Irrationality of Certain Lambert Series

Yohei TACHIYA

Keio University

(Communicated by Y. Maeda)

Abstract. Let q with $|q|>1$ be an integer in an algebraic number field \mathbf{K} given below, and $\left\{a_{n}\right\}$ a periodic sequence in \mathbf{K} of period two, not identically zero. Let $f(q)=\sum_{n=1}^{\infty} a_{n} /\left(1-q^{n}\right)$. We prove that (i) If \mathbf{K} is either the rational number field \mathbb{Q} or an imaginary quadratic field, then $f(q) \notin \mathbf{K}$. (ii) For an algebraic integer q such that $|q|>1$ and $\left|q^{\sigma}\right|<1$ for any $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}} / \mathbb{Q})$ with $q^{\sigma} \neq q$, if $k=\mathbb{Q}(q)$, then $f(q) \notin \mathbb{Q}(q)$. For example, the three numbers

$$
1, \quad \sum_{n=1}^{\infty} \frac{1}{q^{n}-1}, \quad \sum_{n=1}^{\infty} \frac{1}{q^{n}+1}
$$

are linearly independent over \mathbb{Q} for every $q \in \mathbb{Z}$ with $|q| \geq 2$. Further, irrationality results of the special values of the functions

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{R_{a n+b}}, \quad \sum_{n=1}^{\infty} \frac{z^{n}}{R_{a n+b} R_{a(n+1)+b}}(z \in \mathbb{C})
$$

can be deduced, where $a>0, b \geq 0$ are integers and R_{n} is a certain binary recurrence.

1. Introduction and the results

For any fixed $q \in \mathbb{C}$ with $|q|>1$ and $z \in \mathbb{C}$, the q-logarithmic function $L_{q}(z)$ and the q-exponential $E_{q}(z)$ are defined by

$$
\begin{gathered}
L_{q}(z):=\sum_{n=1}^{\infty} \frac{z^{n}}{q^{n}-1}=\sum_{n=1}^{\infty} \frac{z}{q^{n}-z} \quad(|z|<|q|) \\
E_{q}(z):=1+\sum_{n=1}^{\infty} \frac{z^{n}}{(q-1) \cdots\left(q^{n}-1\right)}=\prod_{n=1}^{\infty}\left(1+\frac{z}{q^{n}}\right)
\end{gathered}
$$

respectively. Bézivin [2] showed that the numbers $1, E_{q}^{(k)}\left(\alpha_{i}\right)(i=1, \cdots, m, k=$ $0,1, \cdots, l)$ are linearly independent over \mathbb{Q}, where $q \in \mathbb{Z} \backslash\{0, \pm 1\}$ and $\alpha_{i} \in \mathbb{Q}^{\times}$satisfy

[^0]$\alpha_{i} \neq-q^{\mu}$ and $\alpha_{i} \neq \alpha_{j} q^{\nu}$ for all $\mu, \nu \in \mathbb{Z}$ with $\mu \geq 1$ and $i \neq j$. This implies that
$$
\sum_{n=1}^{\infty} \frac{1}{q^{n}+\alpha} \notin \mathbb{Q}
$$
where $q \in \mathbb{Z} \backslash\{0, \pm 1\}$ and $\alpha \in \mathbb{Q}^{\times}$with $\alpha \neq-q^{i}(i \geq 1)$. Under the same conditions on q and α, Borwein [3], [4] obtained irrationality measures for the numbers $\sum_{n=1}^{\infty} 1 /\left(q^{n}+\alpha\right)$ and $\sum_{n=1}^{\infty}(-1)^{n} /\left(q^{n}+\alpha\right)$. These results include the irrationality of $L_{2}(1)=\sum_{n=1}^{\infty} 1 /\left(2^{n}-1\right)$ proved by Erdös [10]. Furthermore, Bundschuh and Väänaänen [6], and Matala-Aho and Väänänen [11] obtained quantitative irrationality results for the values of the q-logarithm both in the Archimedean and p-adic cases. In [7], Duverney generalized certain results obtained by Borwein [3], [4], and Bundschuh and Väänänen [6]. Recently, Van Assche [15] gave irrationality measures for the numbers $L_{q}(1)$ and $L_{q}(-1)$ by using little q-Legendre polynomials. In this paper, we prove irrationality results for certain Lambert series, which in particular implies the linear independence of the numbers $1, L_{q}(1), L_{q}(-1)$ with $q \in \mathbb{Z} \backslash\{0, \pm 1\}$ by developing Borwein's idea in [4].

