXAMPLE 3. Let Fn and Ln be Fibonacci numbers and Lucas numbers defined by
Fn+2 = Fn+1 + Fn (n ≥ 0), F0 = 0, F1 = 1 and Ln+2 = Ln+1 + Ln (n ≥ 0), L0 =
2, L1 = 1, respectively. Then for every a, b ∈ N with a �= 0,

∞∑
n=1

1

Fan+b

,

∞∑
n=1

(−1)n

Fan+b

,

∞∑
n=1

1

Lan+b

,

∞∑
n=1

(−1)n

Lan+b

/∈ Q(
√

5) .

André-Jeannin[1] proved that each of these numbers is irrational. We remark that the numbers∑∞
n=1 1/F2n+1 and

∑∞
n=1 1/L2n are transcendental (cf. [8], [9]).
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EXAMPLE 4. Let Rn be defined by Rn+2 = 4Rn+1 − 2Rn (n ≥ 0), R0 = 1, R1 = 2,

so that Rn = (2 + √
2)n/2 + (2 − √

2)n/2 (n ≥ 0). Then for every a, b ∈ N with a �= 0,

∞∑
n=1

1

Ran+b

,

∞∑
n=1

(−1)n

Ran+b

/∈ Q(
√

2) .

Next we consider, for any given a, b ∈ N with a �= 0, the function

S(z) =
∞∑

n=1

zn

Ran+bRa(n+1)+b

(|z| < |ρ1|2a) ,

which can be extended to a meromorphic function on the whole plane with the poles

{ (ρn+2
1 /ρn

2 )a | n ≥ 0}. We denote it again by S(z).

COROLLARY 3. Let Rn be a binary recurrence given by (1) and a, b ∈ N with a �= 0.
Assume that g1/g2 and ρ1/ρ2 are units in Q(ρ1). If γ ∈ Q(ρ1)

× is not a pole of S(z) with

(den(ρ2a
1 /γ ))4 < |ρ1/ρ2|a, then S(γ ) /∈ Q(ρ1), provided γ �= (−A2)

a. If γ = (−A2)
a, we

have

S(γ ) =
∞∑

n=1

γ n

Ran+bRa(n+1)+b

= ρa
2

g1ρ
b
1 (ρa

1 − ρa
2 )Ra+b

∈ Q(ρ1) .

PROOF. Since ρ1ρ2 = −A2, we have

ρ1
aRa(n+1)+b − (−A2)

aRan+b = g1ρ1
b(ρ2a

1 − (−A2)
a)(ρa

1 )n .

We multiply both sides by zn/(ρ
a(n+1)
1 Ran+bRa(n+1)+b) and sum up from n equals 1 to infin-

ity. Then, we get

g1ρ1
b(ρa

1 − ρa
2 )

∞∑
n=1

zn

Ran+bRa(n+1)+b

= ρa
2

Ra+b

+
(

1 − (−A2)
a

z

) ∞∑
n=1

(z/ρa
1 )n

Ran+b

(|z| < |ρ1|2a). Hence, the left-hand side can be extended to a meromorphic function, and
Corollary 3 follows from Corollary 2.

EXAMPLE 5. Let Fn be Fibonacci numbers. Then for every a, b ∈ N with a �= 0,

∞∑
n=1

1

F(2a−1)n+bF(2a−1)(n+1)+b

,

∞∑
n=1

(−1)n

F2an+bF2a(n+1)+b

/∈ Q(
√

5) .

The same holds for Lucas numbers. We put

Tl :=
∞∑

n=1

1

FnFn+l

, T ∗
l :=

∞∑
n=1

(−1)n

FnFn+l

(l ≥ 1) .
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Then Brousseau [5] and Rabinowitz [14] proved that

T2l = 1

F2l

l∑
n=1

1

F2n−1F2n

, T2l+1 = 1

F2l+1

(
T1 −

l∑
n=1

1

F2nF2n+1

)
,

T ∗
l = 1

Fl

(
1 − √

5

2
l +

l∑
n=1

Fn−1

Fn

)
,

so that T2l ∈ Q and T ∗
l ∈ Q(

√
5) \ Q for all l ≥ 1. We see that T2l+1 /∈ Q(

√
5) for all l ≥ 0,

since the first sum in this example with a = 1, b = 0 implies

T1 =
∞∑

n=1

1

FnFn+1
/∈ Q(

√
5) .

EXAMPLE 6. Let Rn be the binary recurrence given in Example 4. Then

∞∑
n=1

2n

R2n−1R2n+1
,

∞∑
n=1

(−2)n

R2n−1R2n+1
/∈ Q(

√
2) .

