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Strong symplectic structures on spaces of probability measures

with positive density function
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Abstract: Spaces of probability measures with positive density function on a compact
Riemannian manifold are endowed with a closed 2-form associated with the Fisher information
metric by using a divergence-free vector field. In this note we give a necessary and sufficient
condition on the vector field that this 2-form is a strong symplectic structure.
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1. Introduction. The aim of this article is
to study a basic question concerning symplectic
structures on an infinite dimensional manifold.

On a finite dimensional smooth manifold M a
symplectic structure is defined by giving a closed
2-form ω which is non-degenerate. Here ω is
called non-degenerate when at every point x of M
ωx(X,Y ) = 0 for all tangent vectors Y implies X =
0. The 2-form ω induces a linear mapping ω̃x of
TxM to T ∗xM , x ∈ M , and the non-degeneracy of ω
is equivalent to the strong non-degeneracy of ω, i.e.,
ω̃x being isomorphic at every point. However, on an
infinite dimensional manifold the non-degeneracy of
a closed 2-form ω does not implies, in general, the
strong non-degeneracy of ω. Refer to [8] for the no-
tion of strong symplectic structure.

We say that a symplectic manifold (M,ω) is
strong if ω is strongly symplectic. In symplectic ge-
ometry the classical theorem of Darboux plays an es-
sential role. For a strong symplectic manifold (M,ω)
the theorem of Darboux holds even though the man-
ifold M has infinite dimension. See for this [11, 12].

Though many infinite dimensional symplectic
manifolds have been encountered in mathematics,
unfortunately few examples of infinite dimensional
symplectic manifold which is strong are known. In
this sense, it is of significance to find infinite dimen-
sional strong symplectic manifolds.

2. Spaces of probability measures with
positive density function and the Fisher in-
formation metric. Let (X,h) be a compact, ori-
ented, n-dimensional Riemannian manifold with a
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Riemannian metric h. Let dVh be the canonical vol-
ume element defined by

dVh =
√

det(hij) dx1 ∧ · · · ∧ dxn,

where (x1, . . . , xn) is a local coordinate and hij =
h(∂/∂xi, ∂/∂xj). We assume X has unit volume,
that is,

∫
X
dVh = 1. For a fixed positive integer k

consider a space of probability measures whose den-
sity function is in L2

k(X) and positive everywhere;

Pk(X) =
{
µ= fdVh

∣∣∣∣ f ∈ L2
k(X), f > 0,

∫
X

µ= 1
}
,

where L2
k(X) is the Sobolev space consisting of func-

tions on X of finite L2
k-norm. Here the L2

k-norm
|ϕ|2

L2
k

is given by the inner product

〈ϕ,ψ〉 =
∫

X

ϕψ dVh +
k∑

j=1

∫
X

h(∇jϕ,∇jψ) dVh.

Choose k as k > 1+n/2 and identify the space Pk(X)
with Qk(X) =

{
f ∈ L2

k(X)
∣∣ ∫

X
f dVh = 1, f > 0

}
,

an open subset in the closed affine subspace Uk(X) ={
f ∈ L2

k(X)
∣∣ ∫

X
f dVh = 1

}
of the space L2

k(X).
From the Sobolev embedding theorem ([2]) it is eas-
ily seen that Qk(X) is open. Via this identification
we can define a topology on Pk(X). Pk(X) has a
Hilbert manifold structure modeled on the Hilbert
space

{
u ∈ L2

k(X)
∣∣ ∫

X
u dVh = 0

}
. For a detailed

argument refer to [10]. Furthermore for a basic ref-
erence of Hilbert manifolds see [6].

In 1945 C.R. Rao pointed out that the Fisher
information matrix determines a Riemannian metric
on a space of probability measures, and then infor-
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mation geometry was established and has made a
great contribution to study of statistical inference.
For this refer to [1].

The Fisher information metric g is a Riemann-
ian metric on Pk(X) defined by

g(σ1, σ2) =
∫

X

dσ1

dµ

dσ2

dµ
µ

for µ ∈ Pk(X), σ1, σ2 ∈ TµPk(X), where dσi/dµ de-
notes the density function of σi with respect to µ

(i = 1, 2). Note that g is nondegenerate, since the
density function of µ ∈ Pk(X) is strictly positive
over X. The metric g can be considered as an in-
finite dimensional version of the Fisher information
matrix.

To construct a symplectic structure on
Pk(X) we provide a divergence-free smooth vector
field W on (X,h). We define a linear operator
Φ: TµPk+1(X) → TµPk(X) as

Φ(σ) = W

(
dσ

dµ

)
dVh.

We can consider Φ as a differential operator on
TµPk(X) by virtue of the fact that TµPk+1(X) is
dense in TµPk(X). Since Φ is an anti-symmetric op-
erator with respect to g ([4, 10]), we can define a
2-form Ω on Pk(X) as;

Ω(σ1, σ2) = g(σ1,Φ(σ2))

=
∫

X

dσ1

dµ
W

(
dσ2

dµ

)
dVh.

In [4], T. Friedrich gave a condition that the
2-form Ω is a symplectic structure.

Theorem 1 (T. Friedrich). The 2-form Ω is
closed. Furthermore if W has an integral curve
which is dense in X, then Ω is a symplectic structure
on Pk(X).

However, we can improve the theorem of
Friedrich as follows:

Theorem 2. The 2-form Ω is symplectic if
and only if the vector field W has no regular first
integral.

A function f on a manifold M is called a regular
first integral of a vector field W if f satisfies Wf = 0
and is not constant on any open subset of M .

