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Norm estimates and integral kernel estimates
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Abstract:

We show that a bounded linear operator from the Sobolev space W, ™(Q) to

W) is a bounded operator from L,(2) to L, (), and estimate the operator norm, if
p,q,7 € [1,00] and a positive integer m satisfy certain conditions, where ) is a domain in R". We
also deal with a bounded linear operator from W™ (€2) to W;"(Q2) with p’ = p/(p — 1), which has a
bounded and continuous integral kernel. The results for these operators are applied to strongly

elliptic operators.

Key words:
operator.

1. Introduction. In [2,3] we developed the
L, theory for elliptic operators in divergence form
subject to the Dirichlet boundary condition. Let A
be the 2mth-order elliptic operator

(1.1) Au(z) = Z D*(ans(z) Du(z)),

|a|<m
|B1<m

D=—v—-19

in a domain Q of R". One of the main results is that,
for each pe (1,00), the inverse of A—X is a
bounded linear operator

(A=XN"": W) — W(Q)

for A in a suitable region of the complex plane C,
and that it satisfies

(12) (A=

—1+(i+7)/2m
w @ = ClA] s

;"(Q)HWFJ
for 0 <i<m, 0<j<m with some constant C.
We also derived estimates for the kernels of e *4
and (A— X", based on (1.2). However, we used
(1.2) only for ¢=0. The aim of this paper is
to present two theorems which are useful for
making a full use of (1.2) including the case 0 <
1 < m.

Throughout this paper, we assume that Q is R"
or a uniform C' domain if n > 2, and that € is an
interval in R if n = 1. For p € (1,00) and s € R we
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denote by W;(€2) the L, Sobolev space of order s,
and by W7 ,(2) the closure of Cg°(€2) in W (€2). In
particular, if s = —k with a positive integer k, the
space Wp’k(Q) is the set of all functions u which are
written as

(1.3) u= Y us,  ua € Ly(Q),

al<k

and the norm [Jul[y ) is equivalent to
P

inf Z ”ua”L,,(Q)a

|a|<k

where the infimum is taken over all {ua}, <
satisfying (1.3).

Theorem 1. Let 1<p<r<g<oo, p!—
rt<m/n and r~' —q¢ ' <m/n. In addition, let
pl—rt<m/nifp=1,andletr™t —q ' <m/nif
q = 00. Assume that T is a bounded linear operator
from W™ (Q) to W™ (Q). Then the following state-
ments hold with

0=(n/m(p~t —r7"), n=(n/m)r"" —q").

(i) T is a bounded operator from L,(2) to L,(£2)
and

HT”LP(Q)—&(I(Q)

(1-6)(1-n) o(1-1)
< C”T”LF(Q)_‘L:](Q) ”TH W;WZQ)—>L,.(Q)
g A 1
L (Q)—Wm(Q) Wom(Q)—Wm(Q)

with C = C(n,m,p,q,r,9Q).
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1 18 a bounded operator from to
i) T b ded L,(Q W (Q
and

1117, 0w )

-9 0
S C”T”}”(Q ||T||]/1/’7_—m*>WYTJ(Q)
for 0 < j <m with C =C(n,m,p,r,Q).

(iii) T is a bounded operator from W () to L,(£2)
and

)—Wi Q)

1T lw-s(0)— 1,

1 P
< O|T |y ”‘(Q —L, sz)||T||3V;mw';~(sz)

for 0 <i <m with C = C(n,m,q,r,8).
As is well known, a bounded linear operator T’
from L1 () to Lo () is written as

/ny y) dy,

with kernel K(z,y) € Lo(Q2 x Q). If T satisfies a
stronger condition, we can say more about its
kernel. For a function w(z) and h € R", we define
the operator A by

Apu(x)
{ u(z + h) — u(z)
0

S Ll(Q)

(fxeQand z+h eQ),

(otherwise).

For a function K(z,y) we write AEZI) (resp. A;?)) for
Ay, that operates K(x,y) with respect to z (resp. y).
Let N be the set of positive integers, and let Ny =
N uU{0}.

