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On observability of parallel-�ow di�usive heat exchanger equations

with boundary output

By Hideki SANO*) and Shin-ichi NAKAGIRI**)

(Communicated by Masaki KASHIWARA, M.J.A., April 13, 2009)

Abstract: This paper is concerned with the observability problem of a parallel-�ow two-

�uid heat exchanger equation with di�usion term. First, the case where two �uid temperatures are
measured at the outlet is considered. It is shown that the observed system with the measurements

becomes observable on any interval of time through a concrete series expression of the solution.

Next, the two cases where each one of two �uid temperatures is measured at the outlet are consid-
ered. It is also shown that the observed system with the only one measurement becomes observable

on any interval of time except for the special cases of physical constants appearing in the equation.

For the exceptional cases the unobservable subspace is �nite dimensional and is characterized by
using the eigenfunctions of heat equation with �uid transfer term.

Key words: Parallel-�ow heat exchanger equation; boundary output; observability; C0-

semigroup.

1. Introduction. In this paper, we shall con-
sider the following type of parallel-�ow two-�uid heat

exchange process with di�usion terms
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D
@z1

@x
ðt; 0Þ � �z1ðt; 0Þ ¼ 0;

D
@z2

@x
ðt; 0Þ � �z2ðt; 0Þ ¼ 0;

@z1

@x
ðt; 1Þ ¼ 0;

@z2

@x
ðt; 1Þ ¼ 0; t 2 ð0;1Þ;

z1ð0; xÞ ¼ ’1ðxÞ; z2ð0; xÞ ¼ ’2ðxÞ; x 2 ½0; 1�

(1)

with the output equation

yðtÞ ¼ ½y1ðtÞ; y2ðtÞ�T ¼ ½z1ðt; 1Þ; z2ðt; 1Þ�T :ð2Þ

In this, z1ðt; xÞ; z2ðt; xÞ 2 R are the temperature var-
iations at time t and at the point x 2 ½0; 1� with re-

spect to an equilibrium point, y1ðtÞ; y2ðtÞ 2 R are

the measurement outputs, and D, �, h1, h2 are posi-
tive physical constants.

In [2] a counter-�ow heat exchange process with

di�usion terms, in which the e�ect of the tempera-
tures of the tubes was taken into consideration, was

treated and a robust controller was constructed for

it. However, the dynamical analysis such as observa-
bility/reachability was not done in that paper.

In this paper, we discuss on observability of

a parallel-�ow two-�uid heat exchange process (1)
with the output equation (2). It is proved that the

parallel-�ow heat exchange process (1) with the

measurements (2) is observable on any interval of
time. In addition, we consider the two cases where

only one temperature is measured at the outlet, that

is, the system (1) with the output equation

yðtÞ ¼ y1ðtÞ ¼ z1ðt; 1Þ;
and the system (1) with the output equation

yðtÞ ¼ y2ðtÞ ¼ z2ðt; 1Þ:
It is also proved that the observed system with the

only one measurement is observable on any interval
of time except for the special cases of constants

D;�; h1; h2. For the exceptional cases the unobserva-

ble subspace is shown to be �nite dimensional and is
characterized by using the eigenfunctions of heat

equation with �uid transfer term.
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Remark 1.1. As for a heat exchange process

without di�usion terms (i.e. the case of D ¼ 0), the

transfer function approach was adopted to analyze

the process in ½7�, and the exact transient solution

was concretely given in ½1�. Recently, in the case of

D ¼ 0, the dynamical analysis for the system with

the approximated output equation is studied in ½3�,
and the dynamical analysis for the system with the

original output equation is carried out in ½4; 5�.
2. Preliminaries. In this section we state the

results on the operators appearing in system (1) and
associated C0-semigroups. Let L2ð0; 1Þ be the Hilbert

space with inner product h � ; � i. Let � be a nonnega-

tive constant and de�ne the unbounded operator
A� : DðA�Þ � L2ð0; 1Þ ! L2ð0; 1Þ by