Let R_{n} be a binary recurrence defined by

$$
R_{n+2}=A_{1} R_{n+1}+A_{2} R_{n}(n \geq 0), \quad A_{1}, A_{2} \in \mathbb{Q}^{\times}, \quad R_{0}, R_{1} \in \mathbb{Q} .
$$

André-Jeannin [1] proved for some R_{n} the irrationality of the value of the function $f(x)=$ $\sum_{n=1}^{\infty} x^{n} / R_{n}$ at a nonzero rational integer x in the disk of convergence of f, which gave the first proof of the irrationality of the numbers $\sum_{n=1}^{\infty} 1 / F_{n}$ and $\sum_{n=1}^{\infty} 1 / L_{n}$, where F_{n} and L_{n} are Fibonacci numbers and Lucas numbers, respectively. Prévost [13] extended this result to any rational x in the domain of meromorphy of f. Recently, Matala-aho and Prévost [12] obtained for some type of R_{n} irrationality measures for the number $\sum_{n=1}^{\infty} \gamma^{n} / R_{a n}$, where γ belongs to an imaginary quadratic field, and $a>0$ is an integer. We will prove for some R_{n} the irrationality of the numbers $\sum_{n=1}^{\infty} \gamma^{n} / R_{a n+b}$ and $\sum_{n=1}^{\infty} \gamma^{n} / R_{a n+b} R_{a(n+1)+b}$, where $a>0, b \geq 0$ are integers and γ is a certain number in a real quadratic field (see Corollaries 2 and 3, below).

For an algebraic number α, we denote by $\overline{|\alpha|}$ the maximum of absolute values of its conjugates and by den α the least positive integer such that $\alpha \cdot \operatorname{den} \alpha$ is an algebraic integer. We put $\mathbb{N}=\{0,1,2, \cdots\}$.

Theorem 1. Let \mathbf{K} be either \mathbb{Q} or an imaginary quadratic field. Assume that q is an integer in \mathbf{K} with $|q|>1$ and $\left\{a_{n}\right\}$ a periodic sequence in \mathbf{K} of period two, not identically zero. Then

$$
\theta=\sum_{n=1}^{\infty} \frac{a_{n}}{1-q^{n}} \notin \mathbf{K} .
$$

Corollary 1. Let $q \in \mathbb{Z}$ with $|q| \geq 2$ and $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be periodic sequences in \mathbb{Q} of period two, not identically zero. Then the numbers

$$
1, \quad \sum_{n=1}^{\infty} \frac{a_{n}}{q^{n}-1}, \quad \sum_{n=1}^{\infty} \frac{b_{n}}{q^{n}-1}
$$

are linearly independent over \mathbb{Q} if and only if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are linearly independent over \mathbb{Q}.
Proof. This follows immediately from Theorem 1.
Example 1. Let $q \in \mathbb{Z}$ with $|q| \geq 2$. Then

$$
1, \quad L_{q}(1)=\sum_{n=1}^{\infty} \frac{1}{q^{n}-1}, \quad L_{q}(-1)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{q^{n}-1}=\sum_{n=1}^{\infty} \frac{-1}{q^{n}+1}
$$

are linearly independent over \mathbb{Q}.
THEOREM 2. Let q be an algebraic integer such that $|q|>1$ and $\left|q^{\sigma}\right|<1$ for any $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}} / \mathbb{Q})$ with $q^{\sigma} \neq q$ and $\left\{a_{n}\right\}$ be a periodic sequence in $\mathbb{Q}(q)$ of period two, not identically zero. Then

$$
\theta=\sum_{n=1}^{\infty} \frac{a_{n}}{1-q^{n}} \notin \mathbb{Q}(q)
$$

Example 2. Let $\varepsilon(>1)$ be the fundamental unit in a real quadratic field $\mathbb{Q}(\sqrt{m})$. Then

$$
1, \quad \sum_{n=1}^{\infty} \frac{1}{\varepsilon^{n}-1}, \quad \sum_{n=1}^{\infty} \frac{1}{\varepsilon^{n}+1}
$$

are linearly independent over $\mathbb{Q}(\sqrt{m})$. For example, the following numbers are linearly independent over $\mathbb{Q}(\sqrt{2})$.

$$
1, \quad \sum_{n=1}^{\infty} \frac{1}{(1+\sqrt{2})^{n}-1}, \quad \sum_{n=1}^{\infty} \frac{1}{(1+\sqrt{2})^{n}+1}
$$

THEOREM 3. Let q be a quadratic integer satisfying $|q|>1$ and $\left|q^{\sigma}\right|<1$ for any $\sigma \in$ $\operatorname{Aut}(\overline{\mathbb{Q}} / \mathbb{Q})$ with $q^{\sigma} \neq q, \gamma$ a unit in $\mathbb{Q}(q)$ with $|\gamma| \leq 1$, and $\alpha \in \mathbb{Q}(q)^{\times}$with $\left(\operatorname{den}\left(q^{l} \alpha\right)\right)^{4}<$ $|q|$ for some $l \in \mathbb{N}$. Then

$$
\xi=\sum_{n=1}^{\infty} \frac{\gamma^{n}}{1-\alpha q^{n}} \notin \mathbb{Q}(q)
$$

provided that $\alpha q^{n} \neq 1$ for all $n \geq 1$.

