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The Non-vanishing Cohomology of Orlik-Solomon Algebras
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Abstract. The cohomology of the complement of hyperplanes with coefficients in the rank one local system
associated to a generic weight vanishes except in the highest dimension. In this paper, we construct matroids or
arrangements admitting weights for which the Orlik-Solomon algebra has non-vanishing cohomology, using decom-
posable relations arising from Latin hypercubes.

1. Introduction

Let R be a commutative ring with 1. Write [n] := {1, 2, . . . , n}. Let E = ER denote the
graded exterior algebra over R generated by 1 and degree-one elements ei for i ∈ [n]. Define

an R-linear map ∂ : Ep → Ep−1 by ∂1 = 0, ∂ei = 1 for i ∈ [n], and

∂(ei1 ∧ · · · ∧ eip ) =
p∑

k=1

(−1)k−1ei1 ∧ · · · ∧ êik ∧ · · · ∧ eip

for p ≥ 2 and ij ∈ [n]. Let M be a loopless matroid on [n] with rank � + 1.

DEFINITION 1.1. The Orlik-Solomon algebra of M is the quotient A(M) of E by the
ideal 〈∂M〉 generated by ∂(ei1 ∧ · · · ∧ eis ) for every circuit c = (i1, . . . , is ) of M .

If 1 and 2 are parallel, that is, {1, 2} is a circuit, then e1 = e2. So the Orlik-Solomon
algebra of the simple matroid associated with M is equal to that of M . The ideal 〈∂M〉 is
homogeneous, so A(M) inherits a natural grading from the exterior algebra E. The linear

map ∂ on E induces the linear map ∂M on A(M). Let eλ = λ1e1 + · · · + λnen ∈ E1. We call

λ = (λ1, . . . , λn) a weight of M . The left multiplication eλ∧ : Ap(M) → Ap+1(M) defines
the complex (A(M), eλ). Let H(A(M), eλ) denote the cohomology of this complex. If λ = 0

then H(A(M), eλ) is just A(M), otherwise we have H 0(A(M), eλ) = 0. If
∑n

j=1 λj �= 0

then we have Hp(A(M), eλ) = 0 for all p (see [15]). If ∂eλ = ∑n
j=1 λj = 0 then eλ induces
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the complex (∂M(A(M)), eλ) and the cohomology H(∂M(A(M)), eλ), where ∂M(A(M)) is
the image of ∂M . It is known that

Hp+1(A(M), eλ) = Hp+1(∂M(A(M)), eλ) ⊕ Hp(∂M(A(M)), eλ) .

For a generic weight λ, Yuzvinsky [15] proved the following vanishing theorem:

Hk(∂M(A(M)), eλ) = 0 for k �= � .

Hence, we have

Hk(A(M), eλ) = 0 for k �= �, � + 1 .

An arrangement A of hyperplanes in P� has the rank � + 1 matroid M(A) = M as
underlying combinatorial structure. The cohomology of the complement of A is isomorphic
to ∂M(A(M)) (see [10] and [7]). If a weight λ = (λi)i∈A satisfies a certain generic condi-
tion, then the cohomology of the complement of A with coefficients in the rank one local
system associated to λ is isomorphic to H(∂M(A(M)), eλ) (see [5, 14]). The local system
cohomology is an important subject in the multivariable theory of hypergeometric functions
[2, 11]. By the vanishing theorem [15], for a generic weight λ, the local system cohomology
vanishes in all but the top dimension. In this paper, our purpose is to construct matroids and
arrangements with non-vanishing cohomology of Orlik-Solomon algebras, more precisely,

with H�−1(A(M), eλ) �= 0.
The case � = 2 has been studied in several papers, including [6, 9]. Falk [6] defined the

resonance variety of the Orlik-Solomon algebra, as the space of weights with non-vanishing
cohomology. The resonance variety is deeply related to the cohomology support loci [1] and
the characteristic variety [8, 13] of the arrangement complement. Libgober and Yuzvinsky
[9] showed that, under some condition, weights with non-vanishing first cohomology are
parametrized by Latin squares.

In this paper, we prove that, in general, matroids associated to Latin hypercubes have
weights with non-vanishing cohomology, by using decomposable relations arising from Latin
hypercubes. This decomposable relation is a generalization of the relation discovered by Ryb-
nikov (see [6]). Moreover, in the case � = 2, we give details of their matroids and derivations,
using terms of Latin squares. In the last section, we shall give examples of realizations in-
cluding the higher case. Some of them appear in classical projective geometry (see Figure 1,
2 and 3).

We shall use the following notation and terminology. A k-set is a set with cardinality k.

Denote the family of all k-subset of a set S by
(
S
k

)
. Often, we regard a p-tuple (i1, . . . , ip) as

a p-set {i1, . . . , ip}. We refer to [12] for terminology of matroid theory.