ðA�’ÞðxÞ ¼ �D
d2’ðxÞ
dx2

þ �d’ðxÞ
dx

þ �’ðxÞ;

DðA�Þ ¼ f’ 2 H2ð0; 1Þ ;

D
d’

dx
ð0Þ � �’ð0Þ ¼ 0;

d’

dx
ð1Þ ¼ 0

�
:

Then the operator �A� becomes a Riesz-spectral op-

erator in L2ð0; 1Þ. The spectrum of �A� consists only

of isolated eigenvalues with multiplicity one. More
speci�cally, the spectrum of �A� is given by

�ð�A�Þ ¼ f���n : n � 1g � ð�1; 0Þ;
where the eigenvalues ��n; n � 1 of A� are positive
and are given by

��n ¼
s2
n þ �2

4D
þ � � �0

n þ � > 0; 8n � 1;

where fsn : n � 1g is the set of all solutions to the

following transcendental equation

tan
s

2D

� �
¼ 2�s

s2 � �2
; s > 0

satisfying 0 < sn < snþ1; 8n � 1. The roots fsn :

n � 1g are independent of � and have the following
asymptotics

sn ¼ 2ðn� 1ÞD�þ oð1Þ:ð3Þ
So that we have

0 < ��n < ��nþ1 !1; ��nþ1 � ��n !1:
Furthermore, we have the concrete representations
of eigenfunctions �nðxÞ corresponding to ��n which

are independent of �:

�nðxÞ

¼ Kne
�

2D
x cos

� sn
2D

x
�
þ �

sn
sin
� sn

2D
x
�� �
; 8n � 1;

where the constants Kn are those for the normaliza-

tion in L2ð0; 1Þ, which are nonzero and uniformly
bounded in n. In what follows, for notational brevity,

we use the symbols 0 ¼ d

dx
; 00 ¼ d 2

dx2. The adjoint opera-

tor of A� is given by

ðA	�’ÞðxÞ ¼ �D’00ðxÞ � �’0ðxÞ þ �’ðxÞ;
DðA	�Þ ¼

�
’ 2 H2ð0; 1Þ ;
’0ð0Þ ¼ 0; D’0ð1Þ þ �’ð1Þ ¼ 0

�
:

The operator �A	� is also a Riesz-spectral operator.
It is veri�ed that �ð�A	�Þ ¼ �ð�A�Þ ¼ f���n : n �
1g, and the eigenfunctions f n : n � 1g correspond-

ing to ��n of A	� are given by

 nðxÞ ¼Mn�nð1� xÞ; x 2 ½0; 1�;
where the constants Mn are chosen such as the sys-

tems f�ng and f ng are biorthonormal systems. We

note here that  nðxÞ are independent of � and Mn

are uniformly bounded in n. Hence we have the fol-

lowing eigenfunction expansions

’ ¼
X1

n¼1

h’;  ni�n; 8’ 2 L2ð0; 1Þ:

Lemma 2.1. The operator �A� generates an

exponentially stable C0-semigroup e�tA� in L2ð0; 1Þ,
i.e. there exists an M1 > 0 such that

ke�tA�kLðL2Þ 
M1 exp �
� �2

4D
þ �

�
t

� 	
; 8t � 0:

Moreover, the semigroup e�tA� is given for any initial

state ’ 2 L2ð0; 1Þ and for all t > 0, by

�
e�tA�’

�
ðxÞ ¼

X1

n¼1

e��
�
nth’;  ni�nðxÞ; x 2 ½0; 1�:

Especially, we de�ne the two operators A1; A2

by using A� as follows:

A1 :¼ Ah1þh2
; A2 :¼ A0:

Now, we give the state space setting for (1). For

that purpose, we introduce a Hilbert space X :¼
½L2ð0; 1Þ�2 with inner product

h’;  iX :¼
Z 1

0

f’1ðxÞ 1ðxÞ þ ’2ðxÞ 2ðxÞgdx;

