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Abstract: If a locally finite rational representation V of a connected reductive algebraic

group G has uniformly bounded multiplicities, the multiplicities may have good properties

such as stability. Let X be a quasi-affine spherical G-variety, and M be a ðC½X�; GÞ-module. In

this paper, we show that the decomposition of M as a G-representation can be controlled by

the decomposition of the fiber M=mðx0ÞM with respect to some reductive subgroup L � G for

sufficiently large parameters. As an application, we apply this result to branching laws for simple

real Lie groups of Hermitian type. We show that the sufficient condition on multiplicity-freeness

given by the theory of visible actions is also a necessary condition for holomorphic discrete series

representations and symmetric pairs of holomorphic type. We also show that two branching

laws of a holomorphic discrete series representation with respect to two symmetric pairs

of holomorphic type coincide for sufficiently large parameters if two subgroups are in the same

�-family.

Key words: Spherical variety; multiplicity-free representation; branching rule; symmet-
ric pair; highest weight module; semisimple Lie group.

1. Introduction. Our main concern in this

paper is to describe a behavior of multiplicities of a

completely reducible representation with uniformly

bounded multiplicities. Note that this paper is a

short version of [7].

Before we state the main theorem, we prepare

some notations. Let G be a connected reductive

algebraic group over C. We will say that a

representation V of G is a locally finite rational

representation if spanCfgv : g 2 Gg is a finite di-

mensional regular representation of G for any

v 2 V . Fix a Borel subgroup B of G. For a locally

finite rational representation V of G, we denote

by mG
V ð�Þ the multiplicity of the representation

with highest weight � with respect to B, and de-

note by �þðV Þ :¼ �þGðV Þ the set of characters �

of B satisfying mG
V ð�Þ 6¼ 0. We write the supremum

of mG
V ð�Þ with respect to � by CGðV Þ. For a G-

variety X, we write �þðXÞ :¼ �þðC½X�Þ for short.

We will say that a C½X�-module M is a ðC½X�; GÞ-
module if M is a locally finite rational representa-

tion of G and two actions of C½X� and G are

compatible:

gðfmÞ ¼ ðgfÞ � ðgmÞ

for any g 2 G, f 2 C½X� and m 2M.

Let G be a connected reductive algebraic group

over C, and X be an irreducible G-variety. We

assume the following two conditions:

(a) the quotient field of the regular function ring

on X is equal to the function field on X,

(b) X is a spherical G-variety (i.e., a Borel sub-

group B of G has an open dense orbit in X).

Usually, spherical varieties are defined to be

normal. In this paper, however, we do not assume

normality since we use only multiplicity-freeness

and the Borel open orbit. The structure of spherical

varieties such as their weight monoids are recently

studied by F. Knop and I. Losev (see e.g., [12]).

We fix a point x0 2 X such that Bx0ð:¼ fbx0 :

b 2 BgÞ is open dense in X. Put

P :¼ fg 2 G : gBx0 � Bx0g;
L :¼ Px0

:ð1:0:1Þ

Here, we denote by Px0
the stabilizer at x0 in P .
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Then, P is a parabolic subgroup of G. Using the

theorem of M. Brion, D. Luna and T. Vust [2] for

the spherical pair ðG;Gx0
Þ, we obtain that L is a

reductive subgroup of G containing Bx0
. Note that

irreducible representations of L are parametrized

by a subset of characters of Bx0
, and this corre-

spondence comes from taking a unique Bx0
-eigen-

vector in an irreducible representation of L. We use

same notations mL
V ð�Þ and CLðV Þ for a locally finite

rational representation V of L and a character �

of Bx0
.

Then, our main result is

Theorem 1.1. Assume the above conditions

(a) and (b). Let M be a finitely generated ðC½X�; GÞ-
module. Suppose C½X� has no zero divisors in M:

AnnC½X�ðmÞð:¼ ff 2 C½X� : fm ¼ 0gÞ ¼ 0

for any m 2M n f0g. Then, there exists a �0 2
�þðXÞ such that

mG
Mð�þ �0Þ ¼ mL

M=mðx0ÞMð�jBx0
Þ

for any � 2 �þðMÞ. Here, mðx0Þ is the maximal ideal

of C½X� corresponding to the point x0 (i.e., mðx0Þ :¼
ff 2 C½X� : fðx0Þ ¼ 0g).

