Irrationality of Certain Lambert Series

Yohei TACHIYA

Keio University

(Communicated by Y. Maeda)

Abstract. Let q with |q|>1 be an integer in an algebraic number field $\mathbf K$ given below, and $\{a_n\}$ a periodic sequence in $\mathbf K$ of period two, not identically zero. Let $f(q)=\sum_{n=1}^\infty a_n/(1-q^n)$. We prove that (i) If $\mathbf K$ is either the rational number field $\mathbb Q$ or an imaginary quadratic field, then $f(q)\notin \mathbf K$. (ii) For an algebraic integer q such that |q|>1 and $|q^\sigma|<1$ for any $\sigma\in \operatorname{Aut}(\overline{\mathbb Q}/\mathbb Q)$ with $q^\sigma\neq q$, if $k=\mathbb Q(q)$, then $f(q)\notin \mathbb Q(q)$. For example, the three numbers

1,
$$\sum_{n=1}^{\infty} \frac{1}{q^n - 1}$$
, $\sum_{n=1}^{\infty} \frac{1}{q^n + 1}$

are linearly independent over $\mathbb Q$ for every $q\in\mathbb Z$ with $|q|\geq 2$. Further, irrationality results of the special values of the functions

$$\sum_{n=1}^{\infty}\frac{z^n}{R_{an+b}}\,,\qquad \sum_{n=1}^{\infty}\frac{z^n}{R_{an+b}R_{a(n+1)+b}}\ (z\in\mathbb{C})$$

can be deduced, where a > 0, $b \ge 0$ are integers and R_n is a certain binary recurrence.

1. Introduction and the results

For any fixed $q \in \mathbb{C}$ with |q| > 1 and $z \in \mathbb{C}$, the q-logarithmic function $L_q(z)$ and the q-exponential $E_q(z)$ are defined by

$$L_q(z) := \sum_{n=1}^{\infty} \frac{z^n}{q^n - 1} = \sum_{n=1}^{\infty} \frac{z}{q^n - z} \quad (|z| < |q|),$$

$$E_q(z) := 1 + \sum_{n=1}^{\infty} \frac{z^n}{(q-1)\cdots(q^n-1)} = \prod_{n=1}^{\infty} \left(1 + \frac{z}{q^n}\right),$$

respectively. Bézivin [2] showed that the numbers 1, $E_q^{(k)}(\alpha_i)$ $(i=1,\cdots,m,\ k=0,1,\cdots,l)$ are linearly independent over \mathbb{Q} , where $q\in\mathbb{Z}\setminus\{0,\pm 1\}$ and $\alpha_i\in\mathbb{Q}^\times$ satisfy

Received March 3, 2003; revised July 23, 2003 2003 Mathematics Subject Classification. 11J72

Key words. irrationality, linear independence, Lambert series, q-logarithm.

 $\alpha_i \neq -q^{\mu}$ and $\alpha_i \neq \alpha_j q^{\nu}$ for all $\mu, \nu \in \mathbb{Z}$ with $\mu \geq 1$ and $i \neq j$. This implies that

$$\sum_{n=1}^{\infty} \frac{1}{q^n + \alpha} \notin \mathbb{Q},$$

where $q \in \mathbb{Z} \setminus \{0, \pm 1\}$ and $\alpha \in \mathbb{Q}^{\times}$ with $\alpha \neq -q^{i}$ $(i \geq 1)$. Under the same conditions on q and α , Borwein [3], [4] obtained irrationality measures for the numbers $\sum_{n=1}^{\infty} 1/(q^{n}+\alpha)$ and $\sum_{n=1}^{\infty} (-1)^{n}/(q^{n}+\alpha)$. These results include the irrationality of $L_{2}(1) = \sum_{n=1}^{\infty} 1/(2^{n}-1)$ proved by Erdös [10]. Furthermore, Bundschuh and Väänaänen [6], and Matala-Aho and Väänänen [11] obtained quantitative irrationality results for the values of the q-logarithm both in the Archimedean and p-adic cases. In [7], Duverney generalized certain results obtained by Borwein [3], [4], and Bundschuh and Väänänen [6]. Recently, Van Assche [15] gave irrationality measures for the numbers $L_{q}(1)$ and $L_{q}(-1)$ by using little q-Legendre polynomials. In this paper, we prove irrationality results for certain Lambert series, which in particular implies the linear independence of the numbers 1, $L_{q}(1)$, $L_{q}(-1)$ with $q \in \mathbb{Z} \setminus \{0, \pm 1\}$ by developing Borwein's idea in [4].