In the following Corollaries 2 and 3 , we consider the binary recurrences $\left\{R_{n}\right\}_{n \geq 0}$ defined by

$$
R_{n+2}=A_{1} R_{n+1}+A_{2} R_{n}, \quad A_{1}, A_{2} \in \mathbb{Z} \backslash\{0\}, R_{0}, R_{1} \in \mathbb{Z}
$$

We suppose that $R_{n} \neq 0$ for all $n \geq 1$, the corresponding polynomial $\Phi(X)=X^{2}-A_{1} X-A_{2}$ is irreducible in $\mathbb{Q}[X]$, and $\triangle=A_{1}^{2}+4 A_{2}>0$. We can write R_{n} as

$$
\begin{equation*}
R_{n}=g_{1} \rho_{1}^{n}+g_{2} \rho_{2}^{n}(n \geq 0), \quad g_{1}, g_{2} \in \mathbb{Q}\left(\rho_{1}\right)^{\times} \tag{1}
\end{equation*}
$$

where ρ_{1} and ρ_{2} are the roots of $\Phi(X)$. We may assume $\left|\rho_{1}\right|>\left|\rho_{2}\right|$, since $A_{1} \neq 0$ and $\Delta>0$.

For $a, b \in \mathbb{N}$ with $a \neq 0$, we define

$$
R(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{R_{a n+b}} \quad\left(|z|<\left|\rho_{1}\right|^{a}\right)
$$

This function can be extended to a meromorphic function on the whole complex plane \mathbb{C} with poles $\left\{\left(\rho_{1}^{n+1} / \rho_{2}^{n}\right)^{a} \mid n \geq 0\right\}$, since

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{1-\alpha q^{n}}=\sum_{m=1}^{\infty} \frac{\alpha^{-m} z}{z-q^{m}} \quad(|z|<|q|)
$$

for any complex numbers q and α with $|q|>1$ and $|\alpha| \geq 1$, and so

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{z^{n}}{R_{a n+b}}=\sum_{n=1}^{i} \frac{z^{n}}{R_{a n+b}}-\frac{z^{i+1}}{g_{1} \rho_{1}^{a i+b}} \sum_{n=0}^{\infty} \frac{\left(-\left(g_{2} / g_{1}\right)\left(\rho_{2} / \rho_{1}\right)^{a i+b}\right)^{n}}{z-\rho_{1}^{a}\left(\rho_{1} / \rho_{2}\right)^{a n}} \tag{2}
\end{equation*}
$$

where i is chosen as $\left|\left(g_{2} / g_{1}\right)\left(\rho_{2} / \rho_{1}\right)^{a i+b}\right|<1$. We denote the function again by $R(z)$.
COROLLARY 2. Let R_{n} be a binary recurrence given by (1) and $a, b \in \mathbb{N}$ with $a \neq 0$. Assume that g_{1} / g_{2} and ρ_{1} / ρ_{2} are units in $\mathbb{Q}\left(\rho_{1}\right)$ and $\gamma \in \mathbb{Q}\left(\rho_{1}\right)^{\times}$is not a pole of $R(z)$ with $\left(\operatorname{den}\left(\rho_{1}^{a} / \gamma\right)\right)^{4}<\left|\rho_{1} / \rho_{2}\right|^{a}$. Then we have $R(\gamma) \notin \mathbb{Q}\left(\rho_{1}\right)$.

Proof. Apply Theorem 3 to the last sum in (2).
Example 3. Let F_{n} and L_{n} be Fibonacci numbers and Lucas numbers defined by $F_{n+2}=F_{n+1}+F_{n}(n \geq 0), F_{0}=0, F_{1}=1$ and $L_{n+2}=L_{n+1}+L_{n}(n \geq 0), L_{0}=$ $2, L_{1}=1$, respectively. Then for every $a, b \in \mathbb{N}$ with $a \neq 0$,

$$
\sum_{n=1}^{\infty} \frac{1}{F_{a n+b}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{F_{a n+b}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{a n+b}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{L_{a n+b}} \notin \mathbb{Q}(\sqrt{5})
$$

André-Jeannin[1] proved that each of these numbers is irrational. We remark that the numbers $\sum_{n=1}^{\infty} 1 / F_{2 n+1}$ and $\sum_{n=1}^{\infty} 1 / L_{2 n}$ are transcendental (cf. [8], [9]).

Example 4. Let R_{n} be defined by $R_{n+2}=4 R_{n+1}-2 R_{n}(n \geq 0), R_{0}=1, R_{1}=2$, so that $R_{n}=(2+\sqrt{2})^{n} / 2+(2-\sqrt{2})^{n} / 2(n \geq 0)$. Then for every $a, b \in \mathbb{N}$ with $a \neq 0$,

$$
\sum_{n=1}^{\infty} \frac{1}{R_{a n+b}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{R_{a n+b}} \notin \mathbb{Q}(\sqrt{2})
$$

Next we consider, for any given $a, b \in \mathbb{N}$ with $a \neq 0$, the function

$$
S(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{R_{a n+b} R_{a(n+1)+b}} \quad\left(|z|<\left|\rho_{1}\right|^{2 a}\right),
$$

which can be extended to a meromorphic function on the whole plane with the poles $\left\{\left(\rho_{1}^{n+2} / \rho_{2}^{n}\right)^{a} \mid n \geq 0\right\}$. We denote it again by $S(z)$.

