Norm estimates and integral kernel estimates for a bounded operator in Sobolev spaces

By Yoichi MIYAZAKI

School of Dentistry, Nihon University, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan

(Communicated by Masaki Kashiwara, M.J.A., Nov. 14, 2011)

Abstract: We show that a bounded linear operator from the Sobolev space $W_r^{-m}(\Omega)$ to $W_r^m(\Omega)$ is a bounded operator from $L_p(\Omega)$ to $L_q(\Omega)$, and estimate the operator norm, if $p,q,r \in [1,\infty]$ and a positive integer m satisfy certain conditions, where Ω is a domain in \mathbf{R}^n . We also deal with a bounded linear operator from $W_{p'}^{-m}(\Omega)$ to $W_p^m(\Omega)$ with p' = p/(p-1), which has a bounded and continuous integral kernel. The results for these operators are applied to strongly elliptic operators.

Key words: Sobolev space; kernel theorem; Sobolev embedding theorem; elliptic operator.

1. Introduction. In [2,3] we developed the L_p theory for elliptic operators in divergence form subject to the Dirichlet boundary condition. Let A be the 2mth-order elliptic operator

(1.1)
$$Au(x) = \sum_{\substack{|\alpha| \le m \\ |\beta| \le m}} D^{\alpha}(a_{\alpha\beta}(x)D^{\beta}u(x)),$$
$$D = -\sqrt{-1}\partial$$

in a domain Ω of \mathbf{R}^n . One of the main results is that, for each $p \in (1, \infty)$, the inverse of $A - \lambda$ is a bounded linear operator

$$(A-\lambda)^{-1}: W_p^{-m}(\Omega) \to W_{p,0}^m(\Omega)$$

for λ in a suitable region of the complex plane ${\bf C},$ and that it satisfies

$$(1.2) \quad \|(A-\lambda)^{-1}\|_{W_{p}^{-i}(\Omega)\to W_{p}^{j}(\Omega)} \le C|\lambda|^{-1+(i+j)/2m}$$

for $0 \le i \le m$, $0 \le j \le m$ with some constant C. We also derived estimates for the kernels of e^{-tA} and $(A-\lambda)^{-1}$, based on (1.2). However, we used (1.2) only for i=0. The aim of this paper is to present two theorems which are useful for making a full use of (1.2) including the case $0 < i \le m$.

Throughout this paper, we assume that Ω is \mathbf{R}^n or a uniform C^1 domain if $n \geq 2$, and that Ω is an interval in \mathbf{R} if n = 1. For $p \in (1, \infty)$ and $s \in \mathbf{R}$ we

denote by $W_p^s(\Omega)$ the L_p Sobolev space of order s, and by $W_{p,0}^s(\Omega)$ the closure of $C_0^\infty(\Omega)$ in $W_p^s(\Omega)$. In particular, if s=-k with a positive integer k, the space $W_p^{-k}(\Omega)$ is the set of all functions u which are written as

(1.3)
$$u = \sum_{|\alpha| \le k} \partial^{\alpha} u_{\alpha}, \quad u_{\alpha} \in L_{p}(\Omega),$$

and the norm $||u||_{W_{p}^{-k}(\Omega)}$ is equivalent to

$$\inf \sum_{|lpha| \le k} \|u_lpha\|_{L_p(\Omega)},$$

where the infimum is taken over all $\{u_{\alpha}\}_{|\alpha| \leq k}$ satisfying (1.3).

Theorem 1. Let $1 \leq p < r < q \leq \infty$, $p^{-1} - r^{-1} \leq m/n$ and $r^{-1} - q^{-1} \leq m/n$. In addition, let $p^{-1} - r^{-1} < m/n$ if p = 1, and let $r^{-1} - q^{-1} < m/n$ if $q = \infty$. Assume that T is a bounded linear operator from $W_r^{-m}(\Omega)$ to $W_r^m(\Omega)$. Then the following statements hold with

$$\theta = (n/m)(p^{-1} - r^{-1}), \quad \eta = (n/m)(r^{-1} - q^{-1}).$$

(i) T is a bounded operator from $L_p(\Omega)$ to $L_q(\Omega)$ and

$$||T||_{L_{p}(\Omega)\to L_{q}(\Omega)} \le C||T||_{L_{r}(\Omega)\to L_{r}(\Omega)}^{(1-\theta)(1-\eta)}||T||_{W_{r}^{-m}(\Omega)\to L_{r}(\Omega)}^{\theta(1-\eta)} \times ||T||_{L_{r}(\Omega)\to W_{r}^{m}(\Omega)}^{(1-\theta)\eta}||T||_{W_{r}^{-m}(\Omega)\to W_{r}^{m}(\Omega)}^{\theta\eta}$$

with $C = C(n, m, p, q, r, \Omega)$.

²⁰¹⁰ Mathematics Subject Classification. Primary 46E35; Secondary 35J40.

