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Abstract:

For an imaginary quadratic field K with class number h, we shall characterize

h-dimensional CM abelian varieties over K which descend to abelian varieties over Q. These CM
abelian varieties have minimal dimension h both over K and over Q.

Key words:

Let K be an imaginary quadratic field with
class number h. We shall characterize h-dimen-
sional CM abelian varieties over K which descend
to abelian varieties over the rational number field Q
by their algebraic Hecke characters. If an abelian
variety A over K has complex multiplication,
then the dimension of A is h[Hy(Im€): Hy] or
2h [H,(Im €) : Hy]. Here Hy is the genus class field of
K (Proposition 2). Hence our CM abelian varieties
have minimal dimension h both over K and over Q.
Under the conditions that Endq(4) ® Q are max-
imal real subfields of Endg(A) ® Q and some
restrictions on the conductors of A, such abelian
varieties are investigated in Yang [5]. In this
note removing the above conditions, we treat
these abelian varieties in general. We shall give a
characterization of the associated characters of
them (Theorem 1). In the final section we explic-
itely determine such characters.

Notation:

K : an imaginary quadratic field.

D : the discriminant of K.

H : the Hilbert class field of K.

h : the class number of K.

I(f) : the group of fractional ideals of K prime to f.
(f is an integral ideal of K)

P(f) : the group of principal ideals of K prime to f.
p : the complex conjugation of C.

For an abelian variety A over a number field k, we
put £x(A) = Endi(A) ® Q, the endomorphism alge-
bra of A over k. All number fields are considered as
subfields of C.

1. CM Abelian varieties over K. Let A
be a CM abelian variety over an imaginary quad-

2000 Mathematics Subject Classification.
11G10, 11G15.

Primary 11G05,

©2007 The Japan Academy

abelian variety; ellptic curve; complex multiplication; Hecke character.

ratic field K. We suppose that A is simple over K.
Let 14 be the associated algebraic Hecke character
of A over K, of conductor f. Then there is a
character € of (O /f)”* such that

Ya((@)) = e(a)a (o) € P(f)).

We say that A is of type € or € is associated to A
(or to 1y). Clearly e satisfies e(—1) = —1 and for
ideal class characters x of K, 14x are the algebraic
Hecke characters associated to € (see [5,§ 3]). Let
I,(f) = {a € I(§); a? is principal}. We put

T = K({¢a(a) | a € I(f)})

and
Ty = K({va(a) | a € I,()}).

Let r+1 be the number of prime factors of
D. Applying the argument in [3], we obtain
([5, Prop. 3.2])

Proposition 1. We have:
T,: K122, [T:T))=h/2" and T, D Ime.

Now we look the structure of T, more closely.
Let § be the conductor of e. Let py, ..., p.y1 be
the set of prime divisors of D. Let p; denote the
prime ideal of K such that p? = (p;) and [; a prime
ideal of K prime to f, which belongs to the same
ideal class of p; (i =1,...,r+1). It is well known
that the genus ideal class group I,(f)/P(f) is
generated by [, ..., [4;. We denote by H, the
genus class field of K. Note that [H,: K]=2".
Denote by wy a generator of 2-Sylow subgroup
of Ime. Since ? =a2p? (i =1,...,r+1) for some
a; € K*, we have

Valy) = \/e(pia?)pia? = Jwipia;z,
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where a; € K*, w; € (wg), z € Im e. Putting ¢, =
VWipi, We get
T,=K(Ime, t, (p|D)).

We easily have the following relations:

[[tr€ K@me)*  (if D#4 mod 8)
p|D

H t, € K(Ime€)”

pl(D/4)

(if D=4 mod 8).

In the following Proposition 2 we give an
expression of dimension of A. Its proof is essentially
those of Theorem 3.4 and Theorem 3.5 in [5].

Proposition 2. We suppose h > 1. Let A be
a simple CM abelian wvariety over K and € the
associated character of A over K, of order m. Let wy
be as above. Then we have

h[Hy(Ime€) : HyJ
2h[Hy(Im €) : Hy

if Vwo & T,

if Jwo € Ty.

In particular dim A = h if and only if one of the
following conditions holds:

(1) m = 2. A is isogenous to the scalar restriction
Resy i (E) of an elliptic curve E over H.