Theorem 2. Let 1<p<oo, m—n/p>0
and p '+ () ' =1. Let ke Ny and 0<7<1
satisfy m—n/p>k+7. Assume that T is a
bounded linear operator from W,™(Q) to W' ().
Then T is a bounded linear operator from Ly(€)
to Ly(Q), and the kernel K(x,y) of T is in
C*(Q x Q). More precisely, for |a| <k and |8] < k
the derivatives 8?85K(x,y) are continuous and
satisfy

(1.4)  [000)K(z,y)|

(1-6)(1—n (I—m,

< O T e
0
o AN T
for xz,y € Q with
-1 -1

15 6= ol +np = 6] + np

m m

and C = C(n,m,p,Q). Furthermore, the derivatives
8;;85[((1‘,3;) are Hdolder continuous of order 7 and
satisfy

Norm estimates and integral kernel estimates for a bounded operator in Sobolev spaces 187

(1.6) (A (A 020K ()
(1-6) 1 , (1-
< CITITIG o o 1T nww(n)
X ”THWP*,"I(Q)HL], ”THW Q) =W (Q)
forxz,y € Q, h e R" and (a,b) = (1,0),(0,1) with
R R | R
= - , = —

and (A, 2))0

and C = C(n,m,p,7,Q). Here (A;ll)) ;
should be interpreted as the identity.

Remark 3. The estimate (1.4) with a =8 =
0 is considered to be a generalization of the kernel
theorem [1, Lemma 3.2] for p = 2 to the case p # 2.

2. Proofs. For the proofs of Theorem 1 and
Theorem 2 we use the Sobolev embedding theorem
which guarantees the inclusions such as W;(Q2) C
Ly(), L,(Q) C W, ™) and the inequalities for
llullr,@ ||u||W ny if p and ¢ satisfy suitable
condltlons We need to formulate the embedding
Ly(Q2) € W, ™(£2) more precisely than usual.

Lemma 4. Let 1<p<g<
n(p~t —qY). In addition, let m > n(p~! —
p=1orqg=oc0

Let we Ly(Q). Then for any X > 0 there exist
Vo € Ly(Q) with |a| =m and w € L,(Q) such that u
18 written as

and m >

qg ') if

(2.1) =Y v, +uw
la|=m
and that
m—n )71* —1
(22)  vall, @ < Ol g
(23)  wllp,@ < Cx e )HUHLP(Q)

with C = C(n,m,p,q, ).

Proof. We may assume that = R", since the
case ) # R" can be reduced to the case 2 = R" by
extending u € L,(Q2) by zero to R".

First we assume that u belongs to the Schwartz
space S(R"). It is convenient to use Muramatu’s
integral formula [5], which expresses a function by
its regularization. Let us briefly review it. Choose a
function p € Ci°(R") satisfying [z. p(x)dx =1 and
suppp C {z € R": |z| < 1}, and set

plr) = 32 ()},

lal<m

=Y MO(z), M(x) = gxap(x).

la|=m
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Here and in what follows we sometimes write f(®)
for the derivative 90°f of a function f(x). For
t > 0 and a function f(z) we set fi(z) =t "f(t 'z).
Using the relations o{oi(x)} = —t7 1 My(x) and
limy o 1 * u(x) = u(zx), we have

/Mt*u

for u € S(R™), where the integral is an improper
integral, namely, it is the limit of the Riemann

+<pA>ku( ), A>0

integral fe’\ M; xu(x)t™ldt as e — +0. In view of
(M),(x) = tm0*(M,),(z) we see that (2.1) holds
with

A
wnla) = [ (08), 5 @)
w(x) = @y * u(z).

Define »r>1 by p'4r!=14+¢"' Then
the Young ineauality [ull, < loal ul,, and
loall, =X lfely, give (23] 1 m>
n(p~' —q7') > 0, a similar calculation shows

A
/ gm—n(p =g )-1 dt,
" Jo
from which (2.2) follows.
If m=n(p ! —q?), which implies 1 <p < ¢ <
oo by assumption and therefore 0 < m <n, the
change of variables |x — y|/t = s gives

e |</ndy/ ‘M<|z—y>
lu(y)| ds
<C/

" )] dy.

Hence the Hardy-Littlewood-Sobolev inequality
yields (2.2).

