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The Non-vanishing Cohomology of Orlik-Solomon Algebras
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Abstract. The cohomology of the complement of hyperplanes with coefficients in the rank one local system
associated to a generic weight vanishes except in the highest dimension. In this paper, we construct matroids or
arrangements admitting weights for which the Orlik-Solomon algebra has non-vanishing cohomology, using decom-
posable relations arising from Latin hypercubes.

1. [Introduction

Let R beacommutativering with 1. Write [n] := {1, 2, ...,n}. Let E = Eg denotethe
graded exterior algebra over R generated by 1 and degree-one elementse; for i € [n]. Define
an R-linear map d : EP? — EP~1by 391 =0, de; = 1fori € [n], and

14
dew A Nep) =Y (D ey A ngg A A,
k=1

for p > 2andi; € [n]. Let M bealooplessmatroid on [#] with rank ¢ + 1.

DEerINITION 1.1. The Orlik-Solomon algebraof M isthe quotient A(M) of E by the
ideal (0 M) generated by d(e;; A -- - A e;,) for every circuit ¢ = (ig, ..., is) of M.

If 1 and 2 are paralldl, that is, {1, 2} is acircuit, then e; = ep. So the Orlik-Solomon
algebra of the simple matroid associated with M is equa to that of M. Theidea (dM) is
homogeneous, so A(M) inherits a natural grading from the exterior algebra E. The linear
map 9 on E induces the linear map 9y, on A(M). Let ey, = hie1+ -+ + Ane, € EL. Wecall
A= (A1,..., ) aweight of M. Theleft multiplication e A : A?(M) — AP+L(M) defines
thecomplex (A(M), e;). Let H(A(M), e;) denote the cohnomology of thiscomplex. If A =0
then H(A(M), e) isjust A(M), otherwise we have H(A(M), e;) = 0. If Yok #0

then we have H? (A(M), e;) = Ofor al p (see[19]). If dex = 3 j_; »; = Othene; induces
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the complex (9 (A(M)), e;) and the conomology H (dy(A(M)), ey), where dy (A(M)) is
theimage of d,4. It is known that

HPPYAM), e2) = HP T @ (AM)), ) @ HP (0 (A(M)), ey) .
For ageneric weight A, Yuzvinsky [15] proved the following vanishing theorem:
H*(0m(A(M)),e,) =0 fork #£¢.
Hence, we have
HY(AM),e;) =0 fork #4¢,¢+1.

An arrangement A of hyperplanes in P¢ has the rank ¢ 4+ 1 matroid M(A) = M as
underlying combinatorial structure. The cohomology of the complement of A isisomorphic
to 9y (A(M)) (see[10] and [7]). If aweight A = (};);c4 Satisfies a certain generic condi-
tion, then the cohomology of the complement of A with coefficients in the rank one local
system associated to A is isomorphic to H (dy(A(M)), e;) (see [5, 14]). The loca system
cohomology is an important subject in the multivariable theory of hypergeometric functions
[2, 11]. By the vanishing theorem [15], for a generic weight A, the local system cohomology
vanishesin al but the top dimension. In this paper, our purpose is to construct matroids and
arrangements with non-vanishing cohomology of Orlik-Solomon algebras, more precisealy,
with H1(A(M), e)) # 0.

The case ¢ = 2 has been studied in several papers, including [6, 9]. Falk [6] defined the
resonance variety of the Orlik-Solomon algebra, as the space of weights with non-vanishing
cohomology. The resonance variety is deeply related to the cohomology support loci [1] and
the characteristic variety [8, 13] of the arrangement complement. Libgober and Yuzvinsky
[9] showed that, under some condition, weights with non-vanishing first cohomology are
parametrized by L atin squares.

In this paper, we prove that, in general, matroids associated to Latin hypercubes have
weights with non-vanishing cohomology, by using decomposable relations arising from Latin
hypercubes. This decomposablerelation isageneralization of therelation discovered by Ryb-
nikov (see[6]). Moreover, inthe case ¢ = 2, we give details of their matroids and derivations,
using terms of Latin squares. In the last section, we shall give examples of realizations in-
cluding the higher case. Some of them appear in classical projective geometry (see Figure 1,
2 and 3).

