A Remark on Naive Height of a Polarized Abelian Variety and its Applications

By Masami FUJIMORI*)

Mathematical Institute, Tohoku University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1997)

Introduction. The aim of the present paper is to give an inequality between certain heights of isogeneous polarized abelian varieties defined over a number field (Theorem 0.1 below). As an application we obtain a generalization (Theorem 0.3 below) of the theorem of Masser and David concerning the number of rational points of small height on a simple polarized abelian variety (Theorem 0.5 below).

Let A be a g-dimensional abelian variety defined over a number field k. Let \mathcal{M} be a very ample line bundle of degree d over A. Then (A, \mathcal{M}) determines a polarized abelian variety. By extending the base field if necessary, we have a *theta-structure* on (A, \mathcal{M}) (see [5, p. 297]). When a theta-structure s is fixed, a basis $(\theta_{s,i})_{i=1}^d$ for the k-vector space $\Gamma(A, \mathcal{M})$ of global sections of \mathcal{M} is uniquely determined up to a constant (see Section 1 below), hence determines an embedding of A into the (d-1)-dimensional projective space \mathbf{P}^{d-1} . The *naive height* h_n of the triple (A, $\mathcal{M}, s)$ is defined by the absolute logarithmic Weil height of the k-valued point $(\theta_{s,i}(0))_{i=1}^d$ in \mathbf{P}^{d-1} .

Throughout this paper, k denotes a number field of finite degree $\Delta = [k:Q]$.

The fundamental result of this paper is the following. (The superscript below indicates the inverse image of a line bundle by a morphism [8, p. 110].)

Theorem 0.1. Let A and B be g-dimensional abelian varieties over k, f be an isogeny of A onto B, and M and N be very ample line bundles over A and B, respectively, such that $\mathcal{M} \cong f^*\mathcal{N}$. For a theta-structure t on (B, \mathcal{N}) which is compatible with a theta-structure s on (A, \mathcal{M}) , we have $h(A, \mathcal{M}, s) > h(B, \mathcal{N}, t)$

$$n_n(1, m, 3) \ge n_n(D, N, 1).$$

The exact meaning of the compatibility of theta-structures is defined in Section 1.

Remark 0.2. For the Faltings stable height $h_{\rm st}$, we know

$$h_{\rm st}(A) \ge h_{\rm st}(B) - \frac{1}{2}\log \deg f$$
 cf. [2, Lemma 5].

Two theorems below are main applications of Theorem 0.1. We denote by q_A the quadratic part of a Néron-Tate height on A. We define the *naive height* h_n of the pair (A, \mathcal{M}) by the minimum of $h_n(A, \mathcal{M}, s)$. We know that the number of theta-structures is finite (see [5, p. 297]). The rotation ^{$\otimes 4$} means the tensor product of 4 copies of a line bundle [8, p. 153].

Theorem 0.3. Let \mathscr{L} be an arbitrary ample line bundle over A and set $\mathcal{M} := (\mathscr{L} \otimes (-1)^* \mathscr{L})^{\otimes 4}$. Assume that A is simple and a theta-structure on (A, \mathcal{M}) is defined over k. There exists a positive constant C = C(g) such that for any finite extension field F of k of degree D = [F:k] we have

Theorem 0.4. Under the same assumptions as those of Theorem 0.3 we have a positive constant C = C(g) such that

$$\min_{A(F) \ni P: non-torsion} q_A(\mathcal{L}, P)$$

>
$$\frac{C}{h_n(A, \mathcal{M})^{3g} \Delta^{3g+1} (1 + \log \Delta)^{2g} D^{2g+1} (1 + \log D)^{2g}}.$$

The proof of these theorems is based on the next theorem 0.5 due to Masser [3] and David [1], which is a special case of Theorem 0.3. It seems difficult to us to generalize directly the method of [1] to prove them, but as we shall show below, they follow easily from our theorem 0.1.

Theorem 0.5 (Masser-David). Let B be a g-dimensional simple abelian variety over a number field k and N be an ample line bundle over B of de-

¹⁹⁹¹ Mathematics Subject Classification. Primary 11G10; Secondary 14G05, 14K15.

^{*)} Partially supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

gree 8^a of type $(8, \dots, 8)$. Suppose that a theta-structure on (B, \mathcal{N}) is defined over the base field k. Then there is a positive constant C = C(g) such that

{
$$Q \in B(F) \mid q_B(\mathcal{N}, Q) < \frac{1}{C \Delta D}$$
}
 $< C \cdot h_n(B, \mathcal{N})^{3g/2} \Delta^{3g/2} (1 + \log \Delta)^g D^g (1 + \log D)^g$
As for elliptic curves, see [4], too.