’ ¼ ½’1; ’2�T 2 X;  ¼ ½ 1;  2�T 2 X:

De�ne the unbounded operator A :DðAÞ �X!X by

A’ ¼
D’001 � �’01 þ h1ð’2 � ’1Þ
D’002 � �’02 þ h2ð’1 � ’2Þ

" #

;(4)

’ ¼ ½’1; ’2�T 2 DðAÞ;
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DðAÞ ¼
�
’ ¼ ½’1; ’2�T 2 ½H2ð0; 1Þ�2 ;

D’01ð0Þ � �’1ð0Þ ¼ D’02ð0Þ � �’2ð0Þ ¼ 0;

’01ð1Þ ¼ ’02ð1Þ ¼ 0
�
:

Since

A ¼ �A2 0
0 �A2

� �
þ �h1 h1

h2 �h2

� �

and the operator
�A2 0

0 �A2

� �
generates a C0- semi-

group
e�tA2 0

0 e�tA2

� �
on X and

�h1 h1

h2 �h2

� �
is a

bounded operator on X, we have by the pertubation

theorem for C0-semigroups [8] that A generates a

C0-semigroup etA ¼: T ðtÞ on X. The (mild) solution
zðtÞ :¼½z1ðt; �Þ; z2ðt; �Þ�T 2X of (1) is given by

zðtÞ ¼ T ðtÞ’ ¼ T ðtÞ½’1; ’2�T ; t > 0:

In order to give the concrete representation of T ðtÞ’,
we utilize the following linear transformations.

First, for system (1), de�ning

fðt; xÞ :¼ z1ðt; xÞ � z2ðt; xÞð5Þ
and then using Lemma 2.1, we have

fðt; �Þ ¼ e�tA1ð’1 � ’2Þ:ð6Þ
Similarly, for system (1), de�ning

gðt; xÞ :¼ h2z1ðt; xÞ þ h1z2ðt; xÞð7Þ
and using Lemma 2.1 again, we have

gðt; �Þ ¼ e�tA2ðh2’1 þ h1’2Þ:ð8Þ
Therefore, it follows from (5){(8) that

z1ðt; �Þ ¼ h�1
0 ðh1fðt; �Þ þ gðt; �ÞÞ

¼ h�1
0 e�tA1fh1ð’1 � ’2Þg

þ h�1
0 e�tA2ðh2’1 þ h1’2Þ;

ð9Þ

z2ðt; �Þ ¼ h�1
0 ð�h2fðt; �Þ þ gðt; �ÞÞ

¼ h�1
0 e�tA1f�h2ð’1 � ’2Þg

þ h�1
0 e�tA2ðh2’1 þ h1’2Þ;

ð10Þ

where h0 ¼ h1 þ h2. Applying Lemma 2.1 to equa-

tions (9) and (10), we can verify the following lemma.
Lemma 2.2. The operator A generates an ex-

ponentially stable C0-semigroup etA ¼: TðtÞ on X ¼
½L2ð0; 1Þ�2, i.e., there exists an M > 0 such that

kT ðtÞkLðXÞ 
M exp
�
� �2

4D
t
�
; 8t � 0:

Moreover, the semigroup TðtÞ is given by the follow-

ing Fourier series expansions for any initial state

’ ¼ ½’1; ’2�T 2 X and for all t � 0 :
�
T ðtÞ’

�
ðxÞ ¼ ½z1ð’; t; xÞ; z2ð’; t; xÞ�T ;

where

z1ð’; t; xÞ

¼ h�1
0

X1

n¼1

e�ð�
0
nþh0Þthh1ð’1 � ’2Þ;  ni�nðxÞ

(
ð11Þ

þ
X1

n¼1

e��
0
nthh2’1 þ h1’2;  ni�nðxÞ

)

;

ð12Þ z2ð’; t; xÞ

¼ h�1
0

X1

n¼1

e�ð�
0
nþh0Þth � h2ð’1 � ’2Þ;  ni�nðxÞ

(

þ
X1

n¼1

e��
0
nthh2’1 þ h1’2;  ni�nðxÞ

)

;

x 2 ½0; 1�:

Remark 2.1. In general, the operator A is not

a Riesz-spectral operator on X.