Corollary 3. Let R_{n} be a binary recurrence given by (1) and $a, b \in \mathbb{N}$ with $a \neq 0$. Assume that g_{1} / g_{2} and ρ_{1} / ρ_{2} are units in $\mathbb{Q}\left(\rho_{1}\right)$. If $\gamma \in \mathbb{Q}\left(\rho_{1}\right)^{\times}$is not a pole of $S(z)$ with $\left(\operatorname{den}\left(\rho_{1}^{2 a} / \gamma\right)\right)^{4}<\left|\rho_{1} / \rho_{2}\right|^{a}$, then $S(\gamma) \notin \mathbb{Q}\left(\rho_{1}\right)$, provided $\gamma \neq\left(-A_{2}\right)^{a}$. If $\gamma=\left(-A_{2}\right)^{a}$, we have

$$
S(\gamma)=\sum_{n=1}^{\infty} \frac{\gamma^{n}}{R_{a n+b} R_{a(n+1)+b}}=\frac{\rho_{2}^{a}}{g_{1} \rho_{1}^{b}\left(\rho_{1}^{a}-\rho_{2}^{a}\right) R_{a+b}} \in \mathbb{Q}\left(\rho_{1}\right) .
$$

Proof. Since $\rho_{1} \rho_{2}=-A_{2}$, we have

$$
\rho_{1}^{a} R_{a(n+1)+b}-\left(-A_{2}\right)^{a} R_{a n+b}=g_{1} \rho_{1}^{b}\left(\rho_{1}^{2 a}-\left(-A_{2}\right)^{a}\right)\left(\rho_{1}^{a}\right)^{n} .
$$

We multiply both sides by $z^{n} /\left(\rho_{1}^{a(n+1)} R_{a n+b} R_{a(n+1)+b}\right)$ and sum up from n equals 1 to infinity. Then, we get

$$
g_{1} \rho_{1}^{b}\left(\rho_{1}^{a}-\rho_{2}^{a}\right) \sum_{n=1}^{\infty} \frac{z^{n}}{R_{a n+b} R_{a(n+1)+b}}=\frac{\rho_{2}^{a}}{R_{a+b}}+\left(1-\frac{\left(-A_{2}\right)^{a}}{z}\right) \sum_{n=1}^{\infty} \frac{\left(z / \rho_{1}^{a}\right)^{n}}{R_{a n+b}}
$$

$\left(|z|<\left|\rho_{1}\right|^{2 a}\right)$. Hence, the left-hand side can be extended to a meromorphic function, and Corollary 3 follows from Corollary 2.

Example 5. Let F_{n} be Fibonacci numbers. Then for every $a, b \in \mathbb{N}$ with $a \neq 0$,

$$
\sum_{n=1}^{\infty} \frac{1}{F_{(2 a-1) n+b} F_{(2 a-1)(n+1)+b}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{F_{2 a n+b} F_{2 a(n+1)+b}} \notin \mathbb{Q}(\sqrt{5}) .
$$

The same holds for Lucas numbers. We put

$$
T_{l}:=\sum_{n=1}^{\infty} \frac{1}{F_{n} F_{n+l}}, \quad T_{l}^{*}:=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{F_{n} F_{n+l}}(l \geq 1)
$$

Then Brousseau [5] and Rabinowitz [14] proved that

$$
\begin{gathered}
T_{2 l}=\frac{1}{F_{2 l}} \sum_{n=1}^{l} \frac{1}{F_{2 n-1} F_{2 n}}, \quad T_{2 l+1}=\frac{1}{F_{2 l+1}}\left(T_{1}-\sum_{n=1}^{l} \frac{1}{F_{2 n} F_{2 n+1}}\right), \\
T_{l}^{*}=\frac{1}{F_{l}}\left(\frac{1-\sqrt{5}}{2} l+\sum_{n=1}^{l} \frac{F_{n-1}}{F_{n}}\right),
\end{gathered}
$$

so that $T_{2 l} \in \mathbb{Q}$ and $T_{l}^{*} \in \mathbb{Q}(\sqrt{5}) \backslash \mathbb{Q}$ for all $l \geq 1$. We see that $T_{2 l+1} \notin \mathbb{Q}(\sqrt{5})$ for all $l \geq 0$, since the first sum in this example with $a=1, b=0$ implies

$$
T_{1}=\sum_{n=1}^{\infty} \frac{1}{F_{n} F_{n+1}} \notin \mathbb{Q}(\sqrt{5}) .
$$

Example 6. Let R_{n} be the binary recurrence given in Example 4. Then

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{R_{2 n-1} R_{2 n+1}}, \quad \sum_{n=1}^{\infty} \frac{(-2)^{n}}{R_{2 n-1} R_{2 n+1}} \notin \mathbb{Q}(\sqrt{2}) .
$$

