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Abstract: We study deformations of the discrete Heisenberg group acting properly

discontinuously on the Heisenberg group from the left and right and obtain a complete

description of the deformation space.
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1. Introduction and statement of main

result. We will be interested in deformations of

the discrete Heisenberg group as a group acting

properly discontinuously and cocompactly on a

space X. The following defines our notion of

deformation.

Definition 1.1 ([K93, K01, KN06]). Let G

be a Lie group acting continuously on a locally

compact space X and let � � G be a discrete

subgroup. Define the parameter space of deforma-

tions of � within G, acting properly discontinuously

on the space X as

Rð�; G;XÞ ¼ �: �! G

� is injective;

�ð�Þ acts properly

discontinuously

and freely on X

���������

8>>><
>>>:

9>>>=
>>>;

and the deformation space as

T ð�; G;XÞ ¼ Rð�; G;XÞ=G;

where G acts on Rð�; G;XÞ by conjugation, so that

T ð�; G;XÞ is the space of non-trivial deformations.

There is a natural topology on the parameter

space Rð�; G;XÞ as a subset of Homð�; GÞ endowed

with the compact open topology. We then consider

the quotient topology on the deformation space

T ð�; G;XÞ ([K93, K01]).

If X is an irreducible Riemannian symmetric

space G=K, Selberg–Weil rigidity ([W64]) states

that T ¼ T ð�; G;G=KÞ is discrete if and only if G

is not locally isomorphic to SL2R. An example of

the failure of rigidity is when G ¼ PSL2R, � is the

fundamental group of a Riemann surface of genus

g > 2 and X ¼ SL2R=SO2 is the Poincaré disk.

Then T is the Teichmüller space, which has

dimension 6g� 6.

The study of deformations of discontinuous

groups for non-Riemannian homogeneous spaces

and the failure of rigidity was initiated by

Kobayashi [K93]; Kobayashi [K98] treats the case

when G is semi-simple. A complete description of

the parameter and deformation spaces was first

given for � ¼ Zk acting on X ¼ Rkþ1 via some

nilpotent group of transformations G in [KN06]

and these results were extended to the case where

G is the Heisenberg group, H is any connected

Lie subgroup and � is a subgroup acting prop-

erly discontinuously and freely on X ¼ G=H, in

[BKY].

In this paper, we give a concrete description of

the space Rð�; G�G;GÞ, where G is the Heisenberg

group, � ¼ G \GL3Z is the discrete Heisenberg

group and the direct product group G�G acts on

the group manifold G from the left and right. Our

main result is the following.

Theorem 1.2. For the deformation space

T ð�; G�G;GÞ of the discrete Heisenberg group

acting properly discontinuously on the group mani-

fold G from the left and right, we have the homeo-

morphism

T ð�; G�G;GÞ ¼� GL2R�R� �R3:

2. Notation. Let G denote the Heisenberg

group and � ¼ G \GL3Z denote the discrete

Heisenberg group. We will replace the matrix

notation by defining
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a

b

c

2
64
3
75 :¼

1 a c

0 1 b

0 0 1

0
B@

1
CA:

We will fix a presentation � ¼ h�1; �2i, where

�1 ¼
1

0

0

2
64
3
75 and �2 ¼

0

1

0

2
64
3
75:ð1Þ

As a subgroup � always acts properly discon-

tinuously and freely on G from the left and the

quotient space �nG is a compact manifold. Sim-

ilarly � always acts properly discontinuously from

the right with compact quotient G=�.

To let � act both from the left and from the

right, we rewrite G as the homogeneous space

G�G=�G, where �:G! G�G is the diagonal

embedding. Then � acts on G�G=�G via homo-

morphisms �! G�G. We note here that

Homð�; G�GÞ ¼� ðG�GÞ � ðG�GÞ as sets, be-

cause each generator �1; �2 can be assigned any

element in G�G, as any relations �1 and �2 satisfy

as elements of G are also satisfied by any two

arbitrary elements in G�G. Via the topology on G,

then, Homð�; G�GÞ can be regarded a topological

space. In particular, for G being the Heisenberg

group we have that G ¼� R3, whence Homð�; G�
GÞ ¼� R12.

Any homomorphism �! G�G can be written

as a pair of homomorphisms �; �0: �! G. Now write

��;�0 ¼ fð�ð�Þ; �0ð�ÞÞ j � 2 �g for the image of the

pair ð�; �0Þ: �! G�G. Then � acts on G�G=�G

via ��;�0 and the action of � on G as subgroup (on

the left) is recovered as the action of �id;1 on

G�G=�G, where id is the inclusion and 1 is

the trivial homomorphism. However, for general

�; �0 this action is not necessarily properly discon-

tinuous.

