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Abstract: We show that the fundamental group of the 3-manifold obtained by p
q-surgery

along the ðn� 2Þ-twisted ð3; 3mþ 2Þ-torus knot, with n;m � 1, is not left-orderable if p
q � 2nþ

6m� 3 and is left-orderable if p
q is sufficiently close to 0.
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1. Introduction. The motivation of this

paper is the L-space conjecture of Boyer, Gordon

and Watson [BGW] which states that an irreducible

rational homology 3-sphere is an L-space if and only

if its fundamental group is not left-orderable. Here a

rational homology 3-sphere Y is an L-space if its

Heegaard Floer homology dHF ðY Þ has rank equal to

the order of H1ðY ; ZÞ, and a nontrivial group G is

left-orderable if it admits a total ordering < such

that g < h implies fg < fh for all elements f; g; h

in G.

Many hyperbolic L-spaces can be obtained via

Dehn surgery. A knot K in S3 is called an L-space

knot if it admits a positive Dehn surgery yielding an

L-space. For an L-space knot K, Ozsvath and

Szabo [OS] proved that the p
q-surgery of K is an

L-space if and only if p
q � 2gðKÞ � 1, where gðKÞ is

the genus of K. In view of the L-space conjecture,

one would expect that the fundamental group of the
p
q-surgery of an L-space knot K is not left-orderable

if and only if p
q � 2gðKÞ � 1.

By [BM] among the set of all Montesinos knots,

the ð�2; 3; 2nþ 1Þ-pretzel knots, with n � 3, and

their mirror images are the only hyperbolic L-space

knots. Nie [Ni] has recently proved that the

fundamental group of the 3-manifold obtained by
p
q-surgery along the ð�2; 3; 2nþ 1Þ-pretzel knot,

with n � 3, is not left-orderable if p
q � 2nþ 3 and is

left-orderable if p
q is sufficiently close to 0. This

result extends previous ones by Jun [Ju],

Nakae [Na], and Clay and Watson [CW]. Note that

the genus of the ð�2; 3; 2nþ 1Þ-pretzel knot, with

n � 3, is equal to nþ 2.

In this paper, we study the left-orderability for

surgeries on the twisted torus knots. Some results

about non left-orderable surgeries of twisted torus

knots were obtained by Clay and Watson [CW],

Ichihara and Temma [IT1,IT2], and Christianson,

Goluboff, Hamann, and Varadaraj [CGHV]. We

will focus our study on the ðn� 2Þ-twisted

ð3; 3mþ 2Þ-torus knots, which are the knots ob-

tained from the ð3; 3mþ 2Þ-torus knot by adding

ðn� 2Þ full twists along an adjacent pair of

strands. For n;m � 1, these knots are known to

be L-space knots, see [Va]. Moreover, the

ðn� 2Þ-twisted ð3; 5Þ-torus knots are exactly the

ð�2; 3; 2nþ 1Þ-pretzel knots. Note that the genus

of the ðn� 2Þ-twisted ð3; 3mþ 2Þ-torus knot, with

n;m � 1, is equal to nþ 3m� 1.

The following result generalizes the one in [Ni].

Theorem 1. Suppose n;m � 1. Then the

fundamental group of the 3-manifold obtained by
p
q-surgery along the ðn� 2Þ-twisted ð3; 3mþ 2Þ-torus

knot is

(i) not left-orderable if p
q � 2nþ 6m� 3,

(ii) left-orderable if p
q is sufficiently close to 0.

The rest of this paper is devoted to the proof of

Theorem 1. In Section 2 we prove part (i). To do so,

we follow the method of Jun [Ju], Nakae [Na] and

Nie [Ni] which was developed for studying the non

left-orderable surgeries of the ð�2; 3; 2nþ 1Þ-pretzel

knots. In Section 3 we prove part (ii). To this

end, we apply a criterion for the existence of left-

orderable surgeries of knots which was first devel-

oped by Culler and Dunfield [CD], and then

improved by Herald and Zhang [HZ].

2. Non left-orderable surgeries. Let Kn;m

denote the ðn� 2Þ-twisted ð3; 3mþ 2Þ-torus knot.

By [IT2] (see also [IT1], [CW]), the knot group of
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Kn;m has a presentation with two generators a; b

and one relation

wnðawÞma�1ðawÞ�m ¼ ðwaÞ�maðwaÞmwn�1;

where a is a meridian. Moreover, the preferred

longitude corresponding to � ¼ a is

� ¼ a�ð4nþ9m�2Þ½ðwaÞmwn�ðawÞm�1a½wnðawÞm�:ð2:1Þ

Note that the first homology class of w is twice that

of the meridian a.

Remark 2.1. (i) It is known that Kn;1 is the

pretzel knot of type ð�2; 3; 2nþ 1Þ. The above

presentation of the knot group of Kn;1 was first

derived in [LT] and [Na].

