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Abstract: We show that for a projective toric manifold with the ample second Chern

character, if there exists a Fano contraction, then it is isomorphic to the projective space. For the

case that the second Chern character is nef, the Fano contraction gives either a projective line

bundle structure or a direct product structure. We also show that, for a toric weakly 2-Fano

manifold, there does not exist a divisorial contraction to a point.
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1. Introduction. We assume all algebraic

varieties are defined over C. A Fano manifold X is a

smooth projective algebraic variety with the ample

first Chern class c1ðXÞ ¼ �KX. In order to study

rational surfaces on a Fano manifold, the following

special class of Fano manifolds was introduced in de

Jong-Starr [4]:

Definition 1.1. A Fano manifold X is a 2-

Fano (resp. weakly 2-Fano) manifold if the second

Chern character

ch2ðXÞ ¼
1

2

�
ðc1ðXÞÞ2 � 2c2ðXÞ

�

is ample (resp. nef). Here, an algebraic cycle F of

codimension 2 on X is ample (resp. nef) if the

intersection number ðF � SÞ is positive (resp.

ðF � SÞ � 0) for any surface S in X.

The classification is an important problem for

2-Fano manifolds, and Schrack [9] shows the

following results:

Theorem 1.2 (Schrack [9]). Let X be a 2-

Fano manifold of dimX ¼ 4. Then, the following

hold:

(a) If there exists a Fano contraction

’R : X ! X, then X is a point.

(b) If there exists a divisorial contraction ’R :

X ! X with the exceptional divisor E, then

’RðEÞ is not a point.

The purpose of this paper is to generalize

Theorem 1.2 for any dimension d when X is a toric

variety. Namely, we obtain the following

Theorem 1.3. Let X be a toric 2-Fano

manifold of dimension d ¼ dimX � 2. Then, the

following hold:

(a) If there exists a Fano contraction

’R : X ! X, then X is a point.

(b) Suppose that d � 3. If there exists a divisorial

contraction ’R : X ! X with the exceptional

divisor E, then ’RðEÞ is not a point.

We will prove (a) of Theorem 1.3 in Section 3

without the assumption that X is Fano. Moreover,

we determine the structure of a projective toric

manifold X with the nef second Chern character

ch2ðXÞ and a Fano contraction. For (b), we need the

assumption that X is Fano. Namely, we use the

classification of toric Fano manifolds. The assertion

(b) is generalized for toric weakly 2-Fano manifolds.

2. Preliminaries. In this section, for the

proof of the main theorem, we explain the way to

calculate intersection numbers for toric cycles, and

the notion of primitive collections and primitive

relations. For the fundamental properties of toric

manifolds, we refer to Cox-Little-Schenck [2],

Fulton [3] and Oda [6].

Let X ¼ X� be a smooth complete toric d-fold

associated to a fan � in Zd. We put Gð�Þ as the set

of the primitive generators for the 1-dimensional

cones in �. Let Gð�Þ ¼ fx1; . . . ; xmg and Di ¼ Dxi

be the torus invariant divisor corresponding to xi.

For a torus invariant subvariety Y � X of codi-

mension l, we define the polynomial IY =X ¼
IY =XðX1; . . . ; XmÞ 2 RX :¼ Z½X1; . . . ; Xm�, by intro-

ducing the independent elements X1; . . . ; Xm asso-

ciated to x1; . . . ; xm, respectively, as
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IX=Y :¼
X

1�i1;...;il�m
ðDi1 � � �Dil � Y ÞXi1 � � �Xil :

We can say that IY =X has all the numerical infor-

mation of Y on X.

Example 2.1. For a torus invariant curve

C ¼ C� � X corresponding to a ðd� 1Þ-dimensional

cone � 2 �, let

y1 þ y2 þ a1x1 þ � � � þ ad�1xd�1 ¼ 0

be the wall relation associated to �, where

y1; y2; x1; . . . ; xd�1 2 Gð�Þ and a1; . . . ; ad�1 2 Z.

Then, IC=X ¼ Y1 þ Y2 þ a1X1 þ � � � þ ad�1Xd�1 2
RX, where X1; . . . ; Xd�1; Y1; Y2 are the independent

elements in RX corresponding to x1; . . . ; xd�1; y1; y2,

respectively.

So, we can easily calculate IC=X for a torus

invariant curve C. For the case of surfaces, the

following holds:

Theorem 2.2 (Sato [8]). Let S � X be a

torus invariant surface. Then the following hold:

(a) If S ¼� P2, then IS=X ¼ ðIC=XÞ2 for a torus

invariant curve C � S.

(b) If S is isomorphic to the Hirzebruch surface Fa
of degree a � 0, then

IS=X ¼ aðICfib=XÞ
2 þ 2ðICfib=XÞðICneg=XÞ;

where Cfib is the fiber of S ! P1, while Cneg is

the negative section of S.

