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Abstract: We show that a bounded linear operator from the Sobolev space W�m
r ð�Þ to

Wm
r ð�Þ is a bounded operator from Lpð�Þ to Lqð�Þ, and estimate the operator norm, if

p; q; r 2 ½1;1� and a positive integer m satisfy certain conditions, where � is a domain in Rn. We

also deal with a bounded linear operator from W�m
p0 ð�Þ to Wm

p ð�Þ with p0 ¼ p=ðp� 1Þ, which has a

bounded and continuous integral kernel. The results for these operators are applied to strongly

elliptic operators.

Key words: Sobolev space; kernel theorem; Sobolev embedding theorem; elliptic
operator.

1. Introduction. In [2,3] we developed the

Lp theory for elliptic operators in divergence form

subject to the Dirichlet boundary condition. Let A

be the 2mth-order elliptic operator

AuðxÞ ¼
X
j�j�m
j�j�m

D�ða��ðxÞD�uðxÞÞ;ð1:1Þ

D ¼ �
ffiffiffiffiffiffiffi
�1
p

@

in a domain � of Rn. One of the main results is that,

for each p 2 ð1;1Þ, the inverse of A� � is a

bounded linear operator

ðA� �Þ�1 : W�m
p ð�Þ !Wm

p;0ð�Þ

for � in a suitable region of the complex plane C,

and that it satisfies

kðA� �Þ�1kW�i
p ð�Þ!W

j
pð�Þ � Cj�j

�1þðiþjÞ=2mð1:2Þ

for 0 � i � m, 0 � j � m with some constant C.

We also derived estimates for the kernels of e�tA

and ðA� �Þ�1, based on (1.2). However, we used

(1.2) only for i ¼ 0. The aim of this paper is

to present two theorems which are useful for

making a full use of (1.2) including the case 0 <
i � m.

Throughout this paper, we assume that � is Rn

or a uniform C1 domain if n � 2, and that � is an

interval in R if n ¼ 1. For p 2 ð1;1Þ and s 2 R we

denote by Ws
p ð�Þ the Lp Sobolev space of order s,

and by Ws
p;0ð�Þ the closure of C10 ð�Þ in Ws

p ð�Þ. In

particular, if s ¼ �k with a positive integer k, the

space W�k
p ð�Þ is the set of all functions u which are

written as

u ¼
X
j�j�k

@�u�; u� 2 Lpð�Þ;ð1:3Þ

and the norm kukW�kp ð�Þ is equivalent to

inf
X
j�j�k
ku�kLpð�Þ;

where the infimum is taken over all fu�gj�j�k
satisfying (1.3).

Theorem 1. Let 1 � p < r < q � 1, p�1 �
r�1 � m=n and r�1 � q�1 � m=n. In addition, let

p�1 � r�1 < m=n if p ¼ 1, and let r�1 � q�1 < m=n if

q ¼ 1. Assume that T is a bounded linear operator

from W�m
r ð�Þ to Wm

r ð�Þ. Then the following state-

ments hold with

� ¼ ðn=mÞðp�1 � r�1Þ; � ¼ ðn=mÞðr�1 � q�1Þ:

(i) T is a bounded operator from Lpð�Þ to Lqð�Þ
and

kTkLpð�Þ!Lqð�Þ
� CkTkð1��Þð1��ÞLrð�Þ!Lrð�ÞkTk

�ð1��Þ
W�m

r ð�Þ!Lrð�Þ

� kTkð1��Þ�Lrð�Þ!Wm
r ð�Þ
kTk��W�m

r ð�Þ!Wm
r ð�Þ

with C ¼ Cðn;m; p; q; r;�Þ.
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(ii) T is a bounded operator from Lpð�Þ to Wm
r ð�Þ

and

kTkLpð�Þ!Wj
r ð�Þ

� CkTk1��
Lrð�Þ!Wj

r ð�ÞkTk
�
W�mr !Wj

r ð�Þ

for 0 � j � m with C ¼ Cðn;m; p; r;�Þ.
(iii) T is a bounded operator from W�m

r ð�Þ to Lqð�Þ
and

kTkW�ir ð�Þ!Lqð�Þ
� CkTk1��

W�i
r ð�Þ!Lrð�Þ

kTk�W�ir !Wm
r ð�Þ

for 0 � i � m with C ¼ Cðn;m; q; r;�Þ.
As is well known, a bounded linear operator T

