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Left-orderability for surgeries on twisted torus knots
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Abstract: We show that the fundamental group of the 3-manifold obtained by f—;—surgery
along the (n — 2)-twisted (3,3m + 2)-torus knot, with n,m > 1, is not left-orderable if £ > 2n +
6m — 3 and is left-orderable ifz—; is sufficiently close to 0.
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1. Introduction. The motivation of this
paper is the L-space conjecture of Boyer, Gordon
and Watson [BGW] which states that an irreducible
rational homology 3-sphere is an L-space if and only
if its fundamental group is not left-orderable. Here a
rational homology 3-sphere Y is an L-space if its
Heegaard Floer homology EF(Y) has rank equal to
the order of Hy(Y;Z), and a nontrivial group G is
left-orderable if it admits a total ordering < such
that g < h implies fg < fh for all elements f,g,h
in G.

Many hyperbolic L-spaces can be obtained via
Dehn surgery. A knot K in S® is called an L-space
knot if it admits a positive Dehn surgery yielding an
L-space. For an L-space knot K, Ozsvath and
Szabo [OS] proved that the g—surgery of K is an
L-space if and only if%’ > 2¢(K) — 1, where g(K) is
the genus of K. In view of the L-space conjecture,
one would expect that the fundamental group of the
%’—surgery of an L-space knot K is not left-orderable
if and only iff—]’ >29(K) — 1.

By [BM] among the set of all Montesinos knots,
the (—2,3,2n 4 1)-pretzel knots, with n > 3, and
their mirror images are the only hyperbolic L-space
knots. Nie [Ni] has recently proved that the
fundamental group of the 3-manifold obtained by
%’—surgery along the (—2,3,2n + 1)-pretzel knot,
with n > 3, is not left-orderable if% > 2n + 3 and is
left-orderable if % is sufficiently close to 0. This
result extends previous ones by Jun [Ju],
Nakae [Na], and Clay and Watson [CW]. Note that
the genus of the (—2,3,2n + 1)-pretzel knot, with
n > 3, is equal to n + 2.

2010 Mathematics Subject Classification.
Secondary 57M05, 57M25.

Primary 57M27;

doi: 10.3792/pjaa.95.6
©2019 The Japan Academy

Dehn surgery; left-orderable; L-space; twisted torus knot.

In this paper, we study the left-orderability for
surgeries on the twisted torus knots. Some results
about non left-orderable surgeries of twisted torus
knots were obtained by Clay and Watson [CW],
Ichihara and Temma [IT1,IT2], and Christianson,
Goluboff, Hamann, and Varadaraj [CGHV]. We
will focus our study on the (n—2)-twisted
(3,3m + 2)-torus knots, which are the knots ob-
tained from the (3,3m + 2)-torus knot by adding
(n—2) full twists along an adjacent pair of
strands. For n,m > 1, these knots are known to
be L-space knots, see [Va]. Moreover, the
(n — 2)-twisted (3,5)-torus knots are exactly the
(—2,3,2n + 1)-pretzel knots. Note that the genus
of the (n — 2)-twisted (3,3m + 2)-torus knot, with
n,m > 1, is equal to n +3m — 1.

The following result generalizes the one in [Ni].

Theorem 1. Suppose n,m > 1. Then the
fundamental group of the 3-manifold obtained by
E-surgery along the (n — 2)-twisted (3,3m + 2)-torus
knot is

(i) not left-orderable if & > 2n + 6m — 3,

(ii) left-orderable zfg is sufficiently close to 0.

The rest of this paper is devoted to the proof of
Theorem 1. In Section 2 we prove part (i). To do so,
we follow the method of Jun [Ju], Nakae [Na] and
Nie [Ni] which was developed for studying the non
left-orderable surgeries of the (—2,3,2n + 1)-pretzel
knots. In Section 3 we prove part (ii). To this
end, we apply a criterion for the existence of left-
orderable surgeries of knots which was first devel-
oped by Culler and Dunfield [CD], and then
improved by Herald and Zhang [HZ].

2. Non left-orderable surgeries. Let K, ,,
denote the (n — 2)-twisted (3,3m + 2)-torus knot.
By [IT2] (see also [IT1], [CW]), the knot group of
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K, has a presentation with two generators a,b
and one relation

m m, n—1
b

w"(aw)"a (aw) ™" = (wa) " a(wa)"w

where a is a meridian. Moreover, the preferred
longitude corresponding to p = a is

(21) A= a7(4n+977172)[(wa)mwn](aw)mfla[wn(aw)m}.

Note that the first homology class of w is twice that
of the meridian a.

Remark 2.1. (i) It is known that K, is the
pretzel knot of type (—2,3,2n+ 1). The above
presentation of the knot group of K,; was first
derived in [LT] and [Na).

(ii) The formula (2.1) for the longtitude of K, ,,
in [IT1], [IT2] contains a small error: a~(#"+9m=2)
was written as q~(27+9m+2),

Let Mp be the 3-manifold obtained by %—sur—
gery along’ the (n —2)-twisted (3,3m + 2)-torus
knot K, ,,. Then the fundamental group of Mp has
a presentation with two generators a,b and’ two
relations

m —m

a(aw)™™ = (wa)
aP AT =1.

