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Introduction. The Chern-Schwartz-MacPher-
son class (or more precisely natural transformation)
is the unique natural transformation from the co-
variant constructible function functor to the covari-
ant integral homology functor satisfying the normal-
ization that the value of the characteristic function
of a nonsingular compact complex analytic variety
is equal to the Poincaré dual of the total Chern
cohomology class of the tangent bundle. The ex-
istence of such a transformation was conjectured
by Deligne and Grothendieck and was proved by
MacPherson [10]. The novelity of MacPherson’s
proof is introducing the notion of local Euler obstruc-
tion (which was independently introduced by Kashi-
wara [7] also) and assigning the Chern-Mather class
to this local Euler obstruction, not to the character-
istic function. Although the Chern-Mather class is a
very geometrically simple homology class, the assign-
ment of the Chern-Mather class to the characteristic
function does not give such a natural transformation.

It is often said that few “functorial” proper-
ties are know for the Chern-Mather class (e.g., see
[6, Note, page 377, right after Example 19.1.7]), al-
though the assignment of the Chern-Mather class
to the local Euler obstruction is perfectly “natural”,
which is the main part of MacPherson’s proof. In this
paper, using this fine naturality of this assingment,
we interpret the Chern-Mather class in the same way
as the Chern-Schwartz-MacPherson class. Further-
more, by introducing the notion of a “q-deformed”
local Euler obstruction which unifies the charac-
teristic function and the local Euler obstruction,
we give a “q-deformed” Chern-Schwartz-MacPherson
class natural transformation, which specializes to the
Chern-Mather class natural transformation for q = 0
and the Chern-Schwartz-MacPherson class natural
transformation for q = 1.
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1. Constructible functions and Chern-
Schwartz-MacPherson classes. Let F(X) de-
note the abelian group of constructible functions on
X. The correspondence F assigning to each vari-
ety X the abelian group F(X) becomes a covariant
functor when we consider the following “geometri-
cally defined” pushforward:(

f∗1W

)
(y) := χ

(
f−1(y) ∩W

)
,

which is linearly extended with respect to the gener-
ators 1W (see [10, 12]).

For the algebraic category Deligne and Grothen-
dieck conjectured and MacPherson proved:

Theorem (1.1) (MacPherson’s theorem [10]).
For the covariant functors F and H∗ there exists a
unique natural transformation

C∗ : F → H∗

satisfying (normalization condition) that for X non-
singular

C∗(1X) = c(TX) ∩ [X],

where c(TX) is the total Chern cohomology class of
the tangent bundle TX and [X] is the fundamental
homology class of X.

MacPherson first observed that the abelian
group of constructible functions are freely gener-
ated by local Euler obstructions of the closed sub-
varieties and via the graph construction method he
proved that the association of the Chern-Mather
class CM (W ) to the local Euler obstruction EuW ;

C∗ : EuW 7−→ CM (W ),

not to the characteristic function 1W , is natural, i.e.,

(1.2) f∗C∗(EuW ) = C∗(f∗ EuW ).
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In particular, we have

(1.3) f∗C∗(1W ) = C∗(f∗1W ).

This is the so-called “naturality” of the Chern-
Schwartz-MacPherson class, since C∗(1W ) = C∗(W )
is the Chern-Schwartz-MacPherson class and we
have that

∫
X

C∗(X) = χ(X), the topological Euler-
Poincaré characteristic of the variety X.

In the analytic category MacPherson’s proof
works in parallell, except for the analyticity of the
graph construction. However it was solved affirma-
tively by M. Kwieciński in his thesis [8]. So now the
above conjecture is true in both the algebraic and
analytic categories. It turns out that the so-called
Schwartz characteristic cohomology classes, which
M.-H. Schwartz [11] had constructed before the
above conjecture was made, are in fact isomorphic
to the homology class C∗(1X) via the Alexander du-
ality isomorphism (see [2]). Thus the total homology
class C∗(1X) is nowadays called the Chern-Schwartz-
MacPherson class of X. We call the above natural
transformation C∗ the Chern-Schwartz-MacPherson
class natural transformation, emphasizing that it is a
natural transformation, since the “naturality” is the
main object in this paper.