(ii) The formula (2.1) for the longtitude of Kn;m

in [IT1], [IT2] contains a small error: a�ð4nþ9m�2Þ

was written as a�ð2nþ9mþ2Þ.
Let Mp

q
be the 3-manifold obtained by p

q-sur-

gery along the ðn� 2Þ-twisted ð3; 3mþ 2Þ-torus

knot Kn;m. Then the fundamental group of Mp
q

has

a presentation with two generators a; b and two

relations

wnðawÞma�1ðawÞ�m ¼ ðwaÞ�maðwaÞmwn�1;

ap�q ¼ 1:

Since ap�q ¼ 1 in �1ðMÞ and a� ¼ �a, there

exists an element k 2 �1ðMÞ such that a ¼ kq and

� ¼ k�p, see e.g. [Na, Lemma 3.1].

Suppose m;n � 1. Assume the fundamental

group of Mp
q

is left-orderable for some p
q � 2nþ

6m� 3, where q > 0. Then there exists a mono-

morphism � : �1ðMp
q
Þ ! HomeoþðRÞ such that

there is no x 2 R satisfying �ðgÞðxÞ ¼ x for all

g 2 �1ðMÞ, see e.g. [CR, Problem 2.25].

From now on we write gx for �ðgÞðxÞ.
Lemma 2.2. We have kx 6¼ x for any x 2 R.

Proof. Assume kx ¼ x for some x 2 R. Then

x ¼ kqx ¼ ax. If x ¼ wx then gx ¼ x for all

g 2 �1ðMÞ, a contradiction. Otherwise, without loss

of generality, we assume that x < wx. Then we have

x ¼ að4nþ9m�2Þk�px

¼ að4nþ9m�2Þ�x

¼ ½ðwaÞmwn�ðawÞm�1a½wnðawÞm�x
> x;

which is also a contradiction. �

Since kx 6¼ x for any x 2 R and kx is a

continuous function of x, without loss of generality,

we may assume x < kx for any x 2 R. Then

x < kqx ¼ ax.

Lemma 2.3. We have ðawÞmax < wðawÞmx
for any x 2 R.

Proof. Since

wnðawÞma�1ðawÞ�m ¼ ðwaÞ�maðwaÞmwn�1

in �1ðMp
q
Þ, we have

wðawÞmx
¼ ½ðawÞmaðawÞ�mw�nðwaÞ�maðwaÞmwn�1�
� wðawÞmx
¼ ðawÞma½ðwaÞmwnðawÞm��1a½ðwaÞmwnðawÞm�x:

Writing g for ðwaÞmwnðawÞm, we then obtain

wðawÞmx ¼ ðawÞmag�1agx > ðawÞmax;

since g�1agx > g�1gx ¼ x. �

Lemma 2.3 implies that ðawÞmx < ðawÞmax <
wðawÞmx. Hence x < wx for any x 2 R.

Lemma 2.4. For any x 2 R and k � 1 we

have

ðawÞmakx < wkðawÞmx;
akðwaÞmx < ðwaÞmwkx:

Proof. We prove the lemma by induction on

k � 1. The base case (k ¼ 1) is Lemma 2.3. Assume

ðawÞmakx < wkðawÞmx for any x 2 R. Then

ðawÞmakþ1x ¼ ðawÞmakðaxÞ
< wkðawÞmax
< wkðwaÞmwx
¼ wkþ1ðawÞmx:

Similarly, assuming akðwaÞmx < ðwaÞmwkx for any

x 2 R then

akþ1ðwaÞmx < aðwaÞmwkx
¼ ðawÞmawkx
< wðawÞmwkx
¼ ðwaÞmwkþ1x:

This completes the proof of Lemma 2.4. �

Lemma 2.5. With p
q � 2nþ 6m� 3 we have

wx < ax for any x 2 R.

Proof. With p
q � 2nþ 6m� 3 and q > 0, we

have �pþ ð2nþ 6m� 3Þq � 0. Since a ¼ kq, � ¼
k�p and x < kx for any x 2 R, we have

ax � k�pþð2nþ6m�3Þqax

¼ a2nþ6m�2�x

No. 1] LO surgeries on twisted torus knots 7



¼ a�n½ðwaÞmwn�ðawÞm�1a½wnðawÞm�a�ðnþ3mÞx:

Then, by Lemma 2.4, we obtain

ax > a�n½anðwaÞm�ðawÞm�1a½ðawÞman�a�ðnþ3mÞx

¼ wðawÞm�1aðawÞm�1aðawÞma�3mx

> wam�1aam�1aama�3mx

¼ wx:

Here, in the last inequality, we use the fact that

x < wx for any x 2 R. �

With p
q � 2nþ 6m� 3, by Lemmas 2.4 and 2.5

we have

ðawÞmx ¼ ½ðawÞma�a�1x

< ½wðawÞm�a�1x ¼ ðwaÞmwða�1xÞ
< ðwaÞmaða�1xÞ ¼ a�1½ðawÞma�x
< a�1½wðawÞm�x ¼ a�1w½ðawÞmx�
< a�1a½ðawÞmx� ¼ ðawÞmx;

a contradiction. This proves Theorem 1(i).

