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Irrationality of Certain Lambert Series
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Abstract. Let ¢ with |g| > 1 be an integer in an algebraic number field K given below, and {a;} a periodic
sequence in K of period two, not identically zero. Let f(g) = ZZO:] an /(1 — g™). We prove that (i) If K is either
the rational number field Q or an imaginary quadratic field, then f(q) ¢ K. (ii) For an algebraic integer ¢ such that

lg| > 1and |¢°]| < 1 for any o € Aut(Q/Q) with ¢ # ¢, if k = Q(g), then f(q) ¢ Q(q). For example, the three
numbers

1

00
; ;ﬂ”*l’ Z "+1
are linearly independent over Q for every ¢ € Z with |g| > 2. Further, irrationality results of the special values of

the functions

n

=

Z
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gk

(ze©O

el an+b 1 Ran+bRa(n+l)+b

can be deduced, where a > 0, b > 0 are integers and Rj, is a certain binary recurrence.

3
I

1. Introduction and the results

For any fixed ¢ € C with |g| > 1 and z € C, the g-logarithmic function L, (z) and the
g-exponential E,(z) are defined by

00 n 00

Ly =Y qnz

n=I n=1

(Izl < Iq) .

E(z)—1+2q_1)zn =]‘[<1+ )

respectively. Bézivin [2] showed that the numbers 1, Ef]k)(ai) @ =1,---.m k =

0,1, ---,1) are linearly independent over QQ, where ¢ € Z \ {0, £1} and o; € Q* satisfy
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a; #—q" and o; # ajq¥ forall u, v € Z with u > 1 and i # j. This implies that

— |
2 i et @

n=1

where ¢ € Z \ {0, =1} and @ € Q* with & # —¢g' (i > 1). Under the same conditions on ¢
and o, Borwein [3], [4] obtained irrationality measures for the numbers Z:il 1/(g" + @) and
Yo ((=D"/(g" + «). These results include the irrationality of L»(1) = Y oo, 1/(2" — 1)
proved by Erdos [10]. Furthermore, Bundschuh and Véédnaédnen [6], and Matala-Aho and
Viininen [11] obtained quantitative irrationality results for the values of the g-logarithm both
in the Archimedean and p-adic cases. In [7], Duverney generalized certain results obtained
by Borwein [3], [4], and Bundschuh and Véininen [6]. Recently, Van Assche [15] gave irra-
tionality measures for the numbers L, (1) and L, (—1) by using little g-Legendre polynomials.
In this paper, we prove irrationality results for certain Lambert series, which in particular im-
plies the linear independence of the numbers 1, L,(1), Ly(—1) with g € Z\{0, £1} by
developing Borwein’s idea in [4].
Let R, be a binary recurrence defined by

Ryt2 = AiRuy1 + A2R, (n>0), A1, A2€Q*, Ry, R €Q.

André-Jeannin [1] proved for some R, the irrationality of the value of the function f(x) =
oo, x" /R, at a nonzero rational integer x in the disk of convergence of f, which gave the
first proof of the irrationality of the numbers Z;’lozl 1/F, and ZZOZI 1/L,, where F,, and L,
are Fibonacci numbers and Lucas numbers, respectively. Prévost [13] extended this result to
any rational x in the domain of meromorphy of f. Recently, Matala-aho and Prévost [12]
obtained for some type of R, irrationality measures for the number Y > | ¥"/Ray, where y
belongs to an imaginary quadratic field, and @ > 0 is an integer. We will prove for some
R, the irrationality of the numbers Y o | ¥"/Ran+b and Y ooy ¥"/Ran+bRa(n+1)+b, Where
a > 0, b > 0 are integers and y is a certain number in a real quadratic field (see Corollaries
2 and 3, below).
For an algebraic number o, we denote by || the maximum of absolute values of its
conjugates and by dena the least positive integer such that o-denc is an algebraic integer. We
putN=1{0,1,2,---}.

THEOREM 1. Let K be either Q or an imaginary quadratic field. Assume that q is an
integer in K with |q| > 1 and {a,} a periodic sequence in K of period two, not identically
zero. Then

o0
dn
0:2:1_qn¢K.

n=1
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COROLLARY 1. Letq € Z with |q| > 2 and {ay}, {b,} be periodic sequences in Q of
period two, not identically zero. Then the numbers

() ay () b,
L, an_l’ Zq"—l

n=1 n=1

are linearly independent over Q if and only if {a,} and {b,} are linearly independent over Q.
PROOF. This follows immediately from Theorem 1.