2. A “q-deformed” local Euler obstruc-
tion. For the original definition of MacPherson’s
local Euler obstruction defined via the obstruction
theory, see his paper [10]. Since for a smooth point
of the subvariety W EuW (p) = 1, the local Euler
obstruction function EuW is almost like the charac-
teristic function 1W ; they differ only along the sin-
gular set of W . The local Euler obstruction EuW is
a constructible function (e.g., see [2, 4, 10]).

Definition (2.1). For a subvariety W ⊂ X

the “q-deformed” local Euler obstruction Eu(q)
W of W

is defined by

Eu(q)
W :=

∑
S

nSqdim W−dim S1S ,

provided that

EuW =
∑
S

nS1S ,

where S′s are closed subvarieties of W .
Note that for any q

Eu(q)
W = 1W +

∑
S⊂Sing(W )

nSqdim W−dim S1S ,

therefore we have

(1) if W is nonsingular, then Eu(q)
W = EuW = 1W ,

and
(2) Eu(0)

W = 1W ,
(3) Eu(1)

W = EuW .
In this sense the “q-deformed” local Euler obstruc-
tion Eu(q)

W is a “deformation” of both the character-
istic function and the local Euler obstruction.

Proposition (2.2).
(1) The homomorphism

E(q) : Z(X)⊗Z Z[q] → F(X)⊗Z Z[q]

defined by

E(q)
(∑

pW [W ]
)

:=
∑

pW Eu(q)
W

is an isomorphism, which shall be called a q-Euler
isomorphism. Here pW ∈ Z[q].
(ii) Furthermore {Eu(q)

W |W} are the free generators
of F(X)⊗Z Z[q].
The proof of the lemma is done by the induction on
dimension, in a way similar to that in the original
MacPherson’s proof. So it is left for the reader as an
exercise.

3. The “q-deformed” Chern-Schwartz-
MacPherson class. One of the basic require-
ments for a right notion of Chern homology class
C∗(X) of a possibly singular variety X is the very
geometric one (“Euler-Poincaré characteristic condi-
tion”) that the degree

∫
X

C∗(X) of the 0-dimensional
component of C∗(X) must be equal to the topologi-
cal Euler-Poincaré characteristic χ(X) of X. Hence,
even if we have (1.2), which is a perfect and fine “nat-
urality” of the Chern-Mather class, we cannot adopt
the Chern-Mather class as a right singular Chern ho-
mology class, simply because

∫
X

CM (X) 6= χ(X) for
X singular. Thus it is often said that the “functori-
ality”of the Chern-Mather class is not known. How-
ever, we still want to consider (1.2) as the “natural-
ity” of the Chern-Mather class. So, to avoid ambi-
guity, we want to express the naturality (1.2) in the
same form as (1.3);

fFCF(1W ) = CF(fF1W ).

Certainly, the association CF is

CF : 1W 7−→ CM (W ),

and the pushforward fF is

fF1W =
∑

nS1S
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provided that f∗ EuW =
∑

nS EuS . It is easy to see
that with the above pushforward CF : F → H∗ is
a unique natural transformation satisfying that for
X nonsingular CF(1X) = c(TX) ∩ [X]. This CF

shall be called the Chern-Mather class natural trans-
formation. Indeed, with the following canonical au-
tomorphism

ΦX : F(X) → F(X) defined by ΦX(1W ) = EuW ,

we have CF = C∗ ◦Φ and for a morphism f : X → Y

fF = Φ−1
Y ◦ f∗ ◦ ΦX .

Thus the uniqueness of CF follows from the unique-
ness of C∗ via the isomorphism Φ.

We generalize CF, using the “q-deformed” lo-
cal Euler obstructions. We first define the following
pushforward f

(q)
F .

Definition (3.1). For a morphism f : X → Y

the pushforward

f
(q)
F : F(X)⊗Z Z[q] → F(Y )⊗Z Z[q]

is defined by, for each generator Eu(q)
W ,

f
(q)
F Eu(q)

W :=
∑

nS Eu(q)
S ,

provided that

f∗ EuW =
∑

nS EuS .