Next, we consider the general case u € L,(R").
We write T, and S for the maps u — v, and u — w,
respectively, in the proof for the Schwartz function.
From the result for the Schwartz function it follows
that T, and S, defined on S(R"), extend to bounded
linear operators from L,(R") to L,(R"). We choose
a sequence of functions (u;);n in S(R") that
converges to u in L,(R"). Then we have

= Z 6QTQUJ* + SUJ

la|=m
Since T,u; — Tou and Su; — Su in Ly(R") as

j— 00, the right-hand side converges in
W, ™(R"). Hence (2.1) holds with v, = Tyu and

[vallr, <

n—m—1

(2.5)
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w = Su. The inequalities (2.2) and (2.3) follow from
the corresponding inequalities for the Schwartz
function. O

Proof of Theorem 1. In any case, the
boundedness of T follows by the Sobolev embedding
theorem: L,(2) C W, ™(Q) and W™(Q) C L,().
So, it remains to evaluate the operator norms.

Let u € L,(2). By Lemma 4 there exist v, €
L.(Q) and we L, () satisfying (2.1) and the
inequalities similar to (2.2), (2.3). Then we have

Tu = Z TO v, + Tw,

|a]=m

which gives
[Tully; < CIIT|
+ C|IT | gy

Wom—W) ) [ L,
lull,

for 0 < j <m. Minimizing the right-hand side if
m—n(p~t —r71) >0, and letting X — oo if m —
n(p~!t —r71) =0, we get

(2.6) ||Tul

0
||T||Wr—mﬂ1/v/_ ”uHL,,'

W

This inequality gives the estimate for (ii). The
estimate for (iii) follows from the Sobolev inequality

(2.7) A1z, < CIAIL 1 -

The estimate for (i) follows from (2.6) with j = 0,m
and (2.7). O

Lemma 5. Let 1<p<oo, 1/p+1/p =1
and m—n/p>0. Let § € Nj and 0 < 7 <1 satisfy
m—n/p> |6+ T.

Then for u € Li(R") and A > 0 there exist v, €
Ly (R™) with |y| = m and w € Ly(R") such that 8%u
18 written as

(2.8) u=> v, +w
=
and that
(29) ol @y < Ol ey
(210)  [lwllg, gy < CA V=Pl oy

with C = C(n,m,p). In addition, it holds that
(211) A, @ < C|h|T)\mfwin/p7T||u||L1(R"),
(212) [ Awwlp, gy < CIRMATAT Tl gy
for h € R" with C = C(n,m,p, 7).

Proof. We may assume u € S(R") by the same

argument as in the proof of Lemma 4, since the
maps u — v, and u — w which will be constructed
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below extend to bounded linear operators from
Li(R") to Ly(R").

We apply Muramatu’s formula (2.4) to 0%,
which belongs to S(R"), with in mind that

(M), % 0" u(x) = ot { (M), * u(@)}.

Then (2.8

A
vlz) = B «
() / (M),
w(z) = X (@), * u(a).

Then the same calculation as in the proof of
Lemma 4 gives (2.9) and (2.10).

In order to derive (2.11) and (2.12) we note
that

(2.13)

) holds with

u(z) "1 dt,

1AL fill, < Oyt~ min{1, [h|/t}
< C)llfllwst ™/ (Inl/t)"

for f€ C(R") and fi(x) =t"f(¢t'z) with ¢ > 0.
The first 1nequahty follows from [|Angl|, < 2[|gll,,
and  Ayg(x fo Vg(z + 6h) - hdb with g= ft,
and the second inequality is a consequence of
min{l, s} < s” for s > 0.

The second inequality in (2.13) yields (2.12). It
also yields (2.11) if m —n/p > |B|+ 7. f m —n/p =
|8] + 7, we use the first inequality in (2.13) to get

A
1Az, < / 1AL, a7V e
A
< [ cmingu, bl Lt ),
0
<IN Null, [ min{L, e
0

which gives (2.11). O

Proof of Theorem 2. First we assume ) =
R". Let ue Li(R") and |a| <k, |8| < k. Taking
into account that W' (2) C C*7(Q) by the Sobolev
embedding theorem, and using (2.8)—(2.10), we have