We shall use the following notation and terminology. A k-set is a set with cardinality k.
Denote the family of all k-subset of aset S by (}). Often, weregard a p-tuple (i1, .. ., i) as
ap-set{iy, ..., ip}. Werefer to[12] for terminology of matroid theory.

2. Non-vanishing Theorem

A Latin hypercube of dimension ¢ and order m is an m‘-array such that, if £ — 1 co-
ordinates are fixed, the m positions so determined contain a permutation of m symbols. Let
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K = [k(i1,...,i¢0)]1<iy,...i;<m De alatin £-dimensional hypercube on [m], thet is, an mt-
matrix satisfying the condition

(k(iy, i, ... i) 1iy € [m]} = {k(i1,i%, ... 0¢) 1 i5 € [m]} = - -

o= k(i1 i2, ..., ip) iy € [m]} = [m],
forl <ii,..., iy < m. Definethefamily of (¢ 4+ 1)-subsetsin [n] associated to K by
CIK]=I[(i1,m+iz2,2m~+i3, ..., (€ —Dym +i¢, &m +k(i1, ..., i) ]1<iy,....ig<m -

On the other hand, a matroid is said to be ¢-generic if it has no i-circuits for i < ¢.
Note that a 1-generic matroid is just a loopless matroid and a 2-generic matroid is just a
simple matroid. The uniform matroid U,, ,, of rank m is m-generic. So we can state the main
theorem as follows.

THEOREM 2.1. Letm >2,¢£>2andn = (£ + 1)m. Let K be a Latin ¢-dimensional
hypercube on [m]. Then there exists a unique £-generic matroid M[K] on [n] withrank £ + 1,
for which the family of all (¢ + 1)-circuits is equal to C[K]. Suppose that R is a field of
characteristic zero (or the characteristic of the ring R does not divide m). This matroid has
weights with non-vanishing cohomology; more precisely

H¥(AM[K]),e;) =0 for k <¢—2,
H " YNAMIK]), e1) #0,

for each non-zero weight
41
A= (Moo AL ADy e Ay e YRR VIR E Z,\.,- =0.
m m Jj=1
We assumethat R isafield of characteristic zero until the end of the paper.
Intherest of thissection, wewill provethistheorem. First of all, we prove some lemmas.
LEMMA 2.2. AfamilyC of (¢ + 1)-subsetsin [n] satisfies the condition
(Cyq1) IfC1,C2 € Cand |C1 U Cz| = ¢ + 2 then every (£ 4+ 1)-subset C3 of C1 U Coisa
member of C,
if and only if, there exists an £-generic matroid on [n] for which thefamily of all (¢4-1)-circuits
isequal to C.
PROOF. Itisclearwhenn < ¢+ 1. Assumethatn > ¢ 4+ 1. Let C be afamily of
(¢ + 1)-subsetsin [n] satisfying (Cyy1). Let I bean ¢-subset of [n]. Define X; = T U {e €
[n]:TUe e, (X)) = fall (¢ + D-subsetsof X;.},and (1) = {S e (X)) : IS\ 1] =5}
Note that (1)) = Us¥1 (1), First of all, we show that (/")) is a subfamily of C by
induction on s. For s = 1, since (e)i' , =l Ue e} itisclear. Let assumethat (Zfr’l)s cc
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for s > 1. Take a member § of (X! o LeT =S\ Tand I :=SnI Notetha
S=1'UT,I'cI, T CcX;\I,|I'|=¢—sand|T|=s+ 1. Nowwecanchoosee c I\ I
and f1, f2 € T with f1 # f». By the inductive assumption, C1 := I' Ue U (T \ {f1}) and
Co:=1'UeU(T\ {f2)) arein (Zfr’l)s C C. We can check C; and C; satisfy the condition
in (C¢41), and S isa (¢ + 1)-subset of C1 U C2. So we have S € C. Therefore, we have
(X1), c candhence (1)) c C.

Assumethat C is not the family of all (¢ + 1)-subsets of [r]. We shall show that

IT={IcClnl:|I|<t+11¢C}

is a matroid complex (see [12]). Note that I have all i-subsets of [n] fori < ¢ + 1. Since
#eZandif I’ C I elthenl’ e Z,weshould prove the independence augmentation axiom
forZ,thatis, for I1, Io € Z with |I2] = |I1] + 1, thereexistse € 1>\ I3 suchthat I1 U {e} € 7.