Remark 1.2. For any �0 2 �þðXÞ, �0jBx0
¼

0 holds. Then, we have �jBx0
¼ ð�þ �0ÞjBx0

.

This theorem asserts two things: the multi-

plicity function mG
V ð�Þ is periodic for sufficiently

large parameter � with respect to the translation by

�þðXÞ, and the multiplicities in sufficiently large

parameters can be described by the decomposition

of the ‘fiber’ M=mðx0ÞM with respect to L. The

first property is called stability. If M can be realized

as a set of global sections of an algebraic vector

bundle over X, M=mðx0ÞM is actually equal to the

fiber at x0.

Stability was appeared in [8, Lemma 3.4] for

example. F. Satō formulated and generalized sta-

bility for reductive spherical homogeneous spaces

in [15]. Our theorem is a natural generalization of

Satō’s stability theorem for spherical varieties.

Retain the notation of Theorem 1.1. As a

corollary of the theorem, the supremum of the

multiplicities in M can be controlled by that of the

fiber M=mðx0ÞM.

Corollary 1.3. Let M be a ðC½X�; GÞ-module

with no zero divisors. Then, we have

CGðMÞ ¼ CLðM=mðx0ÞMÞ:

Especially, M is multiplicity-free as a representa-

tion of G if and only if M=mðx0ÞM is multiplicity-

free as a representation of L.

2. Examples. By applying Theorem 1.1 for

some explicit varieties, we can obtain ‘‘stability

theorems’’.

2.1. Quasi-affine spherical homogeneous

spaces. Let G be a complex connected reductive

algebraic group, and H be a Zariski-closed subgroup

of G. We assume that ðG;HÞ is a spherical pair and

G=H is a quasi-affine variety. Note that the

assumption ‘‘quasi-affine’’ is equivalent to the

assumption (a) in Section 1 for homogeneous spaces

(see [1]). Then, there exists a Borel subgroup B of

G such that BH is open dense in G. Set L :¼
fg 2 H : gBH � BHg.

We apply Theorem 1.1 to X ¼ G=H and M ¼
IndGHðW Þ :¼ ðC½G� �W ÞH for a finite dimensional

rational representation W of H.

Theorem 2.1. In the above settings, there

exists a �0 2 �þðG=HÞ such that

mG
IndGHðWÞ

ð�þ �0Þ ¼ mL
W ð�jBx0

Þ

for any � 2 �þðIndGHðW ÞÞ.
If H is semisimple, this theorem is equal to

Satō’s stability theorem [15].

2.2. Spherical projective varieties. Theo-

rem 1.1 is not true for projective varieties. However,

we can obtain a weaker result from the theorem.

Let G be a complex connected reductive

algebraic group, P be a parabolic subgroup of G,

and H be a connected reductive subgroup of G. We

assume that G=P is a spherical H-variety. There

exists a point x0 2 G such that Bx0P is open dense

in G for a Borel subgroup B of H. Set L :¼ fg 2
H : gx0P ¼ x0P; gBx0P � Bx0Pg. Then, we obtain

the following theorem:

Theorem 2.2. Let W be an irreducible ra-

tional representation of P . Then, there exists a

character �0 of P such that

CHðIndGP ðW �C�0þ�ÞÞ ¼ CLðWÞ

for any character � of P satisfying IndGP ðC�Þ 6¼ 0.

