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On observability of parallel-flow diffusive heat exchanger equations
with boundary output

By Hideki SANO™ and Shin-ichi NAKAGIRT™

(Communicated by Masaki KASHIWARA, M.J.A., April 13, 2009)

Abstract: This paper is concerned with the observability problem of a parallel-flow two-
fluid heat exchanger equation with diffusion term. First, the case where two fluid temperatures are
measured at the outlet is considered. It is shown that the observed system with the measurements
becomes observable on any interval of time through a concrete series expression of the solution.
Next, the two cases where each one of two fluid temperatures is measured at the outlet are consid-
ered. It is also shown that the observed system with the only one measurement becomes observable
on any interval of time except for the special cases of physical constants appearing in the equation.
For the exceptional cases the unobservable subspace is finite dimensional and is characterized by

using the eigenfunctions of heat equation with fluid transfer term.

Key words:
semigroup.

1. Introduction. In this paper, we shall con-
sider the following type of parallel-flow two-fluid heat
exchange process with diffusion terms

0z B 8z 0z
E(t, [E) = Dw(t, .’L') — Oé%(t, .’17)
+ hl(ZZ(t’x) - Zl(tv ZE)),
0z N 029
5 b)) = Doo(t 2) —am(t x)
+ hQ(Zl(ta ZII) - 22(t7 J))),
(1) (tv ‘T) € (0,00) X (Ov 1)a
15)
D%(t, 0) — az(t,0) =0,
0
D%(t, 0) — az(t,0) = 0,
821 - 822 -
%(u 1) - 07 ox (tz 1) - Oa te (07 00)7

z21(0,z) = p1(z), 22(0,z) = @o(x), x €]0,1]

with the output equation

2)  y(t) = [ (t), 1)) = [z1(t, 1), 22(t, 1))
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In this, 2 (¢, z), 22(t, ) € R are the temperature var-
iations at time ¢ and at the point z € [0, 1] with re-
spect to an equilibrium point, y1(t), y2(t) € R are
the measurement outputs, and D, «, hi, hy are posi-
tive physical constants.

In [2] a counter-flow heat exchange process with
diffusion terms, in which the effect of the tempera-
tures of the tubes was taken into consideration, was
treated and a robust controller was constructed for
it. However, the dynamical analysis such as observa-
bility /reachability was not done in that paper.

In this paper, we discuss on observability of
a parallel-flow two-fluid heat exchange process (1)
with the output equation (2). It is proved that the
parallel-flow heat exchange process (1) with the
measurements (2) is observable on any interval of
time. In addition, we consider the two cases where
only one temperature is measured at the outlet, that
is, the system (1) with the output equation

y(t) = yi(t) = =1 (¢, 1),
and the system (1) with the output equation

y(t) = y2(t) = 2(t,1).
It is also proved that the observed system with the
only one measurement is observable on any interval
of time except for the special cases of constants
D, a, hy, hy. For the exceptional cases the unobserva-
ble subspace is shown to be finite dimensional and is
characterized by using the eigenfunctions of heat
equation with fluid transfer term.
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Remark 1.1. As for a heat exchange process
without diffusion terms (i.e. the case of D =0), the
transfer function approach was adopted to analyze
the process in [7], and the exact transient solution
was concretely given in [1]. Recently, in the case of
D =0, the dynamical analysis for the system with
the approzimated output equation is studied in [3],
and the dynamical analysis for the system with the
original output equation is carried out in [4,5].

2. Preliminaries. In this section we state the
results on the operators appearing in system (1) and
associated Cp-semigroups. Let L*(0,1) be the Hilbert
space with inner product (-, -). Let § be a nonnega-
tive constant and define the unbounded operator
Ag: D(Ag) C L*(0,1) — L*(0,1) by

(As)(w) = -DTAD | (D) gy,
D(Ap) = {p € H*(0,1);
DZ—‘;(O) —ap(0) =0, Z—i(l) =0}.

Then the operator — A becomes a Riesz-spectral op-
erator in L?(0,1). The spectrum of — Ay consists only
of isolated eigenvalues with multiplicity one. More
specifically, the spectrum of —Ap is given by

o(—Ag) ={-2: n>1} C (~0,0),

where the eigenvalues /\g, n > 1 of Ag are positive
and are given by

$2 + o2
M="n— 1 3=)0 >1
; 1D +8=A+8>0, Vn>1,
where {s, : n > 1} is the set of all solutions to the

following transcendental equation

s 2as
tan(ﬁ) =2 s>0
satisfying 0 < s, < $p+1, Vn > 1. The roots {s,:
n > 1} are independent of 8 and have the following
asymptotics

(3) $p =2(n—1)D7m 4 o(1).