from L1ð�Þ to L1ð�Þ is written as

TuðxÞ ¼
Z

�

Kðx; yÞuðyÞ dy; u 2 L1ð�Þ

with kernel Kðx; yÞ 2 L1ð�� �Þ. If T satisfies a

stronger condition, we can say more about its

kernel. For a function uðxÞ and h 2 Rn, we define

the operator �h by

�huðxÞ

¼
uðxþ hÞ � uðxÞ (if x 2 � and xþ h 2 �),

0 (otherwise).

�

For a function Kðx; yÞ we write �
ð1Þ
h (resp. �

ð2Þ
h ) for

�h that operates Kðx; yÞ with respect to x (resp. y).

Let N be the set of positive integers, and let N0 ¼
N [ f0g.

Theorem 2. Let 1 < p <1, m� n=p > 0

and p�1 þ ðp0Þ�1 ¼ 1. Let k 2 N0 and 0 < � < 1
satisfy m� n=p � kþ � . Assume that T is a

bounded linear operator from W�m
p0 ð�Þ to Wm

p ð�Þ.
Then T is a bounded linear operator from L1ð�Þ
to L1ð�Þ, and the kernel Kðx; yÞ of T is in

Ckð�� �Þ. More precisely, for j�j � k and j�j � k
the derivatives @�x @

�
yKðx; yÞ are continuous and

satisfy

j@�x @�yKðx; yÞjð1:4Þ

� CkTkð1��Þð1��ÞLp0 ð�Þ!Lpð�ÞkTk
�ð1��Þ
Lp0 ð�Þ!Wm

p ð�Þ

� kTkð1��Þ�W�m
p0 ð�Þ!Lpð�Þ

kTk��W�m
p0 ð�Þ!Wm

p ð�Þ

for x; y 2 � with

� ¼
j�j þ np�1

m
; � ¼

j�j þ np�1

m
ð1:5Þ

and C ¼ Cðn;m; p;�Þ. Furthermore, the derivatives

@�x @
�
yKðx; yÞ are Hölder continuous of order � and

satisfy

jð�ð1Þh Þ
að�ð2Þh Þ

b@�x @
�
yKðx; yÞjð1:6Þ

� Cjhj�kTkð1��Þð1��ÞLp0 ð�Þ!Lpð�ÞkTk
�ð1��Þ
Lp0 ð�Þ!Wm

p ð�Þ

� kTkð1��Þ�W�m
p0 ð�Þ!Lpð�Þ

kTk��W�m
p0 ð�Þ!Wm

p ð�Þ

for x; y 2 �, h 2 Rn and ða; bÞ ¼ ð1; 0Þ; ð0; 1Þ with

� ¼
j�j þ a� þ np�1

m
; � ¼

j�j þ b� þ np�1

m

and C ¼ Cðn;m; p; �;�Þ. Here ð�ð1Þh Þ
0 and ð�ð2Þh Þ

0

should be interpreted as the identity.

Remark 3. The estimate (1.4) with � ¼ � ¼
0 is considered to be a generalization of the kernel

theorem [1, Lemma 3.2] for p ¼ 2 to the case p 6¼ 2.

2. Proofs. For the proofs of Theorem 1 and

Theorem 2 we use the Sobolev embedding theorem

which guarantees the inclusions such as Wm
p ð�Þ �

Lqð�Þ, Lpð�Þ �W�m
q ð�Þ and the inequalities for

kukLqð�Þ, kukW�mq ð�Þ if p and q satisfy suitable

conditions. We need to formulate the embedding

Lpð�Þ � W�m
q ð�Þ more precisely than usual.

Lemma 4. Let 1 � p < q � 1 and m �
nðp�1 � q�1Þ. In addition, let m > nðp�1 � q�1Þ if

p ¼ 1 or q ¼ 1.

