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1. Introduction. In this paper, an integer
means a rational integer. The greatest common
divisor of the integers a and b is denoted by
(a, b). We shall prove the following main
theorems.

Theorem 1. Let a, b, ¢ be non-negative inte-
gers. If X, Y, Z is a solution of the equation

2°x* + 2"yt =2°2¢
m positive odd integers, then
X=Y=Zanda+1=b+1=c.

Theorem 2. Let m be a non-negative integer.

Then the equation
X‘+2"y*=2"
has no solutions in mnonzero integers X, Y, Z.

2. Preliminaries. We remind first the fol-
lowing three theorems which are all well-known
(see [1], [2] or [3]).

Theorem 3. Let X, Y, Z be a solution of the
equation

X'+v'=2z"
with positive integers X, Y, Z such that (X, Y)
= 1 and X odd. Then there exist unique positive in-
tegers u and v of opposite parity with (u, v) =1
and u > v > 0 such that
X=u" - vz,
Y = 2uv,
Z=u"+ "
The equation
X‘+vt=2"
has no solutions in nonzero integers X, Y, Z.
Theorem 5. The equation
xX‘+yv=2z"
has wno solutions in nonzero integers X, Y, Z.

3. On the equation X* + 2"Y* = Z*

In this section, we shall give a simple proof
of the following theorem which is slightly stron-
ger than, and implies Fermat’s last theorem for
n = 4 (see [4]).

Theorem 6.
Then the equation

X‘+2"yt=12"

has no solutions in odd integers X, Y, Z.

Theorem 4.

Let m be a non-negative integer.

Proof. Suppose that # is the least integer

for which

'+ 2"y =o'
has a solution in positive odd integers x, y,
for some non-negative integer m. The statement
that # is least immediately implies that three in-
tegers x, y, # are pairwise relatively prime.
Since the fourth power of an odd integer is con-
gruent to 1 modulo 16, we have

2"y*=u'—z*=1—1=0 (mod 16).
Then m > 3. Since # and x are both odd and re-
latively prime, we have

u’ + 2° = 2 (mod 4)
and
W+zuto =0 +2°u—2
=wu+x,u—x =2.
And since
2" =u'—2'= (u— 2 (u+ 2+ 2,
there exist positive odd integers a, b, ¢ such that
u—z=2a",u+zxz=2""" u" + 2* = 2¢
or
u—z=2""" u+zx=2d" u"+ 2*=2¢
Hence
4t =2+ = w—2"+ (u+ 2°
= 408 + 22m—4b8
and so we obtain
(a2)4 + 22m—6(b2)4 — c4
in positive odd integers a, b, c.

Moreover, since 0 < x < u#, we have ¢t
<2¢*=u+ 2 <24’ <u' and s0 0 < ¢ < w.
Thus # was not least after all and the theorem is
proved.

4. Proofs of the main theorems.

Lemma 7. Let X, Y, Z be a solution of the
equation

X‘+vt=227"
i non-negative integers. Then
X'=v*=12.

Proof. Let X,Y,Z be a solution of the
equation X'+Yv*=22% in non-negative inte-
gers. If one of X, Y and Z is zero, then X =Y
= Z = 0. Thus, we suppose that X, Y and Z are
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positive. Let d be the greatest common divisor of
X and Y, then d| X, d| Y, and also d’| Z. We
set X=dr, Y=dy and Z = d’z. Hence we
have

zt + y4 =27
with positive integers x, y, 2z which are pairwise
relatively prime. Furthermore, we note that x, y
and z be all odd. Thus, we obtain

(2z2)2 — (x4 + y4)2 — (.1‘4 _; y4)24+ 4x4y4.

x
Since x and y are both odd, Ty is an inte-

ger. Thus
4

@+ (251 = o

where xy > 0, 2z > 0 and f—z——y is an integer.

4 4
Tt —
By Theorem 5, we have ——z—y =0 and xy =

z. Therefore z° = yz = 2, and so X’=v'=7Z
This completes the proof.
Corollary 8. Let X, Y, Z be a solution of the
equation
xXt+vi=22"
m non-negative integers. Then
X=Y=~Z7.

Proof of Theorem 1. Let a, b and ¢ be
non-negative integers. Let X, Y, Z be a solution
of the equation

2°x* + 2yt = 2°7¢
in positive odd integers X, Y, Z.

We shall first show that a = b. If a # b,
then, without loss of generality, we may assume
that @ < b. Set b= a + m. Consequently we
obtain that ¢ = a and

X+ 2"yt =z,
where X, Y and Z are positive odd integers, and
m is a positive integer, By Theorem 6, this equa-
tion is impossible. Thus a = b.
It follows from @ = b that ¢ = a + 1 and
xXt+vt=22"
with positive odd integers X, Y, Z. Hence
according to Corollary 8, we have X =Y = Z.
This completes the proof of Theorem 1.

Lemma 9. Let m be a non-negative integer. If
a set of three odd integers X, Y, Z satisfies the
equation

X+ 2"yt =27,
thenm = 3 and m = — 1 (mod 4).

Proof. Since the square of an odd integer is

congruent to 1 modulo 8, we have
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2"y'=2"—-X"'=1-—1=0 (mod8).
This implies m = 3.

We suppose that there is a set of four inte-
gers X, Y, Z,m satisfying X'+ 2"yt= 7%
with X, Y, Z odd, m > 3 and m # — 1 (mod 4),
and we assume that the set of positive integers
X, Y, 2, m is such that m is the least positive in-
teger. Canceling by the greatest common divisor
of z* and y4, we may assume that x, y, 2z are
pairwise relatively prime. We have 2"y* = 2° —
' =+ 2% (@ — 2%, and since z, x are both
odd integers and relatively prime, we have
(z + 2%, z — 2% = 2. Hence there exist positive
odd integers a, b with (a, b) = 1 such that

O z+z2*=2a* z—2>=2""p*
or
an z+z2*=2""%", z— z* = 24",

In the case of (I) z+ = 204, z—zx'=
2™ 'p* we obtain 2% = a* — 2"7%*, 2" 7% = 4!
—2'=@+2@—2),m—22=3, and som
= 5. Also note that @ and x are both odd inte-
gers and relatively prime and (@° + z, a® — 2)
= 2.

Hence there exist positive odd integers A, B with
(A, B) = 1 such that
a+zx=24"a"—x=2""B"
or
a’+z=2"7B* o — x = 24"
Thus, we obtain @®> = A* + 2”7 *B*, where a, A,
B are odd integers. Further m — 4 < m and
m—4=mF*F — 1(mod4). This contradicts
the choice of m.

In the case of (II) z+ 22=2""" z—=x
= 24", we obtain z* = 2"7%b* — 4", Since 2" %"
=z’+a*'=1+1=2 (mod4), we have m —
2 =1, so m = 3. This contradicts the choice of
m. Hence the lemma is proved.

Proof of Theorem 2. By Theorem 5, we may
assume m = 1. So if X or Z is even, Z or X
should also be even, so that we may assume
X,Y,Z odd. From X*+ 2"Y*=Z* follows
@Y =(Z'-xY = @'+ X" —4x°Z".
Since X, Z are both odd integers, so is %

2

and we obtain

- X*+ Z*\2
4 2m—2y,4 __
xX2)* + 2yt = (5 5)
4+ 4
where XZ, 7Y, g—é—é— are odd integers and

2m — 2 # — 1 (mod4). By Lemma 9, the last
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equation is

(1]

impossible.
Theorem 2 is complete.
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