1. Naive height of a polarized abelian variety. Let k be a number field and A be a g-dimensional abelian variety over k. We denote by \mathcal{M} a very ample line bundle over A of type δ [5, p. 294], where δ is a finite sequence (d_1, \ldots, d_g) of positive rational integers d_i such that d_{i+1} divides d_i . Let $\mathcal{G}(\mathcal{M})$ be the theta group associated with \mathcal{M} [5, p. 289]. It is a group scheme over k [7, p. 225] which acts on \mathcal{M} . We assume that a primitive d_1 -th root of unity is already in k and the group $\mathcal{G}(\mathcal{M})(k)$ of k-rational points of $\mathcal{G}(\mathcal{M})$ is isomorphic to the group $\mathcal{G}(\delta)(k)$ below, in which case we say a theta-structure is defined over k.

Let $K(\delta)(k) := \bigoplus_{i=1}^{q} d_i^{-1} \mathbb{Z}/\mathbb{Z}$ and $\hat{K}(\delta)(k) :$ = Hom $(K(\delta)(k), G_m(k))$. As set, the group $\mathscr{G}(\delta)(k)$ equals $G_m(k) \times \hat{K}(\delta)(k) \times K(\delta)(k)$. It acts naturally on a finite dimensional k-vector space $V(\delta)(k) :=$ Map $(K(\delta)(k), A^1(k))$, which induces a multiplication law on $\mathscr{G}(\delta)(k)$ [5, pp. 294-297]. We see that the abelian groups $K(\delta)(k)$ and $\hat{K}(\delta)(k)$ are subgroups of $\mathscr{G}(\delta)(k)$. An isomorphism $s : \mathscr{G}(\mathcal{M})(k) \cong \mathscr{G}(\delta)(k)$ is called a *theta-structure* [5, p. 297]. Via *s*, the group $\mathscr{G}(\delta)(k)$ acts also on the *k*-vector space $\Gamma(A, \mathcal{M})$ of global sections of \mathcal{M} .

Proposition 1.1. Once a theta-structure s is fixed, the k-vector space $\Gamma(A, \mathcal{M})$ is isomorphic to the k-vector space $V(\delta)(k)$ as $\mathcal{G}(\delta)(k)$ -modules. The isomorphism is unique up to multiplication by a constant in k.

Let Q_x be an element of $V(\delta)(k)$ defined as

$$Q_x(y) := \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise.} \end{cases}$$

The set $(Q_x)_{x \in K(\delta)(k)}$ forms a basis of the *k*-vector space $V(\delta)(k)$. Let $(\theta_{s,x})_{x \in K(\delta)(k)}$ be a subset of $\Gamma(A, \mathcal{M})$ that consists of the elements which correspond to Q_x under an isomorphism in Proposition 1.1.

Definition 1.2. The naive height h_n of (A, \mathcal{M}, s) is the absolute logarithmic Weil height of

the k-valued point $(\theta_{s,x}(0))_{x \in K(\delta)(k)}$ in the projective space \mathbf{P}^{d-1} , where d is the dimension of $\Gamma(A, \mathcal{M})$ which is equal to deg \mathcal{M} .

By Proposition 1.1, the real number $h_n(A, \mathcal{M}, s)$ is well-defined.

Remark 1.3. At Archimedean places the values $\theta_{s,x}$ (0) are the classical *Thetanullwerte* $\theta_{mn}(\tau, 0)$.

Let H be any subgroup of $\mathscr{G}(\mathcal{M})(k)$ such that $s(H) \hookrightarrow \hat{K}(\delta)(k) \subset \mathscr{G}(\delta)(k)$ for a fixed theta-structure s. We divide A and \mathcal{M} by H; indeed, there exist an isogeny f of A onto an abelian variety B over k and an ample line bundle \mathcal{N} over B such that deg $f = \# H, f^*\mathcal{N} \simeq \mathcal{M}$, and the k-vector space $\Gamma(B, \mathcal{N})$ is identified with the H-invariant subspace of $\Gamma(A, \mathcal{M})$ under f^* [5, pp. 290-291].

Let $\mathscr{G}(\mathcal{M})(k)^*$ be the normalizer of H in $\mathscr{G}(\mathcal{M})(k)$ and $L := K(\delta)(k) \cap s(\mathscr{G}(\mathcal{M})(k)^*)$. The group $\mathscr{G}(\mathcal{M})(k)^*$ acts naturally on

$$\Gamma(B, \mathcal{N}) \cong \Gamma(A, \mathcal{M})$$

In fact, we have [5, p. 291] $\mathscr{G}(\mathcal{M})(k)^*/H \simeq \mathscr{G}(\mathcal{N})(k).$

On the other hand, we see

 $s(\mathscr{G}(\mathscr{M})(k)^*/H) = G_m(k) \times \hat{K}(\delta)(k)/s(H) \times L$ and we have

 $\hat{K}(\delta)(k)/s(H) \simeq \text{Hom}(L, G_m(k))$

by definition. This leads to the existence of a theta-structure t on (B, \mathcal{N}) .