Let u 2 Lpð�Þ. Then for any � > 0 there exist

v� 2 Lqð�Þ with j�j ¼ m and w 2 Lqð�Þ such that u

is written as

u ¼
X
j�j¼m

@�v� þ wð2:1Þ

and that

kv�kLqð�Þ � C�
m�nðp�1�q�1ÞkukLpð�Þ;ð2:2Þ

kwkLqð�Þ � C�
�nðp�1�q�1ÞkukLpð�Þð2:3Þ

with C ¼ Cðn;m; p; q;�Þ.
Proof. We may assume that � ¼ Rn, since the

case � 6¼ Rn can be reduced to the case � ¼ Rn by

extending u 2 Lpð�Þ by zero to Rn.

First we assume that u belongs to the Schwartz

space SðRnÞ. It is convenient to use Muramatu’s

integral formula [5], which expresses a function by

its regularization. Let us briefly review it. Choose a

function � 2 C10 ðRnÞ satisfying
R

Rn �ðxÞ dx ¼ 1 and

supp � � fx 2 Rn : jxj < 1g, and set

’ðxÞ ¼
X
j�j<m

1

�!
@�x fx��ðxÞg;

MðxÞ ¼
X
j�j¼m

Mð�Þ
� ðxÞ; M�ðxÞ ¼

m

�!
x��ðxÞ:
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Here and in what follows we sometimes write f ð�Þ

for the derivative @�f of a function fðxÞ. For

t > 0 and a function fðxÞ we set ftðxÞ ¼ t�nfðt�1xÞ.
Using the relations @tf’tðxÞg ¼ �t�1MtðxÞ and

limt!þ0 ’t � uðxÞ ¼ uðxÞ, we have

uðxÞ ¼
Z �

0

Mt � uðxÞ
dt

t
þ ’� � uðxÞ; � > 0ð2:4Þ

for u 2 SðRnÞ, where the integral is an improper

integral, namely, it is the limit of the Riemann

integral
R �
	 Mt � uðxÞ t�1dt as 	! þ0. In view of

ðMð�Þ
� ÞtðxÞ ¼ tm@�x ðM�ÞtðxÞ we see that (2.1) holds

with

v�ðxÞ ¼
Z �

0

ðM�Þt � uðxÞtm�1 dt;

wðxÞ ¼ ’� � uðxÞ:

Define r > 1 by p�1 þ r�1 ¼ 1þ q�1. Then

the Young inequality kwkLq � k’�kLrkukLp and

k’�kLr ¼ �
�nðp�1�q�1Þk’kLr give (2.3). If m >

nðp�1 � q�1Þ > 0, a similar calculation shows

kv�kLq � kM�kLrkukLp
Z �

0

tm�nðp
�1�q�1Þ�1 dt;

from which (2.2) follows.

If m ¼ nðp�1 � q�1Þ, which implies 1 < p < q <

1 by assumption and therefore 0 < m < n, the

change of variables jx� yj=t ¼ s gives

jv�ðxÞj �
Z

Rn
dy

Z 1
0

M�

sðx� yÞ
jx� yj

� �����
����sn�m�1

� jx� yjm�njuðyÞj ds

� C
Z

Rn
jx� yjm�njuðyÞj dy:

Hence the Hardy-Littlewood-Sobolev inequality

yields (2.2).

Next, we consider the general case u 2 LpðRnÞ.
We write T� and S for the maps u 7! v� and u 7! w,

respectively, in the proof for the Schwartz function.

From the result for the Schwartz function it follows

that T� and S, defined on SðRnÞ, extend to bounded

linear operators from LpðRnÞ to LqðRnÞ. We choose

a sequence of functions ðujÞj2N in SðRnÞ that

converges to u in LpðRnÞ. Then we have

uj ¼
X
j�j¼m

@�T�uj þ Suj:ð2:5Þ

Since T�uj ! T�u and Suj ! Su in LqðRnÞ as

j!1, the right-hand side converges in

W�m
q ðRnÞ. Hence (2.1) holds with v� ¼ T�u and

w ¼ Su. The inequalities (2.2) and (2.3) follow from

the corresponding inequalities for the Schwartz

function. �

Proof of Theorem 1. In any case, the

boundedness of T follows by the Sobolev embedding

theorem: Lpð�Þ � W�m
r ð�Þ and Wm

r ð�Þ � Lqð�Þ.
So, it remains to evaluate the operator norms.