EXAMPLE 1. Letg € Z with |g| > 2. Then

00 1 00 (—1)" ©
L, Lq(l)zzqn_l’ Lq(_l)zzqn_lzzqn+1
n=1 n=I1 n=I

are linearly independent over Q.

THEOREM 2. Let q be an algebraic integer such that |q| > 1 and |q°| < 1 for any

o € Aut(Q/Q) with q° # q and {a,)} be a periodic sequence in Q(q) of period two, not
identically zero. Then

=) 1o ¢ 0@,

EXAMPLE 2. Let ¢ (> 1) be the fundamental unit in a real quadratic field Q(y/m).
Then

=1 Sl
1 9 9
) R D
n=1 n=1
are linearly independent over Q(/m). For example, the following numbers are linearly inde-

pendent over Q(v/2).

oo oo

1 1
(1+v2)" — 1 (1+v2)" +1

n=I n=1

THEOREM 3. Let q be a quadratic integer satisfying |q| > 1 and |q°| < 1 forany o €

Aut(Q/Q) with g% # g, y a unit in Q(g) with |y| < 1, and a« € Q(q)* with (den(q'@))* <
|q| for some | € N. Then

n

n=1

1 - ¢ Q(q),
—ag

provided that aq™ # 1 foralln > 1.
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In the following Corollaries 2 and 3, we consider the binary recurrences { R, },>0 defined
by
Ryy2 = ARy + A2R,, A1, A2 € Z\{0},Ro, R € Z.

We suppose that R, # 0 foralln > 1, the corresponding polynomial ®(X) = X2 — A1 X —A»
is irreducible in Q[ X], and A = A% +4A, > 0. We can write R, as

Ry=gip} + @p5 (n=0), g1, 9 €Q(p)™, (1)

where p; and p; are the roots of @(X). We may assume |p1| > |p2], since A; # 0 and
A > 0.
Fora, b € N with a # 0, we define

S n
Z
R(z) = (zl < lp1l).
; Ran+b

This function can be extended to a meromorphic function on the whole complex plane C with

poles {(of+! /03 |n > 0}, since

> Z > o Z
> s i > (Iz] < Iql)

for any complex numbers g and @ with |¢| > 1 and |¢| > 1, and so

00 n i

z " 2 S8 (= (g2/ ) (p2/ ) HE)"
= Z R ai+b Z

Ran+b B aey Nantb  g10; =0 <= )0? (p1/p2)*"

)

n=1

where i is chosen as |(¢2/g1)(p2/p1)%1?| < 1. We denote the function again by R(z).

COROLLARY 2. Let R, be a binary recurrence given by (1) and a, b € N with a # 0.
Assume that g1/ g> and p1/pa are units in Q(p1) and y € Q(p1)™ is not a pole of R(z) with
(den(p{ /y))* < |p1/p21“. Then we have R(y) ¢ Q(p1).

PROOF. Apply Theorem 3 to the last sum in (2).

EXAMPLE 3. Let F,, and L, be Fibonacci numbers and Lucas numbers defined by
Fopo = Fypi +Fy(n 2 0), Fp =0, Fy = land Lyyo = Lyy1 + Ly(n > 0), Lo =
2, L1 = 1, respectively. Then for every a, b € N witha # 0,

o]

yo Loyl oy L s EV g0,

=t Fan+b n—1 Fan+b —1 Lan+b —1 Lan+b

André-Jeannin[1] proved that each of these numbers is irrational. We remark that the numbers
Yool 1/Foyqrand Y ;2 1/ Ly, are transcendental (cf. [8], [9]).
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EXAMPLE 4. Let R, be defined by R4 = 4R,41 —2R, (n > 0),Ry =1, R| =2,
sothat R, = 2+ ﬁ)"/Z + 2 - ﬁ)"/2 (n > 0). Then for every a, b € N witha # 0,

oo o0

1 (—1)"
Z ' Z Ran+b ¢ Q(ﬁ) )

R
el an+b 1

Next we consider, for any given a, b € N with a # 0, the function

S@) %—Zﬂ (2l < 1ot
= Z 1 9
= RantbRan+1)+b

which can be extended to a meromorphic function on the whole plane with the poles
{ (p"+2/p§’ )* | n > 0}. We denote it again by S(z).
COROLLARY 3. Let R, be a binary recurrence given by (1) and a,b € N witha # 0.

