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Abstract:

In this paper we define affine translation surface and classify minimal affine

translation surfaces in three dimensional Euclidean space.
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1. Introduction. In the classical theories of
minimal surfaces in three dimensional Euclidean
space E? (simply, Euclidean 3-space E?), it is well
known that the Scherk surface

(1.1)

Cos cx

1
Z(l‘, y) = IOg
c ~coscy

is the minimal surface of the type
(1.2) 2(z,y) = f(x) +9(y)

in E®. Here using the standard coordinate system
of Euclidean 3-space E?, a surface r(u,v) in E* will
be written as r(u,v) = (z(u,v), y(u,v), z(u,v)). The
surface which can be written as (1.2) is usually
called translation surface in Euclidean 3-space E?
([5], [6]).

In this note we define affine translation surfaces
2(z,y) = f(x) + g(y + ax) in Euclidean 3-space E?
and get the following main result.

Theorem A (minimal affine translation sur-
faces). Let r(z,y) = (z,y,2(x,y)) be a minimal
affine translation surface. Then, either z(x,y) is
linear, or can be written as
1. cos(evl+ a2x)

2(z,y) = ~log

(1.3) c cos[c(y + ax)]

where a and ¢ are constants and ac # 0.

2. Affine translation surfaces. Let r(u,v)
be a regular surface with arbitrary parameter (u,v)
in Euclidean 3-space E®. Using the standard coor-
dinate system of E® we denote the parametric
representation of the surface r(u,v) by

21 r(u,v) = (2,9, 2) = (2(u, v),y(u, v), 2(u, v)).

Definition 2.1. An affine translation sur-
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Translation surface; mean curvature; minimal surface.

face in Euclidean 3-space E? is defined as a param-
eter surface 7(u,v) in E* which can be written as

(2.2) r(u,v) = (x(u,v), y(u,v), 2(u, v))
= (u? v, f(u) + g(U + au))
= (z,y, f(x) + g(y + ax))

for some non zero constant a and functions f(z) and

9(y + ax) ([1-3], [4], [7]).
By a direct calculation, the first fundamental
form of r(z,y) can be written as

I = Eda? 4+ 2Fdzdy + Gdy?,
E=1+ (f/—&-ag’)Q,

(2.3) o ,
F= g (f + ag )7
G=1 Jrg/?7
where
P )
T odx
(2.4)

g = Y90 _ dgly+az)
dv d(y + ax)

where v = y + ax. The second fundamental form of

r(z,y) can be written as

IT = Lda? + 2Mdzdy + Ndy?,

L=(f"+a¢")D7",

)

2.5
(2:5) M = ag”D_l7
N = g//D—l
where
(26) D*=EG—F>=1+(f'+ag)* + 4>

The Gauss curvature of r(x,y) can be written as
f‘//g//
[+ (f +ag)" +g7"

The mean curvature of r(z,y) can be written as

(27) K=f'¢'D*=

(28) H= % [f"(L+¢*) +d'(1+a”+ 3D
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_ f”(]-‘i’.dQ) +g”(1+a2+f’2)
2L+ (f +ag)? + )

From (2.6) we have

(29) DD, =dJ¢"+ag"(f +ag)
— af/g// + g/g// _"_ a/2‘g/g//
(2.10) DD, = aDD, + f'f" +af"qd

— f/f// + a)f//g/ + a?f/g// _|_ ag/g// _|_ a3g/g//.

3. Minimal affine translation surfaces.

In this section we consider minimal affine trans-

lation surfaces in Euclidean 3-space E*. If the mean

curvature H of the affine translation surface r(x,y)
in E® vanishes identically, from (2.8) we have

31) O+ +g' (0 +a*+ %) =0.
Then
f// gll
3.2 =0
( ) 1+a2+fl2+1+g/2

Differentiating (3.2) with respect to y we get

(3.3)

d ( g// ) B O
d(y + ax) \1+ ¢?
Differentiating (3.2) with respect to = we get

d f//
dz (1 +a?+ f'2>

d g/l
=0
- “ Ay + a) (1 +g’2>

Therefore we have

1 /!
(3.5) '}; 12 == g 12 = _C7
14+a?2+ f 1+g

(3.4)

where ¢ is a constant. The constant ¢ =0 means
that f” = ¢’ =0 and the affine translation surface
r(u,v) is a plane. Let ¢ # 0 and solving (3.5) we get

flx) = ! log cos(cV'1 4 a2x),
(3.6) ¢

1
gy +ax) = - log coslc(y + ax)].

Theorem 3.1. Let r(z,y) = (z,y,2(x,y)) be
a minimal affine translation surface. Then either
2(x,y) is linear or can be written as
1. cos(evl+ a’x)

2z, y) = ~log

(87) c cosc(y + az)]

The metric of the affine translation surface given by
(3.7) is
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(3.8) 1= Edz* 4+ 2Fdzdy + Gdy?

={1+[-V1+a? tan(cmx)

+ atan|e(y + ax)]]* }dz?

+ 2tan[c(y + ax)]

X [V 1+ a? tan[cmx]

+ atanfe(y + az)|]dzdy

+ sec?[c(y + ax)]dy?.
The Gauss curvature of the affine translation sur-
face given by (3.7) is
—c?A? sec?(cAx) sec?[cY]

(3.9) 5
sec?[cY] + [-Atan(cAz) + atan[cY]

K =

Where

A=+vV1+a?

Y =y+ax.

Definition 3.1. The minimal affine transla-
tion surface (3.7) is called generalized Scherk sur-
face or affine Scherk surface in Euclidean 3-space.

Remark 3.1. If a =0, the minimal affine
translation surface or generalized Scherk surface
r(x,y) given by (3.7) is the classical Scherk surface

1 Ccos cT

A(z,y) = - log "
c sin cy

(3.10)

In this case, the surface is translated along two
orthonormal directions. Therefore the classical
Scherk surface may be called minimal orthonormal
translation surface in Euclidean 3-space E®. It is
easy to see that the metrics of (3.7) and (3.10) are
different (they are homothetic).

Remark 3.2. The Gauss curvature K of the
generalized Scherk surface (3.7) can be written as
_ 2 1 2
o _cta) 7
A(z,y)

where
A(zx,y) = cos’(cV/1 + ax)
+ [—\/1_—1——_(;2-5111(0 1+ a?z) cos[e(y + ax)]
+ asinfe(y + ax)] cos(cm:v)]z.

Therefore, when

(3.11)
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where
m,n==x1,£2, ...,

the Gauss curvature of the generalized Scherk
surface tends to the infinity.
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