Remark 2.1. Rewriting G as G�G=�G for

G ¼ gSL2RSL2R allowed Goldman [G85] to construct

non-standard Lorentz space forms. Goldman’s con-

jecture concerning the existence of an open neigh-

bourhood of the embedding id� 1, throughout

which the group action remains properly discontin-

uous was resolved affirmatively for reductive Lie

groups by Kobayashi [K98]. An analogous result

holds if G is a simply connected Lie group and � is a

cocompact discrete group by an unpublished result

of T. Yoshino. Our results below show this feature

explicitly for G being the Heisenberg group.

3. Property (CI) and proper actions. To

check for proper discontinuity of the action of ��;�0 ,
we will use a criterion by Nasrin [N01] for 2-step

nilpotent groups, which relates properness to the

property (CI).

Definition 3.1 ([K92], Def. 6). We say the

triplet ðL;H;GÞ has the property (CI) if L \ gHg�1

is compact for any g 2 G.

(See [L95] for the relationship between the

property (CI) and proper actions in the more gen-

eral context of locally compact topological groups

acting on locally compact topological spaces.)

Theorem 3.2 ([N01], Thm. 2.11). Let G be

a simply connected 2-step nilpotent Lie group, and

let H and L be connected subgroups. Then the

following conditions are equivalent.

(a) L acts properly on G=H,

(b) the triplet ðL;H;GÞ has the property (CI),

(c) L \ gHg�1 ¼ feg for any g 2 G.

We will apply this theorem to the triple

ðL�;�0 ;�G;G�GÞ, where G is again the Heisenberg

group and L�;�0 is the extension of ��;�0 defined as

follows.

Definition 3.3. Let � be a discrete subgroup

in a Lie group G. A connected subgroup L � G
is said to be the extension of � if L contains �

cocompactly.

The following lemma will allow us to use

Thm. 3.2 to determine the conditions under which

��;�0 acts properly discontinuously.

Lemma 3.4 ([K89]). Let L be a Lie group

acting continuously on a locally compact space X. Let

� � L be a discrete subgroup such that �nL is com-

pact. Then the following conditions are equivalent.

(a) � acts properly discontinuously on X,

(b) L acts properly on X.

4. Main results. To find the extension of

��;�0 , we use the (global) diffeomorphism exp: g!
G, whose inverse we denote by log. Let �; �0: �! G

be any two homomorphisms. Then � and �0 are

determined by their values on the generators, which

(in the notation of §2) we will set to be

�ð�iÞ ¼
ai

bi

ci

2
64

3
75 and �0ð�iÞ ¼

a0i
b0i
c0i

2
64

3
75;ð2Þ

for i ¼ 1; 2. Now, let �0: g! g be a Lie algebra

homomorphism defined on the generators by

�0ðlog �iÞ ¼ log �ð�iÞ, for i ¼ 1; 2, and �0ð½log �1;

log �2�Þ ¼ log �ð½�1; �2�Þ, and extended linearly; let
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�:G! G be defined by � ¼ exp ��0 � log. Then

�j� ¼ �, so that � extends � in the sense that � is

defined on all of G. If we write �0 for the extension of

�0 to all of G, then L�;�0 ¼ fð�ðgÞ; �0ðgÞÞ j g 2 Gg is

the extension of ��;�0 in the sense of Def. 3.3.

Next, we will check condition (c) of Thm. 3.2

for ðL�;�0 ;�G;G�GÞ. We have that

L�;�0 \ ðg1; g2Þ�Gðg1; g2Þ�1 ¼ feg

, �ðgÞ ¼ g�1
1 g2�

0ðgÞðg�1
1 g2Þ�1 only if g ¼ eð3Þ

, �0ðlog gÞ ¼ Adg�1
1
g2
�00ðlog gÞ only if log g ¼ 0

for all ðg1; g2Þ 2 G�G. Now write

g ¼
1 a c

0 1 b

0 0 1

0
B@

1
CA and log g ¼

0 a c� 1
2 ab

0 0 b

0 0 0

0
B@

1
CA:

Calculating the LHS and RHS of (3) explicitly,

it follows that (3) is equivalent to

a1 a2 0

b1 b2 0

� � a1b2 � a2b1

0
B@

1
CA

a

b

c

0
B@

1
CA

¼
a01 a02 0

b01 b02 0

� � a01b
0
2 � a02b01

0
B@

1
CA

a

b

c

0
B@

1
CA) a ¼ b ¼ c ¼ 0:

Writing

A ¼
a1 a2

b1 b2

� �
and A0 ¼

a01 a02
b01 b02

� �
;ð4Þ

we can rewrite condition (3) as

det
A� A0 0

� detA� detA0

� �
6¼ 0;

and we obtain the following proposition.

