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Abstract: The Gibbs phenomenon for Stromberg wavelets is studied. It is proved that the

Gibbs phenomenon for partial sums of Fourier-Stromberg series occurs for almost all points of R.
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The Gibbs phenomenon, discovered by Henry

Wilbraham in 1848 and rediscovered by Josiah

Willard Gibbs in 1899, is the peculiar manner in

which the Fourier series of some function behaves at

a jump discontinuity. The n-th partial sum of the

Fourier series has large oscillations near the jump,

which might increase the maximum of the partial

sum above that of the function itself. The overshoot

does not die out as n increases, but approaches a

finite limit.

Modifying the Franklin system, Strömberg [11]

obtained a system, which is an unconditional basis

in HpðRÞ, for p >
1

2
, where the space HpðRÞ is the

boundary values on the real axis of the real parts of

those analytic functions F in the upper half-plane

which satisfy

sup
y>0

Z1
�1

jF ðxþ iyÞjpdx <1:

Let m � 0, A0 ¼ N [ f0g [ 1

2
ð�NÞ and A1 ¼

A0 [
1

2

� �
, where N is the set of natural numbers.

The points of the set A0 split R into intervals

fI�g�2A0
, where � is the left endpoint of the interval

I�. Let Sm0 be the subspace of functions f 2 L2ðRÞ,
such that f 2 L2ðRÞ \ CmðRÞ and f is a real

polynomial of degree not greater than mþ 1 on

each I�, � 2 A0. Let Sm1 be the corresponding

subspace of L2ðRÞ with the set A0 replaced by A1.

It is clear that Sm0 � Sm1 and if fðxÞ 2 Sm0 , then

fðx� 1Þ 2 Sm1 . In general, the functions of Sm1 differ

from the functions of Sm0 only by the following: a

function from Sm0 is a polynomial on ½0; 1�, while a

function from Sm1 can be polynomial only at each of

the intervals 0;
1

2

� �
,

1

2
; 1

� �
. It follows that Sm0 had

codimension 1 in Sm1 . Therefore there exists a

function f ðmÞ 2 L2ðRÞ, that is uniquely defined (up

to the sign) by the following relations:

1. f ðmÞ 2 Sm1 ,

2. f ðmÞ ? Sm0 , that is

Z
R

f ðmÞðxÞfðxÞdx ¼ 0 for all

f 2 Sm0 ,

3. kf ðmÞk2 ¼ 1.

For all pairs ði; jÞ 2 Z2 denote

f
ðmÞ
i;j ðxÞ ¼ 2

i
2f ðmÞð2ix� jÞ:ð1Þ

The system ffðmÞi;j ðxÞgi;j2Z was introduced by

Strömberg in [11]. He also proved that

ff ðmÞi;j ðxÞgi;j2Z is a complete orthonormal system in

L2ðRÞ and it is an unconditional basis in HpðRÞ for

all p >
1

mþ 2
.

Let t0 be a discontinuity point of the first kind

of a function q 2 LðRÞ, such that jqðt0þÞ �
qðt0�Þj ¼ 2d > 0, and let fqi;jðtÞgi;j2Z be any se-

quence of functions converging to qðtÞ at every point

of some neighborhood of t0, when i; j! þ1. Then

the value of the Gibbs function for sequence

fqi;jðtÞgi;j2Z at t0 is defined by

Gðt0; q; fqi;jgi;j2ZÞ ¼ Gðt0Þ

¼ lim
t!t0

i;j!þ1

1

d

����qi;jðtÞ � qðt0þÞ þ qðt0�Þ2

����:
If Gðt0Þ > 1, we say that the sequence fqi;jðtÞgi;j2Z

exhibits the Gibbs phenomenon at t0.

The Gibbs phenomenon has been studied for

Fourier series with respect to the trigonometric

system (see [2], pp. 123–126). In this case the value

Gðt0Þ is independent of t0 and it is equal to the
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Gibbs constant:

Gðt0Þ ¼
2

�

Z�
0

sin t

t
dt � 1:17:

The Gibbs phenomenon for Fourier series with

respect to the classical Franklin system has been

studied in [10]. It is proved that the Gibbs

phenomenon occurs everywhere and the function

G is a constant almost everywhere. The case of the

general Franklin system has been studied in [8]. It

has been proved that the Gibbs phenomenon occurs

almost everywhere.