Assume that g1/ ¢ and py/p2 are units in Q(p1). If y € Q(p1)* is not a pole of S(z) with

(den(p®/y)* < |p1/p2|®, then S(y) ¢ Q(p1), provided y # (—A). If y = (—A2), we
have

00 n a

S =Y — &

= RantbRaryts 91} (0f — p§) Rav

€ Qp1) .

PROOF. Since p1pp = —Aj, we have
P1*Rans1y+b — (—A2)* Rantp = g1p1” (07" — (=AD" (p])" .

We multiply both sides by Z"/(pf("H)RanH, Ra(n+1)+5) and sum up from n equals 1 to infin-
ity. Then, we get

" a —Ar)¢ x an
glmb(pl—pz)z _ P +(1_( 2))2(1//)1)

an+bRa(n+])+b Ra+o Z — Ran+b

(Iz] < |p11*). Hence, the left-hand side can be extended to a meromorphic function, and
Corollary 3 follows from Corollary 2.

EXAMPLE 5. Let F;, be Fibonacci numbers. Then for every a, b € N with a # 0,

27 1 D C ows.

= Fea-vntpFea—nmt+)+b =) FaantbFaam+1)+b

The same holds for Lucas numbers. We put

1
ZZFF
n=I

I’l

>1).

Fyu n+l

g
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Then Brousseau [5] and Rabinowitz [14] proved that

1 [ [

1
Ty = —, Tyq1 = < )
le Z Fyu_1F, Z F2nF2n+l

n=1

1 (1=5 < Fuy
T = — )
=)

n=1

so that Ty € Q and T)* € Q(+/5) \ Q forall I > 1. We see that Tn41 ¢ Q(+/5) foralll > 0,
since the first sum in this example with a = 1, b = 0 implies

o0

TIZZFFnH ¢ QWS5).

n=1

EXAMPLE 6. Let R, be the binary recurrence given in Example 4. Then

Z Z T sowd.

o Ry 1R2n+1 Ron—1Ron41

n=1

2. Lemmas

For the proof of theorems, we prepare some lemmas. Let {a,, },»>1 be a periodic sequence
of complex numbers of period two, not identically zero. We put

o0

ezzlf”’qm,

m=1

where ¢ € C with |¢| > 1. We start with the integral

2n
1 —n[la-d7n
k=1 am
Falg) = 5— f _ T >3 dt, 3)
k=1

which is a variant of that used by Borwein [4]. We note that the integrand is meromorphic in
t provided |g| > 1. We use the notations

(I—gM(1—g"H---(1-¢q)
(1—¢q)"

[n],! =

P [O]q =1 s

[’?L = % e Zlq).

I g'n—1ily!



IRRATIONALITY OF CERTAIN LAMBERT SERIES 81

In what follows, we denote c1, ¢z, - - - positive constants independent of n.

LEMMA 1.

2n -
., l_[(l _ qk-‘er) N

k=1 am
i=l1 1_[(1 _q2k721) m=1

ki

1 2n . n o -1 o0 ap 2n—1)
“aon( =) (=) X 2)

k=1 m=1

“)

t=0

PROOF. This can be proved by using the residue theorem similarly as the proof of

Lemma 1 in [4].

We put D, (q) := Hilnﬁ (1 — g2%). Then we have

2
|Du(q)| < crlg)™™ . Q)
LEMMA 2.
Dy (q)F,(q) = An(q)0 + Bn(q) . (6)
where Ay (q), B,(q) € Zlay, a2, q].
PROOF. Since
1 qi(ifl)
n s ~ i n—i :
[Ta=a*7) [T@*-v]]a-q*
k=1 k=1

ki

we have by (4)

2i
i—1 l(l 1) 2i _ am
Ful(q) = ]‘[( Z( ) [l_lL !‘[1(1 ke >(9 mZ:ll_qm)

1 2n . ) n " X () 00 a v)
_ m
_Z X ;w(l_[(t_q)) <l_[(1—6] f ) (Zt—qm>
o, v=0 k=1 =0 k=1 1=0 m=1 1=0