Let R_n be a binary recurrence defined by

$$R_{n+2} = A_1 R_{n+1} + A_2 R_n \ (n \ge 0), \quad A_1, A_2 \in \mathbb{Q}^{\times}, \ R_0, R_1 \in \mathbb{Q}.$$

André-Jeannin [1] proved for some R_n the irrationality of the value of the function $f(x) = \sum_{n=1}^{\infty} x^n/R_n$ at a nonzero rational integer x in the disk of convergence of f, which gave the first proof of the irrationality of the numbers $\sum_{n=1}^{\infty} 1/F_n$ and $\sum_{n=1}^{\infty} 1/L_n$, where F_n and L_n are Fibonacci numbers and Lucas numbers, respectively. Prévost [13] extended this result to any rational x in the domain of meromorphy of f. Recently, Matala-aho and Prévost [12] obtained for some type of R_n irrationality measures for the number $\sum_{n=1}^{\infty} \gamma^n/R_{an}$, where γ belongs to an imaginary quadratic field, and γ 0 is an integer. We will prove for some R_n the irrationality of the numbers $\sum_{n=1}^{\infty} \gamma^n/R_{an+b}$ and $\sum_{n=1}^{\infty} \gamma^n/R_{an+b}R_{a(n+1)+b}$, where γ 0, γ 2 are integers and γ is a certain number in a real quadratic field (see Corollaries 2 and 3, below).

For an algebraic number α , we denote by $\overline{|\alpha|}$ the maximum of absolute values of its conjugates and by den α the least positive integer such that α -den α is an algebraic integer. We put $\mathbb{N} = \{0, 1, 2, \cdots\}$.

THEOREM 1. Let **K** be either \mathbb{Q} or an imaginary quadratic field. Assume that q is an integer in **K** with |q| > 1 and $\{a_n\}$ a periodic sequence in **K** of period two, not identically zero. Then

$$\theta = \sum_{n=1}^{\infty} \frac{a_n}{1 - q^n} \notin \mathbf{K}.$$

COROLLARY 1. Let $q \in \mathbb{Z}$ with $|q| \ge 2$ and $\{a_n\}$, $\{b_n\}$ be periodic sequences in \mathbb{Q} of period two, not identically zero. Then the numbers

1,
$$\sum_{n=1}^{\infty} \frac{a_n}{q^n - 1}$$
, $\sum_{n=1}^{\infty} \frac{b_n}{q^n - 1}$

are linearly independent over \mathbb{Q} if and only if $\{a_n\}$ and $\{b_n\}$ are linearly independent over \mathbb{Q} .

PROOF. This follows immediately from Theorem 1.

EXAMPLE 1. Let $q \in \mathbb{Z}$ with $|q| \ge 2$. Then

1,
$$L_q(1) = \sum_{n=1}^{\infty} \frac{1}{q^n - 1}$$
, $L_q(-1) = \sum_{n=1}^{\infty} \frac{(-1)^n}{q^n - 1} = \sum_{n=1}^{\infty} \frac{-1}{q^n + 1}$

are linearly independent over \mathbb{Q} .

THEOREM 2. Let q be an algebraic integer such that |q| > 1 and $|q^{\sigma}| < 1$ for any $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}/\mathbb{Q})$ with $q^{\sigma} \neq q$ and $\{a_n\}$ be a periodic sequence in $\mathbb{Q}(q)$ of period two, not identically zero. Then

$$\theta = \sum_{n=1}^{\infty} \frac{a_n}{1 - q^n} \notin \mathbb{Q}(q).$$

EXAMPLE 2. Let ε (> 1) be the fundamental unit in a real quadratic field $\mathbb{Q}(\sqrt{m})$. Then

1,
$$\sum_{n=1}^{\infty} \frac{1}{\varepsilon^n - 1}$$
, $\sum_{n=1}^{\infty} \frac{1}{\varepsilon^n + 1}$

are linearly independent over $\mathbb{Q}(\sqrt{m})$. For example, the following numbers are linearly independent over $\mathbb{Q}(\sqrt{2})$.

1,
$$\sum_{n=1}^{\infty} \frac{1}{(1+\sqrt{2})^n - 1}$$
, $\sum_{n=1}^{\infty} \frac{1}{(1+\sqrt{2})^n + 1}$.