Let Diffk(X) be the group of orientation pre-
serving L2

k-diffeomorphisms of X. A map ϕ : X →
X is an L2

k-map when every coordinate representa-
tion of ϕ ψ−1

V ◦ ϕ ◦ ψU : U ⊂ Rn → V ⊂ Rn is in
L2

k(U,Rn). We call a bijective map ϕ : X → X an

L2
k-diffeomorphism when ϕ and ϕ−1 are L2

k-maps.
Since Diffk(X) is open in the space of L2

k-maps for
k > 1+n/2 (see [7], p. 88), Diffk(X) admits a Hilbert
manifold structure modeled on a Hilbert space.

Let P∞(X) be the space of probability measures
whose density function is smooth and strictly posi-
tive. Then Diff(X) acts on P∞(X) by pull-back,
where Diff(X) is the group of orientation preserv-
ing, smooth diffeomorphisms. This action extends
to a map Diffk+1(X) × Pk(X) → Pk(X) (see [3],
p. 38). From the theorem of Moser for Sobolev vol-
ume elements ([3], p. 38, Prop. 8.12) the action is
transitive. As is stated in [4], this action is isometric
with respect to the Fisher information metric.

Let Dµ
k+1 be the group of diffeomorphisms fix-

ing µ. Note that the map ϕ 7→ ϕ∗(µ) gives a home-
omorphism Diffk+1(X)/Dµ

k+1 → Pk(X) ([3], p. 38,
Prop. 8.13).

Remark. Since the action of Diffk+1(X) is
isometric, ϕ ∈ Diffk+1(X) preserves the symplectic
form Ω if and only if ϕ preserves the (n − 1)-form
iW dVh. Refer to [4, 9, 10] for this statement in terms
of the Poisson structure.

3. Strong symplectic structures. Our
problem is to find a condition which guarantees that
the mapping Ω̃ : TµPk(X) → (TµPk(X))∗ induced
from Ω is isomorphic.

Theorem 3. Let W be a smooth divergence-
free vector field without regular first integrals. Then,
the symplectic manifold (Pk(X),Ω) is strong if and
only if Φ is an isomorphism.

Proof. Assume Φ is isomorphic. Fix µ ∈ Pk(X).
Since Ω is a symplectic structure, Ω̃ is injective.
Hence it suffices to prove that Ω̃ is surjective. Let τ ∈
(TµPk(X))∗. From the nondegeneracy of the Fisher
information metric there exists τ ] ∈ TµPk(X) such
that

τ(σ) = g(τ ], σ)

for all σ ∈ TµPk(X). Since the operator Φ is onto,
there exists ρ ∈ TµPk(X) such that Φ(ρ) = τ ]. Thus,
we have for all σ ∈ TµPk(X)

τ(σ) = g(Φ(ρ), σ) = Ω(ρ, σ),

which implies the surjectivity of Ω̃.
Conversely we assume the surjectivity of Ω̃.

Take τ ] ∈ TµPk(X) such that g(τ ], σ) = τ(σ) for
τ ∈ (TµPk(X))∗ and all σ ∈ TµPk(X). Then there
exists ρ ∈ TµPk(X) such that Ω(ρ, σ) = τ(σ) for
all σ. Making use of the definition of Ω, we obtain
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that g(Φ(ρ), σ) = g(τ ], σ) for all σ. Using the non-
degeneracy of the Fisher information metric again,
it follows that Φ is onto.

We end this note by giving an example of the
space of probability measures admitting a strong
symplectic structure.

Let S1 be a unit circle with the angular co-
ordinate t. Take 1/2π dt as the canonical probability
measure. The space Pk(S1) of probability measures
on S1 is a homogeneous space with natural action of
Diffk+1(S1) for k ≥ 2. Since the isotropy subgroup
of the measure 1/2π dt is the rotation group, iso-
morphic to S1, Pk(S1) is homeomorphic to the coset
space Diffk+1(S1)/S1 by the remark of Section 2 (see
[5, 9] for reference). The space Diff(S1)/S1 is an ob-
ject of importance in the string theory in physics.
In [5], Kirillov and Yur’ev studied an infinite dimen-
sional Kähler geometry of Diff(S1)/S1.

The space of divergence-free vector fields on S1

is spanned by the coordinate vector field d/dt. Obvi-
ously d/dt has no regular first integrals, so the 2-form
Ω on Pk(S1) is a symplectic structure, when we take
W = d/dt. Moreover the linear operator Φ is sur-
jective. This can be shown as follows: Since Pk(S1)
is a homogeneous space of Diffk+1(S1), it suffices to
prove this assertion at some point of Pk(S1). Set µ =
1/2π dt and let σ = fµ be in TµPk(S1). Then we can
find ρ ∈ TµPk(S1) such that Φ(ρ) = σ as follows:
Since each element of the tangent space TµPk(S1)
is an L2-integrable function f of period 2π on R
with

∫ 2π

0
fdt = 0, we have that TµPk(S1) is spanned

by sinnt, cosnt (n = 1, 2, 3, . . .). Hence for σ =
fµ we can set f =

∑∞
n=1(an cosnt + bn sinnt). Put

h =
∑∞

n=1(−bn/n cosnt+an/n sinnt) and define ρ =
hµ ∈ TµPk(S1). Then Φ(ρ) = σ, since dh/dt = f .
Therefore Φ is surjective so that from our theorem Ω
is strong. Since iW (µ) = 1/2π is constant function,
from the remark of the previous section every ele-
ment of Diffk+1(S1) preserves the symplectic form Ω

which is strong.
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