So that we have

B B B &)
0 <A, <Xy —00, A, — A, — oo

Furthermore, we have the concrete representations

of eigenfunctions ¢,(z) corresponding to A’ which
are independent of (3:

on ()

= Kne%‘” [cos (28—711).’[}) —&-%sin(;—'j)x)} Vn > 1,
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where the constants K, are those for the normaliza-
tion in L?(0,1), which are nonzero and uniformly
bounded in n. In what follows, for notational brevity,
we use the symbols ' = %, "= % The adjoint opera-
tor of Ag is given by

(Ajp)(z) = =Dy (z) — o/ (x) + Be(),
D(43) = {p € H*(0,1);
¢'(0) =0, Dg'(1) + ap(1) = 0}.
The operator —Aj is also a Riesz-spectral operator.
It is verified that o(—A}) = o(-4s) = {=N:n>
1}, and the eigenfunctions {, : n > 1} correspond-
ing to \J of Aj; are given by
wn(x) = Mn¢n(1 - l‘), T € [Oa 1L

where the constants M,, are chosen such as the sys-
tems {¢,} and {¢,} are biorthonormal systems. We
note here that v, (z) are independent of 5 and M,
are uniformly bounded in n. Hence we have the fol-
lowing eigenfunction expansions

o0

<907 wn>¢n;

n=1

p= Yo € L*(0,1).

Lemma 2.1. The operator —Ag generates an
exponentially stable Cy-semigroup e~ in L*(0, 1),
i.e. there exists an My > 0 such that

_t A, a2
||€ tA‘dHL(H) < M, eXp(—(E—l—ﬁ)t), vt > 0.

Moreover, the semigroup e ' is given for any initial
state o € L*(0,1) and for all t > 0, by

() (@) = Ze’*%%wn(x), z € [0,1].

Especially, we define the two operators A;, A,
by using Ag as follows:

A] = A’L1+}L27 A2 = AO

Now, we give the state space setting for (1). For
that purpose, we introduce a Hilbert space X :=
[L2(0,1)])* with inner product

(b = / {o1(@)r (2) + gale)ha(a) Y,

o =lpn el €X, ¥ =[t1,9] €X.
Define the unbounded operator A: D(A) C X — X by
() Dy — agh + hi(p2 — ¢1) 7
Dy — aply + ha(p1 — p2)
v = lp1,02]" € D(A),

Ap =




= [p1. 0] € [H*(0,1)];
Dy} (0) — asol(O) = Dy (0) — agp2(0) =0,

p1(1) = (1) = O}
Since
| —As 0 —h1 M
A= [ 0 -—Az}'*[ hy —hs
—A, 0 .
and the operator generates a Cy- semi-
0 —As
g4 0 —hy hy .
group [ 0 otAy | OB X and hy  —hy is a

bounded operator on X, we have by the pertubation
theorem for Cj-semigroups [8] that A generates a
Co-semigroup e = T( ) on X. The (mild) solution
2(t):=[z1(t, ), 22(t, )] € X of (1) is given by

T
A1) =Tt)p =TO) 1, 2]
In order to give the concrete representation of T'(¢)y,

we utilize the following linear transformations.
First, for system (1), defining

t>0.

(5) f(th) =2z (tv 1’) - ZQ(ta x)
and then using Lemma 2.1, we have

(6) ft,) = e (o1 = 2).
Similarly, for system (1), defining

(7) g(t,.’lﬁ) = hQZl(tam) +h122(t,.'17)
and using Lemma 2.1 again, we have

(8) g(t,) = e " (hapr + higpy).

Therefore, it follows from (5)—(8) that

(9) 21 (t7 ) = hal(hlf(t7 ) + g(t, ))
= hy'te M by (p1 — @)}
+ hyle 2 (hap + hags),
(10) Z2(t7 ) = hal(_th(tv ) +g(t"))

= hy'e M {—ha(p1 — ¢2)}

+ hyle ™ (hapy + hips),

where hg = hi + he. Applying Lemma 2.1 to equa-
tions (9) and (10), we can verify the following lemma.
Lemma 2.2. The operator A generates an ex-
ponentially stable Cy-semigroup et =: T(t) on X =
[L2(0, 1)]2, i.e., there exists an M > 0 such that

0[2
T <M (__ ) >0
Ty < Mesp (— 251, w0
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Moreover, the semigroup T(t) is given by the follow-
ing Fourier series expansions for any initial state
p = [501,902]T € X and forallt >0 :

(TWe) @) = (it ), 2aleit, )]

where
(11)  zi(pst, x)
= hol{ze Natho)t hl @1 2)7w71,>¢n,(33)
+ Z 67A2t<h2<;01 + hl(an wn,>¢n(m) };
n=1
(12)  za(pst, z)
= hU {Ze % o) h?((pl 2)7’(/}n>¢n(x)
+ Z 67A3t<h2901 + h1<,02, wn>¢n(x) };
n=1
x € [0,1].
Remark 2.1. In general, the operator A is not

a Riesz-spectral operator on X.