(ii) T is a bounded operator from $L_p(\Omega)$ to $W_r^m(\Omega)$ and

$$\begin{split} \|T\|_{L_p(\Omega) \to W_r^j(\Omega)} \\ &\leq C \|T\|_{L_r(\Omega) \to W_r^j(\Omega)}^{1-\theta} \|T\|_{W^{-m} \to W_r^j(\Omega)}^{\theta} \end{split}$$

for $0 \le j \le m$ with $C = C(n, m, p, r, \Omega)$.

(iii) T is a bounded operator from $W_r^{-m}(\Omega)$ to $L_q(\Omega)$

$$||T||_{W_r^{-i}(\Omega) \to L_q(\Omega)}$$

$$\leq C||T||_{W_r^{-i}(\Omega) \to L_r(\Omega)}^{1-\eta} ||T||_{W_r^{-i} \to W_r^m(\Omega)}^{\eta}$$

for $0 \le i \le m$ with $C = C(n, m, q, r, \Omega)$.

As is well known, a bounded linear operator T from $L_1(\Omega)$ to $L_{\infty}(\Omega)$ is written as

$$Tu(x) = \int_{\Omega} K(x, y)u(y) dy, \quad u \in L_1(\Omega)$$

with kernel $K(x,y) \in L_{\infty}(\Omega \times \Omega)$. If T satisfies a stronger condition, we can say more about its kernel. For a function u(x) and $h \in \mathbf{R}^n$, we define the operator Δ_h by

$$\Delta_h u(x)$$

$$= \begin{cases} u(x+h) - u(x) & \text{(if } x \in \Omega \text{ and } x+h \in \Omega), \\ 0 & \text{(otherwise)}. \end{cases}$$

For a function K(x, y) we write $\Delta_h^{(1)}$ (resp. $\Delta_h^{(2)}$) for Δ_h that operates K(x, y) with respect to x (resp. y). Let \mathbf{N} be the set of positive integers, and let $\mathbf{N}_0 = \mathbf{N} \cup \{0\}$.

Theorem 2. Let 1 , <math>m - n/p > 0 and $p^{-1} + (p')^{-1} = 1$. Let $k \in \mathbb{N}_0$ and $0 < \tau < 1$ satisfy $m - n/p \ge k + \tau$. Assume that T is a bounded linear operator from $W_{p'}^{-m}(\Omega)$ to $W_p^m(\Omega)$. Then T is a bounded linear operator from $L_1(\Omega)$ to $L_{\infty}(\Omega)$, and the kernel K(x,y) of T is in $C^k(\Omega \times \Omega)$. More precisely, for $|\alpha| \le k$ and $|\beta| \le k$ the derivatives $\partial_x^{\alpha} \partial_y^{\beta} K(x,y)$ are continuous and satisfy

$$(1.4) \qquad |\partial_{x}^{\alpha}\partial_{y}^{\beta}K(x,y)| \\ \leq C||T||_{L_{p'(\Omega)}\to L_{p}(\Omega)}^{(1-\theta)(1-\eta)}||T||_{L_{p'}(\Omega)\to W_{p}^{m}(\Omega)}^{\theta(1-\eta)} \\ \times ||T||_{W_{p''}^{-m}(\Omega)\to L_{p}(\Omega)}^{(1-\theta)\eta}||T||_{W_{p''}^{-m}(\Omega)\to W_{p}^{m}(\Omega)}^{\theta\eta}$$

for $x, y \in \Omega$ with

(1.5)
$$\theta = \frac{|\alpha| + np^{-1}}{m}, \quad \eta = \frac{|\beta| + np^{-1}}{m}$$

and $C = C(n, m, p, \Omega)$. Furthermore, the derivatives $\partial_x^{\alpha} \partial_y^{\beta} K(x, y)$ are Hölder continuous of order τ and satisfy

$$(1.6) \qquad |(\Delta_{h}^{(1)})^{a}(\Delta_{h}^{(2)})^{b}\partial_{x}^{\alpha}\partial_{y}^{\beta}K(x,y)|$$

$$\leq C|h|^{\tau}||T||_{L_{p'}(\Omega)\to L_{p}(\Omega)}^{(1-\theta)(1-\eta)}||T||_{L_{p'}(\Omega)\to W_{p}^{m}(\Omega)}^{\theta(1-\eta)}$$

$$\times ||T||_{W_{p'}^{-m}(\Omega)\to L_{p}(\Omega)}^{(1-\theta)\eta}||T||_{W_{p'}^{-m}(\Omega)\to W_{p}^{m}(\Omega)}^{\theta\eta}$$

for $x, y \in \Omega$, $h \in \mathbf{R}^n$ and (a, b) = (1, 0), (0, 1) with

$$\theta = \frac{|\alpha| + a\tau + np^{-1}}{m}\,, \quad \eta = \frac{|\beta| + b\tau + np^{-1}}{m}$$

and $C = C(n, m, p, \tau, \Omega)$. Here $(\Delta_h^{(1)})^0$ and $(\Delta_h^{(2)})^0$ should be interpreted as the identity.

Remark 3. The estimate (1.4) with $\alpha = \beta = 0$ is considered to be a generalization of the kernel theorem [1, Lemma 3.2] for p = 2 to the case $p \neq 2$.