Since a’?’A? =1 in 7 (M) and aX = Aa, there
exists an element k € m1(M) such that a = k% and
A=k7?, see e.g. [Na,Lemma 3.1].

Suppose m,n > 1. Assume the fundamental
group of Mp is left-orderable for some % >2n+
6m — 3, where ¢ > 0. Then there exists a mono-
morphism  p: m (M) — Homeo™ (R) such that
there is no z € R $atisfying p(g)(z) =z for all
g € m (M), see e.g. [CR, Problem 2.25].

From now on we write gx for p(g)(z).

Lemma 2.2. We have kx # x for any x € R.

Proof. Assume kx =z for some x € R. Then
r=Fkzx=ax. If r=wzr then gr=2x for all
g € m (M), a contradiction. Otherwise, without loss
of generality, we assume that x < wz. Then we have

-m m, n—1

w" (aw) a(wa)"w" ™,

T = a(4n+9m72) kL Px

— a(4n+9m—2)>\x
= [(wa)mw"](aw)mfla[w”(aw)m]z
>,

which is also a contradiction. (]

Since kxr #x for any x € R and kx is a
continuous function of x, without loss of generality,
we may assume z < kx for any x € R. Then
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r < klx = azx.
Lemma 2.3.

for any x € R.
Proof. Since

We have (aw)"ax < w(aw)™z

w"(aw)" o (aw) ™™ = (wa) " a(wa) " w"

in m (Mp), we have
q

w(aw)"x
= [(aw)" a(aw) " w " (wa) " a(wa) " w" ]
x w(aw)"z
[

= (aw)ma (wa)mwn(aw)m}—1a[(wa)mwn(aw)m]x.

Writing g for (wa)"w"(aw)™, we then obtain

m

w(aw)"r = (aw)"ag 'agz > (aw)"az,

since g lagr > g lgr = . [l
Lemma 2.3 implies that (aw)"z < (aw)"az <
w(aw)™z. Hence < wz for any = € R.
Lemma 2.4. For any € R and k>1 we
have

k

(aw)™a"z < w*(aw)"z,

m_k

a(wa)"x < (wa)"wkz.

Proof. We prove the lemma by induction on

k > 1. The base case (k = 1) is Lemma 2.3. Assume
(aw)"a*z < wk(aw)™x for any x € R. Then

(aw)"a" Nz = (aw)™a*(ax)
< w*(aw)"ax
< wh(wa) " wz
= wkﬂ(aw)mx.

Similarly, assuming a*(wa)"z < (wa)"w*z for any

z € R then

(wa)"z < a(wa)"wkz

m
wakl’

ak+1

= (aw)

< w(aw) " wkz

= (wa)"w* .
This completes the proof of Lemma 2.4. [

Lemma 2.5. With % > 2n 4 6m — 3 we have
wzr < ax for any x € R.

Proof. With % >2n+6m—3 and ¢>0, we
have —p+ (2n+6m —3)¢ <0. Since a =k, A=
k7P and = < kz for any z € R, we have

ax > k*p+(2n+6m73)qax

_ a2n+6m—2 Az
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— " [(wa) "] (aw)" L afuw" (aw)™|a~ M g rglatrlx A whose (i, j)-entry is oz(ar') € Z[t*!], where
denotes the Fox’s free differential. For 1 <j<l,

Then, by Lemma 2.4, we obtain denote by A, the (I—1) x (I — 1) matrix obtained
> a’”[a"(wa)m](aw)mfla[(aw)ma”}a’(”w’”)x from A by removing the jth column. Then it is

= w(aw)" 'alaw)™ alaw) 0"z

> wa™ taa™ taama M

= wx.

Here, in the last inequality, we use the fact that
r < wx for any x € R. (I

With % > 2n + 6m — 3, by Lemmas 2.4 and 2.5
we have

(o)™ = [(a)"ala"'z
< [w(aw)a 'z = (wa)"w(a 'z)

< (wa)™ a ' [(aw)™a)x

a(a”'z) =

’UL} m

< aw(aw)™ )z = o w[(aw) ™" z]

1

< a laf(aw)"z] = (aw)"x,

a contradiction. This proves Theorem 1(i).

3. Left-orderable surgeries. To prove
Theorem 1(ii) we apply the following result. It
was first stated and proved by Culler and
Dunfield [CD] under an additional condition on K.

Theorem 3.1 ([HZ]). For a knot K in S*, if
its Alexander polynomial Ak (t) has a simple root on
the unit circle, then the fundamental group of the
manifold obtained by g—surgery along K is left-
orderable if £ is sufficiently close to 0.

In view of Theorem 3.1, to prove Theorem 1(ii)
it suffices to show that the Alexander polynomial of
the twisted torus knot K, has a simple root on
the unit circle. The rest of the paper is devoted to
the proof of this fact. We start with a formula for
the Alexander polynomial of a knot via Fox’s free
calculus.