For a toric variety X, it is well known that

ch2ðXÞ ¼
1

2
ðD2

1 þ � � � þD2
mÞ:

So, for a torus invariant surface S � X, we can

calculate ðch2ðXÞ � SÞ from IS=X easily. Therefore,

Theorem 2.2 is crucial in our proof. We note that

for the toric case, in order to check the ampleness or

nefness for ch2ðXÞ, it suffices to consider the

intersection numbers with torus invariant surfaces.

Namely, the following holds:

Proposition 2.3 (Nobili [5]). For a projec-

tive toric manifold X, ch2ðXÞ is ample (resp. nef) if

and only if ðch2ðXÞ � SÞ > 0 (resp. ðch2ðXÞ � SÞ � 0Þ
for any torus invariant surface S in X.

Next, we briefly introduce the notion of prim-

itive collections and primitive relations. We will use

these concepts to describe the fans for certain toric

Fano manifolds in Section 4.

Definition 2.4. Let X ¼ X� be the smooth

complete toric d-fold associated to a fan �. A subset

P � Gð�Þ is called a primitive collection if it does

not generate a cone in �, while any proper subset

generates a cone in �.

For a primitive collection P ¼ fx1; . . . ; xsg �
Gð�Þ, there exists the unique element �ðP Þ 2 �
such that x1 þ � � � þ xs is contained in the relative

interior of �ðP Þ. So, we have a linear relation

x1 þ � � � þ xs ¼ a1y1 þ � � � þ atyt;

where fy1; . . . ; ytg is the set of generators for �ðP Þ
and a1; . . . ; at are positive integers. We call it the

primitive relation corresponding to P .

We can recover the fan � from the data of all

the primitive relations (see Proposition 3.6 in

Sato [7]). So, we can describe a fan by giving all

the primitive relations. We also remark that the

primitive collections and primitive relations are

convenient to deal with the toric Mori theory.

3. Fano contractions. The following theo-

rem is an assertion for not necessarily Fano toric

varieties.

Theorem 3.1. Let X be a smooth projective

toric d-fold, and suppose that there exists a Fano

contraction ’R : X ! X. Then, the following hold:

(a) If ch2ðXÞ is ample, then X is a point, that is,

X is isomorphic to Pd.

(b) If ch2ðXÞ is nef but not ample, then ’R gives

either a P1-bundle structure or a direct

product structure.

Proof. Since X ¼ X� is a smooth toric variety,

’R simply gives a projective space bundle structure.

So, let s� 1 be the dimension of a fiber of ’R. There

exists the primitive relation x1 þ � � � þ xs ¼ 0 asso-

ciated to ’R, where fx1; . . . ; xsg � Gð�Þ. Suppose

that s� 1 < d, that is, dimX > 0. Then, we can

take a ðd� 1Þ-dimensional cone in � generated by

fx1; . . . ; xs�1; z1; . . . ; zd�sg � Gð�Þ. Let

y1 þ y2 þ a1x1 þ � � � þ as�1xs�1

þ b1z1 þ � � � þ bd�szd�s ¼ 0

be the associated wall relation, where both

fy1; x1; . . . ; xs�1; z1; . . . ; zd�sg and fy2; x1; . . . ; xs�1;

z1; . . . ; zd�sg generate maximal cones in �, for y1 6¼
y2 2 Gð�Þ and a1; . . . ; as�1; b1; . . . ; bd�s 2 Z. If

maxfa1; . . . ; as�1g ¼ ai > 0, then by the equality

xi ¼ �ðx1 þ � � � þ �xi þ � � � þ xsÞ, the above wall re-

lation becomes

y1 þ y2 þ ða1 � aiÞx1 þ � � � þ �xi þ � � �
þ ðas�1 � aiÞxs�1 þ ð�aiÞxs þ b1z1 þ � � �
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þ bd�szd�s ¼ 0:

Therefore, by reordering x1; . . . ; xs, we can assume

that a1 � � � � � as�1 � 0. Put � as the ðd� 2Þ-di-

mensional cone in � whose generators are

x1; . . . ; xs�2; z1; . . . ; zd�s. Since xs�1 þ xs ¼ 0 and

y1 þ y2 ¼ ð�as�1Þxs�1 in Rd=Span� , the torus in-

variant subsurface S ¼ S� � X associated to � is

isomorphic to the Hirzebruch surface F�as�1
of

degree �as�1 � 0. So, Theorem 2.2 says that

IS=X ¼ �as�1ðX1 þ � � � þXsÞ2

þ 2ðX1 þ � � � þXsÞðY1 þ Y2 þ a1X1 þ � � �
þ as�1Xs�1 þ b1Z1 þ � � � þ bd�sZd�sÞ;

where X1; . . . ; Xs; Y1; Y2; Z1; . . . ; Zd�s are the in-

dependent elements in RX corresponding to x1; . . . ;

xs; y1; y2; z1; . . . ; zd�s, respectively. Therefore, we

have

2ðch2ðXÞ � SÞ ¼ �sas�1 þ 2ða1 þ � � � þ as�1Þ
¼ ða1 � as�1Þ þ � � � þ ðas�1 � as�1Þ
þ a1 þ � � � þ as�2 � 0:

In particular, ch2ðXÞ is not ample.