2. Non-vanishing Theorem

A Latin hypercube of dimension � and order m is an m�-array such that, if � − 1 co-
ordinates are fixed, the m positions so determined contain a permutation of m symbols. Let
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K = [k(i1, . . . , i�)]1≤i1,...,i�≤m be a Latin �-dimensional hypercube on [m], that is, an m�-
matrix satisfying the condition

{k(i ′1, i2, . . . , i�) : i ′1 ∈ [m]} = {k(i1, i
′
2, . . . , i�) : i ′2 ∈ [m]} = · · ·

· · · = {k(i1, i2, . . . , i
′
�) : i ′� ∈ [m]} = [m] ,

for 1 ≤ i1, . . . , i� ≤ m. Define the family of (� + 1)-subsets in [n] associated to K by

C[K] = [(i1,m + i2, 2m + i3, . . . , (� − 1)m + i�, �m + k(i1, . . . , i�))]1≤i1,...,i�≤m .

On the other hand, a matroid is said to be �-generic if it has no i-circuits for i ≤ �.
Note that a 1-generic matroid is just a loopless matroid and a 2-generic matroid is just a
simple matroid. The uniform matroid Um,n of rank m is m-generic. So we can state the main
theorem as follows.

THEOREM 2.1. Let m ≥ 2, � ≥ 2 and n = (� + 1)m. Let K be a Latin �-dimensional
hypercube on [m]. Then there exists a unique �-generic matroid M[K] on [n] with rank �+1,
for which the family of all (� + 1)-circuits is equal to C[K]. Suppose that R is a field of
characteristic zero (or the characteristic of the ring R does not divide m). This matroid has
weights with non-vanishing cohomology; more precisely

Hk(A(M[K]), eλ) = 0 for k ≤ � − 2 ,

H �−1(A(M[K]), eλ) �= 0 ,

for each non-zero weight

λ = (λ1, . . . , λ1︸ ︷︷ ︸
m

, λ2, . . . , λ2︸ ︷︷ ︸
m

, · · · · · · , λ�+1, . . . , λ�+1︸ ︷︷ ︸
m

) ;
�+1∑
j=1

λj = 0 .

We assume that R is a field of characteristic zero until the end of the paper.
In the rest of this section, we will prove this theorem. First of all, we prove some lemmas.

LEMMA 2.2. A family C of (� + 1)-subsets in [n] satisfies the condition

(C�+1) if C1, C2 ∈ C and |C1 ∪ C2| = � + 2 then every (� + 1)-subset C3 of C1 ∪ C2 is a
member of C,

if and only if, there exists an �-generic matroid on [n] for which the family of all (�+1)-circuits
is equal to C.

PROOF. It is clear when n < � + 1. Assume that n ≥ � + 1. Let C be a family of
(� + 1)-subsets in [n] satisfying (C�+1). Let I be an �-subset of [n]. Define XI = I ∪ {e ∈
[n] : I ∪e ∈ C}, ( XI

�+1

) = {all (� + 1)-subsets of XI .}, and
(

XI

�+1

)
s
= {

S ∈ (
XI

�+1

) : |S \ I | = s
}
.

Note that
(

XI

�+1

) = ⋃�+1
s=1

(
XI

�+1

)
s
. First of all, we show that

(
XI

�+1

)
s

is a subfamily of C by

induction on s. For s = 1, since
(

XI

�+1

)
1

= {I ∪ e ∈ C}, it is clear. Let assume that
(

XI

�+1

)
s

⊂ C
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for s ≥ 1. Take a member S of
(

XI

�+1

)
s+1

. Let T := S \ I and I ′ := S ∩ I . Note that

S = I ′ ∪ T , I ′ ⊂ I , T ⊂ XI \ I , |I ′| = � − s and |T | = s + 1. Now we can choose e ∈ I \ I ′
and f1, f2 ∈ T with f1 �= f2. By the inductive assumption, C1 := I ′ ∪ e ∪ (T \ {f1}) and

C2 := I ′ ∪ e ∪ (T \ {f2}) are in
(

XI

�+1

)
s

⊂ C. We can check C1 and C2 satisfy the condition

in (C�+1), and S is a (� + 1)-subset of C1 ∪ C2. So we have S ∈ C. Therefore, we have(
XI

�+1

)
s

⊂ C and hence
(

XI

�+1

) ⊂ C.

Assume that C is not the family of all (� + 1)-subsets of [n]. We shall show that

I = {I ⊂ [n] : |I | ≤ � + 1, I �∈ C}
is a matroid complex (see [12]). Note that I have all i-subsets of [n] for i < � + 1. Since
∅ ∈ I and if I ′ ⊂ I ∈ I then I ′ ∈ I, we should prove the independence augmentation axiom
for I, that is, for I1, I2 ∈ I with |I2| = |I1|+ 1, there exists e ∈ I2 \ I1 such that I1 ∪{e} ∈ I.
If |I1| < �, it is clear. Let |I1| = �. Suppose that I1 ∪ {e} �∈ I for all e ∈ I2 \ I1. Then we

have I2 ⊂ XI1 . By the above claim, we have
(XI1
�+1

) ⊂ C and hence we have I2 ∈ C, this is

a contradiction. Therefore, I defines the matroid of rank � + 1. The converse is easy by the
circuit elimination axiom of the matroids (see [12, 1.1.4]). �

REMARK 2.3. (1) When C = ∅, the uniform matroid Um,n of rank m with m ≥ �+1
is the matroid in the above lemma.

