Affine translation surfaces in Euclidean 3-space

By Huili LIU and Yanhua YU

Department of Mathematics, Northeastern University, Shenyang 110004, P. R. China

(Communicated by Kenji Fukaya, M.J.A., Oct. 15, 2013)

Abstract: In this paper we define affine translation surface and classify minimal affine translation surfaces in three dimensional Euclidean space.

Key words: Translation surface; mean curvature; minimal surface.

1. Introduction. In the classical theories of minimal surfaces in three dimensional Euclidean space \mathbf{E}^3 (simply, Euclidean 3-space \mathbf{E}^3), it is well known that the Scherk surface

(1.1)
$$z(x,y) = \frac{1}{c} \log \frac{\cos cx}{\cos cy}$$

is the minimal surface of the type

(1.2)
$$z(x,y) = f(x) + g(y)$$

in \mathbf{E}^3 . Here using the standard coordinate system of Euclidean 3-space \mathbf{E}^3 , a surface r(u,v) in \mathbf{E}^3 will be written as r(u,v)=(x(u,v),y(u,v),z(u,v)). The surface which can be written as (1.2) is usually called translation surface in Euclidean 3-space \mathbf{E}^3 ([5], [6]).

In this note we define affine translation surfaces z(x,y) = f(x) + g(y+ax) in Euclidean 3-space \mathbf{E}^3 and get the following main result.

Theorem A (minimal affine translation surfaces). Let r(x,y) = (x,y,z(x,y)) be a minimal affine translation surface. Then, either z(x,y) is linear, or can be written as

(1.3)
$$z(x,y) = \frac{1}{c} \log \frac{\cos(c\sqrt{1+a^2}x)}{\cos[c(y+ax)]},$$

where a and c are constants and $ac \neq 0$.

2. Affine translation surfaces. Let r(u, v) be a regular surface with arbitrary parameter (u, v) in Euclidean 3-space \mathbf{E}^3 . Using the standard coordinate system of \mathbf{E}^3 we denote the parametric representation of the surface r(u, v) by

$$(2.1) \quad r(u,v) = (x,y,z) = (x(u,v), y(u,v), z(u,v)).$$

Definition 2.1. An affine translation sur-

face in Euclidean 3-space \mathbf{E}^3 is defined as a parameter surface r(u,v) in \mathbf{E}^3 which can be written as

(2.2)
$$r(u,v) = (x(u,v), y(u,v), z(u,v))$$
$$= (u,v, f(u) + g(v + au))$$
$$= (x, y, f(x) + g(y + ax))$$

for some non zero constant a and functions f(x) and g(y + ax) ([1–3], [4], [7]).

By a direct calculation, the first fundamental form of r(x, y) can be written as

(2.3)
$$\begin{cases} I = E dx^2 + 2F dx dy + G dy^2, \\ E = 1 + (f' + ag')^2, \\ F = g'(f' + ag'), \\ G = 1 + g'^2, \end{cases}$$

where

(2.4)
$$\begin{cases} f' = \frac{\mathrm{d}f(x)}{\mathrm{d}x}, \\ g' = \frac{\mathrm{d}g(v)}{\mathrm{d}v} = \frac{\mathrm{d}g(y+ax)}{\mathrm{d}(y+ax)}, \end{cases}$$

where v = y + ax. The second fundamental form of r(x, y) can be written as

(2.5)
$$\begin{cases} II = Ldx^{2} + 2Mdxdy + Ndy^{2}, \\ L = (f'' + a^{2}g'')D^{-1}, \\ M = ag''D^{-1}, \\ N = g''D^{-1}, \end{cases}$$

where

(2.6)
$$D^2 = EG - F^2 = 1 + (f' + ag')^2 + g'^2$$
.

The Gauss curvature of r(x, y) can be written as

(2.7)
$$K = f''g''D^{-4} = \frac{f''g''}{\left[1 + (f' + ag')^2 + g'^2\right]^2}.$$

The mean curvature of r(x, y) can be written as

(2.8)
$$H = \frac{1}{2} [f''(1+g'^2) + g''(1+a^2+f'^2)]D^{-3}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 53A05, 53A10, 53C42.

$$=\frac{f''(1+g'^2)+g''(1+a^2+f'^2)}{2[1+(f'+ag')^2+g'^2]^{\frac{3}{2}}}.$$

From (2.6) we have

(2.9)
$$DD_y = g'g'' + ag''(f' + ag')$$

 $= af'g'' + g'g'' + a^2g'g'',$
(2.10) $DD_x = aDD_y + f'f'' + af''g'$
 $= f'f'' + af''g' + a^2f'g'' + ag'g'' + a^3g'g''.$

3. Minimal affine translation surfaces. In this section we consider minimal affine translation surfaces in Euclidean 3-space \mathbf{E}^3 . If the mean curvature H of the affine translation surface r(x, y) in \mathbf{E}^3 vanishes identically, from (2.8) we have

(3.1)
$$f''(1+g'^2) + g''(1+a^2+f'^2) \equiv 0.$$

Then

(3.2)
$$\frac{f''}{1+a^2+f'^2} + \frac{g''}{1+g'^2} = 0.$$

Differentiating (3.2) with respect to y we get

(3.3)
$$\frac{\mathrm{d}}{\mathrm{d}(y+ax)} \left(\frac{g''}{1+g'^2} \right) = 0.$$