2. Lemmas

For the proof of theorems, we prepare some lemmas. Let $\left\{a_{m}\right\}_{m \geq 1}$ be a periodic sequence of complex numbers of period two, not identically zero. We put

$$
\theta=\sum_{m=1}^{\infty} \frac{a_{m}}{1-q^{m}}
$$

where $q \in \mathbb{C}$ with $|q|>1$. We start with the integral

$$
\begin{equation*}
F_{n}(q)=\frac{1}{2 \pi i} \int_{|t|=1} \frac{(-1 / t) \prod_{k=1}^{2 n}\left(1-q^{k} / t\right)}{\prod_{k=1}^{n}\left(1-q^{2 k} t\right)} \sum_{m=1}^{\infty} \frac{a_{m}}{1-q^{m} / t} d t \tag{3}
\end{equation*}
$$

which is a variant of that used by Borwein [4]. We note that the integrand is meromorphic in t provided $|q|>1$. We use the notations

$$
\begin{gathered}
{[n]_{q}!:=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots(1-q)}{(1-q)^{n}}, \quad[0]_{q}:=1,} \\
{\left[\begin{array}{l}
n \\
i
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[i]_{q}![n-i]_{q}!} \in \mathbb{Z}[q] .}
\end{gathered}
$$

In what follows, we denote c_{1}, c_{2}, \cdots positive constants independent of n.
LEmMA 1.

$$
\begin{align*}
F_{n}(q) & =\sum_{i=1}^{n} \frac{\prod_{\substack{k=1 \\
k=1 \\
k \neq i}}^{2 n}\left(1-q^{k+2 i}\right)}{\prod_{\substack{ }}^{n}\left(1-q^{2 k-2 i}\right)}\left(\theta-\sum_{m=1}^{2 i} \frac{a_{m}}{1-q^{m}}\right) \\
& -\left.\frac{1}{(2 n-1)!}\left(\prod_{k=1}^{2 n}\left(t-q^{k}\right) \prod_{k=1}^{n}\left(1-q^{2 k} t\right)^{-1} \sum_{m=1}^{\infty} \frac{a_{m}}{t-q^{m}}\right)^{(2 n-1)}\right|_{t=0} \tag{4}
\end{align*}
$$

Proof. This can be proved by using the residue theorem similarly as the proof of Lemma 1 in [4].

We put $D_{n}(q):=\prod_{k=n+1}^{2 n}\left(1-q^{2 k}\right)$. Then we have

$$
\begin{equation*}
\left|D_{n}(q)\right| \leq c_{1}|q|^{3 n^{2}+n} \tag{5}
\end{equation*}
$$

Lemma 2.

$$
\begin{equation*}
D_{n}(q) F_{n}(q)=A_{n}(q) \theta+B_{n}(q), \tag{6}
\end{equation*}
$$

where $A_{n}(q), B_{n}(q) \in \mathbb{Z}\left[a_{1}, a_{2}, q\right]$.
Proof. Since

$$
\frac{1}{\prod_{\substack{k=1 \\ k \neq i}}^{n}\left(1-q^{2 k-2 i}\right)}=\frac{q^{i(i-1)}}{\prod_{k=1}^{i-1}\left(q^{2 k}-1\right) \prod_{k=1}^{n-i}\left(1-q^{2 k}\right)}
$$

we have by (4)

$$
\begin{aligned}
F_{n}(q)= & \frac{1}{\prod_{k=1}^{n-1}\left(1-q^{2 k}\right)} \sum_{i=1}^{n}(-1)^{i-1} q^{i(i-1)}\left[\begin{array}{c}
n-1 \\
i-1
\end{array}\right]_{q^{2}} \prod_{k=1}^{2 n}\left(1-q^{k+2 i}\right)\left(\theta-\sum_{m=1}^{2 i} \frac{a_{m}}{1-q^{m}}\right) \\
& -\left.\left.\left.\sum_{\substack{\lambda, \mu, v \geq 0 \\
\lambda+\mu+\nu=2 n-1}} \frac{1}{\lambda!\mu!\nu!}\left(\prod_{k=1}^{2 n}\left(t-q^{k}\right)\right)^{(\lambda)}\right|_{t=0}\left(\prod_{k=1}^{n}\left(1-q^{2 k} t\right)^{-1}\right)^{(\mu)}\right|_{t=0}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{t-q^{m}}\right)^{(\nu)}\right|_{t=0}
\end{aligned}
$$