3. Observability. In this section, we study

the observability problem for the system (1) with
the output equation (2). This observed system can

be formulated as follows:

dzðtÞ
dt
¼ AzðtÞ; zð0Þ ¼ ’0 ¼ ½’1; ’2�T 2 X;ð13Þ

yðtÞ ¼ CzðtÞ;ð14Þ

where zðtÞ :¼ ½z1ðt; �Þ; z2ðt; �Þ�T and the operator A is

de�ned by (4) and the sensing operator C is given by

C’ :¼

Z 1

0

�ðx� 1Þ’1ðxÞdx

Z 1

0

�ðx� 1Þ’2ðxÞdx

2

66664

3

77775
; ’ ¼ ½’1; ’2�T :

In the above the symbol �ð� � 1Þ denotes the Dirac

delta function at x ¼ 1.

As stated in Section 2, the operator A generates
an analytic C0-semigroup T ðtÞ on X ¼ ½L2ð0; 1Þ�2. By

Lemma 2.2, the output yðtÞ of system (13), (14) is

given by

yðtÞ ¼ CT ðtÞ’:
De�nition 3.1. System (13), (14) is said to

be observable on J ¼ ½t0; t1� � ½0;1Þ; t0 < t1 if and

only if
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yðsÞ ¼ CT ðsÞ’ ¼ 0; a:e: s 2 J ¼) ’ ¼ 0:

The observability condition on J ¼ ½t0; t1� is

equivalent to the condition Ker CJ ¼ f½0; 0�Tg, where
the observability operator CJ : X ! L2ðt0; t1; R2Þ is

de�ned by

CJ ½’1; ’2�T ðsÞ ¼ CT ðsÞ½’1; ’2�T ;
a:e: s 2 J ¼ ½t0; t1�; 8½’1; ’2�T 2 X:

ð15Þ

Theorem 3.1. System (13), (14) is observable

on any interval J ¼ ½t0; t1� � ½0;1Þ.
Proof. By (11), (12), (14) and (15), we can de-

duce that the condition ½’1; ’2�T 2 Ker CJ is equiva-
lent to the following two conditions

X1

n¼1

e�ð�
0
nþh0Þshh1ð’1 � ’2Þ;  ni�nð1Þ

þ
X1

n¼1

e��
0
nshh2’1 þ h1’2;  ni�nð1Þ ¼ 0;

ð16Þ

X1

n¼1

e�ð�
0
nþh0Þsh � h2ð’1 � ’2Þ;  ni�nð1Þ

þ
X1

n¼1

e��
0
nshh2’1 þ h1’2;  ni�nð1Þ ¼ 0;

ð17Þ

a:e: s 2 J ¼ ½t0; t1�:

Since all series involved in (16), (17) are analytic in

s > 0, then the conditions (16), (17) are equivalent

to

X1

n¼1

e�ð�
0
nþh0Þthh1ð’1 � ’2Þ;  ni�nð1Þ

þ
X1

n¼1

e��
0
nthh2’1 þ h1’2;  ni�nð1Þ ¼ 0;

ð18Þ

X1

n¼1

e�ð�
0
nþh0Þth � h2ð’1 � ’2Þ;  ni�nð1Þ

þ
X1

n¼1

e��
0
nthh2’1 þ h1’2;  ni�nð1Þ ¼ 0;

ð19Þ

8t > 0:

Subtracting (18) from (19) and dividing by h1 þ h2,

we obtain

X1

n¼1

e�ð�
0
nþh0Þth’1 � ’2;  ni�nð1Þ ¼ 0; 8t > 0:ð20Þ

So that by substituting (20) for (18), we have

X1

n¼1

e��
0
nthh2’1 þ h1’2;  ni�nð1Þ ¼ 0; 8t > 0:ð21Þ

Here we prepare the following lemma on Dirichlet

series (for a proof see [6]).
Lemma 3.1. Let fcngn�1 be a bounded se-

quence and let f	ngn�1 be a strictly increasing se-

quence given by 	n ¼ �0
n or 	n ¼ �0

n þ h0, 8n � 1. IfP1
n¼1 cne�	nt ¼ 0; 8t > 0, then cn ¼ 0; 8n � 1.