3. Observability. In this section, we study
the observability problem for the system (1) with
the output equation (2). This observed system can
be formulated as follows:

dz(t)

(13) dt = AZ(t), Z(O) = ¥o = [9013 QOZ]T € X7
(14) y(t) = Cz(1),
where 2(t) := [z1(, ), 22(t, -)]” and the operator A is
defined by (4) and the sensing operator C is given by
/ 8(x — 1)1 (x)dx
Cop = , o=lpnp]"

/596—1502 r)dr

In the above the symbol 6(- —
delta function at z = 1.

As stated in Section 2, the operator A generates
an analytic Cy-semigroup T'(t) on X = [L%(0,1)]*. By
Lemma 2.2, the output y(¢) of system (13), (14) is
given by

1) denotes the Dirac

y(t) = CT(t)e.
Definition 3.1. System (13), (14) is said to
be observable on J = [t, t] C [0,00), th < & if and
only if
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y(s) = CT(s)ep

The observability condition on J =

=0, ae.seJ = p=0.

[to,tﬂ iS
equivalent to the condition Ker C; = {[0,0]" }, where
the observability operator Cy: X — L?(tg,t;; R?) is
defined by

(15) Cilpr, 2l (s) = CT(s)[or, 2]

[to,ta], Vlgr, )" € X.
Theorem 3.1. System (13), (14) is observable
on any interval J = [to, t1] C [0, 00).
Proof. By (11), (12), (14) and (15), we can de-

duce that the condition [¢1, apg]T € Ker Cy is equiva-
lent to the following two conditions

ae. s€J=

(16) Ze (ntho)s hl Y1 — 2>7¢7zr>¢n(1)
+ Z 67/\2'5’(}12901 + hiwa, Pu)Pn(1) = 0,
n=1
(17) Ze <)\U+h0 < h2(§01 2)7wn>¢n(1)

3
[
—

+ Z e % (hapy + haga, ) (1) = 0,
=t a.e. s € J = [ty, t1].
Since all series involved in (16), (17) are analytic in

s> 0, then the conditions (16), (17) are equivalent
to

(18) Ze N Ry (101 — 92), )P (1)
n=1
+ 3 e hapr + hin, ) da(1) = 0,
n=1
(19) Z 67()\9’+h0>t< - h2(§01 - 902)7 lbn>¢n(1)
n=1
+ Z 6_’\2t<h2901 + h1¢2> ¢n>¢n(1) = 07
n=1

vt > 0.

Subtracting (18) from (19) and dividing by hy + ho,
we obtain

o0

(20) > e o -

n=1

90271;0n>¢n(1) = O, vt > 0.

So that by substituting (20) for (18), we have

(21) Ze

(ha1 + hige, ¥n)Pn(1) =0, Vit > 0.
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Here we prepare the following lemma on Dirichlet
series (for a proof see [6]).

Lemma 3.1. Let {c,},-; be a bounded se-
quence and let {u,},~, be a strictly increasing se-
quence given by p, :5\2 or pn = A + hy, Vn > 1. If
Yoo cpe Mt =0, Vt >0, then ¢, =0, Vn > 1.

Now we can give a Proof of Theorem 3.1. Let
[aphgog]T € Ker C;. Then by Lemma 3.1, it follows
from (20) and (21) that

(22) <901 - ¢2awn>¢n(l) =0,

(23) <h2(pl + hlw27wn>¢n(1) - O, Vn Z 1.
Hence by (22), (23) and ¢,(1) # 0, ¥n > 1, we have

Since the Riesz basis {¢, : ¥n > 1} is complete in
L*(0,1), from (24) the conclusion ¢; = @y = 0 fol-
lows. Hence Ker C; = {[0,0]" }. This shows that sys-
tem (13), (14) is observable on any interval J. N

Next, we study the case where only one output
of (1) is observed. At first, we replace the system out-
put equation (2) by

Vn > 1,

(25) y(t) = C=(t) = () = 21(t,1), ¢ € (0,00),
where C :[C0,1]* € X — R is defined by
Cleneal” = ¢1(1), V[pr, @]" € [C[0,1]]°. In this

case the observability operator C;: X — L2(to,t)
on J = [tg, t1] is given by

Cilgr, 2] () = CT(s)[or, 0],
Definition 3.2. (i) System (13), (25) is said to

a.e. seJ.

be observable on J = [tg, t1] C [0,00), ty < t1 if and
only if
yi(s) = CT(S)QD =0, ae.s€J = p=0.