Atp+v=2n—1
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with

— )\’!(_1)271—)\ Z qk]+2k2+---+2nk2n ,

A Heehgy =2n—)
2;=0,1

t=0

2n )
(]_[(t - q"))
k=1

(1 +2p A
= u! Z q (u1+2p - tnjn)

1=0 Wt iun=p
ni=0

(ﬁ(l - q”%)‘)(m
k=1

)
m
— m )

(2

Hence we get

am 1 1
= —v! — = w(a1g"T ) ————.
o mg (g " 1= g2+D

1 n . 2i a
Fa(q) = ————— ) (=D'7'¢'‘" “[l_l] ]"[(1 k+2’)<9—21_’"qm>
<1 —q2k> i=1 7 k=1 m=1
k=1
t 22 O @D e Ml) ™
+gt&,vv>8

with Q3,1 (¢) a polynomial in Z[ay, a2, g] forall A, u, v > 0. Here we note that

2n
1_[(1 _ k+2z) Z
k=1

m=1

alvaZJI]: i:1127"'7n7
1—q

and each of [T}—{ (1 —¢*) and 1 —¢? (Il =1, - - -, 2n) divides D, (q) in Z[q]. Therefore the
lemma follows from (7).

LEMMA 3. Forlarge n, we have

_3p2_
0 < |Fu(q)] < c3lg™m 2" (8)

PROOF. Similarly to the proof of Lemma 4 in [4], the residue theorem applied exterior
to the circle |¢| = 1 shows that

_ L k—m
Fu(q) = Z Ly, l_[k 1(1 1 )

In = am g2k+m
m=2n+1 Hk )

for large n. Since |I,,| < cz|q|’”2’”(m+l), we get the upper bound for | F;,(¢)|. Furthermore,
if a; # 0, it follows that,

2n k 2n—1
Fu(g) = a1 l_[k 1(1 )<1+anl)

1 — 2k+2n+1
l_[kzl ( ) =1
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with

2 o
) _al+lﬁ 1_q2k+2n+l 1_"[ 1_qk 2n—I—1
" PN =gzt JL L Ty gt )
where |b,;| < C4|q’”|l. Hence we have F;, (g) # 0, since Z[’il |bni| < 1 for large n. The
proof is similar in the case of a; = 0, ax # 0.

3. Proofs of Theorems 1 and 2

PROOF OF THEOREM 1. LetK, ¢, and {a,,} be as in Theorem 1. We may suppose
that a; and a; are integers in K. Assume that & € K and let d = den6. Then by (5), (6), and
(8), we have

0 < d|An(q)0 + By (q)| < dcslg)™
for large n; which is a contradiction.

PROOF OF THEOREM 2. Letq and {a,,} be as in Theorem 2. We may suppose that a;
and a are integers in Q(g). Then we have again by (5), (6), and (8)

0 < |An(g)0 + Bu(q)| < C6|Q|_n

for large n. We assume that 6 € Q(¢g) and evaluate the upper bound of |A,,(¢)°6° + B,(q)?|
for all o € Aut(Q/Q) with g° # ¢. By (6) and (7), we have

_ 2n i—1 l(l 1) k+2i
Ang)=( )[ } Z( ) [l_lL ]!"[](1 ).

Since |¢%| < 1, we get |A,(q)°| < c7n forall o € Aut(Q/Q) with ¢g° # ¢. In the same way,
we see that | B, (q)° | < csn?. Hence, |A,(g)°6° + B,(q)°| < con? forall o € Aut(Q/Q)
with ¢g° # q. Therefore, we have

1 < [Nguq)/@dend (An(q)6 + Bn(g))| < cionlg|™"

for large n; which is a contradiction, and the proof is completed.