with

$$
\begin{aligned}
& \left.\left(\prod_{k=1}^{2 n}\left(t-q^{k}\right)\right)^{(\lambda)}\right|_{t=0}=\lambda!(-1)^{2 n-\lambda} \sum_{\substack{\lambda_{1}+\cdots+\lambda_{2 n}=2 n-\lambda \\
\lambda_{i}=0,1}} q^{\lambda_{1}+2 \lambda_{2}+\cdots+2 n \lambda_{2 n}} \\
& \left.\left(\prod_{k=1}^{n}\left(1-q^{2 k} t\right)^{-1}\right)^{(\mu)}\right|_{t=0}=\mu!\sum_{\substack{\mu_{1}+\cdots+\mu_{n}=\mu \\
\mu_{i} \geq 0}} q^{2\left(\mu_{1}+2 \mu_{2}+\cdots+n \mu_{n}\right)} \\
& \left.\left(\sum_{m=1}^{\infty} \frac{a_{m}}{t-q^{m}}\right)^{(v)}\right|_{t=0}=-v!\sum_{m=1}^{\infty} \frac{a_{m}}{\left(q^{v+1}\right)^{m}}=v!\left(a_{1} q^{v+1}+a_{2}\right) \frac{1}{1-q^{2(v+1)}}
\end{aligned}
$$

Hence we get

$$
\begin{align*}
F_{n}(q)= & \frac{1}{\prod_{k=1}^{n-1}\left(1-q^{2 k}\right)} \sum_{i=1}^{n}(-1)^{i-1} q^{i(i-1)}\left[\begin{array}{c}
n-1 \\
i-1
\end{array}\right]_{q^{2}} \prod_{k=1}^{2 n}\left(1-q^{k+2 i}\right)\left(\theta-\sum_{m=1}^{2 i} \frac{a_{m}}{1-q^{m}}\right) \\
& +\sum_{\substack{\lambda+\mu+\nu=2 n-1 \\
\lambda, \mu, v \geq 0}} Q_{\lambda \mu \nu}(q) \frac{1}{1-q^{2(v+1)}} \tag{7}
\end{align*}
$$

with $Q_{\lambda \mu \nu}(q)$ a polynomial in $\mathbb{Z}\left[a_{1}, a_{2}, q\right]$ for all $\lambda, \mu, \nu \geq 0$. Here we note that

$$
\prod_{k=1}^{2 n}\left(1-q^{k+2 i}\right) \sum_{m=1}^{2 i} \frac{a_{m}}{1-q^{m}} \in \mathbb{Z}\left[a_{1}, a_{2}, q\right], \quad i=1,2, \cdots, n
$$

and each of $\prod_{k=1}^{n-1}\left(1-q^{2 k}\right)$ and $1-q^{2 l}(l=1, \cdots, 2 n)$ divides $D_{n}(q)$ in $\mathbb{Z}[q]$. Therefore the lemma follows from (7).

Lemma 3. For large n, we have

$$
\begin{equation*}
0<\left|F_{n}(q)\right| \leq c_{3}|q|^{-3 n^{2}-2 n} \tag{8}
\end{equation*}
$$

Proof. Similarly to the proof of Lemma 4 in [4], the residue theorem applied exterior to the circle $|t|=1$ shows that

$$
F_{n}(q)=\sum_{m=2 n+1}^{\infty} I_{m}, \quad I_{m}=a_{m} \frac{\prod_{k=1}^{2 n}\left(1-q^{k-m}\right)}{\prod_{k=1}^{n}\left(1-q^{2 k+m}\right)}
$$

for large n. Since $\left|I_{m}\right| \leq c_{2}|q|^{-n^{2}-n(m+1)}$, we get the upper bound for $\left|F_{n}(q)\right|$. Furthermore, if $a_{1} \neq 0$, it follows that,

$$
F_{n}(q)=a_{1} \frac{\prod_{k=1}^{2 n}\left(1-q^{k-2 n-1}\right)}{\prod_{k=1}^{n}\left(1-q^{2 k+2 n+1}\right)}\left(1+\sum_{l=1}^{\infty} b_{n l}\right)
$$

with

$$
b_{n l}=\frac{a_{l+1}}{a_{1}} \prod_{k=1}^{n}\left(\frac{1-q^{2 k+2 n+1}}{1-q^{2 k+2 n+l+1}}\right) \prod_{k=1}^{2 n}\left(\frac{1-q^{k-2 n-l-1}}{1-q^{k-2 n-1}}\right)
$$

where $\left|b_{n l}\right| \leq c_{4}\left|q^{-n}\right|^{l}$. Hence we have $F_{n}(q) \neq 0$, since $\sum_{l=1}^{\infty}\left|b_{n l}\right|<1$ for large n. The proof is similar in the case of $a_{1}=0, a_{2} \neq 0$.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let \mathbf{K}, q, and $\left\{a_{m}\right\}$ be as in Theorem 1. We may suppose that a_{1} and a_{2} are integers in \mathbf{K}. Assume that $\theta \in \mathbf{K}$ and let $d=\operatorname{den} \theta$. Then by (5), (6), and (8), we have

$$
0<d\left|A_{n}(q) \theta+B_{n}(q)\right| \leq d c_{5}|q|^{-n}
$$

for large n; which is a contradiction.
Proof of Theorem 2. Let q and $\left\{a_{m}\right\}$ be as in Theorem 2. We may suppose that a_{1} and a_{2} are integers in $\mathbb{Q}(q)$. Then we have again by (5), (6), and (8)