THEOREM 3. Let q be a quadratic integer satisfying |q| > 1 and $|q^{\sigma}| < 1$ for any $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}/\mathbb{Q})$ with $q^{\sigma} \neq q$, γ a unit in $\mathbb{Q}(q)$ with $|\gamma| \leq 1$, and $\alpha \in \mathbb{Q}(q)^{\times}$ with $(\operatorname{den}(q^{l}\alpha))^{4} < |q|$ for some $l \in \mathbb{N}$. Then

$$\xi = \sum_{n=1}^{\infty} \frac{\gamma^n}{1 - \alpha q^n} \notin \mathbb{Q}(q),$$

provided that $\alpha q^n \neq 1$ for all $n \geq 1$.

In the following Corollaries 2 and 3, we consider the binary recurrences $\{R_n\}_{n\geq 0}$ defined by

$$R_{n+2} = A_1 R_{n+1} + A_2 R_n$$
, $A_1, A_2 \in \mathbb{Z} \setminus \{0\}$, $R_0, R_1 \in \mathbb{Z}$.

We suppose that $R_n \neq 0$ for all $n \geq 1$, the corresponding polynomial $\Phi(X) = X^2 - A_1 X - A_2$ is irreducible in $\mathbb{Q}[X]$, and $\Delta = A_1^2 + 4A_2 > 0$. We can write R_n as

$$R_n = g_1 \rho_1^n + g_2 \rho_2^n \ (n \ge 0), \quad g_1, g_2 \in \mathbb{Q}(\rho_1)^{\times},$$
 (1)

where ρ_1 and ρ_2 are the roots of $\Phi(X)$. We may assume $|\rho_1| > |\rho_2|$, since $A_1 \neq 0$ and $\Delta > 0$.

For $a, b \in \mathbb{N}$ with $a \neq 0$, we define

$$R(z) = \sum_{n=1}^{\infty} \frac{z^n}{R_{an+b}} \quad (|z| < |\rho_1|^a).$$

This function can be extended to a meromorphic function on the whole complex plane \mathbb{C} with poles $\{(\rho_1^{n+1}/\rho_2^n)^a \mid n \geq 0\}$, since

$$\sum_{n=1}^{\infty} \frac{z^n}{1 - \alpha q^n} = \sum_{m=1}^{\infty} \frac{\alpha^{-m} z}{z - q^m} \quad (|z| < |q|)$$

for any complex numbers q and α with |q| > 1 and $|\alpha| \ge 1$, and so

$$\sum_{n=1}^{\infty} \frac{z^n}{R_{an+b}} = \sum_{n=1}^{i} \frac{z^n}{R_{an+b}} - \frac{z^{i+1}}{g_1 \rho_1^{ai+b}} \sum_{n=0}^{\infty} \frac{(-(g_2/g_1)(\rho_2/\rho_1)^{ai+b})^n}{z - \rho_1^a (\rho_1/\rho_2)^{an}},$$
 (2)

where i is chosen as $|(q_2/q_1)(\rho_2/\rho_1)^{ai+b}| < 1$. We denote the function again by R(z).

COROLLARY 2. Let R_n be a binary recurrence given by (1) and $a, b \in \mathbb{N}$ with $a \neq 0$. Assume that g_1/g_2 and ρ_1/ρ_2 are units in $\mathbb{Q}(\rho_1)$ and $\gamma \in \mathbb{Q}(\rho_1)^{\times}$ is not a pole of R(z) with $(\text{den}(\rho_1^a/\gamma))^4 < |\rho_1/\rho_2|^a$. Then we have $R(\gamma) \notin \mathbb{Q}(\rho_1)$.

PROOF. Apply Theorem 3 to the last sum in (2).

EXAMPLE 3. Let F_n and L_n be Fibonacci numbers and Lucas numbers defined by $F_{n+2} = F_{n+1} + F_n$ ($n \ge 0$), $F_0 = 0$, $F_1 = 1$ and $L_{n+2} = L_{n+1} + L_n$ ($n \ge 0$), $L_0 = 2$, $L_1 = 1$, respectively. Then for every $a, b \in \mathbb{N}$ with $a \ne 0$,

$$\sum_{n=1}^{\infty} \frac{1}{F_{an+b}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{F_{an+b}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{an+b}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{L_{an+b}} \notin \mathbb{Q}(\sqrt{5}).$$

André-Jeannin[1] proved that each of these numbers is irrational. We remark that the numbers $\sum_{n=1}^{\infty} 1/F_{2n+1}$ and $\sum_{n=1}^{\infty} 1/L_{2n}$ are transcendental (cf. [8], [9]).