2. Lemmas

For the proof of theorems, we prepare some lemmas. Let {am}m≥1 be a periodic sequence
of complex numbers of period two, not identically zero. We put

θ =
∞∑

m=1

am

1 − qm
,

where q ∈ C with |q| > 1. We start with the integral

Fn(q) = 1

2πi

∫
|t |=1

(−1/t)

2n∏
k=1

(1 − qk/t)

n∏
k=1

(1 − q2kt)

∞∑
m=1

am

1 − qm/t
dt, (3)

which is a variant of that used by Borwein [4]. We note that the integrand is meromorphic in
t provided |q| > 1. We use the notations

[n]q ! := (1 − qn)(1 − qn−1) · · · (1 − q)

(1 − q)n
, [0]q := 1 ,

[n

i

]
q

:= [n]q !
[i]q ![n − i]q ! ∈ Z[q] .
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In what follows, we denote c1, c2, · · · positive constants independent of n.

LEMMA 1.

Fn(q) =
n∑

i=1

2n∏
k=1

(1 − qk+2i)

n∏
k=1
k �=i

(1 − q2k−2i)

(
θ −

2i∑
m=1

am

1 − qm

)

− 1

(2n − 1)!
( 2n∏

k=1

(
t − qk

) n∏
k=1

(
1 − q2kt

)−1 ∞∑
m=1

am

t − qm

)(2n−1)∣∣∣∣
t=0

(4)

PROOF. This can be proved by using the residue theorem similarly as the proof of
Lemma 1 in [4].

We put Dn(q) := ∏2n
k=n+1(1 − q2k). Then we have

|Dn(q)| ≤ c1|q|3n2+n . (5)

LEMMA 2.

Dn(q)Fn(q) = An(q)θ + Bn(q) , (6)

where An(q), Bn(q) ∈ Z[a1, a2, q] .

PROOF. Since

1
n∏

k=1
k �=i

(1 − q2k−2i)

= qi(i−1)

i−1∏
k=1

(q2k − 1)

n−i∏
k=1

(1 − q2k)

,

we have by (4)

Fn(q) = 1
n−1∏
k=1

(
1 − q2k

)
n∑

i=1

(−1)i−1qi(i−1)

[
n − 1

i − 1

]
q2

2n∏
k=1

(1 − qk+2i)

(
θ −

2i∑
m=1

am

1 − qm

)

−
∑

λ,µ,ν≥0
λ+µ+ν=2n−1

1

λ!µ!ν!
( 2n∏

k=1

(t − qk)

)(λ)∣∣∣∣
t=0

( n∏
k=1

(1 − q2kt)−1
)(µ)∣∣∣∣

t=0

( ∞∑
m=1

am

t − qm

)(ν)∣∣∣∣
t=0
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with
( 2n∏

k=1

(t − qk)

)(λ)∣∣∣∣
t=0

= λ!(−1)2n−λ
∑

λ1+···+λ2n=2n−λ

λi=0,1

qλ1+2λ2+···+2nλ2n ,

( n∏
k=1

(1 − q2kt)−1
)(µ)∣∣∣∣

t=0
= µ!

∑
µ1+···+µn=µ

µi≥0

q2(µ1+2µ2+···+nµn) ,

( ∞∑
m=1

am

t − qm

)(ν)∣∣∣∣
t=0

= −ν!
∞∑

m=1

am

(qν+1)m
= ν!(a1q

ν+1 + a2)
1

1 − q2(ν+1)
.

Hence we get

Fn(q) = 1
n−1∏
k=1

(
1 − q2k

)
n∑

i=1

(−1)i−1qi(i−1)

[
n − 1

i − 1

]
q2

2n∏
k=1

(1 − qk+2i)

(
θ −

2i∑
m=1

am

1 − qm

)

+
∑

λ+µ+ν=2n−1
λ,µ,ν≥0

Qλµν(q)
1

1 − q2(ν+1)
(7)

with Qλµν(q) a polynomial in Z[a1, a2, q] for all λ,µ, ν ≥ 0. Here we note that

2n∏
k=1

(1 − qk+2i)

2i∑
m=1

am

1 − qm
∈ Z[a1, a2, q] , i = 1, 2, · · · , n ,

and each of
∏n−1

k=1(1 − q2k) and 1 − q2l (l = 1, · · · , 2n) divides Dn(q) in Z[q]. Therefore the
lemma follows from (7).

LEMMA 3. For large n, we have

0 < |Fn(q)| ≤ c3|q|−3n2−2n . (8)

PROOF. Similarly to the proof of Lemma 4 in [4], the residue theorem applied exterior
to the circle |t| = 1 shows that

Fn(q) =
∞∑

m=2n+1

Im, Im = am

∏2n
k=1(1 − qk−m)∏n
k=1(1 − q2k+m)

for large n. Since |Im| ≤ c2|q|−n2−n(m+1), we get the upper bound for |Fn(q)|. Furthermore,
if a1 �= 0, it follows that,

Fn(q) = a1

∏2n
k=1(1 − qk−2n−1)∏n
k=1(1 − q2k+2n+1)

(
1 +

∞∑
l=1

bnl

)
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with

bnl = al+1

a1

n∏
k=1

(
1 − q2k+2n+1

1 − q2k+2n+l+1

) 2n∏
k=1

(
1 − qk−2n−l−1

1 − qk−2n−1

)
,

where |bnl| ≤ c4|q−n|l . Hence we have Fn(q) �= 0, since
∑∞

l=1 |bnl | < 1 for large n. The
proof is similar in the case of a1 = 0, a2 �= 0.