Here, we consider W as a representation of L via

g � v ¼ ðx0
�1gx0Þv

for g 2 L and v 2 W .
In other words, if the parameter of W is

sufficiently large in some sense, the supremum of

the multiplicities in IndGP ðW ÞjH is equal to that in

W jL.
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Sketch of proof. Let P ¼ QN be a Levi de-

composition of P . Then, G=ð½Q;Q�NÞ is a quasi-

affine spherical H �Q=½Q;Q�-variety. Applying

Theorem 1.1 to X ¼ G=ð½Q;Q�NÞ and M ¼
IndG½Q;Q�NðW Þ, we obtain the theorem. �

2.3. Unitary highest weight modules. In

Sections 2.3 and 2.4, we treat branching laws for

infinite dimensional unitary representations of a

simple real Lie group of Hermitian type. In this

setting, G in Theorem 1.1 is KC and X is the

associated variety of a unitary representation. For a

Lie group G, we write its Lie algebra by a German

letter as g :¼ LieðGÞ, and we write its complex-

ification by a subscript ð�ÞC as gC :¼ g�R C.

Let G be a connected simple real Lie group of

Hermitian type with finite center, and � be a Cartan

involution of G. Let K be the fixed point subgroup

of � in G. We fix a element Z of the center ZðkCÞ of k

such that adðZÞ has eigenvalues �1; 0 in gC. We

decompose gC as

gC ¼ pþ 	 kC 	 p�

corresponding to the eigenvalues 1; 0;�1, respec-

tively.

We will say that an irreducible ðg; KÞ-module

H is a highest weight module if pþ-null part Hpþ is

non-zero. If a highest weight module H is infinites-

imally unitary, H is called a unitary highest weight

module. Unitary highest weight modules are para-

metrized by highest weights of pþ-null part Hpþ

with respect to kC. For ðg; KÞ-module V and a

unitary highest weight module V� with its highest

weight �, we write mG
V ð�Þ :¼ dim Homðg;KÞðV�; V Þ.

Using this mG
V ð�Þ, we redefine �þðV Þ and CGðV Þ in

Section 1.

Since a unitary highest weight module H of

G is a ðgC; KCÞ-module, H can be viewed as a

ðC½pþ�; KCÞ-module via the isomorphism C½pþ� ’
Uðp�Þ determined by the Killing form of gC. We

denote by AVðHÞ � pþ the zero set of AnnC½pþ�ðHÞ,
and we call AVðHÞ the associated variety of H.

Fix a Cartan subalgebra t � k, and a positive

system �þ of the root system �ðgC; tCÞ such that

�ðpþ; tCÞ � �þ. Since g is Hermitian type Lie

algebra, t is also a Cartan subalgebra of g.

We take a maximal set of strongly orthogonal

roots f�1; �2; . . . ; �rg as follows:

(a) �1 is the lowest root in �ðpþ; tCÞ,
(b) �i is the lowest root in the roots that are

strongly orthogonal to �1; �2; . . . ; �i�1,

and take root vectors fX�ig
r
i¼1. Note that r is equal

to the real rank of g.

For 1 
 m 
 r, we put

Xm :¼ X�1
þX�2

þ � � � þX�m;

am :¼
Mm
i¼1

RðX�i þX�iÞ;

Om :¼ AdðKCÞXm and

Lm :¼ ZKðamÞ:

Here, ð�Þ is the complex conjugate of gC with respect

to g. Then, we have the following theorem.

Theorem 2.3. Let H be a unitary highest

weight module of G with associated variety AVðHÞ ¼
Om. Then, there exists a �0 2 �þðOmÞ such that

mK
Hð�þ �0Þ ¼ mLm

H=mðXmÞHð�jTXm
Þ

for any � 2 �þðHÞ.
Remark 2.4. (1) By B. Kostant, L. K.

Hua [6] and W. Schmid [16], the explicit form of

�þðOmÞ was computed as:

�þðOmÞ ¼ �
Xm
i¼1

ci�i : c1 � c2 � � � � � cm � 0

( )
:

(2) The representation H=mðXmÞH is called an

isotropy representation of H. ‘Isotropy representa-

tions’ were introduced by D. Vogan ([17,18]) for

general settings as a generalization of the multi-

plicity of associated cycles. H. Yamashita describe

the isotropy representations of unitary highest

weight modules by using Howe duality in [19].