(ii) Unobservable subspace of system (13), (
is defined by Ny = Ker C.

We shall give the results on the observability
and the characterization of unobservable subspaces
for the special cases of (13), (25). To this end, we
define the set

E={(n,m)eNxN:
8,2* ,,L*4D(h1+h2) n>m}

n

25) on J

and introduce the following condition

(H): E =0 (empty set).

The set E depends only on the constants D, «, hq,
hy. Tt is verified by the asymptotics of {s,} in (3)
that F is an empty set or a finite set.



No. 5]

If the condition (H) is satisfied, then for any
couple of natural numbers (n,m), n > m we have

1
NS+ o) = X = 5 (52, = s2) +

Remark 3.1. By the asymptotics of {s.},
there ezists a sufficiently small €y > 0 such that
S%H — 82 > €, Vn > 1. From this fact, it follows that
the condition (H), i.e., E = is satisfied if 4D(hy +
hg) < €.

From Lemma 3.1, we can easily prove the fol-
lowing lemma.

Lemma 3.2. Let both {c.}, ., and {c2},-, be
bounded sequences. If the assumption (H) is sal-
isfied, then

> (e

n=1

(h1 4+ hg) # 0.

Ant Jrce (AH‘“)):O, Vi >0

mmplies cil = ci =0,VYn > 1, where hy = hi+hy > 0.

Theorem 3.2. Assume (H). Then system
(13), (25) is observable on any interval J = [to, t1].

Proof. The observability of system (13), (25)
on J = [tg,t1] is equivalent to the condition that
Ker C; = {[0,0]"}. Let ¢ = [p1, p2]" € Ker C;. Then
by (11) and the definition of Cj, it follows by the
analyticity of Dirichlet series that

(26) Ze (Natho)t (h1(p1 —

n=
o0
+ Z e
n=1

Under the assumption (H), we see that {\)} ., N
{A) + ho},>y =0, so that by using ¢, (1) # 0, Vn >
1 and applying Lemma 3.2 to (26), we have

2)) wn>¢n(1)

h2<p1 + h1@27¢71>¢77( ) = O7 vt > 0.

(27) (h1(p1 — @2),9m) = 0,
(ha1 + hipa, by =0, Yn > 1.
Then from (27) we can conclude
(#1,9n) = (p2,90) =0, VYn>1.
From this we have ¢ =9 =0, ie., Ker éj =
{[0,0]"}. This completes the proof. O

Next we consider the case where the assumption
(H) is not satisfied, i.e., E is given by

(28) E={(n1,mq),--

n1<

7(nlaml) :

<ng, n;>my, j=1,--- 1}
In this case we introduce the following sets:

MZ:{mh'",ml}, Nl:{nl,"'7nl}-
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In the case of E# 0, we need the following
lemma (for a proof see [6]).

Lemma 3.3. Let both {c.},., and {c>},., be
bounded sequences. Assume that the set E is given by
(28). Then the equality

o0

> (che W e ) —0, v >0
n=1
implies
(29) ch =0, neN\N,
(30) =0, neN\M,,
(31) c,117,+c3n/=0, j=1,---,1
Theorem 3.3. Consider system (13), (25).

Suppose that the condition (H) is not satisfied and
the set E is given by (28). Then if the condition

(32)  {n;:1<ji<iin{m;: 1<j<i}=0

is satisfied, the unobservable subspace of system (13),

(25) on J = [ty, t1] is independent of ty,t1 and is
given by
/\A/f] = Span { [901} e X: [Lpl] =
¥2 P2
on, (1)
¢7L] - ] ¢7rz]
bm,(1) ,
) <j<l
h? d)n
(ybnj + E¢W;(1) Qsmj
Proof. Let [gpl,gog]T € N = Ker C;. Then as in

the Proof of Theorem 3.2, we can verify the equality
(26). Applying Lemma 3.3 to (26), we have from (29)
and (30)

(33) {1 ¥n) = (p2,9n) =0,
(34)  ho(e1,¥n) + halpa,1hn) =0, Vn e N\N,.
Hence from (33) and (34) it follows that

(@1,%n) = (2,0,) = 0, ¥n € N\ (N, U M).