If ’R is a P1-bundle structure, that is, s ¼ 2,

then ðch2ðXÞ � SÞ ¼ 0. If s > 2, then the above

equality says that a1 ¼ � � � ¼ as�1 ¼ 0. In this case,

X becomes a direct product of X and a fiber of ’R.

�

By assuming X to be a Fano manifold, we have

the following. The former is (a) in Theorem 1.3:

Corollary 3.2. Let X be a smooth toric 2-

Fano d-fold, and suppose that there exists a Fano

contraction ’R : X ! X. Then, dimX ¼ 0, that is,

X is isomorphic to the d-dimensional projective

space Pd.

Corollary 3.3. Let X be a smooth toric

weakly 2-Fano d-fold, and suppose that there exists

a Fano contraction ’R : X ! X such that dimX >

0. Then, X is either a projective line bundle over X

or the direct product of X and a fiber of ’R.

4. Divisorial contractions. In this section,

we give the proof of (b) of Theorem 1.3. First,

we suppose d � 3. The case d ¼ 2 will be studied

later. Let X be a toric Fano manifold equipped with

a divisorial contraction ’R : X ! X such that

dim’RðEÞ ¼ 0, where E is the exceptional divisor.

In this case, we need the condition where X is Fano

for our proof. Toric Fano manifolds with such

contractions are completely classified by Bonavero

[1]. There exist the following two cases:

(b1) X is a P1-bundle over Pd�1: PPd�1ðO	Oð�ÞÞ
(1 < � < d).

(b2) The Picard number of X ¼ X� is 3 and the

primitive relations of � are

x1 þ � � � þ xd ¼ �xdþ1;

x2 þ � � � þ xd þ xdþ3 ¼ ð�� 1Þxdþ1;

x1 þ xdþ2 ¼ xdþ3; xdþ1 þ xdþ2 ¼ 0

and xdþ1 þ xdþ3 ¼ x1;

where Gð�Þ ¼ fx1; . . . ; xdþ3g and 1 � � �
d� 1.

In the case (b1), X has a Fano contraction. So, we

can use the results of Section 3. Therefore, it

suffices to consider the case (b2).

Put � 2 � as the ðd� 2Þ-dimensional cone

generated by Gð�Þ ¼ fx2; . . . ; xd�2; xdþ3g. By the

above primitive relations, we see that there exist

exactly 4 maximal cones in � which contain � ,

i.e., the cones generated by Gð�Þ [ fx1; xd�1g,
Gð�Þ [ fx1; xdg, Gð�Þ [ fxd�1; xdþ2g and Gð�Þ [
fxd; xdþ2g, respectively. So, the associated torus

invariant subsurface S ¼ S� � X is isomorphic to a

Hirzebruch surface. Since x1 þ xdþ2 ¼ 0 and xd�1 þ
xd ¼ ð�� 1Þx1 in Rd=Span� , its degree is �� 1.

Obviously, the wall relation corresponding to the

fiber Cfib � X of S ! P1 is

x1 þ xdþ2 � xdþ3 ¼ 0:

On the other hand, the wall corresponding to the

negative section Cneg � X of S is generated by

fx1; . . . ; xd�2; xdþ3g. Therefore, its wall relation is

�ð�� 1Þx1 þ x2 þ � � � þ xd þ �xdþ3 ¼ 0:

So, by Theorem 2.2, we have

IS=X ¼ ð�� 1ÞðX1 þXdþ2 �Xdþ3Þ2

þ 2ðX1 þXdþ2 �Xdþ3Þð�ð�� 1ÞX1 þX2 þ � � �
þXd þ �Xdþ3Þ;

where X1; . . . ; Xdþ3 are the independent elements

in RX corresponding to x1; . . . ; xdþ3, respectively,

and

ðch2ðXÞ � SÞ ¼ 3ð�� 1Þ � 2ð�� 1Þ � 2�

¼ �ð�þ 1Þ < 0:

Namely, X is not a weakly 2-Fano manifold. So,

we obtain the following result which implies (b) of

Theorem 1.3:

Theorem 4.1. Let X be a toric weakly 2-

Fano manifold. If there exists a divisorial contrac-
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tion ’R : X ! X, then dim’ðEÞ > 0 for the excep-

tional divisor E of ’R.

Remark 4.2. There exists a toric variety of

Picard number 3 determined by the primitive

relations in (b2) for every � � 1. The argument

above shows that the second Chern character of the

toric variety is not ample for every �.

For a smooth projective toric surface X ¼ X�,

its second Chern character is calculated as

ch2ðXÞ ¼ ð12� 3mÞ=2, where m is the number of

1-dimensional cones in �. Thus, the following is

obvious:

Proposition 4.3. Let X be a smooth projec-

tive toric surface. If ch2ðXÞ is nef but not ample,

then X is isomorphic to a Hirzebruch surface.

Remark 4.4. Smooth toric weakly 2-Fano

d-folds are completely classified for d � 4 by Nobili

[5] and Sato [8].
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