2. Proofs. For the proofs of Theorem 1 and Theorem 2 we use the Sobolev embedding theorem which guarantees the inclusions such as $W_p^m(\Omega) \subset L_q(\Omega)$, $L_p(\Omega) \subset W_q^{-m}(\Omega)$ and the inequalities for $\|u\|_{L_q(\Omega)}$, $\|u\|_{W_q^{-m}(\Omega)}$ if p and q satisfy suitable conditions. We need to formulate the embedding $L_p(\Omega) \subset W_q^{-m}(\Omega)$ more precisely than usual.

Lemma 4. Let $1 \le p < q \le \infty$ and $m \ge n(p^{-1} - q^{-1})$. In addition, let $m > n(p^{-1} - q^{-1})$ if p = 1 or $q = \infty$.

Let $u \in L_p(\Omega)$. Then for any $\lambda > 0$ there exist $v_{\alpha} \in L_q(\Omega)$ with $|\alpha| = m$ and $w \in L_q(\Omega)$ such that u is written as

(2.1)
$$u = \sum_{|\alpha| = m} \partial^{\alpha} v_{\alpha} + w$$

and that

$$(2.2) ||v_{\alpha}||_{L_{q}(\Omega)} \le C\lambda^{m-n(p^{-1}-q^{-1})}||u||_{L_{q}(\Omega)},$$

$$(2.3) ||w||_{L_q(\Omega)} \le C\lambda^{-n(p^{-1}-q^{-1})} ||u||_{L_p(\Omega)}$$

with $C = C(n, m, p, q, \Omega)$.

Proof. We may assume that $\Omega = \mathbf{R}^n$, since the case $\Omega \neq \mathbf{R}^n$ can be reduced to the case $\Omega = \mathbf{R}^n$ by extending $u \in L_p(\Omega)$ by zero to \mathbf{R}^n .

First we assume that u belongs to the Schwartz space $\mathcal{S}(\mathbf{R}^n)$. It is convenient to use Muramatu's integral formula [5], which expresses a function by its regularization. Let us briefly review it. Choose a function $\rho \in C_0^{\infty}(\mathbf{R}^n)$ satisfying $\int_{\mathbf{R}^n} \rho(x) dx = 1$ and $\sup \rho \subset \{x \in \mathbf{R}^n : |x| < 1\}$, and set

$$\varphi(x) = \sum_{|\alpha| < m} \frac{1}{\alpha!} \, \partial_x^{\alpha} \{ x^{\alpha} \rho(x) \},$$

$$M(x) = \sum_{|\alpha|=m} M_{\alpha}^{(\alpha)}(x), \quad M_{\alpha}(x) = \frac{m}{\alpha!} x^{\alpha} \rho(x).$$

Here and in what follows we sometimes write $f^{(\alpha)}$ for the derivative $\partial^{\alpha} f$ of a function f(x). For t > 0 and a function f(x) we set $f_t(x) = t^{-n} f(t^{-1}x)$. Using the relations $\partial_t \{\varphi_t(x)\} = -t^{-1}M_t(x)$ and $\lim_{t\to+0} \varphi_t * u(x) = u(x)$, we have

$$(2.4) \quad u(x) = \int_0^\lambda M_t * u(x) \frac{dt}{t} + \varphi_\lambda * u(x), \quad \lambda > 0$$

for $u \in \mathcal{S}(\mathbf{R}^n)$, where the integral is an improper integral, namely, it is the limit of the Riemann integral $\int_{\epsilon}^{\lambda} M_t * u(x) t^{-1} dt$ as $\epsilon \to +0$. In view of $(M_{\alpha}^{(\alpha)})_t(x) = t^m \partial_x^{\alpha} (M_{\alpha})_t(x)$ we see that (2.1) holds

$$v_{\alpha}(x) = \int_{0}^{\lambda} (M_{\alpha})_{t} * u(x)t^{m-1} dt,$$

$$w(x) = \varphi_{\lambda} * u(x).$$

Define r > 1 by $p^{-1} + r^{-1} = 1 + q^{-1}$. Then the Young inequality $\|w\|_{L_q} \leq \|\varphi_\lambda\|_{L_r} \|u\|_{L_p}$ and $\|\varphi_\lambda\|_{L_r} = \lambda^{-n(p^{-1}-q^{-1})} \|\varphi\|_{L_r}$ give (2.3). If $m > n(p^{-1}-q^{-1}) > 0$, a similar calculation shows

$$\|v_{\alpha}\|_{L_{q}} \leq \|M_{\alpha}\|_{L_{r}} \|u\|_{L_{p}} \int_{0}^{\lambda} t^{m-n(p^{-1}-q^{-1})-1} dt,$$

from which (2.2) follows.

If $m = n(p^{-1} - q^{-1})$, which implies 1 ∞ by assumption and therefore 0 < m < n, the change of variables |x-y|/t = s gives

$$|v_{\alpha}(x)| \leq \int_{\mathbf{R}^{n}} dy \int_{0}^{\infty} \left| M_{\alpha} \left(\frac{s(x-y)}{|x-y|} \right) \right| s^{n-m-1}$$

$$\times |x-y|^{m-n} |u(y)| ds$$

$$\leq C \int_{\mathbf{R}^{n}} |x-y|^{m-n} |u(y)| dy.$$

Hence the Hardy-Littlewood-Sobolev inequality yields (2.2).

