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Abstract: Let a, b, ¢ be fixed coprime positive integers. In this paper we prove that if
b=3 (mod 4), a = —1 (mod b*), a® + b*'~! = ¢ and c is odd, where [ is a positive integer, then

the equation a” + b¥ = ¢* has only the positive integer solution (z,y, z) = (2,21 — 1, 1).
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1. Introduction. Let Z, N be the sets of all
integers and positive integers respectively. Let a, b,
¢ be fixed coprime positive integers. Recently, using
the theory of linear forms in logarithms, Terai [7]
proved that if b is a prime with b = 3 (mod 4), a =
—1 (mod bv*), a® + v*'"1 = ¢ and ¢ is odd, where
I € {1, 2}, then the equation

(1) a®+b=c* ux,y,2z€N

has only the solution (z,y, z) = (2,20 — 1,1). In this
paper, by means of different approach, we shall show
that the conditions b is a prime and ! € {1,2} can
be eliminated from the above-mentioned result. We
prove a general result as follows:

Theorem. Let | be a positive integer. If b =3
(mod 4), a = 1 (mod b*), a®> + 0?1 = ¢ and c is
odd, then (1) has only the solution (z,y, z) = (2,20 —
1,1).

2. Preliminaries.

Lemma 1 ([2,3]). The equation X?+32"+1 =
Y, X, Yymne€Z, X >0,Y >0, ged(X,Y) =1,
m > 0, n > 1 has only the solution (X,Y,m,n) =
(10,7,2,3) with n an odd prime.

Let D be a positive integer, and let h(—4D) de-
note the class number of positive binary quadratic
forms of discriminant —4.D.

Lemma 2. Let k be an odd integer with
ged(Dyk) = 1. If D > 3, then every solution
(X,Y, Z) of the equation

X?+DY? =k?%,
ged(X,Y) =1,

XY, Z € Z,
Z >0

can be expressed as
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Z =7Zit, teN,
X +YV=D = M(X1 + \Y1V-D),
Ao € {1, —1},
where X1, Y1, Z1 are positive integers satisfying

X? + DY? = k%,
h(-4D) =0

ged(X1, Y1) =1,
(mod Z7).

Proof. This lemma is the special case of [6,
Theorems 1 and 2] for D; =1 and D3 < 3. |

Lemma 3 ([5, Theorems 12.10.1 and 12.14.3]).
For any positive integer D, we have

4D

™

h(—4D) < log(2eV/D).

Let a, (8 be algebraic integers. If a4+ 8 and af
are nonzero coprime integers and a/f is not a root
of unity, then («, 3) is called a Lucas pair. Further,
let A=a+ 8 and C = af. Then we have

o= %(AJr)\\/E), 8= %(A—)\\/E), Ne{l,—1},

where B = A% — 4C. We call (A, B) the parameters
of the Lucas pair (a,3). Two Lucas pairs (a1, 1)
and (g, f2) are equivalent if a1 /ag = f1/F2 = £1.
Given a Lucas pair (a, ), one defines the corre-
sponding sequence of Lucas numbers by

o’ — 55
a—f3"
For equivalent Lucas pairs (a1, 51) and (aq, 52), we
have Lg(ay, 1) = tLg(az,B2) for any s > 0. A

prime p is called a primitive divisor of Ls(a, 8) (s >
1) if

p|Ls(a,B) and p{BLi(e, B) - Ls-1(a, B).

Ls(aaﬁ): 5:051525""
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A Lucas pair (a, ) such that Lg(a, 3) has no prim-
itive divisors will be called a s-defective Lucas pair.
Further, a positive integer s is called totally non-
defective if no Lucas pair is s-defective.

Lemma 4 ([8]). Let s satisfy 4 < s < 30 and
s # 6. Then, up to equivalence, all parameters of
s-defective Lucas pairs are given as follows:

(i) s = 5, (A B) = (1 5) (1,=7), (2,-40),
(1,-11), (1, ), (12, ), (12, —1364).

@) 3=7. (4 By = (1,5, (1, 219).

() =5 (4.5) = (2 20, (1,7

(iv) s = 10, (A, B) = (2,8), (5,3), (5, —47).

(v) s = 12, (A, B) = (1,5), (1,-7), (1,-11),
(2,-56), (1,—15), (1,—19

)-
(vi) s € {13,18,30}, (A, B) = (1,-7).

Lemma 5 ([1)). If s > 30, then s is totally
non-defective.

3. Proof of theorem. Let (x,y,z) be a so-
lution of (1) with (z,y,2) # (2,2l — 1,1). Since a =
—1 (mod b) and ¢ = a? = 1 (mod b), we see from
(1) that 2 must be even. Since b = 3 (mod 4) and
¢ is odd, we see from a® + b%~! = ¢ that a is even
and ¢ = 3 (mod 4). Hence, by (1), we get y = z
(mod 2). Further, since ¢ =3 (mod 4), we conclude
that y = z =1 (mod 2) by (1). It implies that y and
z are both odd. Hence, by Lemma 1, we may assume
that b is not a power of 3.