Proposition 4.1. The group ��;�0 acts prop-

erly discontinuously and cocompactly on G�G=�G

if and only if the following two conditions hold.

(a) detðA� A0Þ 6¼ 0, and

(b) detA� detA0 6¼ 0,

where A;A0 are determined by �; �0 via (2) and (4).

Proper discontinuity is contained in the above

argument. For cocompactness we make use of the

following lemma.

Lemma 4.2. Let � be as in (2) and A be

defined by (4). Then detA 6¼ 0, � is injective.

Proof. detA is precisely the ð1; 3Þ entry of the

commutator ½�ð�1Þ; �ð�2Þ� and detA 6¼ 0 if and only

if the image �ð�Þ is non-commutative. We show

that �ð�Þ being non-commutative is equivalent to �

being injective.

If � is injective, �ð�Þ ¼� � is non-commutative.

Conversely, write N ¼ ker � and assume that �ð�Þ
is non-commutative. We have the commutative

diagram

0 0 0

0 N ∩ Z N N/N ∩ Z 0

0 Z Γ Z2 0

0 Z/N ∩ Z Γ/N Γ/ZN 0

0 0 0

whose rows and columns are exact by the nine

lemma. Turning our attention to the first column,

the top left entry N \ Z can be considered as a

subgroup of Z, and is thus equal to (i) 0, (ii) Z, or

(iii) mZ, for some m 	 2.

Case (ii). If N \ Z ¼ Z, N contains the com-

mutator Z ¼ ½�;��, contradicting the fact that

�ð�Þ ¼� �=N was assumed non-commutative.

Case (iii). If N \ Z ¼ mZ, for m 	 2, then

Z=N \ Z ¼ Zm in the bottom left entry. However,

Zm is finite and contains torsion elements and

injects into �=N. By the first isomorphism theorem

for groups, the induced map ��: �=N ! G is in-

jective. But G is torsion-free, whence �=N is

torsion-free also and we obtain a contradiction.

We conclude that N \ Z ¼ 0 (case (i)).

Now, write �: �! Z2 for the projection and

��:N ! N=N \ Z for the restriction of � to N . Let

� be any element in � and n 2 N . Since N is normal,

�n��1 2 N. Then

��ð�n��1Þ ¼ ��ð�Þ��ðnÞ��ð��1Þ ¼ ��ðnÞ;

where the last equality follows from the fact that

im�� injects into Z2 and is therefore commutative.

Since N \ Z ¼ 0, �� is an isomorphism and we

conclude that �n ¼ n�, i.e. N is contained in the

centraliser Z. Then N \ Z ¼ 0 shows that N is

trivial, whence � is injective. �
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Proof of Prop. 4.1. Using Thm. 3.2, we have

shown that L�;�0 acts properly on G�G=�G if and

only if conditions (a) and (b) hold. Applying

Lem. 3.4, L�;�0 acts properly on G�G=�G if

and only if ��;�0 acts properly discontinuously on

G�G=�G.

By Lem. 4.2, condition (b) shows that at least

one of �; �0 must be injective, whence the cohomo-

logical dimension cd ��;�0 ¼ 3. It is a fact, based on a

standard argument invoking Poincaré duality, that

if a group � acts (faithfully) on a contractible

manifold X and cd � ¼ dimX, then �nX is compact

(cf. [K89], Cor. 5.5). Since G�G=�G ¼� R3 is

indeed contractible and dimG�G=�G ¼ cd ��;�0 ¼
3, the double quotient ��;�0 nG�G=�G is compact.

�

Prop. 4.1 can be turned into a method for

determining pairs of homomorphisms for which ��;�0

acts properly discontinuously and cocompactly on

G from the left and right as follows.

Let

S ¼
s0 s1

s2 s3

� �
2 GL2R

and ðS; t0; t1; t2; t3; c1; c2; c
0
1; c
0
2Þ 2 GL2R�R� �R7.

Define a map

�: GL2R�R� �R7 ! Rð�; G�G;GÞð5Þ
ðS; t0; t1; t2; t3; c1; c2; c

0
1; c
0
2Þ 7! �;

where � ¼ ð�; �0Þ is defined by

�ð�1Þ ¼

1
2
ðs0ðt0 þ t3Þ þ s0 þ s1t2Þ

1
2ðs2ðt0 þ t3Þ þ s2 þ s3t2Þ

c1

2
64

3
75;

�ð�2Þ ¼

1
2ðs1ðt0 � t3Þ þ s1 þ s0t1Þ
1
2ðs3ðt0 � t3Þ þ s3 þ s2t1Þ

c2

2
64

3
75;

�0ð�1Þ ¼

1
2ðs0ðt0 þ t3Þ � s0 þ s1t2Þ
1
2ðs2ðt0 þ t3Þ � s2 þ s3t2Þ

c01

2
64

3
75;

�0ð�2Þ ¼

1
2ðs1ðt0 � t3Þ � s1 þ s0t1Þ
1
2ðs3ðt0 � t3Þ � s3 þ s2t1Þ

c02

2
64

3
75:

Determining A;A0 via (4), one checks that A� A0 ¼
S and detA� detA0 ¼ t0 
 detS 6¼ 0, as t0 2 R�.