Next, we consider the general case $u \in L_p(\mathbf{R}^n)$. We write T_{α} and S for the maps $u \mapsto v_{\alpha}$ and $u \mapsto w$, respectively, in the proof for the Schwartz function. From the result for the Schwartz function it follows that T_{α} and S, defined on $\mathcal{S}(\mathbf{R}^n)$, extend to bounded linear operators from $L_p(\mathbf{R}^n)$ to $L_q(\mathbf{R}^n)$. We choose a sequence of functions $(u_j)_{j\in\mathbb{N}}$ in $\mathcal{S}(\mathbb{R}^n)$ that converges to u in $L_p(\mathbf{R}^n)$. Then we have

(2.5)
$$u_j = \sum_{|\alpha|=m} \partial^{\alpha} T_{\alpha} u_j + S u_j.$$

Since $T_{\alpha}u_j \to T_{\alpha}u$ and $Su_j \to Su$ in $L_q(\mathbf{R}^n)$ as $j \to \infty$, the right-hand side converges $W_q^{-m}(\mathbf{R}^n)$. Hence (2.1) holds with $v_\alpha = T_\alpha u$ and

w = Su. The inequalities (2.2) and (2.3) follow from the corresponding inequalities for the Schwartz function.

Proof of Theorem 1. In any case, the boundedness of T follows by the Sobolev embedding theorem: $L_p(\Omega) \subset W_r^{-m}(\Omega)$ and $W_r^m(\Omega) \subset L_q(\Omega)$. So, it remains to evaluate the operator norms.

Let $u \in L_p(\Omega)$. By Lemma 4 there exist $v_{\alpha} \in$ $L_r(\Omega)$ and $w \in L_r(\Omega)$ satisfying (2.1) and the inequalities similar to (2.2), (2.3). Then we have

$$Tu = \sum_{|\alpha|=m} T\partial^{\alpha} v_{\alpha} + Tw,$$

which gives

$$\begin{split} \|Tu\|_{W_r^j} & \leq C \|T\|_{W_r^{-m} \to W_r^j} \lambda^{m-n(p^{-1}-r^{-1})} \|u\|_{L_p} \\ & + C \|T\|_{L_r \to W_r^j} \lambda^{-n(p^{-1}-r^{-1})} \|u\|_{L_p} \end{split}$$

for $0 \le j \le m$. Minimizing the right-hand side if $m - n(p^{-1} - r^{-1}) > 0$, and letting $\lambda \to \infty$ if m $n(p^{-1}-r^{-1})=0$, we get

$$(2.6) ||Tu||_{W_r^j} \le C||T||_{L_r \to W_r^j}^{1-\theta} ||T||_{W_r^{-m} \to W_r^j}^{\theta} ||u||_{L_p}.$$

This inequality gives the estimate for (ii). The estimate for (iii) follows from the Sobolev inequality

(2.7)
$$||f||_{L_q} \le C||f||_{L_r}^{1-\eta}||f||_{W_r^m}^{\eta}.$$

The estimate for (i) follows from (2.6) with j = 0, mand (2.7).

Lemma 5. Let 1 , <math>1/p + 1/p' = 1and m - n/p > 0. Let $\beta \in \mathbb{N}_0^n$ and $0 < \tau < 1$ satisfy $m - n/p \ge |\beta| + \tau$.

Then for $u \in L_1(\mathbf{R}^n)$ and $\lambda > 0$ there exist $v_{\gamma} \in$ $L_{p'}(\mathbf{R}^n)$ with $|\gamma| = m$ and $w \in L_{p'}(\mathbf{R}^n)$ such that $\partial^{\beta}u$ is written as

(2.8)
$$\partial^{\beta} u = \sum_{|\gamma|=m} \partial^{\gamma} v_{\gamma} + w$$

and that

(2.9)
$$||v_{\gamma}||_{L_{\eta'}(\mathbf{R}^n)} \le C\lambda^{m-|\beta|-n/p}||u||_{L_1(\mathbf{R}^n)},$$

$$(2.10) ||w||_{L_{n'}(\mathbf{R}^n)} \le C\lambda^{-|\beta|-n/p} ||u||_{L_1(\mathbf{R}^n)}$$

with C = C(n, m, p). In addition, it holds that

$$(2.12) \|\Delta_h w\|_{L_{p'}(\mathbf{R}^n)} \le C|h|^{\tau} \lambda^{-|\beta|-n/p-\tau} \|u\|_{L_1(\mathbf{R}^n)}$$
for $h \in \mathbf{R}^n$ with $C = C(n, m, n, \tau)$

for $h \in \mathbf{R}^n$ with $C = C(n, m, p, \tau)$.