Now we can give a Proof of Theorem 3.1. Let

½’1; ’2�T 2 Ker CJ . Then by Lemma 3.1, it follows
from (20) and (21) that

h’1 � ’2;  ni�nð1Þ ¼ 0; 8n � 1;ð22Þ

hh2’1 þ h1’2;  ni�nð1Þ ¼ 0; 8n � 1:ð23Þ

Hence by (22), (23) and �nð1Þ 6¼ 0; 8n � 1, we have

h’1;  ni ¼ h’2;  ni ¼ 0; 8n � 1:ð24Þ

Since the Riesz basis f n : 8n � 1g is complete in

L2ð0; 1Þ, from (24) the conclusion ’1 ¼ ’2 ¼ 0 fol-
lows. Hence Ker CJ ¼ f½0; 0�Tg. This shows that sys-

tem (13), (14) is observable on any interval J. r
Next, we study the case where only one output

of (1) is observed. At �rst, we replace the system out-

put equation (2) by

yðtÞ ¼ ĈzðtÞ ¼ y1ðtÞ ¼ z1ðt; 1Þ; t 2 ð0;1Þ;ð25Þ
where Ĉ : ½C½0; 1��2 � X ! R is de�ned by
Ĉ½’1; ’2�T ¼ ’1ð1Þ; 8½’1; ’2�T 2 ½C½0; 1��2. In this

case the observability operator ĈJ : X ! L2ðt0; t1Þ
on J ¼ ½t0; t1� is given by

ĈJ ½’1; ’2�T ðsÞ ¼ ĈT ðsÞ½’1; ’2�T ; a:e: s 2 J:

De�nition 3.2. (i) System (13), (25) is said to

be observable on J ¼ ½t0; t1� � ½0;1Þ; t0 < t1 if and

only if

y1ðsÞ ¼ ĈT ðsÞ’ ¼ 0; a:e: s 2 J ¼) ’ ¼ 0:

(ii) Unobservable subspace of system (13), (25) on J

is de�ned by N̂J ¼ Ker ĈJ .

We shall give the results on the observability

and the characterization of unobservable subspaces

for the special cases of (13), (25). To this end, we
de�ne the set

E ¼ fðn;mÞ 2 N�N :

s2
n � s2

m ¼ 4Dðh1 þ h2Þ; n > mg

and introduce the following condition
ðHÞ: E ¼ ; ðempty setÞ.
The set E depends only on the constants D, �, h1,

h2. It is veri�ed by the asymptotics of fsng in (3)
that E is an empty set or a �nite set.

64 H. SANO and S. NAKAGIRI [Vol. 85(A),



If the condition ðHÞ is satis�ed, then for any

couple of natural numbers ðn;mÞ; n > m we have

ð�0
m þ h0Þ � �0

n ¼
1

4D
ðs2
m � s2

nÞ þ ðh1 þ h2Þ 6¼ 0:

Remark 3.1. By the asymptotics of fsng,
there exists a suf�ciently small 
0 > 0 such that

s2
nþ1 � s2

n � 
0, 8n � 1. From this fact, it follows that

the condition ðHÞ, i.e., E ¼ ; is satis�ed if 4Dðh1þ
h2Þ < 
0.

From Lemma 3.1, we can easily prove the fol-

lowing lemma.
Lemma 3.2. Let both fc1

ngn�1 and fc2
ngn�1 be

bounded sequences. If the assumption ðHÞ is sat-

is�ed, then

X1

n¼1

�
c1
ne
��0

nt þ c2
ne
�ð�0

nþh0Þt
�
¼ 0; 8t > 0

implies c1
n ¼ c2

n ¼ 0; 8n � 1, where h0 ¼ h1þh2 > 0.