(2) If C consists of all (� + 1)-subsets of [n], the uniform matroid U�,n of rank � is the
only �-generic matroid which satisfies the condition of the above lemma. Otherwise,
the rank of such a matroid is greater than �, and there exists uniquely such an �-
generic matroid with rank � + 1.

LEMMA 2.4. Let n = (�+1)m. Let as = e(s−1)m+1 +· · ·+esm for 1 ≤ s ≤ �+1. For
a Latin �-dimensional hypercube K on [m], we obtain the following decomposable relation

∂(a1 ∧ a2 ∧ · · · ∧ a�+1) = −(a1 − a2) ∧ (∂(a2 ∧ · · · ∧ a�+1))

= (−1)�m(a1 − a2) ∧ (a2 − a3) ∧ · · · ∧ (a� − a�+1)

= m
∑

S∈C[K]
∂(eS) ,

where eS = ei1 ∧ · · · ∧ eip for a p-tuple (i1, . . . , ip).

PROOF. The first and second equations are obtained by

∂(a1 ∧ a2 ∧ · · · ∧ a�+1) = ∂((a1 − a2) ∧ a2 ∧ · · · ∧ a�+1)

= ∂(a1 − a2) ∧ a2 ∧ · · · ∧ a�+1 − (a1 − a2) ∧ (∂(a2 ∧ · · · ∧ a�+1))

= −(a1 − a2) ∧ (∂(a2 ∧ · · · ∧ a�+1)) = · · ·
= (−1)�(a1 − a2) ∧ (a2 − a3) ∧ · · · ∧ (a� − a�+1) ∧ ∂(a�+1)

= (−1)�m(a1 − a2) ∧ (a2 − a3) ∧ · · · ∧ (a� − a�+1) .
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Let Es = {(s−1)m+1, (s−1)m+2, . . . , sm} for 1 ≤ s ≤ �+1. Note that E1 ∪· · ·∪E�+1 =
[n]. We regard K as a Latin hypercube K̃ = (k̃(i1, . . . , i�)) with s-axis indexed by Es for

1 ≤ s ≤ � and symbol set E�+1. We note that k̃(i1, . . . , i�) = �m + k(i1, . . . , i�) ∈ E�+1.

Since ∂(e1 ∧ · · · ∧ ek ∧ ek+1) = ∂(e1 ∧ · · · ∧ ek) ∧ ek+1 + (−1)ke1 ∧ · · · ∧ ek , we have

(−1)ke1 ∧ e2 ∧ · · · ∧ ek = −∂(e1 ∧ · · · ∧ ek) ∧ ek+1 + ∂(e1 ∧ · · · ∧ ek ∧ ek+1) .

Hence, we can get

(−1)�m · a1 ∧ · · · ∧ a� = m
∑

i1∈E1,...,i�∈E�

(−1)�ei1 ∧ · · · ∧ ei� = m ×
∑

i1∈E1,...,i�∈E�

{ − ∂(ei1 ∧ · · · ∧ ei�) ∧ ek̃(i1,...,i�)
+ ∂(ei1 ∧ · · · ∧ ei� ∧ ek̃(i1,...,i�)

)
}
.

The second term is ∑
i1∈E1,...,i�∈E�

∂(ei1 ∧ · · · ∧ ei� ∧ ek̃(i1,...,i�)
) =

∑
S∈C[K]

∂(eS) .

On the other hand, since K is a Latin hypercube, we have∑
i1∈E1,...,i�∈E�

∂(ei1 ∧ · · · ∧ ei� ) ∧ ek̃(i1,...,i�)

=
∑

i1,...,i�

( �∑
p=1

(−1)p−1ei1 ∧ · · · ∧ êip ∧ · · · ∧ ei�

)
∧ ek̃(i1,...,i�)

=
�∑

p=1

∑
i1,...,i�

(
(−1)p−1ei1 ∧ · · · ∧ êip ∧ · · · ∧ ei�

) ∧ ek̃(i1,...,i�)

=
�∑

p=1

∑
i1,...,îp,...,i�

(
(−1)p−1ei1 ∧ · · · ∧ êip ∧ · · · ∧ ei�

) ∧
∑
ip

ek̃(i1,...,i�)