(2) m=6, 3| D and €(3al) = —1.

(3) m=4, 2| D and €(2a*) is of order 4.

(4) m=12, 6 | D, 4| h, €(3a?) = £1 and €(2a*)
is of order 4.

Here ¢y denotes the 2-power order part of € and
a1, a € K* are chosen such that 3a3 and 24 are
prime to the conductor of ey. (Clearly the choices do
not affect the statements above.)

Remark 1. The condition €(3a?) = +1 in
(4) of Proposition 2 is missing in [5, Th 3.5 (4)]. It
is necessary.

Remark 2. For h=1 we have a result
similar to Proposition 2 and Theorem 1. It is a
little bit different.

Proof. Suppose D #4 mod 8. Then /—1¢
H, and T,(,/wy) = Hy(\/wy, Im €). We can check
that [Hy(\/wy, Im €) : Hy(Im €)] = 2. Suppose D =
4 mod 8. Thenv/~1 € Hy, V2 ¢ Hyand Ty(y/wy) =

dim A = {

H,(\/wy, V2, Ime). We also have [H,(\/wy,
V2, Im €) : Hy(Im €)] = 2. Noting dim A =

[T:K|]=h[T,: K|/[Hy: K], we obtain our first
assertion.

If dimA = h, then Jwo¢ T, and Hy(Im €) =
H,. This implies m | 12. Furthermore if 3 | m, then
V=3 € Hy(v/-1) or Hy,(v/2) and this shows 3 | D.
If 4/m and D#4 mod 8, then H,(v/—-1)=
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T,(v/—1, v/2) and this shows D=0 mod 8.

(1) m=2. Then e determines an elliptic
curve I over H and A = Resy/x (E) (the restriction
of scalars of F from H to K) is an abelian variety of
dimension h over K of type e.

(2) m = 6. In this case 3 | D and V-3 €T,
Then [T : K] = h is equivalent to v/—1 ¢ T,. Hence
t3 = v/—3, so that ¢ (3a?) = —1.

(3) m=4. Since wy=+v—1, [T:K]=h is
equivalent to Ty(\/wo) = Hy(y/wo) 2 Hy, hence
V2¢ T, Noting ty =/e(2a?)2 € T, it follows
that dimA = h is equivalent to €(2a?) = +v/—1.

(4) m=12. In this case 6 |D and T,=
K(V-1, t, (p|D)). As in (3), if [T:K]=h, we
have €)(2a2) = £+v/—1. Since (t3/v/3)* = € (3a2) and
Vo ¢ T,, we obtain €(3a?) = £1. The converse
is obvious.

2. Descent of abelian varieties.

Lemma 1. Let B be an abelian variety over a
number field M. Let L/M be a quadratic extension
in the algebraic closure M of M. Let (1) =
Gal(L/M) and T is extended to an automorphism
of M. Assume that over L, B is a simple abelian
variety with compler multiplication by o CM
field T(C M). Let 15 be the Hecke character of
(B, 0) with an isomorphism 6 : T — E,(B). Then
Y5 (= TppT1) is the Hecke character of (B, 07yT)
where 19: T — T is an automorphism induced by
Yp(P) — Yp(P7) for prime ideals P of L prime to
the conductor of Vp.

Proof. By [4,Prop. 1], ¢} is the Hecke charac-
ter of (B, 70771). Since 0(vp(P)") is the Frobenius
endomorphism of B mod PB", we have O(¢vp(P")) =
0(p(R))", so that 70 = Or.

Theorem 1. The notation being as 1in
Proposition 2 and assume h > 1. Let A be an h-
dimensional CM abelian variety over K. Let € be
the associated character of A. (Hence € satisfies
the conditions of Proposition 2.) Then A can be
descended to an abelian variety over Q if and only if
€ satisfies one of the following conditions.
(I)m=2, ¢ =e.

2) m =6.
) € =€ and (3ara]) = 1.
= ! and ¢(3a1a}) = —1.
3) m=4. (3-i) " =€ and €(2aa”) = 1.
ii) ¢ = ¢! and €(2aa’) = €(2a?) is of order 4.
1
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(4-iii) €* = €7, €9(3ara}) = —1 and (2aa”) = €(2a*)
is of order 4.