3. Left-orderable surgeries. To prove

Theorem 1(ii) we apply the following result. It

was first stated and proved by Culler and

Dunfield [CD] under an additional condition on K.

Theorem 3.1 ([HZ]). For a knot K in S3, if

its Alexander polynomial �KðtÞ has a simple root on

the unit circle, then the fundamental group of the

manifold obtained by p
q-surgery along K is left-

orderable if p
q is sufficiently close to 0.

In view of Theorem 3.1, to prove Theorem 1(ii)

it suffices to show that the Alexander polynomial of

the twisted torus knot Kn;m has a simple root on

the unit circle. The rest of the paper is devoted to

the proof of this fact. We start with a formula for

the Alexander polynomial of a knot via Fox’s free

calculus.

3.1. The Alexander polynomial. Let K be a

knot in S3 and EK ¼ S3 nK its complement. We

choose a deficiency one presentation for the knot

group of K:

�1ðEKÞ ¼ ha1; . . . ; al j r1; . . . ; rl�1i:

Note that this does not need to be a Wirtinger

presentation. Consider the abelianization

� : �1ðEKÞ ! H1ðEK ; ZÞ ¼� Z ¼ hti:

The map � naturally induces a ring homo-

morphism ~� : Z½�1ðEKÞ� ! Z½t�1�, where Z½�1ðEKÞ�
is the group ring of �1ðEKÞ. Consider the ðl� 1Þ � l

matrix A whose ði; jÞ-entry is ~�ð@ri@aj
Þ 2 Z½t�1�, where

@
@a denotes the Fox’s free differential. For 1 � j � l,
denote by Aj the ðl� 1Þ � ðl� 1Þ matrix obtained

from A by removing the jth column. Then it is

known that the rational function

detAj

det ~�ðaj � 1Þ

is an invariant of K, see e.g. [Wa]. It is well-defined

up to a factor �tk ðk 2 ZÞ and is related to the

Alexander polynomial �KðtÞ of K by the following

formula

detAj

det ~�ðaj � 1Þ
¼

�KðtÞ
t� 1

:

3.2. Proof of Theorem 1(ii). Let

r1 ¼ wnðawÞma�1ðawÞ�m;
r2 ¼ ðwaÞ�maðwaÞmwn�1:

Then we can write �1ðEKn;m
Þ ¼ ha; w j r1r

�1
2 ¼ 1i. In

�1ðEKn;m
Þ we have

@r1r
�1
2

@a
¼
@r1

@a
þ r1

@r�1
2

@a

¼
@r1

@a
� r1r

�1
2

@r2

@a

¼ @r1

@a
�
@r2

@a
:

Let �kðgÞ ¼ 1þ gþ 	 	 	 þ gk. Then

@r1r
�1
2

@a

¼ wn½�m�1ðawÞ � ðawÞma�1ðawÞ�m

� ð�m�1ðawÞ þ ðawÞmÞ�
� ½�ðwaÞ�m�m�1ðwaÞwþ ðwaÞ�m

� ð1þ a�m�1ðwaÞwÞ�
¼ �wnðawÞma�1½1� ða� 1ÞðawÞ�m�m�1ðawÞ�
� ðwaÞ�m

�
1þ ða� 1Þw�m�1ðawÞ�:

The Alexander polynomial �Kn;m
ðtÞ of Kn;m

satisfies

�Kn;m
ðtÞ

t� 1
¼

~�ð@r1r
�1
2

@a
Þ

~�ðwÞ � 1
:

Hence, since ~�ðaÞ ¼ t and ~�ðwÞ ¼ t2, we have

� ðtþ 1Þ�Kn;m
ðtÞ

¼ t2nþ3m�1½1� ðt� 1Þt�3m�m�1ðt3Þ�
þ t�3m½1þ ðt� 1Þt2�m�1ðt3Þ�
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¼ t2nþ3m�1 þ t�3m � ðt2n�1 � t2�3mÞðt� 1Þ�m�1ðt3Þ

¼ t2nþ3m�1 þ t�3m � ðt2n�1 � t2�3mÞ
t3m � 1

t2 þ tþ 1

¼ t�3m 1þ tþ t3mþ2 þ t2nþ3m�1 þ t2nþ6m þ t2nþ6mþ1

t2 þ tþ 1
:

Let fðtÞ ¼ tnþ3mþ1=2 þ t�ðnþ3mþ1=2Þ þ
tnþ3m�1=2 þ t�ðnþ3m�1=2Þ þ tn�3=2 þ t�ðn�3=2Þ. Then

�Kn;m
ðtÞ ¼ �

tn�1fðtÞ
ðt1=2 þ t�1=2Þðtþ t�1 þ 1Þ

:

Hence �Kn;m
ðei�Þ ¼ � eiðn�1Þ�fðei�Þ

2 cosð�=2Þð2 cos �þ1Þ.