EXAMPLE 4. Let R_n be defined by $R_{n+2} = 4R_{n+1} - 2R_n$ $(n \ge 0)$, $R_0 = 1$, $R_1 = 2$, so that $R_n = (2 + \sqrt{2})^n/2 + (2 - \sqrt{2})^n/2$ $(n \ge 0)$. Then for every $a, b \in \mathbb{N}$ with $a \ne 0$,

$$\sum_{n=1}^{\infty} \frac{1}{R_{an+b}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{R_{an+b}} \notin \mathbb{Q}(\sqrt{2}).$$

Next we consider, for any given $a, b \in \mathbb{N}$ with $a \neq 0$, the function

$$S(z) = \sum_{n=1}^{\infty} \frac{z^n}{R_{an+b}R_{a(n+1)+b}} \quad (|z| < |\rho_1|^{2a}),$$

which can be extended to a meromorphic function on the whole plane with the poles $\{(\rho_1^{n+2}/\rho_2^n)^a \mid n \ge 0\}$. We denote it again by S(z).

COROLLARY 3. Let R_n be a binary recurrence given by (1) and $a, b \in \mathbb{N}$ with $a \neq 0$. Assume that g_1/g_2 and ρ_1/ρ_2 are units in $\mathbb{Q}(\rho_1)$. If $\gamma \in \mathbb{Q}(\rho_1)^{\times}$ is not a pole of S(z) with $(\text{den}(\rho_1^{2a}/\gamma))^4 < |\rho_1/\rho_2|^a$, then $S(\gamma) \notin \mathbb{Q}(\rho_1)$, provided $\gamma \neq (-A_2)^a$. If $\gamma = (-A_2)^a$, we have

$$S(\gamma) = \sum_{n=1}^{\infty} \frac{\gamma^n}{R_{an+b}R_{a(n+1)+b}} = \frac{\rho_2^a}{g_1 \rho_1^b (\rho_1^a - \rho_2^a)R_{a+b}} \in \mathbb{Q}(\rho_1).$$

PROOF. Since $\rho_1 \rho_2 = -A_2$, we have

$$\rho_1{}^a R_{a(n+1)+b} - (-A_2)^a R_{an+b} = g_1 \rho_1{}^b (\rho_1^{2a} - (-A_2)^a)(\rho_1^a)^n.$$

We multiply both sides by $z^n/(\rho_1^{a(n+1)}R_{an+b}R_{a(n+1)+b})$ and sum up from n equals 1 to infinity. Then, we get

$$g_1 \rho_1^b (\rho_1^a - \rho_2^a) \sum_{n=1}^{\infty} \frac{z^n}{R_{an+b} R_{a(n+1)+b}} = \frac{\rho_2^a}{R_{a+b}} + \left(1 - \frac{(-A_2)^a}{z}\right) \sum_{n=1}^{\infty} \frac{(z/\rho_1^a)^n}{R_{an+b}}$$

 $(|z| < |\rho_1|^{2a})$. Hence, the left-hand side can be extended to a meromorphic function, and Corollary 3 follows from Corollary 2.

EXAMPLE 5. Let F_n be Fibonacci numbers. Then for every $a, b \in \mathbb{N}$ with $a \neq 0$,

$$\sum_{n=1}^{\infty} \frac{1}{F_{(2a-1)n+b}F_{(2a-1)(n+1)+b}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{F_{2an+b}F_{2a(n+1)+b}} \notin \mathbb{Q}(\sqrt{5}).$$

The same holds for Lucas numbers. We put

$$T_l := \sum_{n=1}^{\infty} \frac{1}{F_n F_{n+l}}, \quad T_l^* := \sum_{n=1}^{\infty} \frac{(-1)^n}{F_n F_{n+l}} \quad (l \ge 1).$$

Then Brousseau [5] and Rabinowitz [14] proved that

$$T_{2l} = \frac{1}{F_{2l}} \sum_{n=1}^{l} \frac{1}{F_{2n-1}F_{2n}}, \quad T_{2l+1} = \frac{1}{F_{2l+1}} \left(T_1 - \sum_{n=1}^{l} \frac{1}{F_{2n}F_{2n+1}} \right),$$

$$T_l^* = \frac{1}{F_l} \left(\frac{1 - \sqrt{5}}{2} l + \sum_{n=1}^l \frac{F_{n-1}}{F_n} \right),$$

so that $T_{2l} \in \mathbb{Q}$ and $T_l^* \in \mathbb{Q}(\sqrt{5}) \setminus \mathbb{Q}$ for all $l \ge 1$. We see that $T_{2l+1} \notin \mathbb{Q}(\sqrt{5})$ for all $l \ge 0$, since the first sum in this example with a = 1, b = 0 implies

$$T_1 = \sum_{n=1}^{\infty} \frac{1}{F_n F_{n+1}} \notin \mathbb{Q}(\sqrt{5}).$$

EXAMPLE 6. Let R_n be the binary recurrence given in Example 4. Then

$$\sum_{n=1}^{\infty} \frac{2^n}{R_{2n-1}R_{2n+1}} \,, \quad \sum_{n=1}^{\infty} \frac{(-2)^n}{R_{2n-1}R_{2n+1}} \notin \mathbb{Q}(\sqrt{2}) \,.$$