10°T ull, < > 16T [lyy
[y|=m
A

< N Tllyrm_p, A",
v o

+ CHBQT”LI;HLOC )‘_W‘_"/T)HUHLI

Minimizing the last expression, we get
(2.14)  [|0°T0 |,

< Cllo°T . 1O T Wy op Neell,

Norm estimates and integral kernel estimates for a bounded operator in Sobolev spaces 189

with n = (|8] + np~!)/m. Hence 9°T9” is a bounded
operator from L;(R") to Lo (R"). We denote by
K°3(x,y) the kernel of 9°T9% and simply write
K(x,y) for K(z,y) with a = 8 =0. It is easy to
see that 8“85}(( y) = (-1 )‘ﬂ‘K“ﬂ(x y) in the dis-
tributional sense. The estimate for 6“83K( Y)
follows from (2.14) and the Sobolev 1nequahty

215) [0 fl,. < CUAIE I

with 0 = (Ja| +np~t)/m.

In order to show the Holder continuity of
K°3(x,y) we consider the operators A,0°T3" and
0“T9°A,. By the Lebesgue differentiation theorem
we know that it is sufﬁcwnt to obtain the mequahtles
similar to (1.6) for ||A K"ﬂH and HA K“ﬂH
Since the kernel of A,8*Td7 is A( )K“ﬂ(x y), (2. 14)
with 0 replaced by A,0“ and the Sobolev inequality

18007 fll.. < CIATIAIE LA
with 0 = (|a| + 7+ np~t)/m yield (1.6) for (a,b) =
(1,0).
Noting that 9°Aj, = A,9°,
(2.11) and (2.12), we have
[0°T0" Apul|,_

< Z HBQT”W L A HAhUwHL

[y]=m

+10°T 1,y | Al
< Ol A 9Tyl
pr fo'¢]

and using (2.8),

+ ORI 00Tl -
Minimizing the last expression, we get
(2.16) [|0°T9" Apul|,_

T Yo 1—1 Yo
< OO T, L N0 Ty

with 7 = (|8 +T+np 1Y/m. Since the kernel of
T A, is APV K% (z,y), (2.15) and (2.16) yield
(1.6) for (a,b) = (0,1).

We see that K(z,y) € CF(R" x R") from the
continuity of K**(x,y) for |a| <k, |8] < k.

Next, we consider the case Q # R". Let
u € Li1(R2). Let E be the universal extension oper-
ator for the Sobolev spaces on 2 to the correspond-
ing spaces on R", and let R be the restriction to 2.
We denote by K(z,y) the kernel of the bounded
operator ETR: W, ™(R") — W(R"). We define
Eyu by Eyu(x) = u(x) for x € Q and Eyu(z) = 0 for
x € Q¢ Since Tu = R(ETR)Eyu, the kernel of T is
given by K|, o. Hence the case Q # R" reduces to
the case 2 = R". O

onr el
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3. Application. Before applying Theorem 1
and Theorem 2 to the elliptic operator A defined in
(1.1), we precisely describe the assumptions on A.
We assume that A satisfies the following conditions:

(i) The principal symbol

(e = 3 aws@)et’

|a|=|Bl=m

of A satisfies the strong ellipticity condition,
i.e., there exists §4 > 0 such that

Rea(z, &) > 84| forz € Q, £ € R™.

(ii) All the coefficients aqg are in Ly (€2), and the
leading coeflicients are uniformly continuous

in Q.
By assumption there exists wy € [0,7/2) such that

larga(z,€)| <wy forz e, &€ R

For each p € (1,00) the operator A is regarded as a
bounded linear operator

W (Q) — W, ™(Q).
For R > 0 and w € (0,7/2) we set
AR,w)={AeC: |N\ >R, w<arg) <21 —w}.

Theorem 6. Let w€ (wa,n/2) be given.
Then there exist R = R(n,m,w, A,Q) such that the
inverse of the operator

A—X: U1<p<ooW[Tb

exists for A € A(R,w) and that for each p € (1,00)
the inverse (A—X\)"" is a bounded operator from

W[;m(Q) to W[TO(Q) that satisﬁes
31) [(A— )\)71||1/V];1’(Q)—>Wf,'f(9) < C\)\|*1+(z+1)/2m

for0<i<m,0<j<mwithC=C(n,m,p,w, A, Q).