If |I1] < ¢,itisclear. Let |I1] = £. Supposethat I1 U {e} ¢ Z fordl e € I\ I1. Then we

have I C Xj,. By the above claim, we have (Z:ll) c C and hence we have I, € C, thisis

acontradiction. Therefore, Z defines the matroid of rank £ + 1. The converseis easy by the
circuit elimination axiom of the matroids (see[12, 1.1.4]). m|

REMARK 2.3. (1) WhenC = ¢, theuniform matroid U,, , of rank m withm > £+41
is the matroid in the above lemma.

(2) If C consistsof al (¢ + 1)-subsets of [n], the uniform matroid U, ,, of rank ¢ isthe
only ¢-generic matroid which satisfies the condition of the above lemma. Otherwise,
the rank of such a matroid is greater than ¢, and there exists uniquely such an ¢-
generic matroid with rank ¢ + 1.

LEMMA 2.4. Letn = ({+Dm. Leta; = e—pym1+---+esmfor L <s < £+1 For
a Latin ¢-dimensional hypercube K on [m], we obtain the following decomposable relation

dlarnaa N+ Nagy1) = —(a1 —a2) A(@(az A -+ A agt1))

= (-D'm(a1 —a2) A(az —az) A+ A (ag — agy1)

=m ) des).

SeC[K]
wherees =¢e;; A--- A ei, for a p-tuple (iy, ..., ip).
PrROOF. Thefirst and second equations are obtained by
dar Nag A+ ANagy) = 0((ar —az) Naz A -+ A agt1)
=d(ar—a2) Naag A --- ANapgpr— (a1 —az) A (@@ A -+ Aagyt))
=—(ar—ax) AN (a2 A+ Nagt1) =+
= (-D'(a1—ax) A (a2 —az) A+ A (ag — ags1) A d(ag+1)

= (=D)'m(ar —ax) A (az —az) A -+~ A (@ — ap+1) -
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LetEs ={(s—Dm+1, (s—1)m+2,...,sm}forl <s < £+1. Notethat E1U---UE;11 =
[n). Weregard K as a Latin hypercube K = (k(i1, ..., i¢)) with s-axis indexed by E; for
1<s < ¢andsymbol set Eg 1. We note that k (i1, ..., i¢) = ¢m + k(i1, ..., i¢) € Egq1.
Sinced(er A--- Aex Aegs1) = d(er A -+ Aeg) Aerrl+ (—1)k€1 A+ A e, Wehave
(—1)ke1/\e2/\~~/\ek =—d(e1 A -~ Neg) Negyr1+d(e1 A -+ Aeg Aegyl) .

Hence, we can get

¢ ¢
(—D'm-arn--nag=m Y (=Diey A+ Aei, =m x
i1€FE1,....ir€Ey

Z { —deig A---Nei) Nepg (e A Neig Nep i())} .
i1€Eq,...,is€Ey

The second termis

Yoo e A e Aeg )= Y. des).

i1€Eq,...,it€Ey SeC[K]

On the other hand, since K is aLatin hypercube, we have

Z 3(6,’1 VANCIERIVAN e,'e) AN e/;(ij_,...,ie)

i1€E1,...,ireEy

.....

|
/N
=
L
I
=
=
.
S
:
>
>
D
)
>
>
S
SN———
>
3
=
=

¢
— _1yr-1
_Z Z (P e Aeeoney Ao Ae) Aegg, o
p=1i1,...,i¢
-1
:Z Z ()P ey A né A /\e,g)/\X:ek(l1 ..... 0
P=lil ..... l; ..... iy lp

and

4
dar A Aag) =0ap) Y (=DP tar A ndp A A
p=1
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Therefore we obtain

(—D'm-ar A nag=—da A Aa) Aagra+m Y des)
SeC[K]

and hence we have

3(a1/\~'/\a(/\a(+1)=3(a1/\'H/\az)/\ag+1+(—l)em'al/\'u/\ag

=m Z d(es) .