2. Lemmas

For the proof of theorems, we prepare some lemmas. Let $\{a_m\}_{m\geq 1}$ be a periodic sequence of complex numbers of period two, not identically zero. We put

$$\theta = \sum_{m=1}^{\infty} \frac{a_m}{1 - q^m} \,,$$

where $q \in \mathbb{C}$ with |q| > 1. We start with the integral

$$F_n(q) = \frac{1}{2\pi i} \int_{|t|=1} \frac{(-1/t) \prod_{k=1}^{2n} (1 - q^k/t)}{\prod_{k=1}^{n} (1 - q^{2k}t)} \sum_{m=1}^{\infty} \frac{a_m}{1 - q^m/t} dt,$$
 (3)

which is a variant of that used by Borwein [4]. We note that the integrand is meromorphic in t provided |q| > 1. We use the notations

$$[n]_q! := \frac{(1-q^n)(1-q^{n-1})\cdots(1-q)}{(1-q)^n}, \quad [0]_q := 1,$$

$$\left[\begin{smallmatrix} n \\ i \end{smallmatrix} \right]_q := \frac{[n]_q!}{[i]_q![n-i]_q!} \ \in \mathbb{Z}[q] \, .$$

In what follows, we denote c_1, c_2, \cdots positive constants independent of n.

LEMMA 1.

$$F_{n}(q) = \sum_{i=1}^{n} \frac{\prod_{k=1}^{2n} (1 - q^{k+2i})}{\prod_{k=1}^{n} (1 - q^{2k-2i})} \left(\theta - \sum_{m=1}^{2i} \frac{a_{m}}{1 - q^{m}} \right)$$

$$- \frac{1}{(2n-1)!} \left(\prod_{k=1}^{2n} \left(t - q^{k} \right) \prod_{k=1}^{n} \left(1 - q^{2k} t \right)^{-1} \sum_{m=1}^{\infty} \frac{a_{m}}{t - q^{m}} \right)^{(2n-1)} \Big|_{t=0}$$

$$(4)$$

PROOF. This can be proved by using the residue theorem similarly as the proof of Lemma 1 in [4].

We put $D_n(q) := \prod_{k=n+1}^{2n} (1 - q^{2k})$. Then we have

$$|D_n(q)| \le c_1 |q|^{3n^2 + n} \,. \tag{5}$$

LEMMA 2.

$$D_n(q)F_n(q) = A_n(q)\theta + B_n(q), \qquad (6)$$

where $A_n(q)$, $B_n(q) \in \mathbb{Z}[a_1, a_2, q]$.

PROOF. Since

$$\frac{1}{\prod\limits_{\substack{k=1\\k\neq i}}^{n}(1-q^{2k-2i})} = \frac{q^{i(i-1)}}{\prod\limits_{k=1}^{i-1}(q^{2k}-1)\prod\limits_{k=1}^{n-i}(1-q^{2k})},$$

we have by (4)

$$F_n(q) = \frac{1}{\prod_{k=1}^{n-1} \left(1 - q^{2k}\right)} \sum_{i=1}^n (-1)^{i-1} q^{i(i-1)} \begin{bmatrix} n-1 \\ i-1 \end{bmatrix}_{q^2} \prod_{k=1}^{2n} (1 - q^{k+2i}) \left(\theta - \sum_{m=1}^{2i} \frac{a_m}{1 - q^m}\right)$$

$$-\sum_{\substack{\lambda,\mu,\nu \geq 0 \\ \lambda+\mu+\nu=2n-1}} \frac{1}{\lambda!\mu!\nu!} \left(\prod_{k=1}^{2n} (t-q^k) \right)^{(\lambda)} \bigg|_{t=0} \left(\prod_{k=1}^{n} (1-q^{2k}t)^{-1} \right)^{(\mu)} \bigg|_{t=0} \left(\sum_{m=1}^{\infty} \frac{a_m}{t-q^m} \right)^{(\nu)} \bigg|_{t=0}$$

with

$$\left(\left. \prod_{k=1}^{2n} (t - q^k) \right)^{(\lambda)} \right|_{t=0} = \lambda! (-1)^{2n-\lambda} \sum_{\substack{\lambda_1 + \dots + \lambda_{2n} = 2n - \lambda \\ \lambda_i = 0, 1}} q^{\lambda_1 + 2\lambda_2 + \dots + 2n\lambda_{2n}},$$