$$
0<\left|A_{n}(q) \theta+B_{n}(q)\right| \leq c_{6}|q|^{-n}
$$

for large n. We assume that $\theta \in \mathbb{Q}(q)$ and evaluate the upper bound of $\left|A_{n}(q)^{\sigma} \theta^{\sigma}+B_{n}(q)^{\sigma}\right|$ for all $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}} / \mathbb{Q})$ with $q^{\sigma} \neq q$. By (6) and (7), we have

$$
A_{n}(q)=\left(1-q^{2 n}\right)\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q^{2}} \sum_{i=1}^{n}(-1)^{i-1} q^{i(i-1)}\left[\begin{array}{c}
n-1 \\
i-1
\end{array}\right]_{q^{2}} \prod_{k=1}^{2 n}\left(1-q^{k+2 i}\right)
$$

Since $\left|q^{\sigma}\right|<1$, we get $\left|A_{n}(q)^{\sigma}\right| \leq c_{7} n$ for all $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}} / \mathbb{Q})$ with $q^{\sigma} \neq q$. In the same way, we see that $\left|B_{n}(q)^{\sigma}\right| \leq c_{8} n^{2}$. Hence, $\left|A_{n}(q)^{\sigma} \theta^{\sigma}+B_{n}(q)^{\sigma}\right| \leq c_{9} n^{2}$ for all $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}} / \mathbb{Q})$ with $q^{\sigma} \neq q$. Therefore, we have

$$
1 \leq\left|\mathbf{N}_{\mathbb{Q}(q) / \mathbb{Q}} \operatorname{den} \theta\left(A_{n}(q) \theta+B_{n}(q)\right)\right| \leq c_{10} n^{c_{11}}|q|^{-n}
$$

for large n; which is a contradiction, and the proof is completed.

4. Proof of Theorem 3

Let q, α, and γ be as in Theorem 3. Since

$$
\sum_{m=1}^{\infty} \frac{\gamma^{m}}{1-\alpha q^{l} q^{m}}=\gamma^{-l}\left(\sum_{m=1}^{\infty} \frac{\gamma^{m}}{1-\alpha q^{m}}-\sum_{m=1}^{l} \frac{\gamma^{m}}{1-\alpha q^{m}}\right) \quad(l \geq 1)
$$

we can assume that α satisfies $|\alpha|>1$ and $\left|\alpha^{\sigma}\right|<1$ for any $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}} / \mathbb{Q})$ with $\alpha^{\sigma} \neq \alpha$, by replacing α by $q^{l} \alpha$ with suitable l. We modify Borwein's integral in [4] as follows:

$$
G_{n}(q, \alpha, \gamma)=\frac{1}{2 \pi i} \int_{|t|=1} \prod_{k=1}^{n-1}\left(\frac{1-\alpha q^{k} / t}{1-q^{k} t}\right) \frac{-1 / t}{1-q^{n} t} \sum_{m=1}^{\infty} \frac{\gamma^{m}}{1-\alpha q^{m} / t} d t
$$

By the residue theorem, we have

$$
\begin{aligned}
G_{n}(q, \alpha, \gamma)= & \sum_{i=1}^{n} \prod_{k=1}^{n-1}\left(\frac{1-\alpha q^{k+i}}{1-q^{k}}\right)(-1)^{i-1} q^{i(i-1) / 2}\left[\begin{array}{c}
n-1 \\
i-1
\end{array}\right]_{q} \gamma^{-i}\left(\xi-\sum_{m=1}^{i} \frac{\gamma^{m}}{1-\alpha q^{m}}\right) \\
& +\sum_{\substack{\lambda+\mu+\nu=n-2 \\
\lambda, \mu, v \geq 0}}(-1)^{n-\lambda} Q_{1 \lambda}(q) Q_{2 \mu}(q) \frac{\alpha^{\mu}}{1-\gamma^{-1} q^{\nu+1}},
\end{aligned}
$$

where

$$
\begin{gathered}
Q_{1 \lambda}(q)=\sum_{\substack{\lambda_{1}+\cdots+\lambda_{n}=1=n-1-\lambda \\
\lambda_{i}=0,1}} q^{\lambda_{1}+2 \lambda_{2}+\cdots+(n-1) \lambda_{n-1}}, \\
Q_{2 \mu}(q)=\sum_{\substack{\mu_{1}+\cdots+\mu_{n}=\mu \\
\mu_{i} \geq 0}} q^{\mu_{1}+2 \mu_{2}+\cdots+n \mu_{n}}, \quad \lambda, \mu=0,1, \cdots, n-2 .
\end{gathered}
$$

We put

$$
D_{n}(q, \alpha, \gamma):=\prod_{k=1}^{n-1}\left(1-q^{k}\right) \prod_{k=1}^{n}\left(1-\alpha q^{k}\right) \prod_{k=1}^{n-1}\left(1-\gamma^{-1} q^{k}\right) \in \mathbb{Z}[q, \alpha, \gamma] .
$$