Theorem 3.2. Assume ðHÞ. Then system

(13), (25) is observable on any interval J ¼ ½t0; t1�.
Proof. The observability of system (13), (25)

on J ¼ ½t0; t1� is equivalent to the condition that

Ker ĈJ ¼ f½0; 0�Tg. Let ’ ¼ ½’1; ’2�T 2 Ker ĈJ . Then
by (11) and the de�nition of ĈJ , it follows by the

analyticity of Dirichlet series that

ð26Þ
X1

n¼1

e�ð�
0
nþh0Þthh1ð’1 � ’2Þ;  ni�nð1Þ

þ
X1

n¼1

e��
0
nthh2’1 þ h1’2;  ni�nð1Þ ¼ 0; 8t > 0:

Under the assumption ðHÞ, we see that f�0
ngn�1 \

f�0
n þ h0gn�1 ¼ ;, so that by using �nð1Þ 6¼ 0; 8n �

1 and applying Lemma 3.2 to (26), we have

hh1ð’1 � ’2Þ;  ni ¼ 0;

hh2’1 þ h1’2;  ni ¼ 0; 8n � 1:

ð27Þ

Then from (27) we can conclude

h’1;  ni ¼ h’2;  ni ¼ 0; 8n � 1:

From this we have ’1 ¼ ’2 ¼ 0, i.e., Ker ĈJ ¼
f½0; 0�Tg. This completes the proof. r

Next we consider the case where the assumption

ðHÞ is not satis�ed, i.e., E is given by

E ¼ fðn1;m1Þ; � � � ; ðnl;mlÞ :

n1 < � � � < nl; nj > mj; j ¼ 1; � � � ; lg:
ð28Þ

In this case we introduce the following sets:

Ml ¼ fm1; � � � ;mlg; Nl ¼ fn1; � � � ; nlg:

In the case of E 6¼ ;, we need the following

lemma (for a proof see [6]).
Lemma 3.3. Let both fc1

ngn�1 and fc2
ngn�1 be

bounded sequences. Assume that the set E is given by

(28). Then the equality

X1

n¼1

�
c1
ne
��0

nt þ c2
ne
�ð�0

nþh0Þt
�
¼ 0; 8t > 0

implies

c1
n ¼ 0; n 2 NnNl;ð29Þ
c2
n ¼ 0; n 2 NnMl;ð30Þ
c1
nj
þ c2

mj
¼ 0; j ¼ 1; � � � ; l:ð31Þ

Theorem 3.3. Consider system (13), (25).

Suppose that the condition ðHÞ is not satis�ed and

the set E is given by (28). Then if the condition

fnj : 1 
 j 
 lg \ fmj : 1 
 j 
 lg ¼ ;ð32Þ

is satis�ed, the unobservable subspace of system (13),

(25) on J ¼ ½t0; t1� is independent of t0; t1 and is

given by

N̂J ¼ Span
’1

’2

� �
2 X :

’1

’2

� �
¼




�nj �
�njð1Þ
�mj
ð1Þ�mj

�nj þ
h2

h1

�njð1Þ
�mj
ð1Þ�mj

2

66664

3
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; 1 
 j 
 l

9
>>>>=

>>>>;

:

Proof. Let ½’1; ’2�T 2 N̂J ¼ Ker ĈJ . Then as in
the Proof of Theorem 3.2, we can verify the equality

(26). Applying Lemma 3.3 to (26), we have from (29)

and (30)

h’1;  ni � h’2;  ni ¼ 0; 8n 2 NnMl;ð33Þ

h2h’1;  ni þ h1h’2;  ni ¼ 0; 8n 2 NnNl:ð34Þ
Hence from (33) and (34) it follows that

h’1;  ni ¼ h’2;  ni ¼ 0; 8n 2 NnðNl [MlÞ:

This implies by (33), (34) and the condition (32) that
’1 and ’2 are represented as

’1 ¼
Xl

j¼1

�
h’1;  nji�nj þ h’1;  mj

i�mj

�
;ð35Þ

’2 ¼
Xl

j¼1

�
h’1;  nji�nj �

h2

h1
h’1;  mj

i�mj

�
:ð36Þ

From the equality (31), we have
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hh2’1 þ h1’2;  nji�njð1Þ

þ hh1ð’1 � ’2Þ;  mj
i�mj
ð1Þ ¼ 0; j ¼ 1; � � � ; l;

so that again by (33) and (34),

hðh2 þ h1Þ’1;  nji�njð1Þ

þ hðh1 þ h2Þ’1;  mj
i�mj
ð1Þ ¼ 0; j ¼ 1; � � � ; l:

Therefore, by deviding h1 þ h2 6¼ 0 we have

h’1;  mj
i ¼ �

�njð1Þ
�mj
ð1Þ h’1;  nji; j ¼ 1; � � � ; l:ð37Þ

Since the constants Cj ¼ h’1;  nji can be chosen ar-

bitrarily, by the above equations (35), (36) and (37),

we can conclude that any ½’1; ’2�T 2 Ker ĈJ can be
represented as a linear combination of the following

l numbers of independent vectors

�nj �
�njð1Þ
�mj
ð1Þ�mj

�nj þ
h2

h1

�njð1Þ
�mj
ð1Þ�mj

2

66664

3

77775
; 1 
 j 
 l:

This completes the Proof of Theorem 3.3. r
We can give the representation of unobserv-

able subspace N̂J for the case of Nl \Ml 6¼ ;. How-
ever, such the representation becomes much compli-

cated compared with the case of Nl \Ml ¼ ; (cf.

Sano and Nakagiri [6]). We can verify that dim N̂J ¼
l even for the exceptional case, however, for the econ-

omy of pages we omit to give such the characteriza-

tion for the exceptional case.
Secondly, we study the case where the system

output equation (2) is replaced by

yðtÞ ¼ ~CzðtÞ ¼ y2ðtÞ ¼ z2ðt; 1Þ; t 2 ð0;1Þ;ð38Þ

where ~C : ½C½0; 1��2 � X ! R is de�ned by
~C½’1; ’2�T ¼ ’2ð1Þ; 8½’1; ’2�T 2 ½C½0; 1��2. In this

case the observability operator ~CJ : X ! L2ðt0; t1Þ on

J ¼ ½t0; t1� is given by

~CJ ½’1; ’2�T ðsÞ ¼ ~CT ðsÞ½’1; ’2�T ; a:e: s 2 J:
De�nition 3.3. (i) System (13), (38) is said to

be observable on J ¼ ½t0; t1� � ½0;1Þ; t0 < t1 if and

only if

y2ðsÞ ¼ ~CT ðsÞ’ ¼ 0; a:e: s 2 J ¼) ’ ¼ 0:

(ii) Unobservable subspace of system (13), (38) on J

is de�ned by ~NJ ¼ Ker ~CJ .

Similarly as in the Proofs of Theorem 3.2 and

Theorem 3.3, we can deduce the following theorems.
Theorem 3.4. If the condition ðHÞ is sat-

is�ed, then system (13), (38) is observable on any in-

terval J ¼ ½t0; t1�.
Theorem 3.5. Consider system (13), (38).

Suppose that the condition ðHÞ is not satis�ed and

the set E is given by (28). Then if the condition

(32) is satis�ed, the unobservable subspace of system

(13), (38) on J ¼ ½t0; t1� is independent of t0; t1 and

is given by

~NJ ¼ Span
’1

’2

� �
2 X :

’1

’2

� �
¼




�nj þ
h1

h2

�njð1Þ
�mj
ð1Þ�mj

�nj �
�njð1Þ
�mj
ð1Þ�mj

2

66664

3

77775
; 1 
 j 
 l

9
>>>>=

>>>>;

:
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