$$\left(\left. \prod_{k=1}^{n} (1 - q^{2k} t)^{-1} \right)^{(\mu)} \right|_{t=0} = \mu! \sum_{\substack{\mu_1 + \dots + \mu_n = \mu \\ \mu_i \ge 0}} q^{2(\mu_1 + 2\mu_2 + \dots + n\mu_n)},$$

$$\left(\sum_{m=1}^{\infty} \frac{a_m}{t - q^m} \right)^{(\nu)} \Big|_{t=0} = -\nu! \sum_{m=1}^{\infty} \frac{a_m}{(q^{\nu+1})^m} = \nu! (a_1 q^{\nu+1} + a_2) \frac{1}{1 - q^{2(\nu+1)}}.$$

Hence we get

$$F_{n}(q) = \frac{1}{\prod_{k=1}^{n-1} \left(1 - q^{2k}\right)} \sum_{i=1}^{n} (-1)^{i-1} q^{i(i-1)} \begin{bmatrix} n-1\\ i-1 \end{bmatrix}_{q^{2}} \prod_{k=1}^{2n} (1 - q^{k+2i}) \left(\theta - \sum_{m=1}^{2i} \frac{a_{m}}{1 - q^{m}}\right) + \sum_{\substack{\lambda + \mu + \nu = 2n-1\\ \lambda \neq \mu \text{ or } r = 2n}} Q_{\lambda\mu\nu}(q) \frac{1}{1 - q^{2(\nu+1)}}$$

$$(7)$$

with $Q_{\lambda\mu\nu}(q)$ a polynomial in $\mathbb{Z}[a_1, a_2, q]$ for all $\lambda, \mu, \nu \geq 0$. Here we note that

$$\prod_{k=1}^{2n} (1 - q^{k+2i}) \sum_{m=1}^{2i} \frac{a_m}{1 - q^m} \in \mathbb{Z}[a_1, a_2, q], \qquad i = 1, 2, \dots, n,$$

and each of $\prod_{k=1}^{n-1} (1-q^{2k})$ and $1-q^{2l}$ $(l=1,\cdots,2n)$ divides $D_n(q)$ in $\mathbb{Z}[q]$. Therefore the lemma follows from (7).

LEMMA 3. For large n, we have

$$0 < |F_n(q)| \le c_3 |q|^{-3n^2 - 2n}. (8)$$

PROOF. Similarly to the proof of Lemma 4 in [4], the residue theorem applied exterior to the circle |t| = 1 shows that

$$F_n(q) = \sum_{m=2n+1}^{\infty} I_m, \quad I_m = a_m \frac{\prod_{k=1}^{2n} (1 - q^{k-m})}{\prod_{k=1}^{n} (1 - q^{2k+m})}$$

for large n. Since $|I_m| \le c_2 |q|^{-n^2 - n(m+1)}$, we get the upper bound for $|F_n(q)|$. Furthermore, if $a_1 \ne 0$, it follows that,

$$F_n(q) = a_1 \frac{\prod_{k=1}^{2n} (1 - q^{k-2n-1})}{\prod_{k=1}^{n} (1 - q^{2k+2n+1})} \left(1 + \sum_{l=1}^{\infty} b_{nl}\right)$$

with

$$b_{nl} = \frac{a_{l+1}}{a_1} \prod_{k=1}^{n} \left(\frac{1 - q^{2k+2n+1}}{1 - q^{2k+2n+l+1}} \right) \prod_{k=1}^{2n} \left(\frac{1 - q^{k-2n-l-1}}{1 - q^{k-2n-1}} \right),$$

where $|b_{nl}| \le c_4 |q^{-n}|^l$. Hence we have $F_n(q) \ne 0$, since $\sum_{l=1}^{\infty} |b_{nl}| < 1$ for large n. The proof is similar in the case of $a_1 = 0$, $a_2 \ne 0$.

3. Proofs of Theorems 1 and 2

PROOF OF THEOREM 1. Let **K**, q, and $\{a_m\}$ be as in Theorem 1. We may suppose that a_1 and a_2 are integers in **K**. Assume that $\theta \in \mathbf{K}$ and let $d = \text{den}\theta$. Then by (5), (6), and (8), we have

$$0 < d|A_n(q)\theta + B_n(q)| \le dc_5|q|^{-n}$$

for large n; which is a contradiction.