Definition 1.4. The theta-structures s on (A, \mathcal{M}) and t on (B, \mathcal{N}) are compatible if B and \mathcal{N} are the quotients of A and of \mathcal{M} , respectively, by a subgroup of $s^{-1}(\hat{K}(\delta)(k))$ and if t is induced by s taking the subquotients.

Proof of Theorem 0.1. Let $(\theta_{s,x})_{x \in K(\delta)(k)}$ and $(\theta_{t,y})_{y \in L}$ be sets of global sections of \mathcal{M} and \mathcal{N} , respectively, as described before. Note that L is a subgroup of $K(\delta)(k)$. By using Theorem 4 of [5, p. 302], there is a constant $\lambda \in k$ such that $(\lambda \cdot \theta_{t,y})_{y \in L}$ is a subset of $(\theta_{s,x})_{x \in K(\delta)(k)}$ via $f^* \colon \Gamma(B, \mathcal{N}) \hookrightarrow \Gamma(A, \mathcal{M})$. The definition of the Weil height yields the proof.

2. Proofs of Theorem 0.3 and Theorem 0.4.

Proof of Theorem 0.3. Fix a theta-structure s of $\mathcal{G}(\mathcal{M})(k)$ satisfying

$$h_{n}(A, \mathcal{M}, s) = h_{n}(A, \mathcal{M}).$$

As indicated in the previous section, we have an isogeny $f: A \rightarrow B$, an ample line bundle \mathcal{N} over B of type $(8, \dots, 8)$, and a theta-structure t of $\mathcal{G}(\mathcal{N})(k)$ which is compatible with s such that

deg
$$f = \text{deg } \mathcal{L}$$
 and $f^* \mathcal{N} \simeq \mathcal{M}$.
As a line bundle of type $(8, \dots, 8)$ is automatically very ample [6, pp. 83-84], the naive height is defined. A property of the Néron-Tate heights shows

$$q_A(\mathcal{M}, P) = q_A(f^*\mathcal{N}, P) = q_B(\mathcal{N}, f(P))$$

for $P \in A(F)$.

Thus we have

$$\begin{array}{l} \# \left\{ P \in A(F) \mid q_A(\mathcal{M}, P) < \frac{1}{C \Delta D} \right\} \\ \leq \deg f \cdot \ \# \left\{ Q \in B(F) \mid q_B(\mathcal{N}, Q) < \frac{1}{C \Delta D} \right\} \end{array}$$

1

 $= \deg \, \mathscr{L} \cdot \, \# \, \{Q \in B(F) \mid q_B(\mathcal{N}, Q) < \frac{1}{C \, \Delta D} \}.$ By virtue of the Masser-David theorem, we obtain

Together with the additive law of Néron-Tate heights, we get

$$\begin{aligned} q_A(\mathcal{M}, P) &= q_A((\mathcal{L} \otimes (-1)^* \mathcal{L})^{\otimes 4}, P) \\ &= 4 \cdot q_A(\mathcal{L}, P) + 4 \cdot q_A((-1)^* \mathcal{L}, P) \\ &= 4 \cdot q_A(\mathcal{L}, P) + 4 \cdot q_A(\mathcal{L}, -P) \\ &= 8 \cdot q_A(\mathcal{L}, P). \end{aligned}$$

Theorem 0.1 gives the desired inequality.

Proof of Theorem 0.4. Notation being as above, for $P \in A(F)$ we have

$$q_A(\mathcal{L}, P) = \frac{1}{8} q_B(\mathcal{N}, f(P))$$

By Theorem 0.1, it suffices to prove the theorem

for (B, \mathcal{N}) . The conclusion is immediate by an easy argument using the theorem of Masser and David.

Acknowledgements. Deep appreciation goes to Professor Masser who sent a copy of the letter [3] to the author from which this work was started. Thanks are also due to Professor Hirata-Kohno for her suggestions about its redaction.

References

- [1] S. David: Fonctions thêta et points de torsion des variétés abéliennes. Compositio Math., 78, 121-160 (1991).
- [2] G. Faltings: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math., 73, 349-366 (1983); Erratum. Invent. Math., 75, 381 (1984).
- [3] D. W. Masser: A letter to D. Bertrand, 17 November (1986).
- [4] D. W. Masser: Counting points of small height on elliptic curves. Bull. Soc. Math. France, 117, 247-265 (1989).
- [5] D. Mumford: On the equations defining abelian varieties I. Invent. Math., 1, 287-354 (1966).
- [6] D. Mumford: On the equations defining abelian varieties II. Invent. Math., 3, 75-135 (1967).
- [7] D. Mumford: Abelian Varieties. Tata Inst. Fundamental Research Studies Math., no. 5, Oxford Univ. Press, Bombay, p. 225 (1974).
- [8] R. Hartshorne: Algebraic Geometry. Graduate Texts in Math., no. 52, Springer-Verlag, New York, p. 110, p. 153 (1977).

No. 7]