Proof. We may assume $u \in \mathcal{S}(\mathbf{R}^n)$ by the same argument as in the proof of Lemma 4, since the maps $u \mapsto v_{\gamma}$ and $u \mapsto w$ which will be constructed below extend to bounded linear operators from $L_1(\mathbf{R}^n)$ to $L_{v'}(\mathbf{R}^n)$.

We apply Muramatu's formula (2.4) to $\partial^{\beta}u$, which belongs to $\mathcal{S}(\mathbf{R}^n)$, with in mind that

$$(M_{\alpha}^{(\alpha)})_t * \partial^{\beta} u(x) = t^{|\alpha| - |\beta|} \partial_x^{\alpha} \{ (M_{\alpha}^{(\beta)})_t * u(x) \}.$$

Then (2.8) holds with

$$egin{align} v_{\gamma}(x) &= \int_0^{\lambda} (M_{\gamma}^{(eta)})_t * u(x) \, t^{m-|eta|-1} \, dt, \\ w(x) &= \lambda^{-|eta|} (arphi^{(eta)})_{\lambda} * u(x). \end{split}$$

Then the same calculation as in the proof of Lemma 4 gives (2.9) and (2.10).

In order to derive (2.11) and (2.12) we note that

(2.13)
$$\|\Delta_h f_t\|_{L_{p'}} \le C(n) \|f\|_{W_{p'}^1} t^{-n/p} \min\{1, |h|/t\}$$

 $\le C(n) \|f\|_{W_{p'}^1} t^{-n/p} (|h|/t)^{\tau}$

for $f \in C_0^{\infty}(\mathbf{R}^n)$ and $f_t(x) = t^{-n}f(t^{-1}x)$ with t > 0. The first inequality follows from $\|\Delta_h g\|_{L_{p'}} \le 2\|g\|_{L_{p'}}$ and $\Delta_h g(x) = \int_0^1 \nabla g(x + \theta h) \cdot h \, d\theta$ with $g = f_t$, and the second inequality is a consequence of $\min\{1, s\} \le s^{\tau}$ for s > 0.

The second inequality in (2.13) yields (2.12). It also yields (2.11) if $m - n/p > |\beta| + \tau$. If $m - n/p = |\beta| + \tau$, we use the first inequality in (2.13) to get

$$\begin{split} \|\Delta_h v_{\gamma}\|_{L_{p'}} &\leq \int_0^{\lambda} \|\Delta_h (M_{\gamma}^{(\beta)})_t\|_{L_{p'}} \|u\|_{L_1} t^{m-|\beta|-1} dt \\ &\leq \int_0^{\lambda} C \min\{1, |h|/t\} t^{m-n/p-|\beta|-1} dt \|u\|_{L_1} \\ &\leq C |h|^{\tau} \|u\|_{L_1} \int_0^{\infty} \min\{1, t^{-1}\} t^{\tau-1} dt, \end{split}$$

which gives (2.11).

Proof of Theorem 2. First we assume $\Omega = \mathbf{R}^n$. Let $u \in L_1(\mathbf{R}^n)$ and $|\alpha| \leq k$, $|\beta| \leq k$. Taking into account that $W_p^m(\Omega) \subset C^{k+\tau}(\Omega)$ by the Sobolev embedding theorem, and using (2.8)–(2.10), we have

$$\begin{split} \|\partial^{\alpha}T\partial^{\beta}u\|_{L_{\infty}} &\leq \sum_{|\gamma|=m} \|\partial^{\alpha}T\|_{W_{p'}^{-m} \to L_{\infty}} \|v_{\gamma}\|_{L_{p'}} \\ &+ \|\partial^{\alpha}T\|_{L_{p'} \to L_{\infty}} \|w\|_{L_{p'}} \\ &\leq C\|\partial^{\alpha}T\|_{W_{p'}^{-m} \to L_{\infty}} \lambda^{m-|\beta|-n/p} \|u\|_{L_{1}} \\ &+ C\|\partial^{\alpha}T\|_{L_{p'} \to L_{\infty}} \lambda^{-|\beta|-n/p} \|u\|_{L_{1}}. \end{split}$$

Minimizing the last expression, we get $(2.14) \quad \|\partial^{\alpha}T\partial^{\beta}u\|_{L_{\infty}}$

$$\leq C \|\partial^{\alpha} T\|_{L_{p'} \to L_{\infty}}^{1-\eta} \|\partial^{\alpha} T\|_{W_{p'}^{-m} \to L_{\infty}}^{\eta} \|u\|_{L_{1}}$$

with $\eta = (|\beta| + np^{-1})/m$. Hence $\partial^{\alpha}T\partial^{\beta}$ is a bounded operator from $L_1(\mathbf{R}^n)$ to $L_{\infty}(\mathbf{R}^n)$. We denote by $K^{\alpha\beta}(x,y)$ the kernel of $\partial^{\alpha}T\partial^{\beta}$, and simply write K(x,y) for $K^{\alpha\beta}(x,y)$ with $\alpha = \beta = 0$. It is easy to see that $\partial_x^{\alpha}\partial_y^{\beta}K(x,y) = (-1)^{|\beta|}K^{\alpha\beta}(x,y)$ in the distributional sense. The estimate for $\partial_x^{\alpha}\partial_y^{\beta}K(x,y)$ follows from (2.14) and the Sobolev inequality

(2.15)
$$\|\partial^{\alpha} f\|_{L_{\infty}} \le C \|f\|_{L_{p}}^{1-\theta} \|f\|_{W_{p}}^{\theta}$$

with $\theta = (|\alpha| + np^{-1})/m$.