Sketch of proof. Let us apply Theorem 1.1

to X ¼ AVðHÞ and M ¼ H. The condition that

C½AVðHÞ� has no zero divisors in H is a direct

consequence of A. Joseph’s result:

Fact 2.5. Let H be a unitary highest weight

module of G. Then, the annihilator AnnSðp�ÞðHÞ is a

prime ideal in Sðp�Þ, and AnnSðp�ÞðvÞ ¼ AnnSðp�ÞðHÞ
for any v 2 H.

Then, we obtain the theorem without the

explicit form of L (defined in (1.0.1)).

L ¼ Lm comes from Moore’s theorem (see

e.g., [5, Proposition 4.8 in Chapter 5]) and some

straightforward calculations. �

2.4. Holomorphic discrete series represen-

tations. Now, we will consider the restriction of

holomorphic discrete series representations with

respect to symmetric pairs of holomorphic type. Let

G, K and � be as in the previous section. Let � be an

involutive automorphism of G such that �ðZÞ ¼ Z.
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We put H ¼ ðG� Þ0, the identity component of the

fixed point group of � . Such pair ðG;HÞ is called a

symmetric pair of holomorphic type. (This is

because � induces a holomorphic automorphism of

G=K.) Note that ðH;H \KÞ is also a Hermitian

symmetric pair.

For a unitary highest weight module H of G, if

the completion of H with respect to its Hermitian

inner product is a discrete series representation of G

(i.e., any matrix coefficients of H is L2-function on

G), H is said to be a holomorphic discrete series

representation.

We will reduce the branching law of HjH to the

maximal compact subgroup case (in Section 2.3).

Here, we use the notation HjH as the restriction of

H with respect to ðh; H \KÞ. To do this, we use the

following fact (see e.g., [9,11]):

Fact 2.6. Let H be a holomorphic discrete

series representation of G, Suppose Sðp��� Þ �Hpþ

is decomposed as a K \H-representation as

follows:

Sðp��� Þ �Hpþ ’
M

�2dK\HK\H

mð�Þ�:

Then, HjH is decomposed as

HjH ’
M

�2dK\HK\H

mð�ÞðNhð�ÞÞ:

Here, dK \HK \H denotes the set of equivalent classes of

finite dimensional representations of K \H, and

NhðV Þ denotes the generalized Verma module:

UðhCÞ �UððkC	pþÞ\hCÞ V

for a irreducible representation V of K \H. More-

over, each summand is also a holomorphic discrete

series representation of H.

We take t;�þ, f�1; �2; . . . ; �rg and am as in

Section 2.3, considering g�� as g. It is known that ar

is a maximal abelian subspace of p��þ , and then we

write a :¼ ar. We set L :¼ ZK\HðaÞ. From Fact 2.6,

we obtain the following theorem:

Theorem 2.7. Let H be a holomorphic dis-

crete series representation of G. Then, there exists a

�0 2 �þK\Hðp�þÞ such that

mH
Hð�þ �0Þ ¼ mL

Hpþ ð�jT\LÞ

for any � 2 �þHðHÞ.
As a corollary of Theorem 2.7, we obtain a

necessary and sufficient condition for multiplicity-

freeness.

Corollary 2.8. Let H be a holomorphic dis-

crete series representation of G. Then, we have

CHðHÞ ¼ CLðHpþÞ:

In particular, HjH is multiplicity-free if and only if

Hpþ jL is multiplicity-free.

In [10, Theorems 18 and 38], T. Kobayashi

showed ‘uniformly boundedness’ and ‘If’ part of

multiplicity-freeness in this corollary.

3. Sketch of proof of Theorem 1.1. We

will sketch the proof of Theorem 1.1. Let G, B, X

and x0 be as in Section 1. Suppose B ¼ TN is a Levi

decomposition of B, where T is a maximal torus of

G and N is the unipotent radical of B.

For the proof of Theorem 1.1, we use the

following result. This property is called stability.