It is obvious that f
(0)
F = fF and f

(1)
F = f∗. Cer-

tainly, the pushforward f
(q)
F is well-defined and func-

torial. Indeed, there is a canonical automorphism

Φ(q)
X : F(X)⊗Z Z[q] → F(X)⊗Z Z[q]

defined by

Φ(q)
X

(∑
W

nW Eu(q)
W

)
=
∑
W

nW EuW .

Let

f
[q]
∗ : F(X)⊗Z Z[q] → F(Y )⊗Z Z[q]

be the linear extension of the original pushforward
f∗ : F(X) → F(Y ) with respect to the polynomial
ring Z[q]. Then the pushforward f

(q)
F is described by

f
(q)
F = (Φ(q)

Y )−1 ◦ f
[q]
∗ ◦ Φ(q)

X .

In other words the automorphism Φ(q) is an equiv-
alence of the two functors F (q) := F ⊗Z Z[q] with
the pushforward f

(q)
F and F [q] := F ⊗Z Z[q] with the

pushforward f
[q]
∗ . And let C

[q]
∗ : F → H∗ ⊗Z Z[q] be

the linear extension of C∗ with respect to the poly-
nomial ring Z[q]. Then we have the natural trans-
formation

C
(q)
F = C

[q]
∗ ◦ Φ(q) : F (q) → H∗ ⊗Z Z[q].

This C
(q)
F shall be called a “q-deformed” Chern-

Schwartz-MacPherson class natural transformation
and the total homology class C

(q)
F (X) := C

(q)
F (1X)

iscalled the “q-deformed” Chern-Schwartz-
MacPherson class of X .

It should be noted that the above pushforward
f

(q)
F looks easy, but actually it requires representing

or expressing constructible functions in terms of the
“q-deformed” local Euler obstructions, therefore that
it is a complicated pushforward.

We can paraphrase the transformation C
(q)
F as

follows:
Theorem (3.2). Let the Chern-Mather corre-

spondence

CM : Z(X)⊗Z Z[q] → H∗(X;Z[q])

be defined by

CM
(∑

pW [W ]
)

:=
∑

pW CM (W ) with pW ∈ Z[q].

Then the correspondence

C
(q)
F := CM ◦ (E(q))−1 : F ⊗Z Z[q] → H∗ ⊗Z Z[q]

is a unique natural transformation satisfying that for
X nonsingular

C
(q)
F (1X) = c(TX) ∩ [X].

In particular, C
(0)
F = CF : F → H∗ is the Chern-

Mather class natural transformation and C
(1)
F = C∗ :

F → H∗ is the Chern-Schwartz-MacPherson class
natural transformation.

Certainly the theorem can be proved directly in
the same way as in the original MacPherson’s proof
[10].

As to the “q-deformed” Chern-Schwartz-Mac-
Pherson class of a variety X we need the following:

Theorem (3.3).

1X = Eu(q)
X +

∑
S∈SX

S⊂Sing(X)

θ(S, X)qdim X−dim S Eu(q)

S
,

where SX is a Whitney stratification of X and
θ(S, X) is the Dubson-Kashiwara index.

Proof . First we observe the following result:
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Lemma (3.3.1). Let A = (aij) be an n × n

lower triangular matrix such that each diagonal entry
aii = 1. Then the (i, j)-entry bij (i > j) of the
inverse matrix A−1 is given by:

bij =
∑

i=i0>i1>···>ik=j

(−1)kaii1ai1i2 · · · aik−1j .

The proof of this is straightforward by induction on
the size of the matrix and left for the leader.

Let us put a partial order on the set SX of Whit-
ney stratification of X by S′ < S if and only if
S′ ⊂ S \ S. Then, following [3, 4], for an ordered
pair (S′, S), where S′ < S, the Dubson-Kashiwara
index θ(S′, S) [3, 4, 7] is defined by

θ(S′, S) := 1− V 1+dim S′(S′, S).