SeC[K]
O

PROOF OF THEOREM 2.1. Let K beaLatin ¢-dimensional hypercube on [m]. By the
construction of C[K], for C1, C2 € C[K] with C1 # C2, wehave |C1 N C2] = £ — 1 and
|C1 U C2| = £ + 3. Hence, due to Lemma 2.2 and the remark following it, there exists a
unique ¢-generic matroid M[K ] with rank £+ 1. In general, for an ¢-generic matroid M and a
non-zero weight A of M, we have H*(M, e;) = Ofor k < £ — 2. Thus, we only need to prove
H1(A(M[KY), e;) # 0. Let 1 be aweight given in the statement, and assume without loss
of generality that 11 # 0. Since Y1 %; = 0, we have

e, =Arler+---+ep)+ -+ rerrlegmt1 + - -+ ewrnym)

= A1a1+ A2a2 + - - - + Agriaea

=A@ —a2) + A1+ A2)(a2 —az) + -+ A1+ -+ Ae)(ae — ae+1) ,
where a; is defined in Lemma 2.4. Define an (¢ — 1)-form

b:=0d(aNazA--- ANag+1)
= ()" maz—az) A (az—as) A+ A(ag —ags1) .
By Lemma 2.4, we have
exy ANb=Xx(a1—ax) ANbe (0M[K]),

that is, e, A b vanishes in the Orlik-Solomon algebra A(M[K]). Since M[K] is £-generic,
the (¢ — 1)-form b isnot in (dM[K]). Finaly, we shall check that » is a non-vanishing
cohomology classin HY(M[K], ey,).

For afiniteset {e1, ..., e,}, denoteby E(eq, ..., ¢,) the graded exterior algebraover R
generated by 1 and degree-one elementsey, ..., e,. Notethat E(ez, ..., e,) isasubalgebra
of E(e1,...,ey). Lete, = Aer + -+ 4+ Aye, With A; € R and A1 # 0. Then we have
E(e1,...,ep) = E(ey, ez, ...,e,). Itiseasy to seethefollowing: if w € E(ea, ..., e,) with
w # 0, then w isnot belong to theideal of E(eq, ..., e¢,) generated by e,.

By the above, since b isin E(ey+t1,---,e,) ad A1 # 0, b is not in the ideal of
E(es,...,e,) generated by e;, that is, there exists no (¢ — 2)-form n with e}, A n = b.
This completes the proof. a
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3. Thecaseof £ =2

We refer to [4] for more background on Latin squares. A Latin square of order m isa
Latin hypercube of dimension 2 and order m, that is, an m x m matrix with entriesin an m-set
(which we call the symbol set), such that each element occurs exactly once in each row and
exactly once in each column. Two Latin squares K and K’ are isotopic if K’ is obtained by
permutations of rows, permutations of columns, and a bijection from the symbol set of K. Let
E1, E» and E3 bethreem-setsand let K be aLatin square with rowsindexed by E1, columns
by E>, and symbolsby E3. Define T (K) = {{x1, x2, x3} : x; € Ei(i =1, 2,3), kxy,x, = x3}.
For any permutation o of {1, 2, 3}, the o-conjugate of L isthe Latin square K, with rows
indexed by E.1, columns by E,2, and symbols by E,3, defined by T(K) = T(K,). Two
Latin squares K and K’ are main classisotopic if K’ isisotopic to some conjugate of K.

Let K = (k; ;) be aa Latin square on [m], that is, an m x m-matrix satisfying the
condition {k; 1, ki 2, ..., kim} = {kij ko j, ... km j} = [mlforl <i,j < m. Asinthe
previous section, we define C[ K] by the family

A,m+12m+k11) Am+22m+ki2) --- (Q,2m,2m+kin)
@Cm+L12m+ks1) @Cm+22m+k2) --- (Q1,2m,2m+ k)
(m,m~+1,2m+kyp1) mm+2,2m+kyp2) - (1,2m,2m+kpymnm)

We can view K as a Latin square K with rows indexed by {1, 2, ..., m}, columns by {m +

1L,m+2,...,2m},andsymbolsby {2m + 1,2m + 2, ..., 3m}. Sowe can consider C[K] =
T(K). By Theorem 2.1, there exists a unique simple matroid M[K] on [n] with rank 3, for
which the family of all 3-circuitsis equal to C[K]. The simple matroid M[K] has weights
with non-vanishing first cohomol ogy.