(4-iv) € = e and €y(2aa”) = €y(2a?) is of order 4.
(In case (4-i1) and (4-iv), the conductor of €y is
prime to 3.)

Proof. Let 14 be the Hecke character over K
associated to (A, #) with 0:T — Ex(A). Assume
that A descends to an abelian variety over Q. By
Lemma 1, ¢/,(= pthap™') is the Hecke character of
(A, Orop~!) for some 79:7 — T. Then we have
pYap~t = prytpa. Since pryte =€ for an integer i
prime to m, we get €’ = €.

(1) m = 2. Assume €’ = €. Let E be an elliptic
curve over H associated to e. We may assume
that p(jp) = jg. By [1,§ 10], E descends to F =
Q(je) C H. Then Resy/k(E) is an h-dimensional
abelian variety over K of type € and descends to
ReSF/Q(E).

(2) m = 6. In this case we must have ¢’ = e+l
Asin (1) let E be an elliptic curve over H associated
to €. Let ky/H be the extension of degree 3
corresponding to €; = ¢pe. ki is Galois over Q. Then
Resy, i (F) is isogenous to E x Ay where 4 is a 2-
dimensional abelian variety over H, which is of type
€. We see that 14, = 14 0 Ny i has values in S =
K(V=-3)CT and Ay can be descended to
F=Q(jg). By Lemma 1 there exists 75 € AutS
such that ¥ 4,p = 7094, and 79) = p on K.

Claim. Ife’ =¢, theny=pon S.Ife? = ¢!,
then 75(v—=3) = vV—=3.

Proof of Claim. Assume first ¢’ =e€. Since
there exists o€ K such that ¢4, ((o)) = e()a
where €(a) is a primitive 3rd root of unity,
Pa,((a”)) = e(a?)a? = e(a)ar, so that 7o = p. If ” =
€1, then 4,((a?)) = e(a)a” = s, ((a))™. Hence
To(€(a)) = €(e). This proves Claim.

Let Ly be the subfield of H corresponding to
(p3) in the ideal class group CI(K) of K with
p2 = (3). Denote by Fj the fixed subfield of L; by p.
Put B = Resp/p (Ap). Then B is isogenous to A; x
A} over Ly with ¢4, =14 0 Ny, and Ya, = axa,
where x; is a character of C1(K) such that x(p;) =
—1. We have

Er,(B) = S[T))(T* —t3*) =S S

where t3 =+/—3. The conditions (2-i) and (2-ii)
are equivalent to 4,p = 1oY4,. If this holds, we
have Ya p = 104 and Ep, (B) = Sy @ Sy with Sy =
Er(Ap). This implies that A; and A} can be
descended to Fy and hence A = Resy, x(4;) can
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be descended to Q. Conversely if A is descended to
Q, then ¥ 4p = 74 for some 7 € AutC. This shows
Ya,p=T1Y4. Then Ep(B) x2S, @S with S =
{a € S| 7(a) = a}. Since &g (B) is Sy-algebra, we
find Sy = Si, so that 7= 17. Hence (2-i) or (2-ii)
holds.

(3) m =4. We have ¢ = €*!. Let k/H be the
quadratic extension corresponding to € and let F
be an elliptic curve defined over k corresponding to
e. Since k/Q is Galois and Q(jg) has a real place, we
may assume that E is defined over F' (Q(jg) C
F' C k), which is fixed by p (cf. [1; §10]). Put
Ao = Resyg(E). Then Ap descends to Resp/p(E)
over F. By analogous argument as in (2), we
obtain; Ey(Ap) = K(v/—1) and there exists 7 €
Aut(K(v/—1)) such that a,p = 7tha, with 75 =p
on K. Let L be the subfield of H corresponding to
{p,) in CI(K) with p3 = (2). Denote by Fy the fixed
subfield of L by p. Put B = Resp/p,(Ao). Then B is
isogenous over L to a direct product A; x A} of
abelian varieties and &£ (B) 2 S® S with S =
K(v-1). As in (2) we see that A = Resp k(A1)
can be descended to Q if and only if A; can be
descended to Fy. Also this is equivalent to 14, p =
ToY4,, and we can check easily that this is equiv-
alent to our statement (3) in Theorem 1.