PROOF OF THEOREM 2. Let q and $\{a_m\}$ be as in Theorem 2. We may suppose that a_1 and a_2 are integers in $\mathbb{Q}(q)$. Then we have again by (5), (6), and (8)

$$0 < |A_n(q)\theta + B_n(q)| \le c_6|q|^{-n}$$

for large n. We assume that $\theta \in \mathbb{Q}(q)$ and evaluate the upper bound of $|A_n(q)^{\sigma}\theta^{\sigma} + B_n(q)^{\sigma}|$ for all $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}/\mathbb{Q})$ with $q^{\sigma} \neq q$. By (6) and (7), we have

$$A_n(q) = (1 - q^{2n}) \begin{bmatrix} 2n \\ n \end{bmatrix}_{q^2} \sum_{i=1}^n (-1)^{i-1} q^{i(i-1)} \begin{bmatrix} n-1 \\ i-1 \end{bmatrix}_{q^2} \prod_{k=1}^{2n} (1 - q^{k+2i}).$$

Since $|q^{\sigma}| < 1$, we get $|A_n(q)^{\sigma}| \le c_7 n$ for all $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}/\mathbb{Q})$ with $q^{\sigma} \ne q$. In the same way, we see that $|B_n(q)^{\sigma}| \le c_8 n^2$. Hence, $|A_n(q)^{\sigma}\theta^{\sigma} + B_n(q)^{\sigma}| \le c_9 n^2$ for all $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}/\mathbb{Q})$ with $q^{\sigma} \ne q$. Therefore, we have

$$1 \leq |\mathbf{N}_{\mathbb{Q}(q)/\mathbb{Q}} \operatorname{den}\theta (A_n(q)\theta + B_n(q))| \leq c_{10}n^{c_{11}}|q|^{-n}$$

for large *n*; which is a contradiction, and the proof is completed.

4. Proof of Theorem 3

Let q, α , and γ be as in Theorem 3. Since

$$\sum_{m=1}^{\infty} \frac{\gamma^m}{1 - \alpha q^l q^m} = \gamma^{-l} \left(\sum_{m=1}^{\infty} \frac{\gamma^m}{1 - \alpha q^m} - \sum_{m=1}^{l} \frac{\gamma^m}{1 - \alpha q^m} \right) \quad (l \ge 1),$$

we can assume that α satisfies $|\alpha| > 1$ and $|\alpha^{\sigma}| < 1$ for any $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}/\mathbb{Q})$ with $\alpha^{\sigma} \neq \alpha$, by replacing α by $q^{l}\alpha$ with suitable l. We modify Borwein's integral in [4] as follows:

$$G_n(q, \alpha, \gamma) = \frac{1}{2\pi i} \int_{|t|=1} \prod_{k=1}^{n-1} \left(\frac{1 - \alpha q^k / t}{1 - q^k t} \right) \frac{-1 / t}{1 - q^n t} \sum_{m=1}^{\infty} \frac{\gamma^m}{1 - \alpha q^m / t} dt.$$

By the residue theorem, we have

$$G_{n}(q,\alpha,\gamma) = \sum_{i=1}^{n} \prod_{k=1}^{n-1} \left(\frac{1 - \alpha q^{k+i}}{1 - q^{k}} \right) (-1)^{i-1} q^{i(i-1)/2} \begin{bmatrix} n-1 \\ i-1 \end{bmatrix}_{q} \gamma^{-i} \left(\xi - \sum_{m=1}^{i} \frac{\gamma^{m}}{1 - \alpha q^{m}} \right) + \sum_{\substack{\lambda + \mu + \nu = n-2 \\ \lambda, \mu, \nu > 0}} (-1)^{n-\lambda} Q_{1\lambda}(q) Q_{2\mu}(q) \frac{\alpha^{\mu}}{1 - \gamma^{-1} q^{\nu+1}} ,$$

where

$$Q_{1\lambda}(q) = \sum_{\substack{\lambda_1 + \dots + \lambda_{n-1} = n-1 - \lambda \\ \lambda := 0.1}} q^{\lambda_1 + 2\lambda_2 + \dots + (n-1)\lambda_{n-1}},$$

$$Q_{2\mu}(q) = \sum_{\substack{\mu_1 + \dots + \mu_n = \mu \\ \mu_i \ge 0}} q^{\mu_1 + 2\mu_2 + \dots + n\mu_n}, \quad \lambda, \mu = 0, 1, \dots, n-2.$$

We put

$$D_n(q, \alpha, \gamma) := \prod_{k=1}^{n-1} (1 - q^k) \prod_{k=1}^n (1 - \alpha q^k) \prod_{k=1}^{n-1} (1 - \gamma^{-1} q^k) \in \mathbb{Z}[q, \alpha, \gamma].$$