=
�∑

p=1

∑
i1,...,îp,...,i�

(
(−1)p−1ei1 ∧ · · · ∧ êip ∧ · · · ∧ ei�

) ∧ a�+1 ,

and

∂(a1 ∧ · · · ∧ a�) = ∂(ap)

�∑
p=1

(−1)p−1a1 ∧ · · · ∧ âp ∧ · · · ∧ a�

= m

�∑
p=1

(−1)p−1
∑

i1,...,îp,...,i�

ei1 ∧ · · · ∧ êip ∧ · · · ∧ ei� .
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Therefore we obtain

(−1)�m · a1 ∧ · · · ∧ a� = −∂(a1 ∧ · · · ∧ a�) ∧ a�+1 + m
∑

S∈C[K]
∂(eS)

and hence we have

∂(a1 ∧ · · · ∧ a� ∧ a�+1) = ∂(a1 ∧ · · · ∧ a�) ∧ a�+1 + (−1)�m · a1 ∧ · · · ∧ a�

= m
∑

S∈C[K]
∂(eS) .

�

PROOF OF THEOREM 2.1. Let K be a Latin �-dimensional hypercube on [m]. By the
construction of C[K], for C1, C2 ∈ C[K] with C1 �= C2, we have |C1 ∩ C2| = � − 1 and
|C1 ∪ C2| = � + 3. Hence, due to Lemma 2.2 and the remark following it, there exists a
unique �-generic matroid M[K] with rank �+1. In general, for an �-generic matroid M and a
non-zero weight λ of M , we have Hk(M, eλ) = 0 for k ≤ �− 2. Thus, we only need to prove

H�−1(A(M[K]), eλ) �= 0. Let λ be a weight given in the statement, and assume without loss

of generality that λ1 �= 0. Since
∑�+1

j=1 λj = 0, we have

eλ = λ1(e1 + · · · + em) + · · · + λ�+1(e�m+1 + · · · + e(�+1)m)

= λ1a1 + λ2a2 + · · · + λ�+1a�+1

= λ1(a1 − a2) + (λ1 + λ2)(a2 − a3) + · · · + (λ1 + · · · + λ�)(a� − a�+1) ,

where aj is defined in Lemma 2.4. Define an (� − 1)-form

b := ∂(a2 ∧ a3 ∧ · · · ∧ a�+1)

= (−1)�−1m(a2 − a3) ∧ (a3 − a4) ∧ · · · ∧ (a� − a�+1) .

By Lemma 2.4, we have

eλ ∧ b = λ1(a1 − a2) ∧ b ∈ 〈∂M[K]〉 ,

that is, eλ ∧ b vanishes in the Orlik-Solomon algebra A(M[K]). Since M[K] is �-generic,
the (� − 1)-form b is not in 〈∂M[K]〉. Finally, we shall check that b is a non-vanishing

cohomology class in H�−1(M[K], eλ).
For a finite set {e1, . . . , en}, denote by E(e1, . . . , en) the graded exterior algebra over R

generated by 1 and degree-one elements e1, . . . , en. Note that E(e2, . . . , en) is a subalgebra
of E(e1, . . . , en). Let eλ = λ1e1 + · · · + λnen with λi ∈ R and λ1 �= 0. Then we have
E(e1, . . . , en) = E(eλ, e2, . . . , en). It is easy to see the following: if ω ∈ E(e2, . . . , en) with
ω �= 0, then ω is not belong to the ideal of E(e1, . . . , en) generated by eλ.

By the above, since b is in E(em+1, . . . , en) and λ1 �= 0, b is not in the ideal of
E(e1, . . . , en) generated by eλ, that is, there exists no (� − 2)-form η with eλ ∧ η = b.
This completes the proof. �
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3. The case of � = 2

We refer to [4] for more background on Latin squares. A Latin square of order m is a
Latin hypercube of dimension 2 and order m, that is, an m×m matrix with entries in an m-set
(which we call the symbol set), such that each element occurs exactly once in each row and
exactly once in each column. Two Latin squares K and K ′ are isotopic if K ′ is obtained by
permutations of rows, permutations of columns, and a bijection from the symbol set of K . Let
E1, E2 and E3 be three m-sets and let K be a Latin square with rows indexed by E1, columns
by E2, and symbols by E3. Define T (K) = {{x1, x2, x3} : xi ∈ Ei(i = 1, 2, 3), kx1,x2 = x3}.
For any permutation σ of {1, 2, 3}, the σ -conjugate of L is the Latin square Kσ with rows
indexed by Eσ1, columns by Eσ2, and symbols by Eσ3, defined by T (K) = T (Kσ ). Two
Latin squares K and K ′ are main class isotopic if K ′ is isotopic to some conjugate of K .