(4) m = 12. Let € = ¢yey. If A is defined over Q,
then € = ¢! and €] =¢f'. Let k and k; be the
extensions of H corresponding to €2 and €;, respec-
tively. Using €y, we define E' and Ay = Res;/z(E) as
in (3). Then Resy, (Ap) is isogenous to Ay x Aj
over H, where Aj is a 4-dimensional abelian variety
corresponding to e with £x(A)) = K(vV—1, vV/=3).
Since Ay is defined over F, we may assume that Aj,
is defined over F. As in case (2) and (3), there exists
70 € Aut(K(v/~1, v/=3)) such that Y p=ToYa.
Let Ly be the subfield of H corresponding to (py, p3)
in CI(K) and denote by Fj the fixed subfield of
Lo by p. Put B = Resp/p(4)). Then over Ly, B is
isogenous to a product C; x Cy x C3 x Cy of four
abelian varieties. It follows that A; = Resy,/x(C;)
(i=1, 2, 3, 4) are abelian varieties over K of
type € and 4, = a4, x; (1 =2, 3, 4), where x; are
characters of C1(K) such that they induce on {p,, p3)
distinct non-trivial characters. A is isogenous to
one of A; (=1, 2, 3, 4). Asin case (2) and (3), A
can be descended to Q if and only if ¥, p = 1Y, -
We can check that this is equivalent to the state-
ment (4) in Theorem 1. For example, in case (4-ii),
we have €)(3a?) = (3a1a}) = —1. If the conductor
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of €y is not prime to 3, write ¢ = n3 -7, where 13
has conductor p; (see [2; §3]) and n has conductor
prime to 3. Putting a; =vD/3, we see 3a} =
—3aya. Since n3(—1) = —1, it follows that €)(3a?)
m(3a2)n(3) = m(—3a1a))n(3) = —eo(3aiaf), a con-
tradiction. Hence the conductor of ¢ is prime to 3.

3. Construction of characters. We are
going to construct explicitely characters € over K
with the following property; the CM abelian variety
A over K of type € can be descended to Q and has
dimension h. The characterization of such € is given
in Theorem 1. Let m be the order of e.

1. m = 2. Then € corresponds to a Q-curve over
H whose Hecke character satisfy the condition (Sh)
in [2,8§4]. Such € exists only when D is divisible by
8 or D has a prime divisor ¢ with ¢ = —1 mod 4.
A classification of ¢ is given in [2, Theorem 2 and
Theorem 3].

2. m=6. Let € =¢ye; be the decomposition
such that ¢y has order 2 and ¢; has order 3. Then ¢
is a character in Case 1. Since €] = €f!, ¢ corre-
sponds to a cubic extension ki/H such that k;/Q
is Galois.

3. m = 4. For a rational prime ¢, we denote by
U, the local unit group U(K ® Q,) at £. We can

think of € as a character of Ug = H U;. Then we

can write uniquely € = [[, e/, where efg is a character
of Uy of order dividing 4. It is obvious that ¢’ =€
(resp. € = € !') if and only if €/ = ¢ (resp. €/ = ¢, 1)
for every £. Let us ask for a local character A of Uy
of order 4 such that A = A*! and A(2a?) is of order
4, where 2a* (a € K*) is prime to .

(i) ¢ J D. Since \* = A*!, we find that A(F)) =
£1 and A(2a2) = A\(2) = £1. )

(ii) €| D, £ #2. Since \*(2) = (Z) =1, we

must have £ =5 mod 8. In this case there exists
only two characters A*! of order 4 such that \* =
A1 and \(2) is of order 4.

(iii) £ = 2. We use the notation of [2,§ 2]. Let
X9 be the set of characters v: U, — +1 such that
v’ = v. We cosider in cases.

I. D= —4m with m =1+ 4k. If we put a =
@, then 2a? =./—m — 2k and 2aa” =1+ 2k.
Since A\? € X3 = (n_4, €s) by [2, Proposition 2], we
have A(Zj)=+1. Put ¢ =/—m and c¢3=3—
2y/=m (€ 1+ p3), then

(1+p2)/(1+p3) 2 {e1) % {e3) x (5)
where (c1) and (c3) are cyclic of oeder 4. Let §
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be a character of U, such that é(¢;) =v—1,
8(c3) =6(5) =1. Then 6 =6, 6 =n_4, 6(—1)=
—1 and 8(2a?) is of order 4. We have

5(2aa”)—{ 1 ifm=1 mod 8
—1 if m=5 mod 8.