3. Proofs of Theorems 1 and 2

PROOF OF THEOREM 1. Let K, q , and {am} be as in Theorem 1. We may suppose
that a1 and a2 are integers in K. Assume that θ ∈ K and let d = denθ . Then by (5), (6), and
(8), we have

0 < d|An(q)θ + Bn(q)| ≤ dc5|q|−n

for large n; which is a contradiction.

PROOF OF THEOREM 2. Let q and {am} be as in Theorem 2. We may suppose that a1

and a2 are integers in Q(q). Then we have again by (5), (6), and (8)

0 < |An(q)θ + Bn(q)| ≤ c6|q|−n

for large n. We assume that θ ∈ Q(q) and evaluate the upper bound of |An(q)σ θσ + Bn(q)σ |
for all σ ∈ Aut(Q/Q) with qσ �= q. By (6) and (7), we have

An(q) = (1 − q2n)

[
2n

n

]
q2

n∑
i=1

(−1)i−1qi(i−1)

[
n − 1

i − 1

]
q2

2n∏
k=1

(1 − qk+2i) .

Since |qσ | < 1, we get |An(q)σ | ≤ c7n for all σ ∈ Aut(Q/Q) with qσ �= q . In the same way,

we see that |Bn(q)σ | ≤ c8n
2. Hence, |An(q)σ θσ + Bn(q)σ | ≤ c9n

2 for all σ ∈ Aut(Q/Q)

with qσ �= q. Therefore, we have

1 ≤ |N�(q)/�denθ(An(q)θ + Bn(q))| ≤ c10n
c11 |q|−n

for large n; which is a contradiction, and the proof is completed.

4. Proof of Theorem 3

Let q, α, and γ be as in Theorem 3. Since

∞∑
m=1

γ m

1 − αqlqm
= γ −l

( ∞∑
m=1

γ m

1 − αqm
−

l∑
m=1

γ m

1 − αqm

)
(l ≥ 1) ,
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we can assume that α satisfies |α| > 1 and |ασ | < 1 for any σ ∈ Aut(Q/Q) with ασ �= α, by
replacing α by qlα with suitable l. We modify Borwein’s integral in [4] as follows:

Gn(q, α, γ ) = 1

2πi

∫
|t |=1

n−1∏
k=1

(
1 − αqk/t

1 − qkt

) −1/t

1 − qnt

∞∑
m=1

γ m

1 − αqm/t
dt .

By the residue theorem, we have

Gn(q, α, γ ) =
n∑

i=1

n−1∏
k=1

(
1 − αqk+i

1 − qk

)
(−1)i−1qi(i−1)/2

[
n − 1

i − 1

]
q

γ −i

(
ξ −

i∑
m=1

γ m

1 − αqm

)

+
∑

λ+µ+ν=n−2
λ,µ,ν≥0

(−1)n−λQ1λ(q)Q2µ(q)
αµ

1 − γ −1qν+1
,

where

Q1λ(q) =
∑

λ1+···+λn−1=n−1−λ

λi=0,1

qλ1+2λ2+···+(n−1)λn−1 ,

Q2µ(q) =
∑

µ1+···+µn=µ

µi≥0

qµ1+2µ2+···+nµn , λ, µ = 0, 1, · · · , n − 2 .

We put

Dn(q, α, γ ) :=
n−1∏
k=1

(1 − qk)

n∏
k=1

(1 − αqk)

n−1∏
k=1

(1 − γ −1qk) ∈ Z[q, α, γ ] .

Then we have |Dn(q, α, γ )| ≤ c12|αγ −1|n|q| 3
2 n2− 1

2 n. In the same way as the proof of Lemma

3, we have 0 < |Gn(q, α, γ )| ≤ c13|α−1γ |n|q|− 3
2 n2− 1

2 n for large n. Hence

|Dn(q, α, γ )Gn(q, α, γ )| = |An(q, α, γ )ξ + Bn(q, α, γ )| ≤ c14|q|−n

for large n, where An,Bn ∈ Z[q, α, γ ], of degree at most 2n in α.
Now we assume ξ ∈ Q(q). Noting that |qσ | < 1, |ασ | < 1, and |γ σ | ≥ 1 we have

|An(q, α, γ )σ |, |Bn(q, α, γ )σ | ≤ c15n
2 for σ ∈ Aut(Q(q)/Q) with qσ �= q. Therefore, we

have

1 ≤ |N�(q)/�denξ(denα)2n(An(q, α, γ )ξ + Bn(q, α, γ ))| ≤ c16n
2|(denα)4q−1|n

for large n; which is a contradiction, and the proof is completed.
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