Let K = (ki,j ) be a a Latin square on [m], that is, an m × m-matrix satisfying the
condition {ki,1, ki,2, . . . , ki,m} = {k1,j , k2,j , . . . , km,j } = [m] for 1 ≤ i, j ≤ m. As in the
previous section, we define C[K] by the family


(1,m + 1, 2m + k1,1) (1,m + 2, 2m + k1,2) · · · (1, 2m, 2m + k1,m)

(2,m + 1, 2m + k2,1) (2,m + 2, 2m + k2,2) · · · (1, 2m, 2m + k2,m)
...

...

(m,m + 1, 2m + km,1) (m,m + 2, 2m + km,2) · · · (1, 2m, 2m + km,m)


 .

We can view K as a Latin square K̃ with rows indexed by {1, 2, . . . ,m}, columns by {m +
1,m + 2, . . . , 2m}, and symbols by {2m + 1, 2m + 2, . . . , 3m}. So we can consider C[K] =
T (K̃). By Theorem 2.1, there exists a unique simple matroid M[K] on [n] with rank 3, for
which the family of all 3-circuits is equal to C[K]. The simple matroid M[K] has weights
with non-vanishing first cohomology.

PROPOSITION 3.1. Let m ≥ 2. If K1 and K2 are main class isotopic Latin squares
then the matroids M[K1] and M[K2] are isomorphic. If a Latin square K1 is not main class
isotopic to K2 then the matroid M[K1] is not isomorphic to M[K2].

PROOF. This is clear by the definition of main class isotopic Latin squares. �

REMARK 3.2. The number of main class isotopic Latin squares of order m ≤ 8 is
known (see [4]).

m = 1 2 3 4 5 6 7 8
main classes 1 1 1 2 2 12 147 283, 657

Two Latin squares K = (ki,j ) and K ′ = (k′
i,j ) of same order are orthogonal if all pairs

(ki,j , k
′
i,j ) are distinct. A set of Latin squares of order m is mutually orthogonal if any two

distinct squares are orthogonal.

THEOREM 3.3. Let m ≥ 1, s ≥ 1 and n = (s + 2)m. Let K1, . . . , Ks be mutually
orthogonal Latin squares on [m]. Then there exists a simple matroid M[K1, . . . ,Ks ] on [n]
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satisfying

dim H 1(A(M[K1, . . . ,Ks ]), eλ) = s

for each non-zero weight

λ = (λ1, . . . , λ1︸ ︷︷ ︸
m

, λ2, . . . , λ2︸ ︷︷ ︸
m

, · · · · · · , λs+2, . . . , λs+2︸ ︷︷ ︸
m

) ;
s+2∑
j=1

λj = 0 .

PROOF. By Lemma 2.2 in the case of � = 2, a family C of 3-subsets in [n] satisfies the
condition

(C3) if {i, j, k} and {i, j, l} are members of C then {i, k, l} and {j, k, l} are members of C,

if and only if, there exists a simple matroid on [n] for which the family of all 3-circuits is
equal to C. Recall that the set of flats of a matroid is a geometric lattice. The closure of C ∈ C
is the set ∪{C′ ∈ C : |C′ ∩ C| ≥ 2}, that is a flat of rank 2. A 2-subset contained in no C ∈ C
is a flat of rank 2.

Construction of M[K1, . . . ,Ks ]: Let K1, . . . , Ks be mutually orthogonal Latin squares

on [m]. A Latin square K̃p = (k̃
p
i,j ) associated to Kp = (k

p
i,j ) is given by a Latin square

with rows indexed by {1, 2, . . . ,m}, columns by {m + 1,m + 2, . . . , 2m}, and symbols by

{(p + 1)m + 1, (p + 1)m + 2, . . . , (p + 2)m}, given by k̃
p

i,j = (p + 1)m + k
p

i,j for 1 ≤ i ≤ m

and m + 1 ≤ j ≤ 2m. We define

C[K1, . . . ,Ks ] := T (K̃1) ∪ · · · ∪ T (K̃s) ,

Xi,j := {i, j, k̃1
i,j , . . . , k̃

s
i,j } for 1 ≤ i ≤ m,m + 1 ≤ j ≤ 2m, and

C := C[K1, . . . ,Ks ] ∪
( ⋃

1≤i≤m,m+1≤j≤2m

(
Xi,j

3

))
.

By mutually orthogonality, we have |C ∩Xi,j | = 1 for any C ∈ C[K1, . . . ,Ks ] not contained
in Xi,j , and |Xi,j ∩ Xk,l| = 1 for (i, j) �= (k, l). This implies that C satisfies (C3). If m ≥ 2
then we obtain a simple matroid M[K1, . . . ,Ks ] on [n] with rank 3 such that C is the family
of all 3-circuits. If m = 1 then C gives the uniform matroid U2,n.