Here V 1+dim S′(S′, S) := χ(S ∩ H1+dim S′

x,ε ∩ Bδ(x)),
where x ∈ S′, H1+dim S′

x,ε is a plane of codimension
1 + dim S′, which does not go through the point x

and is close to x within the distance ε, Bδ(x) is a
δ-ball centered at x and 0 < ε << δ. Next, using
this Dubson-Kashiwara index we consider a big lower
triangular θ-matrix Θ with the diagonal entry being
1 (for this matrix see [3, 4]):

Θ := (θ̃(S′, S))(S′,S),

where

θ̃(S′, S) =

1, S′ = S,
θ(S′, S), S′ < S,
0, otherwise

We consider the following “vector” of distinguished
constructible functions:

(1S), (EuS).

Dubson’s theorem [4] relates these two distinguished
vectors by the above θ-matrix Θ as follows:

(1S) = (EuS)Θ.

In particular we have the following

1X = EuX +
∑
S

θ(S, X) EuS .

As a corollary of Lemma (3.3.1) we have:

Θ−1 =

 ∑
S=Si0>···>Sik

=S′

θ̂(S′, S)


(S′,S)

,

where θ̂(S′, S) := (−1)kθ(S′, Sik−1) · · · θ(Si1 , S) for
each S = Si0 > · · · > Sik

= S′. For any lower trian-
gular matrix M =

(
m(S′, S)

)
(S′,S)

, where m(S′, S)

is a real number, we define the “q-deformed” matrix
M (q) as follows:

M (q) :=
(
qdim S−dim S′m(S′, S)

)
(S′,S)

.

Then the “q-deformed” θ-matrix Θ(q) is:

Θ(q) =
(
qdim S−dim S′ θ̃(S′, S)

)
(S′,S)

.

Then again by Lemma (3.3.1) it is easy to see that(
Θ(q)

)−1 =
(
Θ−1

)(q)
.

Now we are ready to prove Theorem (3.3). Since
(1S) = (EuS)Θ, we have

(EuS) = (1S)Θ−1.

Therefore by the definition of the “q-deformed” local
Euler obstruction we have(

Eu(q)

S

)
= (1S)

(
Θ−1

)(q) = (1S)
(
Θ(q)

)−1
.

Hence we have

(1S) =
(
Eu(q)

S

)
Θ(q).

Therefore in particular we get that

1X = Eu(q)
X +

∑
S⊂Sing(X)

θ(S, X)qdim X−dim S Eu(q)

S
.

Corollary (3.4).

C
(q)
F (X) = C∗(X) +∑

S⊂Sing(X)

θ(S, X)(qdim X−dim S − 1)CM (S)

= C∗(X) +∑
Si0>···>Sik

=S

̂̂
θ(S, X)(qdim X−dim Si0 − 1)C∗(S),

where ̂̂θ(S, X) := (−1)kθ(S, Sik−1) · · · θ(Si0 , X) for
each Si0 > · · · > Sik

= S. In particular, C
(0)
F =

CM (X) the Chern-Mather class of X and C
(1)
F =

C∗(X) the Chern-Schwartz-MacPherson class of X.
For the last equality use (EuS) = (1S)Θ−1.
Definition (3.5) (A “q-deformed” Euler-Poin-

caré characteristic).

χ(q)(X) :=
∫

X

C
(q)
F (X) = χ(X) +∑

Si0>···>Sik
=S

̂̂
θ(S, X)(qdim X−dim Si0 − 1)χ(S).

As an example for the “q-deformed” Euler-Poin-
caré characteristic, let us consider an n-dimensional
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singular variety X with isolated singularities x1, x2,

. . . , xr. In this case we have

C
(q)
F (X) = C∗(X) +

∑
(EuX(xi)− 1)(qn − 1)[xi].