ProPosITION 3.1. Letm > 2. If K1 and K> are main class isotopic Latin squares
then the matroids M[K1] and M[K>] are isomorphic. If a Latin square K1 isnot main class
isotopic to K> then the matroid M[K1] isnot isomorphicto M[K>].

PrRoOOF. Thisis clear by the definition of main class isotopic Latin squares. O

REMARK 3.2. The number of main class isotopic Latin squares of order m < 8 is
known (see [4]).

m= 1/2[(3|4|5]| 6 7 8
mainclasses || 1|1 |1|2| 2|12 | 147 | 283, 657

Two Latin squares K = (k; ;) and K’ = (klf’j) of same order are orthogonal if al pairs
(ki j, klf’ j) are distinct. A set of Latin squares of order m is mutually orthogonal if any two
distinct squares are orthogonal.

THEOREM 3.3. Letm > 1,5s > 1andn = (s + 2)m. Let K1, ... , Ky be mutually
orthogonal Latin squares on [m]. Then there exists a simple matroid M[K71, ..., K] on [n]
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satisfying
dimHYAMI[Ka, ..., K ]), e3) =s

for each non-zero weight
s+2
A= (AL eee AL A2y Ay e Ast2 - hsg2)i YA =0,
Ty le e Sre o sTs .
m m m j=1
ProOF. By Lemma2.2inthecaseof ¢ = 2, afamily C of 3-subsetsin [n] satisfies the
condition
(Cg) if {i, j, k}and {i, j, 1} aremembersof C then {i, k, [} and {j, k, [} are members of C,
if and only if, there exists a smple matroid on [n] for which the family of all 3-circuits is
equal to C. Recall that the set of flats of a matroid isageometric lattice. The closureof C € C
istheset U{C’ € C : |C' N C| > 2}, that isaflat of rank 2. A 2-subset containedinno C € C
isaflat of rank 2.
Construction of M[K3, ..., Ks]: Let K1, ... , Ks; bemutually orthogonal Latin squares

on [m]. A Latin square K, = (lzfj) associated to K, = (k/;) is given by a Latin square
with rows indexed by {1, 2, ..., m}, columnsby {m + 1,m + 2, ..., 2m}, and symbols by
{(p+Dm+1, (p+1)m+2,...,(p+2)m},givenby12fj = (p+1)m+kfj forl<i<m
andm +1 < j < 2m. Wedefine

ClK1,...,Ks]1:=T(K))U---UT(Ky),

X j ::{i,j,l?il,j,...,%f’j} forl<i<mm+1<j<2m, and

X
c::cuq,...,Ks]U( | U ' <31>>'
1<i<m,m+1<;j<2m

By mutually orthogonaity, we have |C N X; ;| = 1forany C € C[K4, ..., K] not contained
inX; ;,and|X; ; N Xy, = 1for (i, j) # (k,1). Thisimpliesthat C satisfies (C3). If m > 2
then we obtain asimple matroid M[K1, ..., K] on [n] with rank 3 such that C is the family
of all 3-circuits. If m = 1 then C givesthe uniform matroid Uz ,,.

Non-vanishing: Let a; = ei—Lm + ei—m+1+ -+ ei-Lm fori=212,...,s +2
By Lemma 2.4, we have

(a1 —ai) A (a2 —a;) € (OM[Kx, ..., Ki])
for3 <i < s+ 2. Wetake two one-forms
ey = Atlal + A’zaz + -4 A§+2as+2

with Zjﬁx; =0fors = 1,2 Sincee;n = AJ(az — a1) + -+ + A}, ,(as42 — a1) and
€2 = )\%(al —ap) + -+ A§+2(a5+2 —az),wehavee;1 Aey2 € (IM[K1, ..., K]). This
impliesdim HY(A(M[K1, ..., Ks]), e3) = s. ]
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REMARK 3.4. Whenm = 1, the matroid in this theorem is the uniform matroid Us ,
with rank 2. When m > 2, the matroid M[K3, ..., K] hasrank 3.

REMARK 3.5. There exists a Latin square of order m for m > 1. Let N(m) be the
maximum number of mutually orthogond Latin squares of order m. The following is known
(see[4]).

NO)=N@A)=occandl < N(m) <m— L1lforeverym > 1.