The Gibbs phenomenon for Fourier series with

respect to the Walsh system has been studied in the

papers [12] and [1]. The existence of the Gibbs

phenomenon for Fourier series with respect to

Walsh system was established in [12]. In this case

G is not a constant. In [1] exact upper and lower

bounds for this function are found.

Such problems are also studied in [4,6].

Let

S
ðmÞ
i0;j0
ðf; xÞ ¼

Xi0�1

i¼�1

Xþ1
j¼�1

ai;jf
ðmÞ
i;j ðxÞ

þ
Xj0

j¼�1
ai0;jf

ðmÞ
i0;j
ðxÞ; i0; j0 2 Z

be the partial sum of Fourier-Stromberg series and

let

Gðt0;mÞ ¼ Gðt0; f; fSðmÞi0;j0
ðf; �Þgþ1i0;j0¼�1Þ

be the Gibbs function. Also denote

K
ðmÞ
i0;j0
ðx; tÞ ¼

Xi0�1

i¼�1

Xþ1
j¼�1

f
ðmÞ
i;j ðxÞf

ðmÞ
i;j ðtÞ

þ
Xj0

j¼�1
f
ðmÞ
i0;j
ðxÞf ðmÞi0;j

ðtÞ; i0; j0 2 Z:

It is easy to see that for all bounded functions f :
R! R

S
ðmÞ
i0;j0
ðf; xÞ ¼

Zþ1
�1

K
ðmÞ
i0;j0
ðx; tÞfðtÞdt:ð2Þ

In the case m ¼ 0 the Gibbs phenomenon has been

studied in [9], where the following theorem was

proved:

Theorem 1. Let m ¼ 0. If t0 is a disconti-

nuity point of the first kind of a function f 2 L2ðRÞ,

then the Gibbs phenomenon occurs everywhere in R,

and for all t0 2 R

1þ
48� 28

ffiffiffi
3
p
þ 8

ffiffiffi
2
p
ð2�

ffiffiffi
3
p
Þ

27

� Gðt0; 0Þ �
1þ 2

ffiffiffi
3
p

3
;

with Gðt0; 0Þ ¼
1þ 2

ffiffiffi
3
p

3
almost everywhere.

The main result of the present paper is the

following theorem:

Theorem 2. Let m � 0. If t0 is a disconti-

nuity point of the first kind of a function f 2 L2ðRÞ,
then the Gibbs phenomenon occurs almost every-

where in R, i.e. Gðt0;mÞ > 1 for almost all t0 2 R.

Let’s prove the following lemma:

Lemma 1. There exists a natural number k,

such that

Zk
�1

K
ðmÞ
0;0 ðk; tÞdt > 1:

Proof. Since from (2) we have

Zþ1
�1

K
ðmÞ
0;0 ðk; tÞdt ¼ 1;

it suffices to prove that there exists a natural

number k, such that

Zþ1
k

K
ðmÞ
0;0 ðk; tÞdt < 0:

Recall, that B-spline with real knots x0 � x1 �
. . . � xr is the following function

MðxÞ ¼ r½x0; x1; . . . ; xr�ð� � xÞr�1
þ ; x 2 R;

where square brackets mean divided differences

(see [3], ch. 5, p. 2). For every n 2 A1 denote by

NnðtÞ B-spline with mþ 3 consecutive knots from

A1, with starting knot n.

We have K
ðmÞ
0;0 ð1; tÞ ¼

X
n2A1

cnNnðtÞ and from (2)

follows that

Zþ1
�1

K
ðmÞ
0;0 ð1; tÞNiðtÞdt ¼ Nið1Þ ¼ 0;

for all i 2 N. Therefore
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X
n2A1

cn

Zþ1
�1

NnðtÞNiðtÞdt ¼ 0;

for all i 2 N. Since

Zþ1
�1

NnðtÞNiðtÞdt ¼ 0, for nþ

mþ 2 � i and for n � iþmþ 2, we have

Xiþmþ1

n¼i�m�1

cn

Zþ1
�1

NnðtÞNiðtÞdt ¼ 0;ð3Þ

for all i 2 N. We regard (3) as a recurrence relation

with respect to ci. The characteristic polynomial of

(3) has order 2mþ 2. It is clear that 0 is not a root

of that polynomial and if x0 is its root, then
1

x0
is

also its root. Since lim
i!þ1

ci ¼ 0 (see [11]), for all i 2
N

ci ¼
Xt
j¼1

�ijðaj;1 þ aj;2iþ . . .þ aj;nj�1i
nj�1Þ;

where �1; . . . ; �t are those roots of the characteristic

polynomial which by modulo are less than one and

nj is the multiplicity of the root �j and the

coefficients aj;h are real (see [5], Section 3.3).