Since a = —1 (mod b*) and a2 + b*~! = ¢, we
have ¢ = 1+ b%~! (mod b?"). Hence, by (1), we get
14+b6Y =1 (mod b*~ Y and y > 21— 1. Ify = 2] — 1,
then from (1) we get

(2) 1+ = (1 4+0*7Y*  (mod b?),
whence we obtain
(3) z—1=0 (mod D).

Further, since y = 21— 1 and (z,y, 2) # (2,21 —1,1),
we have z > 1. Therefore, by (3), we get

(4) z—1>0.

If y > 20 — 1, then from (1) we get

(5) 1=(1+""1H* (mod v*).
It implies that z =0 (mod b) and

(6) z > b.

Therefore, by (4), (6) holds for any case.

Since b > 3 and y is odd, we find from (1) that
(X,Y, Z) = (a®/?,b%=1)/22) is a solution of the equa-
tion

LE [Vol. 80(A),

(7) X?+bY? =7,
ged(X,Y) =1,

XY, ZeZ,
Z>0.

Since ¢ is odd, by Lemma 2, we obtain

(8) z=71t, teN,

(9) a™/2+pW=D/2V b = A (X1 + A Y1V=D)',
A1Ag € {1,-1},
where X7, Y7, Z1 are positive integers satisfying
(10)  XF+bY7 =7,
h(—4b) =0

ged(X1, Y1) =1
(mod Zy).

Moreover, since z is odd, we see from (8) that ¢ must
be odd.

Let
(11) OéZXl +Yi\/ —b, ﬁZXl—Yi\/ —b.
By (10) and (11), we have
(12) a+p=2X,, af=c*
o 1
3= 671(()(12 —bY?) +2X,Y1V-D).

Since ged(X1, Y1) = ged(b,¢) = 1, we observe from
(12) that o+ 8 and a8 are nonzero coprime integers
and «/3 is not a root of unity. Hence, (o, ) is a Lu-
cas pair with parameters (2X7, —4bY;?). Further, let
Ls(a,8) (s = 0,1,2,---) denote the corresponding
Lucas numbers. By (9) and (11), we get

(13) bW/2 = Vi |Ly(e, B).

We find from (13) that the Lucas number L:(a, 3)
has no primitive divisors. Therefore, by Lemma 5,
we get t < 30. Further, it is easy to remove all cases
in Lemma 4 and conclude that ¢ < 4. So we have
te{1,3}.
When ¢ = 1, we get from (8) and (10
= Z; and h(—4b) = 0 (mod z).
h(—4b) > z. Further, by (6),

) that
It implies that

(14) h(—4b) > b.

By Lemma 3, we see from (14) that

4
b< # log(2eV/b),

whence we conclude that b < 19. Recall that b = 3
(mod 4) and b is not a power of 3. We have b €
{7,11,15}. But, (14) is impossible, since h(—4-7) =
1, h(—4-11) =3 and h(—4-15) =

(15)
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When ¢t = 3, we get from (9) that

(16) b2 = X Y (3X2 — bY2).

Let d = ged(Y1, 3X? — bY ). Since ged(X1,Y7) = 1,
we have d = 1 or 3. Notice that ged(b,¢) = 1 and
ged(b, X1) = 1 by (10). If d = 1 and b is a power
of prime, then b # a power of 3 and ged(b, 3X? —

bY?) = 1. Hence, from (16) we get Y; = bv—1)/2
and
(17) 3X7 —bY =1,

since b¥ = 3 (mod 4). Recall that ¢ = 1 (mod b).
We get from (10) and (17) that X? = 1 (mod b) and
3X? =1 (mod b), respectively. It implies that 3 =
1 (mod b), a contradiction. If d = 3, then 3|b, by
(16). Since b is not a power of 3, b has at least two
distinct prime divisors. Therefore when d = 1 and
b # a power of prime or d = 3, by the genus theory of
binary quadratic forms (see [4, Section 48]), we have
h(—4b) = 0 (mod 2). Further, by (8) and (10), we
get z = 3Z; and h(—4b) = 0 (mod 2z/3). It follows
that

(18) h(—4b) > b,

wlno

by (6). Further, by Lemma 3, we obtain from (18)
that
2 4v/b

Zb < ——log(2eVb),
3 m

(19)
whence we conclude that b < 51, since 3 | b for d = 3,
we have b € {15,35,39,51}. But, (18) is impossible,
since h(—4-15) = 2, h(—4-35) = 2, h(—4-39) = 4 and

h(—4-51) = 6. To sum up, the theorem is proved.
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