If m isaprime power then N(m) = m — 1.

If m £ 2 mod 4, then N(m) > 2.

N(p x q) = min{N(p), N(q)}.

NQ2Q=1,NQ® =2,N4) =3, N5 =4,N®6) =1,N7)=6,N8) =T7.

REMARK 3.6. Inthecaseof s = 1, wehavedim H1(A(M[K)), e;) = 1 for non-zero
one-form

e, =Aler+ - +en) +r20ems1+ -+ eam) + A3(e2mr1+ - - +e3m)

withAy + A2 + A3 =0.

Let M and M’ beloopless matroids M on [r] of rank 3. We call M’ adegeneration of M
if the family of 3-circuits of M’ containsthat of M. Mostly, degenerationsof M[K1, ..., K]
have weights with non-vanishing first cohomology. It istrivial that the uniform matroid Us ,
of rank 2 isone of its degenerations. Next, we shall construct its non-trivial degeneration with
non-vanishing first conomology.

PrROPOSITION 3.7. Letm >2,s >1andn = (s + 2)m. Let K1, ..., K be mutually
orthogonal Latin squareson [m]. Let M; bea simple matroidon I; := {(i — L)m + 1, (i —
Dm+2,...,im}fori =1,2,...,s + 2. There exists a smple matroid M[K1, ..., Ky :
Ma, ..., My 2] withrank 3suchthatitisa degenerationof M[K1, ..., K] anditsrestriction
onl;isM;fori =1,2,...,s+ 2. For thismatroid, we have

dmHYAMI[K1, ..., Ks: My, ..., Msi2]),e1) =s

for a weight A givenin Theorem 3.3.

PROOF. Let C3(M1, ..., Ms12) be the union of families of 3-circuits of M;;i =
1,...,s + 2. For a3-circuit C; of M; and C € C[Ky1,...,Ks], wehave C; N C; = 0
fori # jand |C;NC| = 1. ThusC[K1y,..., Ks]UC3(Ma, ..., Ms,o) satisfies (C3) and
it yields a simple matroid M[K1, ..., Ky : M1, ..., Ms;2] in this statement. By the same
argument as that in the proof of Theorem 3.3, we can prove the proposition. O

REMARK 3.8. A redizationof M[K1,...,Ks : M1, ..., Mgio]isan (s + 2, m)-net
in P2 defined in [17]. Therefore, thereisno (k, m)-net for k > N(m) + 2. In particular, there
isno (k, 6)-net for k > 3.

Inalatin square K, an s x s-matrix obtained by s rowsand s columnsiscalled aLatin
s-subsquare of K if it forms a Latin square of order s. Let K be a Latin square on [m]
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and J be a subsquare of K. We treat J as a subsquare of K. J has row index set I1(J),
column index set I2(J) and symbol set I3(J) where I1(J) C I1, I2(J) C I, I3(J) C I3 and
[I1())| = [I2(J)| = [I13(J)|. We define X (J) = 11(J) U I2(J) U I3(J).

PROPOSITION 3.9. Let J bea subsquare of a Latin square K on [m]. There exists a
simple degeneration M[K ; J] of M[K ], whose restriction on X (/) is the uniform matroid of
rank 2. For this matroid, we have

dimHYAMIK: J)),e) =1
for aweight A given in Remark 3.6.

PROOF. LetC = C[K]U (*Y’). Since J is asubsquare of K, for C € C[K]\ (*5),
wehave |C N X(J)| = 1. Thisleadsto (C3) for C. The conclusion follows asin the proof of
Proposition 3.7. m]

REMARK 3.10. Thefollowing isknown (see[4]).

e Thereexistsal atin square of order m with a proper k-subsquareif and only if k < [%].
e There exists a Latin square of order m with no proper subsquares if m # 243 or if
m = 3,9,12,16,18,27,81 or 243.

There are other degenerations of matroids associated to Latin squareswith non-vanishing
cohomology, for example, see Section 4.5.

4. Arrangements

For amatroid M, an arrangement over afield F with underlying matroid M is called an
F-realization or representation of M. A matroid is said to be realizable or representable over
F if M hasan F-realization. We shall find realizations of matroids obtained in the previous
section. In this section, we will see the following:

PrRoPOSITION 4.1. If1 <m < 4thenthematroid M[K] associated to a Latin square
K on[m] isrealizable over thereals.

