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Introduction. The aim of the present paper
is to give an inequality between certain heights
of isogeneous polarized abelian varieties defined
over a number field (Theorem 0.1 below). As an
application we obtain a generalization (Theorem
0.3 below) of the theorem of Masser and David
concerning the number of rational points of small
height on a simple polarized abelian variety
(Theorem 0.5 below).

Let A be a g-dimensional abelian variety de-
fined over a number field k. Let be a very am-
ple line bundle of degree d over A. Then (A,
///) determines a polarized abelian variety. By ex-
tending the base field if necessary, we have a

theta-structure on (A, ) (see [5, p. 297]). When
a theta-structure s is fixed, a basis (Os),= for
the k-vector space F(A, Jill) of global sections of

is uniquely determined up to a constant (see
Section 1 below), hence determines an embedding
of A into the (d--1)-dimensional projective
space pd-1 The naive height h of the triple (An

///, s) is defined by the absolute logarithmic Weil

height of the k-valued point (Osi(O)),i=1 in P-I.
Throughout this paper, k denotes a number

field of finite degree A [k:Q].
The fundamental result of this paper is the

following. (The superscript below indicates the
inverse image of a line bundle by a morphism [8,
p. 1 10].)

Theorem 0.1. Let A and B be g-dimensional
abelian varieties over k, f be an isogeny of A onto
B, and and Af be very ample line bundles over A
and B, respectively, such that li --f*A. For a
theta-structure t on (B, A )which is compatible
with a theta-structure:s on (A, tl), we have

hn(A, l, s) - ha(B, Af, t).
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The exact meaning of the compatibility of
theta-structures is defined in Section 1.

Remark 0.2. For the Faltings stable height

hst, we know 1
hst(A) >_ hst(B) -- log deg f cf. [2, Lemma 51.

Two theorems below are main applications
of Theorem 0.1. We denote by qA the quadratic
part of a Neron-Tate height on A. We define the
naive height hn Of the pair (A, ///) by the mini-
mum of hn (A, l, s). We know that the number
of theta-structures is finite (see [5, p. 297]). The
rotation (R)4 means the tensor product of 4 copies
of a line bundle [8 p. 153].

Theorem 0.3. Let be an arbitrary ample
line bundle over A and set l" ( (--1 )*
)(R). Assume that A is simple and a theta- struc-
ture on (A, is defined over k. There exists a

positive constant C C (g) such that for any finite
extension field F of k of degree D F" k] we
have 1

# (P A(F) qa (, P) < CAD}

< C deg hn (A, /) a/,. A
(1 + log A )Da (1 + logD).

Theorem 0.4. Under the same assumptions as

those of Theorem 0.3 we have a positive constant C
C(g) such that

min qA (?, P)
A (F) P:non- torsion

hn(A, X)a d3+1(1 + logd)2D2+l(l +logD)"
The proof of these theorems is based on the

next theorem 0.5 due to Masser [3] and David [1],
which is a special case of Theorem 0.3. It seems
difficult to us to generalize directly the method of

[1] to prove them, but as we shall show below,
they follow easily from our theorem 0.1.

Theorem 0.5 (Masser-David). Let B be a

g-dimensional simple abelian variety over a number

field k and A/ be an ample line bundle over B of de-
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gree 8 of type (8,’-’,8). Suppose that a theta-struc-
ture on (B, W) is defined over the base field k.
Then there is a positive constant C-C (g) such
that 1

# {Q B(F) lq.(dV, Q) < C AD }

< C. hn (B, :g) o/ A o/ (1 + log A)D(1 + logD).
As for elliptic curves, see [4], too.
1. Naive height of a polarized abelian varie-

ty. Let k be a number field and A be a g-dimen-
sional abelian variety over k. We denote by 3// a

very ample line bundle over A of type c [5, p.
294], where c is a finite sequence (dx,
do) of positive rational integers d such that d+x
divides di. Let N (d///) be the theta group associ-
ated with d/// [5, p. 289]. It is a group scheme
over k [7, p. 225] which acts on 3//. We assume
that a primitive d-th root of unity is already in k
and the group (d///)(k)of k-rational points of
(dli) is isomorphic to the group q3(c)(k) below, in
which case we say a theta-structure is defined

Let K(c) (k) (o dT,Z/Z and R(c3) (k)
Horn (K(6)(k), Gm(k)). As set, the group

f(6) (k) equals Gre(k) R(0) (k) K(0) (k). It
acts naturally on a finite dimensional k-vector
space V(6) (k) Map (K(0) (k), A (k)), which
induces a multiplication law on c ()(k)[5, pp.
294-297]. We see that the abelian groups
K(0) (k) and K(c) (k) are subgroups of c (c3) (k).
An isomorphism s (dg) (k) ---% () (k) is called
a theta-structure [5, p. 297]. Via s, the group
(c3)(k) acts also on the k-vector space F (A,
3//) of global sections of 3//.