4. Proof of Theorem 3

Let g, «, and y be as in Theorem 3. Since

0 4 o0 ym l ym
Sy (B - Ei) v

1 — aglgm
=1 q 4 m=1 n=1
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we can assume that « satisfies || > 1 and |[a°| < 1 forany o € Aut(Q/Q) with a° # «, by
replacing « by ¢'a with suitable /. We modify Borwein’s integral in [4] as follows:

m

Gulgray) = / ]‘[ 1_“"k/t UL
7“7
A T Y )T—qmt &= T—ag™/i

-9

By the residue theorem, we have

n n—1
Gn(q,a,y) = Zn( )( 1yi~1git- 1)/2[1_1} < Zl—aq'")

i=1 k=1

al
+ ) (=D AQu(q)Qz;L(‘I)W

Abpv=n—2
A, ,v=0
where
01,(q) = Z q)n1+2)~2+---+(n—1))»n—|
A tthy_1=n—1-1
2;=0,1
2
QZM((])= Z qM1+ Mo+ +Vllln7 Apu=0,1,---,n—2.
Wyttt in =
i =0
We put

n—1 n n—1
Du(g,a,y) ==Y ][0 —ag)H [0 -v7'¢" € Zlg, a. y1.
k= =1 k=1

Then we have | D, (g, o, )| < c12lay ~"|q| 372=31 1n the same way as the proof of Lemma

3,wehave 0 < |G,(q,a, y)| < c13|a’]y|”|q|_%"2_%" for large n. Hence

IDy(q, ., ¥)Gn(q,a, y)| = |Aun(g, o, ¥)E + Bu(q, a, y)| < cr4lg|™
for large n, where A,, B, € Zlq, «, y], of degree at most 2# in «.
Now we assume & € Q(g). Noting that |¢°| < 1, |@°| < 1, and |y?| > 1 we have

|An(qg, @, ¥)°|, |Bulg, @, y)°| < c15n? foro € Aut(Q(q)/Q) with g° # q. Therefore, we

have
—1 |n

I < INQ(q)/Qdené(dena)Z” (An(q, @, )& + Bu(q, @, )| < cien’|(dena)q

for large n; which is a contradiction, and the proof is completed.



[1]
[2]
[3]
[4]
[5]
[6]
[71

[8]

[91

[10]
(1]

[12]

[13]
[14]

[15]

IRRATIONALITY OF CERTAIN LAMBERT SERIES 85

References

R. ANDRE-JEANNIN, Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci.
Paris, Sér. 1 308 (1989), 539-541.

J.-P. BEZIVIN, Indépendance linéaire des valeurs des solutions transcendantes de certaines équations fonc-
tionnelles, Manuscripta Math. 61 (1988), 103—129.

P. B. BORWEIN, On the irrationality of Y (1/(¢" + r)), J. Number Theory 37 (1991), 252-259.

P. B. BORWEIN, On the irrationality of certain series, Math. Proc. Camb. Phil. Soc. 112 (1992), 141-146.

BRO. A. BROUSSEAU, Summation of infinite Fibonacci series, Fibonacci Quart. 7 (1969), 143-168.

P. BUNDSCHUH and K. VAANANEN, Arithmetical investigations of a certain infinite product, Compositio
Math. 91 (1994), 175-199.

+o00 o
D. DUVERNEY, A propos de la série Z q”——l’ J. Théor. Nombres Bordeaux 8 (1996), 173-181.
n=1

D. DUVERNEY, Ke. NISHIOKA, Ku. NISHIOKA and I. SHIOKAWA, Transcendence of Rogers-Ramanujan
continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad. Ser. A Math. Sci. 73
(1997), 140-142.

D. DUVERNEY, Ke. NISHIOKA, Ku. NISHIOKA and I. SHIOKAWA, Transcendence of Jacobi’s theta series
and related results, Number Theory (Eds. GYORY, PETO, and SOS) Gruyter (1998), 157-168.

P. ERDOS, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N. S.) 12 (1948), 63-66.

T. MATALA-AHO and K. VAANANEN, On approximation measures of g-logarithms, Bull. Austral. Math. Soc.
58 (1998), 15-31.

T. MATALA-AHO and M. PREVOST, Irrationality measures for the series of reciprocals from recurrence se-
quences, J. Number Theory 96 (2002), 275-292.

M. PREVOST, On the irrationality of #lliﬁ"’ J. Number Theory 73 (1998), 139-161.

S. RABINOWITZ, Algorithmic summation of reciprocals of products of Fibonacci numbers, Fibonacci Quart.
37 (1999), 122-127.

W. VAN ASSCHE, Little g-Legendre polynomials and irrationality of certain Lambert Series, Ramanujan J. 5
(2001), 295-310.

Present Address:

DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY,
HiyosHI, KOHOKU-KU, YOKOHAMA, 223-8522, JAPAN.
e-mail: bof @math.keio.ac.jp