This implies by (33), (34) and the condition (32) that
1 and @y are represented as

Vn € N\Ml,

l

1= ((e1,6n,)n, + (01, Vm,)6m, )

J=1

(35)

l

(36) Y2 = Z (<<P17wnj>¢nj -

=

<901a d’m)qsmj)

From the equality (31), we have
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(ha@1 4 hipa, Yn,) fn, (1)
+ <h1(§01 - @2)7¢m]>¢m](1) =0,
so that again by (33) and (34),
<(h2 + hl)‘Pla ¢n,,>¢n,(1)
+ <(h1 + h?)(p17¢m]‘>¢m7(1) =0, j=1,---, l.
Therefore, by deviding hy + hy # 0 we have
b, (1)
Since the constants C; = (1,%,,) can be chosen ar-
bitrarily, by the above equations (35), (36) and (37),
we can conclude that any [¢1, 2] € Ker C; can be

represented as a linear combination of the following
[ numbers of independent vectors

Pn; (1)

j:17"'7l7

(37)

<§013wm‘,> = <5017¢TLJ>; ]:Lvl

(b”j - ¢)7n](1) ¢m, .
) 1<j<l.
g, + 200D
hl Qbmj (1)
This completes the Proof of Theorem 3.3. O

We can give the representation of unobserv-
able subspace N for the case of N; N M; # (). How-
ever, such the representation becomes much compli-
cated compared with the case of N;NM; = V)A (cf.
Sano and Nakagiri [6]). We can verify that dim A; =
[ even for the exceptional case, however, for the econ-
omy of pages we omit to give such the characteriza-
tion for the exceptional case.

Secondly, we study the case where the system
output equation (2) is replaced by

(38) y(t) = Ca(t) = ya(t) = 2(t, 1), ¢ € (0,00),
where C' : [C[0,1] € X — R is defined by
O[‘Ph‘M]T = 502(1)5 v[9017902]T ~€ [C[Ov 1]}2 In this
case the observability operator C; : X — L?(ty,t;) on
J = [to, t1] is given by
Cilpr, )" (s) = CT(s) (o1, ]
Definition 3.3. (i) System (13), (38) is said to
be observable on J = [to, t1] C [0,00), to < t1 if and
only if
ya(s) = CT(s)p =0, ae.s€J = ©=0.
(ii) Unobservable subspace of system (13), (38) on J
is defined by N = Ker C;.

a.e. seJ.
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Similarly as in the Proofs of Theorem 3.2 and
Theorem 3.3, we can deduce the following theorems.

Theorem 3.4. If the condition (H) is sat-
isfied, then system (13), (38) is observable on any in-
terval J = [to, t1].

Theorem 3.5. Consider system (13), (38).
Suppose that the condition (H) is not satisfied and
the set E is given by (28). Then if the condition
(32) is satisfied, the unobservable subspace of system
(13), (38) on J = [to, t1] is independent of to, t; and
is given by

N = Span { {‘pl} eX: [@1] —
P2 ©2

b 6, (1)

h? ¢m7(1>

6,1
(bmj(l)

¢71,/ + ¢7"’j

b, G,

References

[ 1] C. H. Li, Exact transient solutions of parallel-
current transfer processes, ASME Journal of
Heat Transfer 108 (1986), 365-369.

S. Pohjolainen and I. Latti, Robust controller for
boundary control systems, Internat. J. Control
38 (1983), no. 6, 1189-1197.

H. Sano, Observability and reachability for parallel-
flow heat exchanger equations, IMA J. Math.
Control Inform. 24 (2007), no. 1, 137-147.

H. Sano, On reachability of parallel-flow heat ex-
changer equations with boundary inputs, Proc.
Japan Acad. Ser. A Math. Sci. 83 (2007), no. 1,
1-4.

H. Sano, On observability of parallel-flow heat ex-
changer equations, Proceedings of the 51st An-
nual Conference of the Institute of Systems,
Control Inform. Eng., Kyoto, 2007, 383-384. (in
Japanese).

H. Sano and S. Nakagiri, On reachability and ob-
servability of a plug-flow reactor diffusion equa-
tion, Transactions of the Institute of Systems,
Control Inform. Eng. 22 (2009), no. 5. (in press).

Y. Takahashi, Transfer function analysis of heat ex-
change processes, in Automatic and Manual Con-
trol, A. Tustin (ed.), Butterworth Scientific Pub-
lications, London, 1952, pp. 235-248.

H. Tanabe, Equations of evolution, Translated from
the Japanese by N. Mugibayashi and H. Haneda,
Pitman, Boston, Mass., 1979.

[2]