In order to show the Hölder continuity of $K^{\alpha\beta}(x,y)$ we consider the operators $\Delta_h \partial^{\alpha} T \partial^{\beta}$ and $\partial^{\alpha} T \partial^{\beta} \Delta_h$. By the Lebesgue differentiation theorem we know that it is sufficient to obtain the inequalities similar to (1.6) for $\|\Delta_h^{(1)} K^{\alpha\beta}\|_{L_{\infty}}$ and $\|\Delta_h^{(2)} K^{\alpha\beta}\|_{L_{\infty}}$. Since the kernel of $\Delta_h \partial^{\alpha} T \partial^{\beta}$ is $\Delta_h^{(1)} K^{\alpha\beta}(x,y)$, (2.14) with ∂^{α} replaced by $\Delta_h \partial^{\alpha}$ and the Sobolev inequality

$$\|\Delta_h \partial^{\alpha} f\|_{L_{\infty}} \le C|h|^{\tau} \|f\|_{L_n}^{1-\theta} \|f\|_{W_n^m}^{\theta}$$

with $\theta = (|\alpha| + \tau + np^{-1})/m$ yield (1.6) for (a, b) = (1, 0).

Noting that $\partial^{\beta} \Delta_h = \Delta_h \partial^{\beta}$, and using (2.8), (2.11) and (2.12), we have

$$\begin{split} &\|\partial^{\alpha}T\partial^{\beta}\Delta_{h}u\|_{L_{\infty}} \\ &\leq \sum_{|\gamma|=m} \|\partial^{\alpha}T\|_{W_{p'}^{-m}\to L_{\infty}} \|\Delta_{h}v_{\gamma}\|_{L_{p'}} \\ &+ \|\partial^{\alpha}T\|_{L_{p'}\to L_{\infty}} \|\Delta_{h}w\|_{L_{p'}} \\ &\leq C|h|^{\tau}\lambda^{m-|\beta|-n/p-\tau} \|\partial^{\alpha}T\|_{W_{p'}^{-m}\to L_{\infty}} \|u\|_{L_{1}} \\ &+ C|h|^{\tau}\lambda^{-|\beta|-n/p-\tau} \|\partial^{\alpha}T\|_{L_{p'}\to L_{\infty}} \|u\|_{L_{1}}. \end{split}$$

Minimizing the last expression, we get

(2.16) $\|\partial^{\alpha}T\partial^{\beta}\Delta_{h}u\|_{L_{\infty}}$

$$\leq C|h|^{\tau} \|\partial^{\alpha}T\|_{L_{p'}\to L_{\infty}}^{1-\eta} \|\partial^{\alpha}T\|_{W_{\sigma'}^{-m}\to L_{\infty}}^{\eta} \|u\|_{L_{1}}$$

with $\eta = (|\beta| + \tau + np^{-1})/m$. Since the kernel of $\partial^{\alpha}T\partial^{\beta}\Delta_h$ is $\Delta_{-h}^{(2)}K^{\alpha\beta}(x,y)$, (2.15) and (2.16) yield (1.6) for (a,b)=(0,1).

We see that $K(x,y) \in C^k(\mathbf{R}^n \times \mathbf{R}^n)$ from the continuity of $K^{\alpha\beta}(x,y)$ for $|\alpha| \leq k$, $|\beta| \leq k$.

Next, we consider the case $\Omega \neq \mathbf{R}^n$. Let $u \in L_1(\Omega)$. Let E be the universal extension operator for the Sobolev spaces on Ω to the corresponding spaces on \mathbf{R}^n , and let R be the restriction to Ω . We denote by $\tilde{K}(x,y)$ the kernel of the bounded operator $ETR: W_p^{-m}(\mathbf{R}^n) \to W_p^m(\mathbf{R}^n)$. We define E_0u by $E_0u(x) = u(x)$ for $x \in \Omega$ and $E_0u(x) = 0$ for $x \in \Omega^c$. Since $Tu = R(ETR)E_0u$, the kernel of T is given by $\tilde{K}|_{\Omega \times \Omega}$. Hence the case $\Omega \neq \mathbf{R}^n$ reduces to the case $\Omega = \mathbf{R}^n$.

- **3. Application.** Before applying Theorem 1 and Theorem 2 to the elliptic operator A defined in (1.1), we precisely describe the assumptions on A. We assume that A satisfies the following conditions:
- (i) The principal symbol

$$a(x,\xi) = \sum_{|\alpha| = |\beta| = m} a_{\alpha\beta}(x) \xi^{\alpha+\beta}$$

of A satisfies the strong ellipticity condition, i.e., there exists $\delta_A > 0$ such that

$$\operatorname{Re} a(x,\xi) \ge \delta_A |\xi|^{2m} \quad \text{for } x \in \Omega, \, \xi \in \mathbf{R}^n.$$

(ii) All the coefficients $a_{\alpha\beta}$ are in $L_{\infty}(\Omega)$, and the leading coefficients are uniformly continuous in Ω .