In particular for an n-dimensional local complete in-
tersection X with isolated singularities x1, x2, . . .,
xr we have

C
(q)
F (X) = C∗(X) + (−1)n(qn − 1)

∑
µi[xi],

where µi is the Milnor number of X at the singularity
xi. This is due to the following formula due to L.
Ernström [5]: for an isolated singularity of an n-
dimensional local complete intersection X

EuX(x) = 1 + (−1)n−1µ(X, x),

where µ(X, x) denotes the Milnor number of X at
the isolated singularity x. (The hypersurface version
of this formula was proved by Kashiwara [7].) Hence
we have

χ(q)(X) = χ(X) + (−1)n(qn − 1)
∑

µi

The following is a generalization of the product
formula of the Chern-Schwartz-MacPherson class [8]
(cf. [9]).

Theorem (3.6) (A product formula). Let α ∈
F (q)(X) and β ∈ F (q)(Y ) and the exterior product
α⊗β ∈ F (q)(X×Y ) is defined to be (α⊗β)(x, y) :=
α(x)β(y). Then we have

C
(q)
F (α⊗ β) = C

(q)
F (α)× C

(q)
F (β),

where × is the homology cross product. In particular,
we have

C
(q)
F (X × Y ) = C

(q)
F (X)× C

(q)
F (Y ),

hence

χ(q)(X × Y ) = χ(q)(X)χ(q)(Y ).

Proof . Since Eu(q)
W are the free generators, it

suffices to show the following product formula:

C
(q)
F (Eu(q)

W ⊗Eu(q)
T ) = C

(q)
F (Eu(q)

W )× C
(q)
F (Eu(q)

T ).

By the definition we have C
(q)
F (Eu(q)

A ) = C∗(EuA) =
CM (A), thus it suffices to show the following equal-
ity:

Eu(q)
W ⊗Eu(q)

T = Eu(q)
W×T .

Let

EuW =
∑

nS1S and EuT =
∑

nQ1Q.

Then by the basic property of the local Euler ob-
struction [7, 10] we have

EuW×T = EuW ⊗EuT =
∑

nSnQ1S×Q.

Hence by the definition we have

Eu(q)
W ⊗Eu(q)

T =
(∑

nSqdim W−dim S1S

)
⊗(∑

nQqdim T−dim Q1Q

)
=
∑

nSnQqdim W−dim S · qdim T−dim Q1S ⊗ 1Q

=
∑

nSnQqdim W+dim T−dim S−dim Q1S×Q

= Eu(q)
W×T .

Remark (3.7). The pushforward f
(q)
F cannot

be directly defined by using the “q-deformed” Euler-
Poincaré characateristic like in the original definition
of the pushforward f∗, i.e., in general we have(

f
(q)
F 1W

)
(y) 6= χ(q)(f−1(y) ∩W ).

For example, let C be a nonsingular plane curve of
degree d(> 1), let X(⊂ P2) be the projective cone
over C with v the cone point, and let f : X̃ → X

be the blow-up of X at the cone point v (cf. [13,
Examples (3.11) and (3.12)]). Then we have(

f
(q)
F 1 eX

)
(v) = 1 + (2d− d2 − 1)q2 + d,

χ(q)
(
f−1(v) ∩ X̃

)
= χ(C) = 3d− d2.

Hence (
f

(q)
F 1 eX

)
(v) 6= χ(q)

(
f−1(v) ∩ X̃

)
.

Details are left for the reader as an exercise.
A crucial reason for why in the Chern-Schwartz-

MacPherson class case we have the equality

(f∗1W ) (y) = χ
(
f−1(y) ∩W

)
is that the Euler-Poincaré characteristic χ satisfies
the property (“strong” multiplicativity) that χ(E) =
χ(B)χ(F ) for a fiber bundle E → B with fiber
F , which is much stronger than the multiplicativ-
ity χ(X × Y ) = χ(X)χ(Y ). Hence we can see that
χ(q) is not “strong” multiplicative. So it remains to
see whether one can define a “strong” multiplicative
characteristic χ̃(q) of a variety so that the following
holds: (

f
(q)
F 1W

)
(y) = χ̃(q)

(
f−1(y) ∩W

)
.
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We do not know an answer even in the case when
q = 0, i.e., in the Chern-Mather class case. This sup-
posedly means “few functorial properties are known
for the Chern-Mather class”.
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