Proposition 3.1. Let M be a finitely gener-

ated ðC½X�; GÞ-module with no zero divisors. Then,

there exists a �0 2 �þðXÞ such that

mG
Mð�þ �0Þ ¼ mG

Mð�þ �0 þ �Þ

for any � 2 �þðMÞ and � 2 �þðXÞ.
Since C½X� has no zero divisors in M, the

multiplication map f � : M !M is injective for any

f 2 C½X�. Especially, a B-eigenvector f 2 C½X�Nð�Þ
with weight � 2 �þðXÞ induces an injection f� :
MNð�Þ !MNð�þ �Þ for any � 2 �þðMÞ. Here, we

denote by V ð�Þ the weight space with weight � in a

locally finite rational representation V of T . Since

M is finitely generated and C½X� is multiplicity-

free, then M has uniformly bounded multiplicities

(see [11]). Proposition 3.1 is a direct consequence

of the uniformly boundedness and the following

proposition.

Proposition 3.2. Let A be a Noetherian G-

algebra, and M be a finitely generated ðA; GÞ-
module. Then, MN is a finitely generated AN-

module.

If A is finitely generated algebra, this proposi-

tion (for arbitrary characteristics) was appeared

in [4].

Proof. AN and MN are isomorphic to ðA�
C½G=N �ÞG and ðM �C½G=N �ÞG, respectively. Since

C½G=N � is finitely generated (see [3]), A�C½G=N �
is a Noetherian C-algebra. By a similar proof as

Hilbert’s fourteenth problem for reductive groups,

we can show that ðM �C½G=N �ÞG is finitely gen-

erated as an ðA�C½G=N �ÞG-module. �

We take �0 2 �þðXÞ satisfying the condition of

Proposition 3.1. We consider the evaluation map:
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evx0
: M !M=mðx0ÞM:

Put Mx0
:¼M=mðx0ÞM. Recall that Bx0 is open

dense in X. To prove Theorem 1.1, it suffices to

show that

evx0
: MNð�þ �0Þ !MNx0

x0
ð�jBx0

Þð3:2:1Þ

is bijective for any � 2 �þðMÞ.
We use the following two lemmas:

Lemma 3.3. Let M be a ðC½X�; GÞ-module

with no zero divisors. Then, we have\
b2B

mðbx0ÞM ¼ 0:

Lemma 3.4. The regular function ring on

Bx0 has the following explicit form:

C½Bx0� ¼ C½X�½1=f : f 2 C½X�Nð�Þ n f0g;
� 2 �þðXÞ�:

From Lemma 3.3, the map (3.2.1) is injective.

First, we prove the surjectivity under the assump-

tion that there exists a finite dimensional represen-

tation W of G such that C½X� �W ’M. Fix

� 2 �þðMÞ. We define

’ðbx0Þ ¼ b����0ðbmÞ

for any m 2 WNx0 ð�jBx0
Þ and b 2 B. Here, we

denote by b����0 the value of the character ���
�0 at b 2 B. Then, ’ is well-defined as an element

of C½Bx0� �W , and ’ is a B-eigenvector with

weight �þ �0. By Lemma 3.4, there exist a weight

� 2 �þðXÞ and f 2 C½X�Nð�Þ satisfying f’ 2
C½X� �W . From Proposition 3.1, the multiplica-

tion map

f � :ðC½X� �W ÞNð�þ �0Þ
! ðC½X� �W ÞNð�þ �0 þ �Þ

is bijective. Then, we have ’ 2 ðC½X� �W ÞNð�þ
�0Þ. This implies that evx0

in (3.2.1) is surjective in

this case.

Next, we consider general cases. We take a

finite dimensional subrepresentation W �M of G

that generates M as a C½X�-module. Then, we have

the following commutative diagram:

C[X] ⊗ W
evx0

×

W

M
evx0

Mx0 ,

and all arrows are surjective. Take �00 2 �þðXÞ
described in Proposition 3.1 for M ¼ C½X� �W . By

restricting the above diagram to the subspace of

B-eigenvectors of weight �þ �00, we have the

following commutative diagram.

(C[X] ⊗ W )N (λ + λ0)
evx0

WNx0 (λ|Bx0
)

MN (λ + λ0)
evx0

M
Nx0
x0 (λ|Bx0

):

Since G and L are reductive, the vertical arrows are

surjective. From the free module case, the above

horizontal arrow is surjective. Then, evx0
: MNð�þ

�00Þ !M
Nx0
x0 ð�jBx0

Þ is also surjective.