Let ¢ be a character of Uy such that ¢(c3) = v—1
and Ker ¢ = (¢1, Z5). Then ¢” = ¢ and ¢(2aa”) =
1. Moreover we have; if m =1 mod 8, then ¢ = €3
and ¢(2a®) = £1; if m =5 mod 8, then ¢*> = esn_4
and ¢(2a?) is of order 4. Therefore if m = 1 mod 8,
6 and 6¢ satisfy the condition (3-i) of Theorem 1.
For an odd prime divisor p of D, 7, denotes the
unique quadratic character of U,. If m =5 mod 8,
then m has a prime divisor p with p =5 mod 8 or a
pair of prime divisors ¢, ¢y satisfying ¢; = 3 mod 8
and ¢ = —1 mod 8. We check easily that 1,0 and
Mg Mg, 6 satisfy the condition (3-i) of Theorem 1. We
denote by 8y either 1,6 or n,,n,,6. Further if m (m =
5 mod 8) has a prime divisor ¢ with ¢ =7 mod 8,
then 7,0 also satisfies the condition (3-i) of
Theorem 1.

II. D=—-8m. We put a=+v—2m/2. Then
—m = 2a*> and m = 2aa”. By [2,Proposition 2],
X9 =(n_s, 1) if m =1 mod 4 and X3 = (1, €4) if
m=—1mod 4. If m=1 mod 4, then I =¢
because 1_g(—1) = —1. Since e;(—m) =1, we see
A(—m) = £1. Hence there are no characters satisfy-
ing (3) of Theorem 1 in this case.

Suppose m = —1 mod 4. Let x be a character
of (Z/32Z)" such that k(5) is of order 8 and
k(—1) = 1. Define w = x o Ng,q. Then w is a char-
acter of U of order 4 with the following properties;
if m =3 mod 8, then w(4m) is of order 4 and w? =
nges and if m =7 mod 8, then w(+m)= =1 and
Ww? =ng. Put ¢; = 1+ v—2m, then UQ/Z;U; > (c1)
is cyclic of order 4. Hence we can define a character
¢ of Uy of order 4 by ¢(c;) = vV—1 and ¢(Z) = 1.
We have ¢” = ¢ and ¢*> = ¢,. Since m = 3 mod 8, m
has a prime divisor ¢ with ¢ =3 mod 4. Then A\ =
new satisfies the condition (3-ii) of Theorem 1.

Summing up the above arguments, we obtain
the following results.

(a) The set of characters C satisfying the
condition (3-i).

Let Y be the set of quadratic characters x of Uk
such that

X' =x, x(=1) =x(2aa”) = 1.
IfD=—-4m, m=1 mod 8, then C=6Y UdpY.
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If D= —4m, m =5 mod 8, then C = 6y Y. Further-
more if m has a prime divsor ¢ with ¢ =7 mod 8,
then C =n,0Y.

(b) The set of characters C' satisfying the
condition (3-ii).
Let Y’ be the set of characters y of Ug of order
dividing 4 such that

If D has a prime divisor p with p =5 mod 8, we

have C' = \)Y".

If D= —8m with m = 3 mod 8, for a prime divisor

q of D with ¢ =3 mod 4, we have C' =nwY".
Remark 3. In case D= -8m with m=

3 mod 8, the character As = n_g¢ w satisfies

Ay =21 Xo(—1) = =1, Xo(—m)

X' =x" x(2a*) = x(2aa”) = +1.

: of order 4.

Since Ao(—m) # Aa(m), Ag does not satisty (3-ii).
4. m = 12. Let € = ¢ye; be the decomposition
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such that ¢y has order 4 and ¢ has order 3.

According to €/ = ¢ or € = €71, it suffices to choose
1 1 1 >

€y from the characters constructed in case 3 to
satisfy the conditions (4) of Theorem 1.
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