By assumption there exists $\omega_A \in [0, \pi/2)$ such that

$$|\arg a(x,\xi)| \le \omega_A$$
 for $x \in \Omega$, $\xi \in \mathbf{R}^n$.

For each $p \in (1, \infty)$ the operator A is regarded as a bounded linear operator

$$W_{p,0}^m(\Omega) \to W_p^{-m}(\Omega).$$

For R > 0 and $\omega \in (0, \pi/2)$ we set

$$\Lambda(R,\omega) = \{ \lambda \in \mathbf{C} : |\lambda| \ge R, \, \omega \le \arg \lambda \le 2\pi - \omega \}.$$

Theorem 6. Let $\omega \in (\omega_A, \pi/2)$ be given. Then there exist $R = R(n, m, \omega, A, \Omega)$ such that the inverse of the operator

$$A - \lambda: \cup_{1$$

exists for $\lambda \in \Lambda(R,\omega)$ and that for each $p \in (1,\infty)$ the inverse $(A-\lambda)^{-1}$ is a bounded operator from $W_p^{-m}(\Omega)$ to $W_{p,0}^m(\Omega)$ that satisfies

$$(3.1) \quad \|(A-\lambda)^{-1}\|_{W_p^{-i}(\Omega)\to W_p^j(\Omega)} \le C|\lambda|^{-1+(i+j)/2m}$$

for $0 \le i \le m$, $0 \le j \le m$ with $C = C(n, m, p, \omega, A, \Omega)$. Proof. See [2] for a uniform C^{m+1} domain and [3] for a uniform C^1 domain.

In [2] we obtained Theorem 6 via the Gaussian estimates for heat kernels and the exponential decay estimates for resolvent kernels from its weak version which is the same as Theorem 6 except that the constant R may depend on p. In the process of obtaining Theorem 6 from its weak version we essentially proved and utilized

$$\begin{split} &(3.2) \quad \|(A-\lambda)^{-1}\|_{L_p(\Omega)\to L_q(\Omega)} \leq C |\lambda|^{-1+(n/2m)(p^{-1}-q^{-1})} \\ &\text{for } 1$$

for N > 2 + n/m. Since we used (3.1) only for i = 0 to derive (3.2) and (3.3), the conditions on p, q and N in (3.2) and (3.3) may be restrictive. Theorem 1 and Theorem 2 enable us to make a full use of (3.1) and relax the conditions on p, q and N, as shown below. The improvement for the conditions on p, q and N is of interest in itself, although it does not improve the statement of Theorem 6.

Corollary 7. Given $\omega \in (\omega_A, \pi/2)$, let R be the constant in Theorem 6 and let $\lambda \in \Lambda(R, \omega)$.

- (i) Let $N \in \mathbb{N}$, $1 \le p < q \le \infty$ and $p^{-1} q^{-1} \le 2mN/n$. In addition, let $p^{-1} q^{-1} < 2mN/n$ if p = 1 or $q = \infty$. Then $(A \lambda)^{-N}$ is a bounded operator from $L_p(\Omega)$ to $L_q(\Omega)$ and satisfies
 - $\|(A-\lambda)^{-N}\|_{L_p(\Omega)\to L_q(\Omega)} \le C|\lambda|^{-N+(n/2m)(p^{-1}-q^{-1})}$

with $C = C(n, m, p, q, \omega, N, A, \Omega)$.

- (ii) Let $N \in \mathbb{N}$, 2mN > n, and take $k \in \mathbb{N}_0$ and $0 < \tau < 1$ so that $0 \le k < m$ and $2mN \ge n + 2(k + \tau)$. Then $(A \lambda)^{-N}$ is a bounded operator from $L_1(\Omega)$ to $L_{\infty}(\Omega)$ and its kernel $G_{\lambda}^N(x,y)$ is in $C^k(\Omega \times \Omega)$. More precisely, for $|\alpha| \le k$ and $|\beta| \le k$ the derivatives $\partial_x^\alpha \partial_y^\beta G_{\lambda}^N(x,y)$ are continuous and satisfy
 - $(3.4) \qquad |\partial_x^{\alpha} \partial_y^{\beta} G_{\lambda}^N(x,y)| \le C_1 |\lambda|^{-N + (n+|\alpha| + |\beta|)/2m}$

for $x, y \in \Omega$ with $C_1 = C_1(n, m, \omega, N, A, \Omega)$. Furthermore, the derivatives $\partial_x^{\alpha} \partial_y^{\beta} G_{\lambda}^N(x, y)$ are Hölder continuous of order τ and satisfy

$$(3.5) \quad |\Delta_h^{(1)} \partial_x^{\alpha} \partial_y^{\beta} G_{\lambda}^N(x,y)| + |\Delta_h^{(2)} \partial_x^{\alpha} \partial_y^{\beta} G_{\lambda}^N(x,y)|$$

$$\leq C_2 |h|^{\tau} |\lambda|^{-N + (n+|\alpha| + |\beta| + \tau)/2m}$$

for $x, y \in \Omega$ and $h \in \mathbf{R}^n$ with $C_2 = C_2(n, m, \omega, \tau, N, A, \Omega)$.