Then we have $|D_n(q,\alpha,\gamma)| \le c_{12}|\alpha\gamma^{-1}|^n|q|^{\frac{3}{2}n^2-\frac{1}{2}n}$. In the same way as the proof of Lemma 3, we have $0 < |G_n(q,\alpha,\gamma)| \le c_{13}|\alpha^{-1}\gamma|^n|q|^{-\frac{3}{2}n^2-\frac{1}{2}n}$ for large n. Hence

$$|D_n(q,\alpha,\gamma)G_n(q,\alpha,\gamma)| = |A_n(q,\alpha,\gamma)\xi + B_n(q,\alpha,\gamma)| < c_{14}|q|^{-n}$$

for large n, where A_n , $B_n \in \mathbb{Z}[q, \alpha, \gamma]$, of degree at most 2n in α .

Now we assume $\xi \in \mathbb{Q}(q)$. Noting that $|q^{\sigma}| < 1$, $|\alpha^{\sigma}| < 1$, and $|\gamma^{\sigma}| \ge 1$ we have $|A_n(q,\alpha,\gamma)^{\sigma}|$, $|B_n(q,\alpha,\gamma)^{\sigma}| \le c_{15}n^2$ for $\sigma \in \operatorname{Aut}(\mathbb{Q}(q)/\mathbb{Q})$ with $q^{\sigma} \ne q$. Therefore, we have

$$1 \leq |\mathbf{N}_{\mathbb{Q}(q)/\mathbb{Q}} \operatorname{den} \xi (\operatorname{den} \alpha)^{2n} (A_n(q,\alpha,\gamma) \xi + B_n(q,\alpha,\gamma))| \leq c_{16} n^2 |(\operatorname{den} \alpha)^4 q^{-1}|^n$$

for large *n*; which is a contradiction, and the proof is completed.

References

- R. ANDRÉ-JEANNIN, Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris, Sér. I 308 (1989), 539–541.
- [2] J.-P. BÉZIVIN, Indépendance linéaire des valeurs des solutions transcendantes de certaines équations fonctionnelles, Manuscripta Math. 61 (1988), 103–129.
- [3] P. B. BORWEIN, On the irrationality of $\sum (1/(q^n + r))$, J. Number Theory 37 (1991), 252–259.
- [4] P. B. BORWEIN, On the irrationality of certain series, Math. Proc. Camb. Phil. Soc. 112 (1992), 141–146.
- [5] BRO. A. BROUSSEAU, Summation of infinite Fibonacci series, Fibonacci Quart. 7 (1969), 143–168.
- [6] P. BUNDSCHUH and K. VÄÄNÄNEN, Arithmetical investigations of a certain infinite product, Compositio Math. 91 (1994), 175–199.
- [7] D. DUVERNEY, A propos de la série $\sum_{n=1}^{+\infty} \frac{x^n}{q^n-1}$, J. Théor. Nombres Bordeaux **8** (1996), 173–181.
- [8] D. DUVERNEY, Ke. NISHIOKA, Ku. NISHIOKA and I. SHIOKAWA, Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 140–142.
- [9] D. DUVERNEY, Ke. NISHIOKA, Ku. NISHIOKA and I. SHIOKAWA, Transcendence of Jacobi's theta series and related results, *Number Theory* (Eds. GYÖRY, PETÖ, and SÓS) Gruyter (1998), 157–168.
- [10] P. ERDÖS, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N. S.) 12 (1948), 63-66.
- [11] T. MATALA-AHO and K. VÄÄNÄNEN, On approximation measures of *q*-logarithms, Bull. Austral. Math. Soc. **58** (1998), 15–31.
- [12] T. MATALA-AHO and M. PRÉVOST, Irrationality measures for the series of reciprocals from recurrence sequences, J. Number Theory 96 (2002), 275–292.
- [13] M. PRÉVOST, On the irrationality of $\sum \frac{t^n}{A\alpha^n + B\beta^n}$, J. Number Theory **73** (1998), 139–161.
- [14] S. RABINOWITZ, Algorithmic summation of reciprocals of products of Fibonacci numbers, Fibonacci Quart. 37 (1999), 122–127.
- [15] W. VAN ASSCHE, Little q-Legendre polynomials and irrationality of certain Lambert Series, Ramanujan J. 5 (2001), 295–310.

Present Address:

DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY, HIYOSHI, KOHOKU–KU, YOKOHAMA, 223–8522, JAPAN. *e-mail*: bof@math.keio.ac.jp