Thus, conditions (a) and (b) from Prop. 4.1 are

satisfied and ��;�0 acts properly discontinuously and

cocompactly on G from the left and right. More-

over, we have the following theorem.

Theorem 4.3. The map � (see (5)) induces

a homeomorphism from GL2R�R� �R7 onto the

parameter space Rð�; G�G;GÞ of deformations of

� acting properly discontinuously on the group

manifold G from the left and right. Furthermore,

the deformation space T ð�; G�G;GÞ is homeomor-

phic to GL2R�R� �R3.

Proof. The idea of the proof and the origin of

the map � is the following.

The space of pairs of matrices satisfying (a)

and (b) of Prop. 4.1 can be determined as follows.

Suppose A;A0 satisfy (a) and (b). Consider the map

!: ðA;A0Þ 7! ðU; V Þ ¼ ðA� A0; ðA�A0Þ�1ðAþ A0ÞÞ;

which is well-defined, since U ¼ A�A0 is invertible.

We can find an inverse mapping

�0: ðU; V Þ 7! ð12ðUV þ UÞ;
1
2ðUV � UÞÞ

and one checks that �0 � ! ¼ id and ! � �0 ¼ id.

For U and V , condition (a) is equivalent to the

condition that U 2 GL2R; condition (b) translates

into the condition

det 1
2
ðUV þ UÞ 6¼ det 1

2
ðUV � UÞ

, detðV þ IÞ 6¼ detðV � IÞ;
, detV þ trV 6¼ detV � trV

, trV 6¼ 0;

where I denotes the 2� 2 identity matrix. Then,

writing M ¼ fV 2M2ðRÞ j trV 6¼ 0g ¼� R� �R3,

the map

�0: GL2R�M ! fðA;A0Þ j A;A0 satify (a) & (b)g

is a homeomorphism. Writing id for the identity on

R4 ¼ fðc1; c2; c
0
1; c
0
2Þjc1; c2; c

0
1; c
0
2 2 Rg, �0 � id ¼ � is

the homeomorphism

�: GL2R�R� �R7 ! Rð�; G�G;GÞ

up to the identification M ¼� R� �R3.

The conjugation action of G�G on ��;�0 leaves

the superdiagonal entries of each factor unchanged

and is transitive on the ð1; 3Þ entries, so that

T ð�; G�G;GÞ ¼ Rð�; G�G;GÞ=ðG�GÞ is home-

omorphic to

GL2R�R� �R3:
�

5. Geometric interpretation of main re-

sult. Geometrically speaking, we have the central

extensions
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0! R! G! R2 ! 0

0! Z! �! Z2 ! 0

and by quotienting �nG can be viewed as a circle

bundle over the torus. The two conditions of

Prop. 4.1 can then be interpreted as follows. The

matrix A� A0 determines a Riemannian structure

on this torus and detA� detA0 determines the

structure on (i.e. length of) the circle. In particular,

the number of connected components (which equals

four) of the deformation space T ð�; G�G;GÞ
corresponds to the number of possible combinations

of orientations on the torus and the circle.

Example 5.1. Let

�ð�1Þ ¼
2

c

0

2
64
3
75; �ð�2Þ ¼

1

2

0

2
64
3
75

and

�0ð�1Þ ¼
1

c

0

2
64
3
75; �0ð�2Þ ¼

0

1

0

2
64
3
75:

Letting c vary from 0 to 1, we obtain a family of

groups ��;�0 (which lies in the component of both

base space and fibre orientations being positive),

which by Prop. 4.1 act cocompactly and properly

discontinuously on G�G=�G, where the length of

the fibre varies from 3 to 2 and the structure on the

torus remains unchanged and is given by the matrix

ð 1 1
0 1
Þ.
Similarly, it is possible to find families of

groups, which only change the structure on the

base space, leaving the length of the fibre un-

changed; or families, for which both the structure

on the base space and the length of the fibre are

fixed, but the connection form is deformed.

Remark 5.2. General examples, like the one

above, stand in contrast to the case when G is

semisimple of real rank 1—e.g. G ¼ SL2R, SOðn; 1Þ,
SUðn; 1Þ, Spðn; 1Þ—for which any properly discon-

tinuous group for G�G=�G is a graph up to a

finite-index subgroup ([K93], Thm. 2 and Rmk. 1).
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