In addition, these realizations are arrangements appearing in classical projective geom-
etry (Figure 1, 2 and 3). Besides, we shall give many other examples including the higher
dimensional case.

41. m=1 Lemma24implies(e;—e3) A(e2—e3) = d(e1 A e2 A e3). Thematroid
MK isreaized by the arrangement in P2 consisting of three lines through one point.

4.2. m = 2 (Falk [6]). We have only one main class isotopic Latin square K =
2 1

d(er NezNes)+d(er AeaNeg)+d(ex Ae3 Aeg)+d(e2 Aeq Aes). Thematroid M[K ] is
realized by the arrangement in P2 arising from the Ceva Theorem (the left side in Figure 1).

<1 2). The decomposable relation is (e1 + e2 — e5 — eg) A (e3 + e4 — e5 — eg) =
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4

2
A | 6\ Y EFYAVIE S

FIGURE 1. The Ceva Theorem and the Pappus Theorem.

4.3. m = 3. Wehaveonly one main classisotopic Latin square, which is given by

1 2 3 1,47 (1,58 (1,6,9
K=13 1 2|, CIK]l=1|(249 (257 (2,6,8].
2 31 3,4,8 (3,59 (3,6,7)

Theredlization is given by the arrangement of 9 linesin P? arising from the Pappus Theorem
(theright sidein Figure 1).

44. m = 4. Therearetwo main classisotopic Latin squares, that we can give by

(1,59 (1,6,100 (1,7,11) (1,8,12)7]
(2,5,12) (2,6,9) (2,7,100 (2,8,11)
(3,5,11) (3,6,12) (3,7,9 (3,8,10) |

| (4,5,10) (4,6,11) (4,7,12) (4,8,9) |

K;

N W h P

, ClKil =

whrEDN
AR DN®
N Wb

(1,59 (1,6,100 (1,7,11) (1,8,12)7
(2,5,100 (2,6,9 (2,7,12) (2,8,11)
(3,5,11) (3,6,12) (3,7,9 (3,8,10)

| (4,5,12) (4,6,11) (4,7,100 (4,8,9) |

K> = , ClK2] =

A OWN P
Wb EDN
NEF, B_~W
PN Wb

Thematroid M[K1] or M[K>] isredized by the arrangement of 12 linesin P2 defined by Fig-
ure 2 or 3, which is arising from the Kirkman Theorem or the Steiner Theorem, respectively
(see[13, Chapter 16]).

4.5. Degenerations. Let K1 and K2 be in the preceding section. Let J be the sub-
square of K1 given by
2 4
J= (4 2) .

By Proposition 3.9, we obtain X (J) = {1, 3, 6, 8, 10, 12} and the matroid M[K1; J]. Let M1
be asimple matroid on [4] for which the family of 3-circuitsis{(1, 2, 4)}. By Proposition 3.7,
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FIGURE 2. TheKirkman Theorem.

1 4 g 11 2 67

FIGURE 3. The Steiner Theorem.
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1
7 112 49 o

10

12

FIGURE 4. Degeneration of Kirkman's arrangement.

{1,2} {1,2}
711 12 8 4 7 {11,12} 8 4
9 9
5
{5,6}
6
10 10
3 3

FIGURE 5. Degenerations of Steiner’s arrangement.

we have the matroid M[K1; M1]. Furthermore, the family C[K1] U (¥5) U Ca(My) satisfies
(C3) and then yields the matroid M[K1 : My; J] with non-vanishing first conomology. This
matroid M[K1 : M1; J] is realized by the arrangement of 11 lines in C2 with the line 1 at
infinity in Figure 4.