Non-vanishing: Let ai = e(i−1)m + e(i−1)m+1 + · · · + e(i−1)m for i = 1, 2, . . . , s + 2.
By Lemma 2.4, we have

(a1 − ai) ∧ (a2 − ai) ∈ 〈∂M[K1, . . . ,Ks ]〉
for 3 ≤ i ≤ s + 2. We take two one-forms

eλt = λt
1a1 + λt

2a2 + · · · + λt
s+2as+2

with
∑s+2

j=1 λt
j = 0 for t = 1, 2. Since eλ1 = λ1

2(a2 − a1) + · · · + λ1
s+2(as+2 − a1) and

eλ2 = λ2
1(a1 − a2) + · · · + λ2

s+2(as+2 − a2), we have eλ1 ∧ eλ2 ∈ 〈∂M[K1, . . . ,Ks ]〉. This

implies dim H 1(A(M[K1, . . . ,Ks ]), eλ) = s. �
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REMARK 3.4. When m = 1, the matroid in this theorem is the uniform matroid U2,n

with rank 2. When m ≥ 2, the matroid M[K1, . . . ,Ks ] has rank 3.

REMARK 3.5. There exists a Latin square of order m for m ≥ 1. Let N(m) be the
maximum number of mutually orthogonal Latin squares of order m. The following is known
(see [4]).

• N(0) = N(1) = ∞ and 1 ≤ N(m) ≤ m − 1 for every m > 1.
• If m is a prime power then N(m) = m − 1.
• If m �≡ 2 mod 4, then N(m) ≥ 2.
• N(p × q) ≥ min{N(p),N(q)}.
• N(2) = 1, N(3) = 2, N(4) = 3, N(5) = 4, N(6) = 1, N(7) = 6, N(8) = 7.

REMARK 3.6. In the case of s = 1, we have dim H 1(A(M[K]), eλ) = 1 for non-zero
one-form

eλ = λ1(e1 + · · · + em) + λ2(em+1 + · · · + e2m) + λ3(e2m+1 + · · · + e3m)

with λ1 + λ2 + λ3 = 0.

Let M and M ′ be loopless matroids M on [n] of rank 3. We call M ′ a degeneration of M

if the family of 3-circuits of M ′ contains that of M . Mostly, degenerations of M[K1, . . . ,Ks ]
have weights with non-vanishing first cohomology. It is trivial that the uniform matroid U2,n

of rank 2 is one of its degenerations. Next, we shall construct its non-trivial degeneration with
non-vanishing first cohomology.

PROPOSITION 3.7. Let m ≥ 2, s ≥ 1 and n = (s + 2)m. Let K1, . . . ,Ks be mutually
orthogonal Latin squares on [m]. Let Mi be a simple matroid on Ii := {(i − 1)m + 1, (i −
1)m + 2, . . . , im} for i = 1, 2, . . . , s + 2. There exists a simple matroid M[K1, . . . ,Ks :
M1, . . . ,Ms+2] with rank 3 such that it is a degeneration of M[K1, . . . ,Ks ] and its restriction
on Ii is Mi for i = 1, 2, . . . , s + 2. For this matroid, we have

dim H 1(A(M[K1, . . . ,Ks : M1, . . . ,Ms+2]), eλ) = s

for a weight λ given in Theorem 3.3.

PROOF. Let C3(M1, . . . ,Ms+2) be the union of families of 3-circuits of Mi; i =
1, . . . , s + 2. For a 3-circuit Ci of Mi and C ∈ C[K1, . . . ,Ks ], we have Ci ∩ Cj = ∅
for i �= j and |Ci ∩ C| = 1. Thus C[K1, . . . ,Ks ] ∪ C3(M1, . . . ,Ms+2) satisfies (C3) and
it yields a simple matroid M[K1, . . . ,Ks : M1, . . . ,Ms+2] in this statement. By the same
argument as that in the proof of Theorem 3.3, we can prove the proposition. �

REMARK 3.8. A realization of M[K1, . . . ,Ks : M1, . . . ,Ms+2] is an (s + 2,m)-net

in P2 defined in [17]. Therefore, there is no (k,m)-net for k > N(m) + 2. In particular, there
is no (k, 6)-net for k > 3.

In a Latin square K , an s × s-matrix obtained by s rows and s columns is called a Latin
s-subsquare of K if it forms a Latin square of order s. Let K be a Latin square on [m]
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and J be a subsquare of K . We treat J̃ as a subsquare of K̃ . J̃ has row index set I1(J ),
column index set I2(J ) and symbol set I3(J ) where I1(J ) ⊂ I1, I2(J ) ⊂ I2, I3(J ) ⊂ I3 and
|I1(J )| = |I2(J )| = |I3(J )|. We define X(J ) = I1(J ) ∪ I2(J ) ∪ I3(J ).

PROPOSITION 3.9. Let J be a subsquare of a Latin square K on [m]. There exists a
simple degeneration M[K; J ] of M[K], whose restriction on X(J ) is the uniform matroid of
rank 2. For this matroid, we have

dim H 1(A(M[K; J ]), eλ) = 1

for a weight λ given in Remark 3.6.