3.1. The Alexander polynomial. Let K be a
knot in $% and Ex = S$%\ K its complement. We
choose a deficiency one presentation for the knot
group of K:

7T1(EK) =

Note that this does not need to be a Wirtinger
presentation. Consider the abelianization

a:m(Eg) — Hi(Eg;Z) 2 Z = (1).

(a1, .. a0 riy ..o ).

The map «a naturally induces a ring homo-
morphism & : Z[m(Ex)] — Z[t*'], where Z[r(Ex))
is the group ring of 7 (Ek). Consider the (I — 1) x [

known that the rational function
det A]
det &(CLJ‘ — 1)
is an invariant of K, see e.g. [Wa]. It is well-defined
up to a factor +t* (k€ Z) and is related to the
Alexander polynomial Ag(t) of K by the following
formula
det Aj .
deta(a; —1)

3.2. Proof of Theorem 1(ii).

Ak(t)
t—1"

Let

r = ,w'n,(aw)ma—l(a,w)—m7
o = (wa) " a(wa) " w" L.

Then we can write m (Fg,, ) = (a,w | riryt = 1). In

m1(Fk,, ) we have
oriryt On ory!
—=—tr
da oa ' 0a
B (97“1 1 (97“2
- da e da
N 87‘1 8’!‘2
~ da  da
Let 6p(9) =1+ g+ ---+¢" Then
Oryryt
oa
= w61 (aw) — (aw)"a"* (aw) ™"

X (6m-1(aw) + (aw)™)]

— T6mo1(wa)w + (wa) "

X (14 abp—1(wa)w)]

1= (a— 1) (aw) 61 (aw)]
"1+ (@ — D)wbp-1(aw)).

The Alexander polynomial Ag,  (t) of K,
satisfies

—(wa)

= —w"(aw)"a

— (wa)~

A t) (arér2 )
t—1  a(w) -
Hence, since a(a) =t and a(w) =
- (t+1)Ag,, (1)
= 23U (= 1), (1)
F L+ (= D)6 ()]

, we have
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— t2n+3m71 + t73m _ (thfl _ t273m)(t _ 1)6m_1(t3)

tSm -1
?+t+1
1 +t+ t3m+2 + t2n+3m—1 + t2n+6m + t2n+6m+1

t24+t+1
Let f(t) — tn+3m,+1/2 + t—(n+3m+1/2) +
tn+3m—1/2 + t—(n+3m—1/2) 4 t"_3/2 + t_("'_3/2). Then

— t2n+3m—1 + t—Bm _ (th—l _ t2—3m)

— t73m

" f(t)
A t)=— '
K, (t) (tY2 4 t=12)(t + -1 + 1)
o =100 (0
Hence Ay, , (") = — WQEOSEJH)‘

Let g(6) = f(e?)/2. To show that Ay, (t) hasa

simple root on the unit circle, it suffices to show
that g(0) has a simple root on (0,27/3). We have
9(0) = cos(n +3m +1/2)0 4 cos(n + 3m — 1/2)0
+ cos(n — 3/2)0
= 2cos(0/2) cos(n + 3m)6 + cos(n — 3/2)6.
If n =1 then g(f) = cos(0/2)(2cos(n + 3m)6 +
1). It is clear that 6 = fﬂi is a simple root of g(6) on
(0,7/6].
Suppose n > 2. We claim that g(#) has a simple
m/2 /2
n+/3m and 6, = n+3m;273/4'
Note that 0 < 6y < 0; < 77‘—;3 = 27” We have
—3/2
mn—3/ ) S0,

g(6p) = cos(n — 3/2)6y = cos (5 o

root on (6, 0;) where 6y =

x n—=3/2

since 0 < § o

<z
At9:91:%wehave
cos(n + 3m)6 + cos(n — 3/2)6
= 2cos(n+3m/2 — 3/4)0 cos(3m/2 + 3/4)0

=0.
Hence
g(01) = (1 — 2cos(0;/2)) cos(n — 3/2)6,
™ n—3/2
= (1 —2cos(6,/2)) COS(E m)
<0,
since 1 —2cos(#;/2) < 0 < cos(5 %)

We show that g(f) is a strictly decreasing
function on (6y,6;). Indeed, we have

—d'(0) = sin(6/2) cos(n + 3m)6
+ 2(n 4 3m) cos(6/2) sin(n + 3m)0
+ (n —3/2)sin(n — 3/2)6.

Since
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T n—3/2 ™
- <
2n+3m/2-3/4 2
we have (n— 3/2)sin(n — 3/2)8 > 0. Since 42 <

y n+3m
/2
0 < g3 We have

0<(n—3/2)0 <

3
71/2<(n+3m)9<z et Sm

—< R
2n+3mj2—3/4 "

which implies that cos(n+3m)f <0 < sin(n +
3m)6. Hence
—¢ () > sin(0/2) cos(n + 3m)0
+ cos(0/2) sin(n + 3m)6

= sin(n + 3m + 1/2)0.

Since 0 < (n+3m+1/2)0 < %% <m we
have sin(n+3m+1/2)0 >0. Hence —¢'(0) >0
on (0y,01). This, together with g(6y) > 0 > g(61),
implies that g(#) has a simple root on (6y,6;). The
proof of Theorem 1(ii) is complete.
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