Proposition 1.1. Once a theta-structure s is

fixed, the k-vector space F(A, 31) is isomorphic to
the k-vector space V(O) (k) as () (k)-modules.
The isomorphism is unique up to multiplication by a

constant in k.
Proof [5, pp. 295-297]. [-
Let Q be an element of V(O)(k) defined as

_{1 ifx: y()
0 otherwise.

The set ()(( forms a basis of the k-vec-
tor space V(8)(k). Let (Os,):g( be a subset
of 1-’(3,_, 3/l) that consists of the elements which
correspond to under an isomorphism in Prop-
osition 1.1.

Definition 1.2. The naive height hn of (A,
d///, s) is the absolute logarithmic Weil height of

the k-valued point (Os,(O))K<)<) in the projec-

tive space pa-, where d is the dimension of
F(A, 3/l) which is equal to deg 3//.

By Proposition 1.1, the real number h (A,
3//, s) is well-defined.

Remark 1.3. At Archimedean places the
values Os, (0)are the classical Thetanullwerte

0. (, o).
Let H be any subgroup of (3//) (k) such

that s(H) K(6)(k) c f(6)(k) for a fixed

theta-structure s. We divide A and 3// by H" in-
deed, there exist an isogeny f of A onto an abe-
lian variety B over k and an ample line bundle
W overBsuch thatdegf= #H,f*W j//, and
the k-vector space F(B, N)is identified with

the H-invariant subspace of F(A, J/l) under f*
[5, pp. 290-291].

Let (3//)(k)* be the normalizer of H in

f (3//) (k) and L" K(6)(k) N s (ted (3//)(k)*).
The group (3//)(k)* acts naturally on

F(B, A/’) F(A, 3/l) I.
In fact, we have [5, p. 291]

() (k)*/H (W) (k).
On the other hand, we see
s((l) (k)*/H) G,,(k) K(6) (k)/s(H) L
and we have

K(6)(k)/s(H) Hom (L, Gm(k))
by definition. This leads to the existence of a

theta-structure t on (B, W).
Definition 1.4. The theta-structures s on

(A, 2//) and t on (B, W) are compatible if B and
W are the quotients of A and of 3//, respectively,

-1
by a subgroup of s (/ (6)(k)) and if t is in-
duced by s taking the subquotients.

Proof of Theorem 0.1. Let (Os,x)xK(6)(k) and

(Ot,)L be sets of global sections of 3// and W,
respectively, as described before. Note that;L is a

subgroup of K(6)(k). By using Theorem 4 of [5,
p. 302], there is a constant / k such that (/"
Ot,)L is a subset of (0,)n)) via f*’F(B,
W) c--F (A, 3//). The definition of the Weft
height yields the proof. []

2. Proofs of Theorem 0.3 and Theorem 0.4.
Proof of Theorem 0.3. Fix a theta-structure

s of (3//) (k) satisfying

ha(A, J/l s) hn (A J/l).
As indicated in the previous section, we have an

isogeny f" A- B, an ample line bundle W over

B of type (8,’’’, 8), and a theta-structure t of
c(W) (k) which is compatible with s such that
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deg f deg LP and f’A/
As a line bundle of type (8,’", 8) is automatical-
ly very ample [(3, pp. 83-84], the naive height is
defined. A property of the N6ron-Tate heights
shows

qA (J/I, P) qA (,f*,A[, P) qB (A/, f(P)
for P A (F).

Thus we have 1
#{PeA(F) [q(,P) < CAD}

1
-<degf" #{QeB(F) lq,(2V, Q) < CAD}

1
deg # {Q B(F) qB (J[, Q) < C A D}"

By virtue of the Masser-David theorem, we
obtain 1#(PA(F)[qn(A/, P) < CAD}

< deg C. hn(B, ,.a[) ao/z A
D

-< deg . C. hn(B, A/, t) 3/2 A 3o/2

(1 + log A)aDS (1 + logD).
Together with the additive law of N6ron-Tate
heights, we get

qa (d/l, P) qA (( @ (-- 1) *?) (R)4, p)
4"qA(, P) + 4"qA((--1)*LP, P)
4"qa(. P) + 4"qA(, --P)
8. qA (., P).

Theorem 0.1 gives the desired inequality. [--]
Proof of Theorem 0.4. Notation being as

above, for P A(F) we have
1

qA (-, P) -g q(N f(P) )

By Theorem 0.1, it suffices to prove the theorem

for (B, A/). The conclusion is immediate by an

easy argument using the theorem of Masser and
David. [-1
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