PROOF. Let C = C[K] ∪ (
X(J )

3

)
. Since J is a subsquare of K , for C ∈ C[K] \ (

X(J )
3

)
,

we have |C ∩ X(J )| = 1. This leads to (C3) for C. The conclusion follows as in the proof of
Proposition 3.7. �

REMARK 3.10. The following is known (see [4]).

• There exists a Latin square of order m with a proper k-subsquare if and only if k ≤ [
m
2

]
.

• There exists a Latin square of order m with no proper subsquares if m �= 2a3b or if
m = 3,9,12,16,18,27,81 or 243.

There are other degenerations of matroids associated to Latin squares with non-vanishing
cohomology, for example, see Section 4.5.

4. Arrangements

For a matroid M , an arrangement over a field F with underlying matroid M is called an
F -realization or representation of M . A matroid is said to be realizable or representable over
F if M has an F -realization. We shall find realizations of matroids obtained in the previous
section. In this section, we will see the following:

PROPOSITION 4.1. If 1 ≤ m ≤ 4 then the matroid M[K] associated to a Latin square
K on [m] is realizable over the reals.

In addition, these realizations are arrangements appearing in classical projective geom-
etry (Figure 1, 2 and 3). Besides, we shall give many other examples including the higher
dimensional case.

4.1. m = 1. Lemma 2.4 implies (e1 − e3)∧ (e2 − e3) = ∂(e1 ∧ e2 ∧ e3). The matroid

M[K] is realized by the arrangement in P2 consisting of three lines through one point.

4.2. m = 2 (Falk [6]). We have only one main class isotopic Latin square K =(
1 2
2 1

)
. The decomposable relation is (e1 + e2 − e5 − e6) ∧ (e3 + e4 − e5 − e6) =

∂(e1 ∧ e3 ∧ e5) + ∂(e1 ∧ e4 ∧ e6) + ∂(e2 ∧ e3 ∧ e6) + ∂(e2 ∧ e4 ∧ e5). The matroid M[K] is
realized by the arrangement in P2 arising from the Ceva Theorem (the left side in Figure 1).
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FIGURE 1. The Ceva Theorem and the Pappus Theorem.

4.3. m = 3. We have only one main class isotopic Latin square, which is given by

K =

1 2 3

3 1 2
2 3 1


 , C[K] =


(1, 4, 7) (1, 5, 8) (1, 6, 9)

(2, 4, 9) (2, 5, 7) (2, 6, 8)

(3, 4, 8) (3, 5, 9) (3, 6, 7)


 .

The realization is given by the arrangement of 9 lines in P2 arising from the Pappus Theorem
(the right side in Figure 1).

4.4. m = 4. There are two main class isotopic Latin squares, that we can give by

K1 =




1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1


 , C[K1] =




(1, 5, 9) (1, 6, 10) (1, 7, 11) (1, 8, 12)

(2, 5, 12) (2, 6, 9) (2, 7, 10) (2, 8, 11)

(3, 5, 11) (3, 6, 12) (3, 7, 9) (3, 8, 10)

(4, 5, 10) (4, 6, 11) (4, 7, 12) (4, 8, 9)


 ,

K2 =




1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1


 , C[K2] =




(1, 5, 9) (1, 6, 10) (1, 7, 11) (1, 8, 12)

(2, 5, 10) (2, 6, 9) (2, 7, 12) (2, 8, 11)

(3, 5, 11) (3, 6, 12) (3, 7, 9) (3, 8, 10)

(4, 5, 12) (4, 6, 11) (4, 7, 10) (4, 8, 9)


 .

The matroid M[K1] or M[K2] is realized by the arrangement of 12 lines in P2 defined by Fig-
ure 2 or 3, which is arising from the Kirkman Theorem or the Steiner Theorem, respectively
(see [13, Chapter 16]).

4.5. Degenerations. Let K1 and K2 be in the preceding section. Let J be the sub-
square of K1 given by

J =
(

2 4
4 2

)
.

By Proposition 3.9, we obtain X(J ) = {1, 3, 6, 8, 10, 12} and the matroid M[K1; J ]. Let M1

be a simple matroid on [4] for which the family of 3-circuits is {(1, 2, 4)}. By Proposition 3.7,
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FIGURE 2. The Kirkman Theorem.

FIGURE 3. The Steiner Theorem.
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FIGURE 4. Degeneration of Kirkman’s arrangement.

FIGURE 5. Degenerations of Steiner’s arrangement.

we have the matroid M[K1; M1]. Furthermore, the family C[K1] ∪ (
X(J )

3

) ∪ C3(M1) satisfies
(C3) and then yields the matroid M[K1 : M1; J ] with non-vanishing first cohomology. This

matroid M[K1 : M1; J ] is realized by the arrangement of 11 lines in C2 with the line 1 at
infinity in Figure 4.