Let u 2 Lpð�Þ. By Lemma 4 there exist v� 2
Lrð�Þ and w 2 Lrð�Þ satisfying (2.1) and the

inequalities similar to (2.2), (2.3). Then we have

Tu ¼
X
j�j¼m

T@�v� þ Tw;

which gives

kTukWj
r
� CkTkW�mr !Wj

r
�m�nðp

�1�r�1ÞkukLp
þ CkTkLr!Wj

r
��nðp

�1�r�1ÞkukLp

for 0 � j � m. Minimizing the right-hand side if

m� nðp�1 � r�1Þ > 0, and letting �!1 if m�
nðp�1 � r�1Þ ¼ 0, we get

kTukWj
r
� CkTk1��

Lr!Wj
r
kTk�

W�mr !Wj
r
kukLp :ð2:6Þ

This inequality gives the estimate for (ii). The

estimate for (iii) follows from the Sobolev inequality

kfkLq � Ckfk
1��
Lr
kfk�Wm

r
:ð2:7Þ

The estimate for (i) follows from (2.6) with j ¼ 0;m
and (2.7). �

Lemma 5. Let 1 < p <1, 1=pþ 1=p0 ¼ 1

and m� n=p > 0. Let � 2 Nn
0 and 0 < � < 1 satisfy

m� n=p � j�j þ � .

Then for u 2 L1ðRnÞ and � > 0 there exist v
 2
Lp0 ðRnÞ with j
j ¼ m and w 2 Lp0 ðRnÞ such that @�u

is written as

@�u ¼
X
j
j¼m

@
v
 þ wð2:8Þ

and that

kv
kLp0 ðRnÞ � C�m�j�j�n=pkukL1ðRnÞ;ð2:9Þ

kwkLp0 ðRnÞ � C��j�j�n=pkukL1ðRnÞð2:10Þ
with C ¼ Cðn;m; pÞ. In addition, it holds that

k�hv
kLp0 ðRnÞ � Cjhj
��m�j�j�n=p��kukL1ðRnÞ;ð2:11Þ

k�hwkLp0 ðRnÞ � Cjhj
���j�j�n=p��kukL1ðRnÞð2:12Þ

for h 2 Rn with C ¼ Cðn;m; p; �Þ.
Proof. We may assume u 2 SðRnÞ by the same

argument as in the proof of Lemma 4, since the

maps u 7! v
 and u 7! w which will be constructed
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below extend to bounded linear operators from

L1ðRnÞ to Lp0 ðRnÞ.
We apply Muramatu’s formula (2.4) to @�u,

which belongs to SðRnÞ, with in mind that

ðMð�Þ
� Þt � @�uðxÞ ¼ tj�j�j�j@�x fðMð�Þ

� Þt � uðxÞg:

Then (2.8) holds with

v
ðxÞ ¼
Z �

0

ðMð�Þ

 Þt � uðxÞ tm�j�j�1 dt;

wðxÞ ¼ ��j�jð’ð�ÞÞ� � uðxÞ:
Then the same calculation as in the proof of

Lemma 4 gives (2.9) and (2.10).

In order to derive (2.11) and (2.12) we note

that

k�hftkLp0 � CðnÞkfkW 1
p0
t�n=p minf1; jhj=tgð2:13Þ

� CðnÞkfkW 1
p0
t�n=pðjhj=tÞ�

for f 2 C10 ðRnÞ and ftðxÞ ¼ t�nfðt�1xÞ with t > 0.

The first inequality follows from k�hgkLp0 � 2kgkLp0
and �hgðxÞ ¼

R 1
0 rgðxþ �hÞ 	 h d� with g ¼ ft,

and the second inequality is a consequence of

minf1; sg � s� for s > 0.