Since dimðMNð�þ �0ÞÞ � dimðMNð�þ �00ÞÞ by

the result of Proposition 3.1, evx0
: MNð�þ �0Þ !

M
Nx0
x0 ð�jBx0

Þ is also surjective. This completes the

proof.

4. Branching laws and �-family. In this

section, we treat the relation between branching

laws and �-family. Let G be a connected simple Lie

group of Hermitian type with finite center, and � be

a Cartan involution of G. Let K be the fixed point

subgroup of � in G. Suppose � is an involutive

automorphism of G commuting with �, and ðg; g� Þ is

of holomorphic type (see Section 2.4). Fix a max-

imal abelian subspace a of p�� .
We introduce �-family of symmetric pairs. The

following definitions are due to T. Ōshima and J.

Sekiguchi [13]. We denote by �ðaÞ :¼ �ðg; aÞ the set

of restricted roots with respect to a. Rossmann

(see [14]) showed that �ðaÞ is a root system.

We will say a map � : �ðaÞ [ f0g ! f1;�1g is a

signature of �ðaÞ if �ð	þ 
Þ ¼ �ð	Þ�ð
Þ for any

	; 
 2 �ðaÞ [ f0g. For a signature �, we define an

involutive automorphism �� of g as follows:

��ðXÞ ¼ �ð	Þ�ðXÞ for X 2 gða;	Þ; 	 2 �ðaÞ [ f0g:

Here, we put

gða;	Þ :¼
fX 2 g : ½H;X� ¼ 	ðHÞX for any H 2 ag:

We define

F ððg; g� ÞÞ :¼ fðg; g��Þ : � is a signature of �ðaÞg;

and call it an �-family of symmetric pairs. If � ¼ �,
we call F ððg; kÞÞ a k�-family of symmetric pairs.

We fix a signature � of �ðaÞ. We assume that

ðg; g��Þ is of holomorphic type. Suppose H and H 0
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are analytic subgroups with Lie algebra g� and g�� .

As an application of Corollary 2.8, we have the

following theorem:

Theorem 4.1. Let H be a holomorphic dis-

crete series representation of G. Then, we have

CHðHÞ ¼ CH 0 ðHÞ.
Sketch of proof. By the definition of �-family

(�ð0Þ ¼ 1), we have ZH\KðaÞ ¼ ZH 0\KðaÞ. This

shows the theorem. �

More precisely, two branching laws of HjH and

HjH 0 coincide for sufficiently large parameters. We

fix a Cartan subalgebra t� � k
�;�� . t� is also a Cartan

subalgebra of g� and g�� . The following theorem is

proved by using Weyl’s character formula.

Theorem 4.2. Let H be a holomorphic dis-

crete series representation of G. Suppose ðHpþÞ� has

the following formal character with respect to t� :

chððHpþÞ�Þ ¼
M

�2
ffiffiffiffiffi
�1
p

ðt� Þ�
mð�Þe�:

We put V :¼ f� 2
ffiffiffiffiffiffiffi
�1
p

ðt� Þ� : mð�Þ 6¼ 0g. Then,

there exists a total order on
ffiffiffiffiffiffiffi
�1
p

ðt� Þ� such that

mH
Hð�Þ ¼ mH 0

H ð�Þ;

for any � 2
ffiffiffiffiffiffiffi
�1
p

ðt� Þ� satisfying ð�þ �; 	Þ � 0 for

any 	 2 �þðk����C ; t�CÞ and � 2 V. Here, we take

positive systems of g� and g�� by the ordering onffiffiffiffiffiffiffi
�1
p

ðt� Þ�.
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Boston, MA, 1991.

[ 18 ] D. A. Vogan, Jr., The method of coadjoint orbits
for real reductive groups, in Representation
theory of Lie groups (Park City, UT, 1998),
179–238, IAS/Park City Math. Ser., 8, Amer.
Math. Soc., Providence, RI, 2000.

[ 19 ] H. Yamashita, Cayley transform and generalized
Whittaker models for irreducible highest
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