Proof. See [2] for a uniform C™"! domain
and [3] for a uniform C' domain. O

In [2] we obtained Theorem 6 via the Gaussian
estimates for heat kernels and the exponential
decay estimates for resolvent kernels from its weak
version which is the same as Theorem 6 except that
the constant R may depend on p. In the process
of obtaining Theorem 6 from its weak version we
essentially proved and utilized

(32) 1A=N " @-rm < ClA| e Em e

(€2) = Uicpea W, ()

for l<p<g<ooandp!—qg!<m/n, and
(33) A=V @ro@ < CATTET
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for N > 2+ n/m. Since we used (3.1) only for i =0
to derive (3.2) and (3.3), the conditions on p, g and
N in (3.2) and (3.3) may be restrictive. Theorem 1
and Theorem 2 enable us to make a full use of (3.1)
and relax the conditions on p, ¢ and N, as shown
below. The improvement for the conditions on p, ¢
and N is of interest in itself, although it does not
improve the statement of Theorem 6.

Corollary 7. Given w € (wa,7/2), let R be
the constant in Theorem 6 and let A € A(R,w).

(i) Let NeN, 1<p<qg<oo and p ' —q 1<
2mN /n. In addition, let p~* — ¢~' < 2mN/n if
p=1o0rq=o0. Then (A— X" is a bounded
operator from L,(Q) to Ly(Q) and satisfies

-N —N+(n/2m)(p~'—q!
(A =X)L )—r,0) < CIA )

with C = C(n,m,p,q,w, N, A, Q).

(ii) Let N e N, 2mN >n, and take k€ Ny and
0<7<1l so that 0<k<m and 2mN >
n+2(k+7). Then (A—N"" is a bounded
operator from L1(Q) to Lo(2) and its kernel
GY(z,y) is in C*(Qx Q). More precisely,
for |a| <k and |B| <k the derivatives
6;’856'{\\7(95,3/) are continuous and satisfy

(34)  [9200GY (w,y)| < Cy|A|TN ek 2m

for z,yeQ with C,=Ci(n,m,w,N,A Q).
Furthermore, the derivatives 82‘85Gf\v(z,y)
are Holder continuous of order T and satisfy

1 2
(35) |8 950)GY (wy)| + 1A} 970)GY ()|
< CQ|h“r|>\|7N+(n+|a‘+‘[f‘+7')/2m

for x,yeQ and heR" with Cy=
Co(n,m,w, 7, N, A, Q).
Remark 8. Corollary 7(i) is essentially the

same as [4, Lemma 3.4] whose proof is also based on
Theorem 6, but heavily relies on the exponential
decay estimates for resolvent kernels.

Proof. (i) First let N =1. Define r so that
r~t = (p~' +¢')/2, which implies p~! —r~! <m/n
and r ! —q¢ ' <m/n. It also holds that p~'—
rl<m/mnandrt—q¢gt<m/nifp=1or q=cc.
Using Theorem 1(i) and Theorem 6, we see that
(A—X)""is a bounded operator from L,(€) to
L, () and get, with 6 = (n/2m)(p~ — ¢ 1),

1A =2, < O AN O (A2
x (130N
S C|A|_1+6.




No. 10]

The case N > 2 is treated by using the result for
N =1 repeatedly.

(ii) Choose p and a sequence (pl)llio so that p =
po=p; =2 if N =1, and so that

p/(p—1)=py<p1<p2 < <py=p< o0,
m—n/p >k,
pal_pflgm/nv p;vl,l—pjvl Sm/n,
pih—p <2m/n (2<I<N-1)

if N>2. Evaluating [[(A=XN) "y, [I(A-
N g and A=), with 2 < 1<
N —1 by Theorem 1, we see that (A —X)"" is a
bounded operator from W,™(Q2) to W' () with

p'=p/(p—1) and get
1A =l
< C|)\|7N+(i+j)/2m+(n/2m)((p’)’lfp’l)
for 0 <i<m, 0 <j <m. By Theorem 2 we obtain,
with 0 and 7 defined in (1.5),
002G ()|

x

< O (3000

6(1— —0 Or
X (A2 (2O a
S C‘)\|7N+(n/2m)(172/p)+(0+n)/2

)
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which yields (3.4).

Similarly we obtain (3.5) if we replace m —
n/p > kby m —n/p > k+ 7 in the definition of the
sequence (pl)fio. O
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