The second inequality in (2.13) yields (2.12). It

also yields (2.11) if m� n=p > j�j þ � . If m� n=p ¼
j�j þ � , we use the first inequality in (2.13) to get

k�hv
kLp0 �
Z �

0

k�hðMð�Þ

 ÞtkLp0 kukL1

tm�j�j�1 dt

�
Z �

0

Cminf1; jhj=tgtm�n=p�j�j�1 dt kukL1

� Cjhj�kukL1

Z 1
0

minf1; t�1gt��1 dt;

which gives (2.11). �

Proof of Theorem 2. First we assume � ¼
Rn. Let u 2 L1ðRnÞ and j�j � k, j�j � k. Taking

into account that Wm
p ð�Þ � Ckþ� ð�Þ by the Sobolev

embedding theorem, and using (2.8)–(2.10), we have

k@�T@�ukL1 �
X
j
j¼m

k@�TkW�m
p0 !L1

kv
kLp0

þ k@�TkLp0!L1kwkLp0
� Ck@�TkW�m

p0 !L1
�m�j�j�n=pkukL1

þ Ck@�TkLp0!L1�
�j�j�n=pkukL1

:

Minimizing the last expression, we get

k@�T@�ukL1ð2:14Þ
� Ck@�Tk1��

Lp0!L1k@
�Tk�W�m

p0 !L1
kukL1

with � ¼ ðj�j þ np�1Þ=m. Hence @�T@� is a bounded

operator from L1ðRnÞ to L1ðRnÞ. We denote by

K��ðx; yÞ the kernel of @�T@�, and simply write

Kðx; yÞ for K��ðx; yÞ with � ¼ � ¼ 0. It is easy to

see that @�x @
�
yKðx; yÞ ¼ ð�1Þj�jK��ðx; yÞ in the dis-

tributional sense. The estimate for @�x @
�
yKðx; yÞ

follows from (2.14) and the Sobolev inequality

k@�fkL1 � Ckfk
1��
Lp
kfk�Wm

p
ð2:15Þ

with � ¼ ðj�j þ np�1Þ=m.

In order to show the Hölder continuity of

K��ðx; yÞ we consider the operators �h@
�T@� and

@�T@��h. By the Lebesgue differentiation theorem

we know that it is sufficient to obtain the inequalities

similar to (1.6) for k�ð1Þh K��kL1 and k�ð2Þh K��kL1 .

Since the kernel of �h@
�T@� is �

ð1Þ
h K��ðx; yÞ, (2.14)

with @� replaced by �h@
� and the Sobolev inequality

k�h@
�fkL1 � Cjhj

�kfk1��
Lp
kfk�Wm

p

with � ¼ ðj�j þ � þ np�1Þ=m yield (1.6) for ða; bÞ ¼
ð1; 0Þ.

Noting that @��h ¼ �h@
�, and using (2.8),

(2.11) and (2.12), we have

k@�T@��hukL1
�
X
j
j¼m

k@�TkW�m
p0 !L1

k�hv
kLp0

þ k@�TkLp0!L1k�hwkLp0
� Cjhj��m�j�j�n=p��k@�TkW�m

p0 !L1
kukL1

þ Cjhj���j�j�n=p��k@�TkLp0!L1kukL1
:

Minimizing the last expression, we get

k@�T@��hukL1ð2:16Þ
� Cjhj�k@�Tk1��

Lp0!L1k@
�Tk�W�m

p0 !L1
kukL1

with � ¼ ðj�j þ � þ np�1Þ=m. Since the kernel of

@�T@��h is �
ð2Þ
�hK

��ðx; yÞ, (2.15) and (2.16) yield

(1.6) for ða; bÞ ¼ ð0; 1Þ.
We see that Kðx; yÞ 2 CkðRn �RnÞ from the

continuity of K��ðx; yÞ for j�j � k, j�j � k.
Next, we consider the case � 6¼ Rn. Let

u 2 L1ð�Þ. Let E be the universal extension oper-

ator for the Sobolev spaces on � to the correspond-

ing spaces on Rn, and let R be the restriction to �.