The degeneration of M[K2] such that 1 and 2 are parallel, that is, {1, 2} is a circuit, has a
realization defined by the left one in Figure 5. Moreover, the degeneration of M[K2] such that
{1, 2}, {5, 6} and {11, 12} are circuits, is realizable. This realization is the B3-arrangement (the
right one in Figure 5). Therefore, these two arrangements have weights with non-vanishing
first cohomology in the same way as in Remark 3.6.
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4.6. m = 3 and s = 2 (Libgober [8]). The two Latin squares

K1 =

1 2 3

3 1 2
2 3 1


 , and K2 =


1 2 3

2 3 1
3 1 2




are mutually orthogonal. We have

C[K1] =

(1, 4, 7) (1, 5, 8) (1, 6, 9)

(2, 4, 9) (2, 5, 7) (2, 6, 8)

(3, 4, 8) (3, 5, 9) (3, 6, 7)


 , C[K2] =


(1, 4, 10) (1, 5, 11) (1, 6, 12)

(2, 4, 11) (2, 5, 12) (2, 6, 10)

(3, 4, 12) (3, 5, 10) (3, 6, 11)


 .

The matroid M[K1,K2] is AG(2, 3) (see [12]) and realized as the Hessian configuration.
The Hessian configuration is the arrangement of 12 projective lines passing through the nine
inflection points of a nonsingular cubic in P2(C) [10, Example 6.30], which we can define by
lines

H1 = {x = 0},H2 = {y = 0},H3 = {z = 0} ,

H4 = {x + y + z = 0} ,H5 = {x + ω2y + ωz = 0} ,H6 = {x + ωy + ω2z = 0} ,

H7 = {x + ωy + ωz = 0} ,H8 = {x + y + ω2z = 0} ,H9 = {x + ω2y + z = 0} ,

H10 = {x + ω2y + ω2z = 0} ,H11 = {x + ωy + z = 0} ,H12 = {x + y + ωz = 0} ,

where ω = e2πi/3. The underlying matroids of arrangements

{H1, . . . , H6,H7,H8,H9} and {H1, . . . , H6,H10,H11,H12}
are M[K1] and M[K2], respectively. The Hessian configuration {H1, . . . , H12} has underly-

ing matroid M[K1,K2] and we have dim H 1(A(M[K1,K2]), eλ) = 2 for a non-zero one-
form

eλ = λ1(e1 + e2 + e3) + λ2(e4 + e5 + e6) + λ3(e7 + e8 + e9) + λ4(e10 + e11 + e12)

with
∑4

j=1 λj = 0.

4.7. Monomial arrangements (Cohen and Suciu [3]). Let K be the Latin square of
order m defined by the addition table for Zm × Zm for m ≥ 2. The monomial arrangement

Am,m,3 in C3 is given by the defining polynomial

Q(Am,m,3) = (xm
1 − xm

2 )(xm
1 − xm

3 )(xm
2 − xm

3 ) .

Set ζ = exp(2πi/m). Define

Aij = {Hk
i,j = Ker (xi − ζ kxj ) : 1 ≤ k ≤ m}
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FIGURE 6. K and C[K].

for 1 ≤ i < j ≤ 3. So we have Am,m,3 = A12 ∪A23 ∪A13. Since ∩m
k=1Hi,j has rank two, the

underlying matroid M(Aij ) of Aij is isomorphic to the uniform matroid U2,m of rank two.

Other rank two intersections are H
p

1,2 ∩ H
q

2,3 ∩ Hr
1,3 for p + q ≡ r mod m. Hence, K can be

considered as the Latin square with rows indexed by A12, columns by A23, and symbols by
A13 . The underlying matroid of Am,m,3 is the matroid M[K; M(A12),M(A23),M(A13)].
By Proposition 3.7, Am,m,3 has weights with non-vanishing first cohomology.

4.8. Higher dimensional case (� = 3). Let K be a Latin 3-dimensional hypercube
on [2] defined by Figure 6. The matroid M[K] is the matroid of type L8 in [12, p.510]. Let
A be an 4-arrangement defined by the polynomial

x1x2x3x4(x1+x2+x3+x4)(x1+bcx2+bx3+cx4)(x1+cx2+x3+cx4)(x1+bx2+bx3+x4) ,

where 0, 1, b, c, bc are distinct from each other. By a simple computation, A is a realization of
M[K]. Therefore, A has weights with non-vanishing second cohomology (cf. A. Libgober,
arXiv: math/0404341, Example 7.4). Let B be an 4-arrangement defined by the defining
polynomial

(x1 − x2)(x1 + x2)(x2 − x3)(x2 + x3)(x3 − x4)(x3 + x4)(x4 − x1)(x4 + x1) .

By a simple computation, we can check that B has no 3-circuits and the family of 4-circuits is

C[K] ∪ {(1, 2, 3, 4), (1, 2, 7, 8), (3, 4, 5, 6), (5, 6, 7, 8)} .

Therefore, B has weights with non-vanishing second cohomology.
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