Denote

dj ¼
Zjþ2

1

N1ðtÞdt;

for all j 2 f0; 1; . . . ;mg.
Let j�1j ¼ maxfj�1j; j�2j; . . . ; j�tjg. It is clear

that if �1 2 R, then

ci ¼ a1;n1�1i
n1�1�i1 þ oðin1�1j�1jiÞ;

and if �1 2 C nR, then

ci ¼ 2 Reða1;n1�1i
n1�1�i1Þ þ oðin1�1j�1jiÞ:

If k > mþ 3 and k 2 N, then

Zþ1
k

K
ðmÞ
0;0 ð1; tÞdt ¼

X
n2A1

cn

Zþ1
k

NnðtÞdt

¼
Xþ1

n¼k�m�1

cn

Zþ1
k

NnðtÞdt

¼
Xk�1

n¼k�m�1

cn

Zþ1
k

NnðtÞdtþ
Xþ1
n¼k

cn

¼
Xm
l¼0

clþk�m�1dl þ
Xþ1
n¼k

cn:

Hence the sign of the number

Zþ1
k

K
ðmÞ
0;0 ð1; tÞdt

coincides with the sign of the following number

Re

 Xm
l¼0

a1;n1�1�
lþk�m�1
1 ðlþ k�m� 1Þn1�1dlð4Þ

þ
Xþ1
n¼k

a1;n1�1�
n
1n

n1�1

!
þ oðkn1�1j�1jkÞ

¼ Reð�k�m�1
1 ðk�m� 1Þn1�1a1;n1�1xk

þ a1;n1�1�
k
1k

n1�1zkÞ þ oðkn1�1j�1jkÞ
¼ Reð�k�m�1

1 ðk�m� 1Þn1�1a1;n1�1xkÞ
þ oðkn1�1j�1jkÞ;

where

xk ¼
Xm
l¼0

�l1 1þ
l

k�m� 1

� 	n1�1

dl

þ
�mþ1

1

1� �1
1þ

mþ 1

k�m� 1

� 	n1�1

and

zk ¼
Xþ1
n¼0

�n1 1þ
n

k

� 	n1�1

�
1

1� �1
:

For obtaining the formula (4) we used that lim
k!1

zk ¼
0. Suppose there exists � 2 f0; 1; . . . ; n1 � 1g, for

which there exists a finite nonzero limit

lim
k!þ1

ðk�m� 1Þ�xk. Denote yk ¼ ðk�m� 1Þ�xk,
y ¼ lim

k!þ1
yk,  k ¼ arg yk,  0 ¼ arg y, ’ ¼ arg�1,

’0 ¼ arg a1;n1�1. We can assume that ’ 2 ð0; ��. If

’ ¼ �, then �1 < 0; therefore

Reð�k�m�1
1 ðk�m� 1Þn1�1a1;n1�1xkÞ

¼ �k�m�1
1 ðk�m� 1Þn1�1��a1;n1�1yk:

Since y 6¼ 0, the expression above has different signs

for k and kþ 1. Therefore

Zþ1
k

K
ðmÞ
0;0 ð1; tÞdt < 0 or

Zþ1
kþ1

K
ðmÞ
0;0 ð1; tÞdt < 0.

Now let ’ 2 ð0; �Þ. Note that
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Reð�k�m�1
1 ðk�m� 1Þn1�1��a1;n1�1ykÞ

¼ j�1jk�m�1ðk�m� 1Þn1�1��ja1;n1�1jjykj
� cosððk�m� 1Þ’þ ’0 þ  kÞ:

We choose " > 0 such that
�� 2"

’
> 1. Then for all

n 2 N the length of the segment

�

2
þ 2�n� ’0 �  0 þ "

’
;

3�

2
þ 2�n� ’0 �  0 � "

’

2
6664

3
7775

will be greater than one. Since lim
k!þ1

 k ¼  0, there

exists k0 2 N, such that  k 2 ð 0 � ";  0 þ "Þ for all

k � k0. It follows that there are infinitely many k,

such that

cosððk�m� 1Þ’þ ’0 þ  kÞ < 0:

Now suppose that for no � 2 f0; 1; . . . ; n� 1g,
there exists a finite nonzero limit lim

k!þ1
ðk�m�

1Þ�xk. It is clear that in this case xk ¼ 0, for

k > mþ 3. Hence taking into account (4) it suffices

to prove that the number

Reða1;n1�1�
k
1k

n1�1zkÞ þ oðkn1�1j�1jkÞ;

has a negative sign. Suppose n1 6¼ 1. It is clear that

in this case there exists a finite nonzero limit

lim
k!þ1

kzk. Hence, in the same way, the desired result

can be obtained.