Remark 8. Corollary 7(i) is essentially the same as [4, Lemma 3.4] whose proof is also based on Theorem 6, but heavily relies on the exponential decay estimates for resolvent kernels.

Proof. (i) First let N=1. Define r so that $r^{-1}=(p^{-1}+q^{-1})/2$, which implies $p^{-1}-r^{-1} \leq m/n$ and $r^{-1}-q^{-1} \leq m/n$. It also holds that $p^{-1}-r^{-1} < m/n$ and $r^{-1}-q^{-1} < m/n$ if p=1 or $q=\infty$. Using Theorem 1(i) and Theorem 6, we see that $(A-\lambda)^{-1}$ is a bounded operator from $L_p(\Omega)$ to $L_q(\Omega)$ and get, with $\theta=(n/2m)(p^{-1}-q^{-1})$,

$$||(A - \lambda)^{-1}||_{L_p \to L_q} \le C|\lambda|^{-1} (|\lambda|^0)^{(1-\theta)^2} (|\lambda|^{1/2})^{\theta(1-\theta)} \times (|\lambda|^{1/2})^{(1-\theta)\theta} (|\lambda|^1)^{\theta^2} \le C|\lambda|^{-1+\theta}.$$

The case $N \geq 2$ is treated by using the result for N = 1 repeatedly.

(ii) Choose p and a sequence $(p_l)_{l=0}^N$ so that $p=p_0=p_1=2$ if N=1, and so that

$$p/(p-1) = p_0 < p_1 < p_2 < \dots < p_N = p < \infty,$$

$$m - n/p > k,$$

$$p_0^{-1} - p_1^{-1} \le m/n, \quad p_{N-1}^{-1} - p_N^{-1} \le m/n,$$

$$p_{l-1}^{-1} - p_l^{-1} \le 2m/n \quad (2 \le l \le N - 1)$$

if $N \geq 2$. Evaluating $\|(A-\lambda)^{-1}\|_{W_{p_0}^{-i} \to L_{p_1}}$, $\|(A-\lambda)^{-1}\|_{L_{p_{N-1}} \to W_{p_N}^j}$, and $\|(A-\lambda)^{-1}\|_{L_{p_{l-1}} \to L_{p_l}}$ with $2 \leq l \leq N-1$ by Theorem 1, we see that $(A-\lambda)^{-N}$ is a bounded operator from $W_{p'}^{-m}(\Omega)$ to $W_p^m(\Omega)$ with p'=p/(p-1) and get

$$\|(A - \lambda)^{-N}\|_{W_{p'}^{-i} \to W_{p}^{j}}$$

$$\leq C|\lambda|^{-N + (i+j)/2m + (n/2m)((p')^{-1} - p^{-1})}$$

for $0 \le i \le m$, $0 \le j \le m$. By Theorem 2 we obtain, with θ and η defined in (1.5),

$$\begin{split} |\partial_{x}^{\alpha}\partial_{y}^{\beta}G_{\lambda}^{N}(x,y)| \\ &\leq C|\lambda|^{-N+(n/2m)((p')^{-1}-p^{-1})}(|\lambda|^{0})^{(1-\theta)(1-\eta)} \\ &\times (|\lambda|^{1/2})^{\theta(1-\eta)}(|\lambda|^{1/2})^{(1-\theta)\eta}(|\lambda|^{1})^{\theta\eta} \\ &\leq C|\lambda|^{-N+(n/2m)(1-2/p)+(\theta+\eta)/2}, \end{split}$$

which yields (3.4).

Similarly we obtain (3.5) if we replace m-n/p > k by $m-n/p \ge k+\tau$ in the definition of the sequence $(p_l)_{l=0}^N$.

Acknowledgment. The author wishes to thank the referee for his/her valuable comments and suggestions.

References

- K. Maruo and H. Tanabe, On the asymptotic distribution of eigenvalues of operators associated with strongly elliptic sesquilinear forms, Osaka J. Math. 8 (1971), 323–345.
- Y. Miyazaki, The L^p theory of divergence form elliptic operators under the Dirichlet condition, J. Differential Equations 215 (2005), no. 2, 320–356.
- Y. Miyazaki, Higher order elliptic operators of divergence form in C¹ or Lipschitz domains, J. Differential Equations 230 (2006), no. 1, 174– 195
- Y. Miyazaki, Heat asymptotics for Dirichlet elliptic operators with non-smooth coefficients, Asymptot. Anal. 72 (2011), 125–167.
- [5] T. Muramatu, On Besov spaces of functions defined in general regions, Publ. Res. Inst. Math. Sci. 6 (1970/71), 515-543.