The degeneration of M[K2] suchthat 1 and 2 are parallel, that is, {1, 2} isacircuit, hasa
realization defined by the left onein Figure 5. Moreover, the degeneration of M[K>] such that
{1, 2}, {5, 6} and {11, 12} arecircuits, isrealizable. Thisrealizationisthe B3-arrangement (the
right one in Figure 5). Therefore, these two arrangements have weights with non-vanishing
first cohnomology in the same way asin Remark 3.6.
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4.6. m =3ands = 2(Libgober [8]). Thetwo Latin squares

1 2 3 1 2 3
Ki=13 1 2}, and Ko=12 3 1
2 31 3 1 2

are mutually orthogonal. We have
1,47 (1,58 (1,6,9 (1,4,100 (1,5,11) (1,6,12)
ClKi1l=|(2,4,9 (2,57 (26,8 /|, ClK2=](24,11) (2,512 (2,6,10) ] .
(3,4,8 (3,59 (3,67 (34,12 (3,5,100 (3,6,11)

The matroid M[K1, K2] is AG(2, 3) (see [12]) and realized as the Hessian configuration.
The Hessian configuration is the arrangement of 12 projective lines passing through the nine
inflection points of anonsingular cubic in P2(C) [10, Example 6.30], which we can define by
lines

Hi={x=0,H2={y=0}, H3={z =0},
H4={x+y+z=0},H5={x+a)2y+a)z=0},H5={x+a)y+w2z=0},
H7={x+a)y+a)z=0},H8={x+y+a)zz=0},H9={x+a)2y+z=0},

Hio={x + 0’y + 0’z =0}, Hu = {x + 0y + 2 =0}, Hp = {x + y + 0z = 0},
where w = ¢271/3, The underlying matroids of arrangements
{H1, ..., Hs, H7, Hg, Ho} and {Hi,..., He, Hi0, H11, H12}

are M[K1] and M[K>], respectively. The Hessian configuration {H1, . .., H12} has underly-
ing matroid M[K1, K»] and we have dim HY(A(M[K1, K>]), e;) = 2 for a non-zero one-
form

e) = Ai(e1+ ez +e3) + A2(eq + es5 + ep) + Az(e7 + eg + eg) + Aa(e1o + e11 + €12)
with >7_; 2 =0.

4.7. Monomial arrangements (Cohen and Suciu [3]). Let K bethe Latin square of
order m defined by the addition table for Z,, x Z,, for m > 2. The monomial arrangement
Amom,31n C2 is given by the defining polynomial

O(Amm3) = (] —xB)(x] — x5 (x5 — x5
Set ¢ = exp(2ri/m). Define

Aij Z{Hil,{j ZKer(Xi—é'kxj) 1<k <m)
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1] 1368]— 1467 ]
o %}4/ |13574/

/yt 7] {257 —{2te%]
[ 2 }4 1 |235814157

FIGURE 6. K andC[K].

¢

forl<i < j <3 Sowehave Ay 3= A12UA23UA13. Since Ny, H; ; hasrank two, the
underlying matroid M (A;;) of A;; isisomorphic to the uniform matroid Uz ,, of rank two.
Other rank two intersectionsare Hy , N Hy 5N Hy 5 for p+¢ =r mod m. Hence, K can be
considered as the Latin square with rows indexed by A1z, columns by 423, and symbols by
A1z . The underlying matroid of Ay, ;,.3 isthe matroid M[K; M (A12), M (A23), M (A13)].
By Proposition 3.7, A, 3 has weights with non-vanishing first cohomol ogy.

4.8. Higher dimensional case (¢ = 3). Let K be aLatin 3-dimensional hypercube
on [2] defined by Figure 6. The matroid M[K] is the matroid of type Lg in [12, p.510]. Let
A be an 4-arrangement defined by the polynomial

x1x2x3x4(xX1+x2+x3+x4) (x1+bcxo+bx3+cxg) (x1+cx2+x3+cxa) (x1+bx2+bxz+xa) ,
whereO, 1, b, ¢, bc aredistinct from each other. By asimple computation, A isarealization of
M[K]. Therefore, A has weights with non-vanishing second cohomology (cf. A. Libgober,
arXiv: math/0404341, Example 7.4). Let 5 be an 4-arrangement defined by the defining
polynomial
(x1 — x2)(x1 + x2) (x2 — x3) (x2 + x3) (X3 — x4) (X3 + x4) (x4 — x1) (x4 + x1) .
By a simple computation, we can check that 53 has no 3-circuits and the family of 4-circuitsis
CIK1U{(1,2,3,4),(1,2,7,8),(3,4,5,6),(5,6,7,8)} .
Therefore, B has weights with non-vanishing second cohomol ogy.
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