Now suppose n1 ¼ 1. Then we will change the

form ci in the following way

ci ¼ a1;0�
i
1 þ a1;n2�1i

n2�1�i2 þ oðin2�1j�2jiÞ;

where j�2j ¼ maxfj�2j; j�3j; . . . ; j�tjg. Similarly, we

find that it suffices to investigate the case n2 ¼ 1.

Doing the same steps, we get that we can assume

n1 ¼ n2 ¼ . . . ¼ nt ¼ 1. We got that xk ¼ 0, if k >

mþ 3, for �1; in particular lim
k!1

xk ¼ 0. Consequent-

ly, the following identity holds

Xm
l¼0

�l1dl þ
�mþ1

1

1� �1
¼ 0:

This is equivalent to that �1 is a root of the

polynomial

P ðxÞ ¼ d0 þ ðd1 � d0Þxþ ðd2 � d1Þx2 þ . . .

þ ðdm � dm�1Þxm þ ð1� dmÞxmþ1:

In the same way we get that P ð�iÞ ¼ 0, for all i 2

f1; 2; . . . ;mþ 1g. From definitions of d0; d1; . . . ; dm

it follows that P
1

�i

� 	
¼ 0, for all i 2 1; 2; . . . ;

mþ 1. Since j�ij < 1, for i 2 1; 2; . . . ;mþ 1, the

polynomial P will have 2mþ 2 different zeros,

which contradicts the fact that P has order mþ 1.

�

Lemma 2. If �; �ð� < �Þ are real numbers

and if Ai;j ¼ ð�þj2i ;
�þj
2i Þ, i; j 2 Z, then

� R n
\þ1
l¼1

[þ1
i¼l

[
j2Z

Ai;j

 !
¼ 0;

where � is a Lebesgue measure.

Proof. Let l 2 N. Since the sequence f2nxg,
n 2 N, n � l is everywhere dense in ½0; 1� for almost

all x 2 ½0; 1� (see [7], problems 4.3, 1.6), for almost

all x 2 R there exists i � l such that x 2 Ai;½2ix�. It

follows that

� R n
[þ1
i¼l

[
j2Z

Ai;j

 !
¼ 0;

for all l 2 N, which ends the proof. �

Proof of theorem 2. From (2) and lemma 1

follows that there exist constants "; � > 0 and k0 2
N such that S

ðmÞ
0;0 ð’x; k0Þ > 1þ � for all x 2 ðk0 � ";

k0 þ "Þ, where

’xðtÞ ¼
1; t � x
0; t > x:

�

Denote Ii;j ¼ ðk0�"þj
2i ; k0þ"þj

2i Þ, i; j 2 Z. From (1) we

obtain

Ki;jðk0; tÞ ¼ 2iK0;0ð2ik0 � j; 2it� jÞ;

thus

S
ðmÞ
i;j ’x;

k0 þ j
2i

� 	
> 1þ �; x 2 Ii;j:

Therefore from lemma 2 follows that for almost

all x 2 R there exist sequences in; jn such that

lim
n!1

k0þjn
2in ¼ x and

S
ðmÞ
in;jn

’x;
k0 þ jn

2in

� 	
> 1þ �; x 2 Ii;j:

It follows that

lim
t!x

i;j!þ1
S
ðmÞ
i;j ð’x; tÞ > 1þ �:ð5Þ

To complete the proof it remains to do the

following steps as in [9]:
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1) Prove that if g is an integrable function on R

which is continuous at x, then

lim
t!x

i;j!þ1
S
ðmÞ
i;j ðg; tÞ ¼ gðxÞ:

The main part of proof of this point, is that for

all x 2 R and � > 0

lim
t!x

i;j!þ1

Z
js�xj��

jKðmÞi;j ðt; sÞjds ¼ 0:

2) Prove that Gðt;mÞ > 1þ � for almost all

t 2 R. Proof of this fact for characteristic

functions follows from (5).

�
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