Differentiating (3.2) with respect to x we get

(3.4)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{f''}{1 + a^2 + f'^2} \right) + a \frac{\mathrm{d}}{\mathrm{d}(y + ax)} \left(\frac{g''}{1 + g'^2} \right) = 0.$$

Therefore we have

(3.5)
$$\frac{f''}{1+a^2+f'^2} = -\frac{g''}{1+g'^2} = -c,$$

where c is a constant. The constant c=0 means that $f''=g''\equiv 0$ and the affine translation surface r(u,v) is a plane. Let $c\neq 0$ and solving (3.5) we get

(3.6)
$$\begin{cases} f(x) = \frac{1}{c} \log \cos(c\sqrt{1+a^2}x), \\ g(y+ax) = -\frac{1}{c} \log \cos[c(y+ax)]. \end{cases}$$

Theorem 3.1. Let r(x,y) = (x,y,z(x,y)) be a minimal affine translation surface. Then either z(x,y) is linear or can be written as

(3.7)
$$z(x,y) = \frac{1}{c} \log \frac{\cos(c\sqrt{1+a^2}x)}{\cos[c(y+ax)]}.$$

The metric of the affine translation surface given by (3.7) is

(3.8)
$$I = E dx^{2} + 2F dx dy + G dy^{2}$$

$$= \{1 + [-\sqrt{1 + a^{2}} \tan(c\sqrt{1 + a^{2}}x) + a \tan[c(y + ax)]]^{2}\} dx^{2}$$

$$+ 2 \tan[c(y + ax)]$$

$$\times [-\sqrt{1 + a^{2}} \tan[c\sqrt{1 + a^{2}}x]$$

$$+ a \tan[c(y + ax)]] dx dy$$

$$+ \sec^{2}[c(y + ax)] dy^{2}.$$

The Gauss curvature of the affine translation surface given by (3.7) is

(3.9)
$$K = \frac{-c^2 A^2 \sec^2(cAx) \sec^2[cY]}{\sec^2[cY] + [-A \tan(cAx) + a \tan[cY]^2}.$$

Where

$$A = \sqrt{1 + a^2}$$
$$Y = y + ax.$$

Definition 3.1. The minimal affine translation surface (3.7) is called generalized Scherk surface or affine Scherk surface in Euclidean 3-space.

Remark 3.1. If a = 0, the minimal affine translation surface or generalized Scherk surface r(x, y) given by (3.7) is the classical Scherk surface

(3.10)
$$z(x,y) = \frac{1}{c} \log \frac{\cos cx}{\sin cy}.$$

In this case, the surface is translated along two orthonormal directions. Therefore the classical Scherk surface may be called minimal orthonormal translation surface in Euclidean 3-space \mathbf{E}^3 . It is easy to see that the metrics of (3.7) and (3.10) are different (they are homothetic).

Remark 3.2. The Gauss curvature K of the generalized Scherk surface (3.7) can be written as

$$K = \frac{-c^2(1+a^2)}{A(x,y)},$$

where

$$A(x,y) = \cos^{2}(c\sqrt{1+a^{2}}x)$$

$$+ [-\sqrt{1+a^{2}}\sin(c\sqrt{1+a^{2}}x)\cos[c(y+ax)]$$

$$+ a\sin[c(y+ax)]\cos(c\sqrt{1+a^{2}}x)]^{2}.$$

Therefore, when

(3.11)
$$\begin{cases} x = \frac{1}{c\sqrt{1+a^2}} \left(n\pi \pm \frac{\pi}{2}\right), \\ y = \frac{1}{c} \left(m\pi \pm \frac{\pi}{2}\right) - ax, \end{cases}$$

where

$$m, n = \pm 1, \pm 2, \dots,$$

the Gauss curvature of the generalized Scherk surface tends to the infinity.

Acknowledgements. This work was supported by NSFC (No. 11071032 and 11371080); Joint Research of NSFC and NRF (No. 11111140377). The first author was partially supported by Chern Institute of Mathematics; Beijing International Center for Mathematical Research; Northeastern University.

References

- [1] W. Blaschke, Vorlesungen über Differentialgeometrie I, Springer, Berlin, 1921.
- [2] W. Blaschke, Vorlesungen über Differentialgeometrie II, Springer, Berlin, 1923.

- [3] W. Blaschke, Vorlesungen über Differentialgeometrie III, Springer, Berlin, Heidelberg, New York, 1929.
- [4] A. M. Li, U. Simon and G. S. Zhao, Global affine differential geometry of hypersurfaces, de Gruyter Expositions in Mathematics, 11, de Gruyter, Berlin, 1993.
- [5] K. Kenmotsu, Surfaces with constant mean curvature, translated from the 2000 Japanese original by Katsuhiro Moriya and revised by the author, Translations of Mathematical Monographs, 221, Amer. Math. Soc., Providence, RI, 2003.
- [6] K. Kenmotsu, Surfaces of revolution with periodic mean curvature, Osaka J. Math. 40 (2003), no. 3, 687–696.
- [7] U. Simon, A. Schwenk-Schellschmidt and H. Viesel, Introduction to the affine differential geometry of hypersurfaces, Lecture Notes of the Science University of Tokyo, Sci. Univ. Tokyo, Tokyo, 1991.