We denote by ~KKðx; yÞ the kernel of the bounded

operator ETR : W�m
p0 ðRnÞ !Wm

p ðRnÞ. We define

E0u by E0uðxÞ ¼ uðxÞ for x 2 � and E0uðxÞ ¼ 0 for

x 2 �c. Since Tu ¼ RðETRÞE0u, the kernel of T is

given by ~KKj���. Hence the case � 6¼ Rn reduces to

the case � ¼ Rn. �
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3. Application. Before applying Theorem 1

and Theorem 2 to the elliptic operator A defined in

(1.1), we precisely describe the assumptions on A.

We assume that A satisfies the following conditions:

(i) The principal symbol

aðx; �Þ ¼
X

j�j¼j�j¼m
a��ðxÞ��þ�

of A satisfies the strong ellipticity condition,

i.e., there exists �A > 0 such that

Re aðx; �Þ � �Aj�j2m for x 2 �, � 2 Rn:

(ii) All the coefficients a�� are in L1ð�Þ, and the

leading coefficients are uniformly continuous

in �.

By assumption there exists !A 2 ½0; 
=2Þ such that

j arg aðx; �Þj � !A for x 2 �, � 2 Rn:

For each p 2 ð1;1Þ the operator A is regarded as a

bounded linear operator

Wm
p;0ð�Þ !W�m

p ð�Þ:

For R > 0 and ! 2 ð0; 
=2Þ we set

�ðR; !Þ ¼ f� 2 C : j�j � R; ! � arg� � 2
� !g:

Theorem 6. Let ! 2 ð!A; 
=2Þ be given.

Then there exist R ¼ Rðn;m; !;A;�Þ such that the

inverse of the operator

A� � : [1<p<1W
m
p;0ð�Þ ! [1<p<1W

�m
p ð�Þ

exists for � 2 �ðR; !Þ and that for each p 2 ð1;1Þ
the inverse ðA� �Þ�1 is a bounded operator from

W�m
p ð�Þ to Wm

p;0ð�Þ that satisfies

kðA� �Þ�1kW�i
p ð�Þ!W

j
pð�Þ � Cj�j

�1þðiþjÞ=2mð3:1Þ

for 0� i�m, 0� j�m with C¼Cðn;m; p; !; A;�Þ.
Proof. See [2] for a uniform Cmþ1 domain

and [3] for a uniform C1 domain. �

In [2] we obtained Theorem 6 via the Gaussian

estimates for heat kernels and the exponential

decay estimates for resolvent kernels from its weak

version which is the same as Theorem 6 except that

the constant R may depend on p. In the process

of obtaining Theorem 6 from its weak version we

essentially proved and utilized

kðA� �Þ�1kLpð�Þ!Lqð�Þ � Cj�j
�1þðn=2mÞðp�1�q�1Þð3:2Þ

for 1 < p < q <1 and p�1 � q�1 < m=n, and

kðA� �Þ�NkL1ð�Þ!L1ð�Þ � Cj�j
�Nþn=2mð3:3Þ

for N > 2þ n=m. Since we used (3.1) only for i ¼ 0

to derive (3.2) and (3.3), the conditions on p, q and

N in (3.2) and (3.3) may be restrictive. Theorem 1

and Theorem 2 enable us to make a full use of (3.1)

and relax the conditions on p, q and N , as shown

below. The improvement for the conditions on p, q

and N is of interest in itself, although it does not

improve the statement of Theorem 6.

Corollary 7. Given ! 2 ð!A; 
=2Þ, let R be

the constant in Theorem 6 and let � 2 �ðR; !Þ.
(i) Let N 2 N, 1 � p < q � 1 and p�1 � q�1 �

2mN=n. In addition, let p�1 � q�1 < 2mN=n if

p ¼ 1 or q ¼ 1. Then ðA� �Þ�N is a bounded

operator from Lpð�Þ to Lqð�Þ and satisfies

kðA� �Þ�NkLpð�Þ!Lqð�Þ � Cj�j
�Nþðn=2mÞðp�1�q�1Þ

with C ¼ Cðn;m; p; q; !;N;A;�Þ.
(ii) Let N 2 N, 2mN > n, and take k 2 N0 and

0 < � < 1 so that 0 � k < m and 2mN �
nþ 2ðkþ �Þ. Then ðA� �Þ�N is a bounded

operator from L1ð�Þ to L1ð�Þ and its kernel

GN
� ðx; yÞ is in Ckð�� �Þ. More precisely,

for j�j � k and j�j � k the derivatives

@�x @
�
yG

N
� ðx; yÞ are continuous and satisfy

j@�x @�yGN
� ðx; yÞj � C1j�j�Nþðnþj�jþj�jÞ=2mð3:4Þ

for x; y 2 � with C1 ¼ C1ðn;m; !;N;A;�Þ.
Furthermore, the derivatives @�x @

�
yG

N
� ðx; yÞ

are Hölder continuous of order � and satisfy

j�ð1Þh @�x @
�
y G

N
� ðx; yÞj þ j�

ð2Þ
h @�x @

�
y G

N
� ðx; yÞjð3:5Þ

� C2jhj� j�j�Nþðnþj�jþj�jþ�Þ=2m

for x; y 2 � and h 2 Rn with C2 ¼
C2ðn;m; !; �;N;A;�Þ.
Remark 8. Corollary 7(i) is essentially the

same as [4, Lemma 3.4] whose proof is also based on

Theorem 6, but heavily relies on the exponential

decay estimates for resolvent kernels.

Proof. (i) First let N ¼ 1. Define r so that

r�1 ¼ ðp�1 þ q�1Þ=2, which implies p�1 � r�1 � m=n
and r�1 � q�1 � m=n. It also holds that p�1 �
r�1 < m=n and r�1 � q�1 < m=n if p ¼ 1 or q ¼ 1.

Using Theorem 1(i) and Theorem 6, we see that

ðA� �Þ�1 is a bounded operator from Lpð�Þ to

Lqð�Þ and get, with � ¼ ðn=2mÞðp�1 � q�1Þ,

kðA� �Þ�1kLp!Lq � Cj�j
�1ðj�j0Þð1��Þ

2

ðj�j1=2Þ�ð1��Þ

� ðj�j1=2Þð1��Þ�ðj�j1Þ�
2

� Cj�j�1þ�:
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The case N � 2 is treated by using the result for

N ¼ 1 repeatedly.

(ii) Choose p and a sequence ðplÞNl¼0 so that p ¼
p0 ¼ p1 ¼ 2 if N ¼ 1, and so that

p=ðp� 1Þ ¼ p0 < p1 < p2 < 	 	 	 < pN ¼ p <1;
m� n=p > k;

p�1
0 � p�1

1 � m=n; p�1
N�1 � p�1

N � m=n;
p�1
l�1 � p�1

l � 2m=n ð2 � l � N � 1Þ

if N � 2. Evaluating kðA� �Þ�1kW�ip0
!Lp1

, kðA�
�Þ�1kLpN�1

!Wj
pN

, and kðA� �Þ�1kLpl�1
!Lpl with 2 � l �

N � 1 by Theorem 1, we see that ðA� �Þ�N is a

bounded operator from W�m
p0 ð�Þ to Wm

p ð�Þ with

p0 ¼ p=ðp� 1Þ and get

kðA� �Þ�NkW�i
p0 !W

j
p

� Cj�j�NþðiþjÞ=2mþðn=2mÞððp0Þ�1�p�1Þ

for 0 � i � m, 0 � j � m. By Theorem 2 we obtain,

with � and � defined in (1.5),

j@�x @�y GN
� ðx; yÞj

� Cj�j�Nþðn=2mÞððp0Þ�1�p�1Þðj�j0Þð1��Þð1��Þ

� ðj�j1=2Þ�ð1��Þðj�j1=2Þð1��Þ�ðj�j1Þ��

� Cj�j�Nþðn=2mÞð1�2=pÞþð�þ�Þ=2;

which yields (3.4).

Similarly we obtain (3.5) if we replace m�
n=p > k by m� n=p � kþ � in the definition of the

sequence ðplÞNl¼0. �
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