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Abstract:
examples to the result of [S].

Key words:

1. Introduction. Let f : M™ — M"*P be
an isometric immersion of an n-dimensional Rieman-
nian manifold M™ into an (n 4 p)-dimensional Rie-
mannian manifold M"+?. We recall the notion of
isotropic immersions ([O]): Let o be the second fun-
damental form of M™ in M"+P. Then the immersion
[ is said to be isotropic at x € M if |jo(X, X)||/| X]?
does not depend on the choice of X (# 0) € T, M.
If the immersion is isotropic at every point, then
there exists a function A on M defined by = —
llo(X, X)|I/||X||? and the immersion f is said to be
A-isotropic or, simply, isotropic. If the function A is
constant on M", we call (M™, f) a constant isotropic
submanifold.

Note that a totally umbilic immersion is
isotropic, but not vice versa. There are many exam-
ples of isotropic submanifolds which are not totally
umbilic in standard spheres.

The purpose of this paper is to construct exam-
ples of isotropic immersions of spheres into spheres
satisfying the following theorem:

Theorem. There exist many compact con-
nected isotropic submanifolds M™’s of an (n + p)-
dimensional sphere S"P(¢) of curvature ¢ satisfying
the following three conditions:

(i) M™ has constant mean curvature H(:= ||b]]),
where ||h]| is the length of the mean curvature
vector b of M™ in S"TP(¢).

(ii) The sectional curvatures K of M™ are greater
than or equal to (H? + &) /2.

(iii) M™ is not totally umbilic in S™1P(c).

This provides us with many counter-examples
to the result of Y. B. Shen ([S]). He showed that if a
compact connected isotropic submanifold M™ of an
(n+p)-dimensional sphere S™*?(¢) of curvature ¢ sat-
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We give examples of isotropic submanifolds in spheres, which are counter-

Isotropic; constant mean curvature; sphere.

isfies the conditions (i) and (ii) in our Theorem, then
the submanifold M™ is totally umbilic in S™*?(¢).
However unfortunately by virtue of our Theorem the
author claims that his proof in [S] has an error.
2. A construction of isotropic immer-
We denote by S¥(c) an N-dimensional
sphere of curvature c¢. Let M™ be an n-dimensional
compact isotropy-irreducible Riemannian homoge-
neous space. We choose two minimal isotropic im-
mersions of M™ into spheres, say x1 and y2. We set
12 M™ — SNi(ey) and xo : M™ — SN2 (cy). Here,
X1 (resp. x2) is a minimal A;-(resp. A2-) isotropic im-
mersion with respect to some eigenvalue p; (resp. ps)
of the Laplacian of M™. Suppose that u; # po. It
is well-known that ¢; = p1/n and c¢a = po/n (for de-

sions.

tails, see [T]). By using these two minimal isotropic
immersions x1 and x2, we construct the following ex-
amples of isotropic immersions of M™ into spheres.

Example. For each t € (0,7/2) the isometric
immersion f; : M™ — SN (¢) is given by

X SN2< €2 )
sin’t

where N = Nj + Ny + 1 and cos?t/c; + sin? t/co =
1/¢. Here the differential map (x1, x2)« of (x1,Xx2)
is defined by

(2.2) (X1, x2)«X = (cost - (x1)«X,sint - (x2)«X)
for each X € TM™.

. n (X1,x2) oN, C1
@1) o M7 ==08 (coth)

— SN(@),

Needless to say, the S™Vi(c;/cos?t) x SV2(cy/sin? t)
is imbedded into SV (&) as a Clifford hypersurface.
Our aim here is to clarify geometric properties
of the immersion f; given by (2.1).
Proposition. For each t € (0,7/2) the iso-
metric immersion f; : M™ — SN(¢) given by (2.1)
has the following geometric properties:



174 S. MAEDA

(1) f; has nonzero constant mean curvature.

(2) fi is isotropic.

(3) f: is pseudo umbilic but not totally umbilic.

(4) The mean curvature vector by of f; is not paral-
lel.