Let gð�Þ ¼ fðei�Þ=2. To show that �Kn;m
ðtÞ has a

simple root on the unit circle, it suffices to show

that gð�Þ has a simple root on ð0; 2�=3Þ. We have

gð�Þ ¼ cosðnþ 3mþ 1=2Þ�þ cosðnþ 3m� 1=2Þ�
þ cosðn� 3=2Þ�
¼ 2 cosð�=2Þ cosðnþ 3mÞ�þ cosðn� 3=2Þ�:

If n ¼ 1 then gð�Þ ¼ cosð�=2Þð2 cosðnþ 3mÞ�þ
1Þ. It is clear that � ¼ 2�=3

nþ3m is a simple root of gð�Þ on

ð0; �=6�.
Suppose n � 2. We claim that gð�Þ has a simple

root on ð�0; �1Þ where �0 ¼ �=2
nþ3m and �1 ¼ �=2

nþ3m=2�3=4.

Note that 0 < �0 < �1 � �=2
7=4 ¼ 2�

7 . We have

gð�0Þ ¼ cosðn� 3=2Þ�0 ¼ cos
�

2

n� 3=2

nþ 3m

� �
> 0;

since 0 < �
2
n�3=2
nþ3m < �

2.

At � ¼ �1 ¼ �=2
nþ3m=2�3=4 we have

cosðnþ 3mÞ�þ cosðn� 3=2Þ�
¼ 2 cosðnþ 3m=2� 3=4Þ� cosð3m=2þ 3=4Þ�
¼ 0:

Hence

gð�1Þ ¼ ð1� 2 cosð�1=2ÞÞ cosðn� 3=2Þ�1

¼ ð1� 2 cosð�1=2ÞÞ cos
�

2

n� 3=2

nþ 3m=2� 3=4

� �
< 0;

since 1� 2 cosð�1=2Þ < 0 < cosð�2
n�3=2

nþ3m=2�3=4Þ.
We show that gð�Þ is a strictly decreasing

function on ð�0; �1Þ. Indeed, we have

�g0ð�Þ ¼ sinð�=2Þ cosðnþ 3mÞ�
þ 2ðnþ 3mÞ cosð�=2Þ sinðnþ 3mÞ�
þ ðn� 3=2Þ sinðn� 3=2Þ�:

Since

0 < ðn� 3=2Þ� <
�

2

n� 3=2

nþ 3m=2� 3=4
<
�

2
;

we have ðn� 3=2Þ sinðn� 3=2Þ� > 0. Since �=2
nþ3m <

� < �=2
nþ3m=2�3=4 we have

�=2 < ðnþ 3mÞ� <
�

2

nþ 3m

nþ 3m=2� 3=4
< �;

which implies that cosðnþ 3mÞ� < 0 < sinðnþ
3mÞ�. Hence

�g0ð�Þ > sinð�=2Þ cosðnþ 3mÞ�
þ cosð�=2Þ sinðnþ 3mÞ�
¼ sinðnþ 3mþ 1=2Þ�:

Since 0 < ðnþ 3mþ 1=2Þ� < �
2

nþ3mþ1=2
nþ3m=2�3=4 � �, we

have sinðnþ 3mþ 1=2Þ� � 0. Hence �g0ð�Þ > 0
on ð�0; �1Þ. This, together with gð�0Þ > 0 > gð�1Þ,
implies that gð�Þ has a simple root on ð�0; �1Þ. The

proof of Theorem 1(ii) is complete.
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homology and rational surgeries, Algebr.
Geom. Topol. 11 (2011), no. 1, 1–68.

[ Va ] F. Vafaee, On the knot Floer homology of
twisted torus knots, Int. Math. Res. Not.
IMRN 2015, no. 15, 6516–6537.

[ Wa ] M. Wada, Twisted Alexander polynomial for
finitely presentable groups, Topology 33
(1994), no. 2, 241–256.

10 A. T. TRAN [Vol. 95(A),


	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5
	c_rf6
	c_rf7
	c_rf8
	c_rf9
	c_rf10
	c_rf13
	c_rf11
	c_rf12
	c_rf14
	c_rf15
	c_rf16