Then we have $\left|D_{n}(q, \alpha, \gamma)\right| \leq c_{12}\left|\alpha \gamma^{-1}\right|^{n}|q|^{\frac{3}{2} n^{2}-\frac{1}{2} n}$. In the same way as the proof of Lemma 3 , we have $0<\left|G_{n}(q, \alpha, \gamma)\right| \leq c_{13}\left|\alpha^{-1} \gamma\right|^{n}|q|^{-\frac{3}{2} n^{2}-\frac{1}{2} n}$ for large n. Hence

$$
\left|D_{n}(q, \alpha, \gamma) G_{n}(q, \alpha, \gamma)\right|=\left|A_{n}(q, \alpha, \gamma) \xi+B_{n}(q, \alpha, \gamma)\right| \leq c_{14}|q|^{-n}
$$

for large n, where $A_{n}, B_{n} \in \mathbb{Z}[q, \alpha, \gamma]$, of degree at most $2 n$ in α.
Now we assume $\xi \in \mathbb{Q}(q)$. Noting that $\left|q^{\sigma}\right|<1,\left|\alpha^{\sigma}\right|<1$, and $\left|\gamma^{\sigma}\right| \geq 1$ we have $\left|A_{n}(q, \alpha, \gamma)^{\sigma}\right|,\left|B_{n}(q, \alpha, \gamma)^{\sigma}\right| \leq c_{15} n^{2}$ for $\sigma \in \operatorname{Aut}(\mathbb{Q}(q) / \mathbb{Q})$ with $q^{\sigma} \neq q$. Therefore, we have

$$
1 \leq\left|\mathbf{N}_{\mathbb{Q}(q) / \mathbb{Q}} \operatorname{den} \xi(\operatorname{den} \alpha)^{2 n}\left(A_{n}(q, \alpha, \gamma) \xi+B_{n}(q, \alpha, \gamma)\right)\right| \leq c_{16} n^{2}\left|(\operatorname{den} \alpha)^{4} q^{-1}\right|^{n}
$$

for large n; which is a contradiction, and the proof is completed.

References

[1] R. André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris, Sér. I 308 (1989), 539-541.
[2] J.-P. BÉzivin, Indépendance linéaire des valeurs des solutions transcendantes de certaines équations fonctionnelles, Manuscripta Math. 61 (1988), 103-129.
[3] P. B. Borwein, On the irrationality of $\sum\left(1 /\left(q^{n}+r\right)\right)$, J. Number Theory 37 (1991), 252-259.
[4] P. B. Borwein, On the irrationality of certain series, Math. Proc. Camb. Phil. Soc. 112 (1992), 141-146.
[5] Bro. A. Brousseau, Summation of infinite Fibonacci series, Fibonacci Quart. 7 (1969), 143-168.
[6] P. Bundschut and K. VÄÄnÄnen, Arithmetical investigations of a certain infinite product, Compositio Math. 91 (1994), 175-199.
[7] D. Duverney, A propos de la série $\sum_{n=1}^{+\infty} \frac{x^{n}}{q^{n}-1}$, J. Théor. Nombres Bordeaux 8 (1996), 173-181.
[8] D. Duverney, Ke. Nishioka, Ku. Nishioka and I. Shiokawa, Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 140-142.
[9] D. Duverney, Ke. Nishioka, Ku. Nishioka and I. Shiokawa, Transcendence of Jacobi's theta series and related results, Number Theory (Eds. GYÖRY, PETÖ, and Sós) Gruyter (1998), 157-168.
[10] P. ERdös, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N. S.) 12 (1948), 63-66.
[11] T. MATALA-AHO and K. VÄÄNÄNEN, On approximation measures of q-logarithms, Bull. Austral. Math. Soc. 58 (1998), 15-31.
[12] T. Matala-Aho and M. Prévost, Irrationality measures for the series of reciprocals from recurrence sequences, J. Number Theory 96 (2002), 275-292.
[13] M. Prévost, On the irrationality of $\sum \frac{t^{n}}{A \alpha^{n}+B \beta^{n}}$, J. Number Theory 73 (1998), 139-161.
[14] S. Rabinowitz, Algorithmic summation of reciprocals of products of Fibonacci numbers, Fibonacci Quart. 37 (1999), 122-127.
[15] W. VAN AsSche, Little q-Legendre polynomials and irrationality of certain Lambert Series, Ramanujan J. 5 (2001), 295-310.

Present Address:

Department of Mathematics, Keio University, Hiyoshi, KOHOKU-KU, YOKOHAMA, 223-8522, JAPAN. e-mail: bof@math.keio.ac.jp

[^0]: Received March 3, 2003; revised July 23, 2003
 2003 Mathematics Subject Classification. 11J72
 Key words. irrationality, linear independence, Lambert series, q-logarithm.