Proof. We shall compute the second funda-
mental form o; of f;.  First we consider the
second fundamental form of (xi,x2) M" —
SNi(cy/cos?t) x SN2(cy/sin®t). We denote by oy
(resp. 02) the second fundamental form of x; (resp.
X2)- Then it follows from (2.2) that the second fun-
damental form of (1, x2) is given by (cos? t-1, sin? ¢-
03), so that (x1,x2) : M™ — SM(ei/cos?t) x
SN2(¢cy/sin?t) is a minimal isotropic immersion.
Next, we study the second fundamental form of the
Clifford hypersurface given by (2.1). For simplicity
we put ¢; = ¢;/cos®t and ¢ = c3/ sin? t. We choose
a unit normal vector field & of SNi(c1) x SN2(c3)
in SN(&). Let A be the shape operator of this hy-
persurface in S™V(¢) with respect to & Then it is
well-known that A is expressed as follows:

G

C1
(2.3) A= (mfm) o (mm),
where [Ij, is an identity matrix of degree k. We need
to calculate A|ppm which is the restriction of the
shape operator A on the tangent bundle TM™. By
easy computation from (2.2) and (2.3) we know that

cos’t- & —SiHQt'C’aI
Ve +é v

Therefore the second fundamental form o; is ex-

pressed as follows:

(2.4) 04(X,Y) = (cos®t - 01(X,Y),sin’t - 55(X,Y))
cos?t- ¢ —sin’t - &

Ve +é
for any vector fields X,Y on M"™, where ¢; =

c1/cos’t and ¢ = ca/ sin’ t. Hence the mean curva-
ture vector b, := (1/n) trace oy is given by

A‘TMn =

(X,Y)¢

cos?t- ¢ —sin’t - &
Ve +e

Then the mean curvature H; is

(2.5) be =

|cos?t - ¢y —sin?t - G
Vel + e
We are now in a position to prove geometric proper-
ties of fi.
(1) Equation (2.6) guarantees the constancy of
H;. Here note that H; # 0 for each t € (0,7/2).

(2-6) H; = ||bt|| =

[Vol. T7(A),

In fact, suppose that H;, = 0 for some t5. Then by
the well-known result of Takahashi [T] the immersion
fie, » M™ — SN(E) is represented by eigenfunctions
of some eigenvalue p of the Laplacian on M™, which
is a contradiction (see the definitions of y; and ya2).

(2) It follows from (2.4) that the immersion f;
is (A¢-)isotropic. A; is given by

)\t:

(cos2t-¢1 —sint - G3)2
c1+c2

\/cos4t-)\%+sin4t~)\§+

(3) From (2.4) and (2.5) we can see that
(00(X,Y), ) = (X,Y)]||h¢|? for each X,Y € TM",
so that f; is pseudo umbilic, but of course it is not
totally umbilic.

(4) We denote by D the normal connection of
M™ in SN (). We choose a local field of orthonormal
frames eq,...,e, on M"™. Then by direct computa-
tion we find that for each i € {1,...,n} the normal
vector D, h contains some nonzero scalar multiple of
the vector (sint - (x1)«€;, —cost - (x2)«€;) which is
normal to M™. (]

3. Proof of Theorem. In Example (2.1)
first of all we set M™ = S™(n/(2(n + 1))), and put
x1 and xo as follows: Let x1 : S™(n/(2(n + 1)) —
Snt(n(n+1)/2)=1(1) be the second standard minimal
immersion and

Xe: Sn(ﬂ%ﬂ) - S”(z(%m)

be the identity mapping. Then we see that Ay =

(n—1)/(n+1) and Ay = 0. We particularly put
cost = 1/y/n+1, sint = \/n/(n+1). Hence we
obtain the following constant isotropic submanifold
S™(n/(2(n+1))) with constant mean curvature, say
H in S7H7(+3)/2((n 4 1)/(2n + 3)).

n
5" (Z(n + 1))
il gt (4 D/D=1 (4 1) x " (%)
_ ., gnin(n3)/2 (Lﬂ)
2n+3
Then from (2.6) we can find that
n—+2

C (n+1)/22n+3)
This, together with K = n/2(n + 1) and ¢ = (n +
1)/(2n + 3), yields that
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1 n? —2
K—-(H*+é&=——3 >0.
S H O = 5y
Thus we get the conclusion.
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