A Uniform Construction of the Root Lattices E_{6}, E_{7}, E_{8} and their Dual Lattices*)

By Tetsuji SHIODA
Department of Mathematics, Rikkyo University
(Communicated by Shokichi IYAnAGA, M. J. A., Sept. 12, 1995)

A simple construction of the root lattice E_{r} and its dual lattice E_{r}^{*} is given, which works uniformly with respect to the rank $r=6,7,8$. An advantage of this construction is that the description of the minimal vectors in E_{r} and E_{r}^{*} is reasonably concise; for instance, the 240 roots in E_{8} can be enumerated in a few lines. (Compare with standard references such as [1], [2, Ch.4, §8], [3, Ch. 4]).

Our construction is inspired by 1) the classical theory of del Pezzo surfaces, according to which a del Pezzo surface of degree $d=1,2,3$ is a blowing up of $r=9-d$ points from the projective plane \mathbf{P}^{2} (cf. [3]), and 2) the viewpoint of Mordell-Weil lattices (cf. [4], [5], [6], [7]).

1. Construction.

Definition. Let L_{r} be a free \mathbf{Z}-module of rank $r=6,7,8$ generated by r elements u_{1}, \ldots, u_{r}, and define a symmetric bilinear pairing on L_{r} by the rule:

$$
\begin{equation*}
\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}+\frac{1}{d} \tag{1}
\end{equation*}
$$

where we set $d=9-r$ so that $d=3,2,1$ according as $r=6,7,8$.

Proposition 1. L_{r} is a positive-definite lattice of rank r such that

$$
\operatorname{det} L_{r}=1+\frac{r}{d}= \begin{cases}3 & (r=6) \tag{2}\\ \frac{9}{2} & (r=7) \\ 9 & (r=8)\end{cases}
$$

Proof. This is an immediate consequence of the following:

Lemma 2. Suppose that $A=\left(a_{i j}\right)$ is a real symmetric matrix of degree n such that $a_{i j}=\delta_{i j}+s$ for all i, j for a fixed positive number s. Then $\operatorname{det} A$ $=1+n s$. In particular, such a matrix A is always positive-definite.

Proof. Note that each line sums up to $1+n s$. Hence

$$
\begin{aligned}
& \operatorname{det} A=\left|\begin{array}{ccccc}
1+s & s & \cdots & s \\
s & 1+s & \cdots & s \\
\vdots & \vdots & \ddots & \vdots \\
s & & s & \cdots & 1+s
\end{array}\right| \\
& =\left|\begin{array}{ccccc}
1+s & s & & \cdots & s \\
s & 1+s & \cdots & s \\
\vdots & \vdots & \ddots & \vdots \\
1+n s & 1+n s & \cdots & 1+n s
\end{array}\right| \\
& =(1+n s)\left|\begin{array}{ccccc}
1+s & s & \cdots & s \\
s & 1+s & \cdots & s \\
\vdots & & \vdots & \ddots & \vdots \\
1 & & 1 & \cdots & 1
\end{array}\right| \\
& =(1+n s)\left|\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right|=1+n s .
\end{aligned}
$$

This proves the first assertion. For any $i=$ $1,2, \ldots, n$, the i-th principal minor of A has $\operatorname{det}=1+i s>0$. Hence A is a positive-definite matrix.
Q.E.D.

Definition. Let \tilde{L}_{r} be the \mathbf{Z}-submodule of $L_{r} \otimes \mathbf{Q}$ generated by L_{r} and the following element v_{0} :

$$
\begin{equation*}
v_{0}=\frac{1}{3} \sum_{i=1}^{r} u_{i} . \tag{3}
\end{equation*}
$$

Proposition 3. By naturally extending the pairing \langle,$\rangle to \tilde{L}_{r}$, it becomes a positive-definite lattice of rank r such that $\left[\tilde{L}_{r}: L_{r}\right]=3$. We have

$$
\operatorname{det} \tilde{L}_{r}=\frac{1}{3^{2}} \operatorname{det} L_{r}= \begin{cases}\frac{1}{3} & (r=6) \tag{4}\\ \frac{1}{2} & (r=7) \\ 1 & (r=8)\end{cases}
$$

Proof. In general, if U is a sublattice of in$\operatorname{dex} \nu$ in a lattice V, then we have $\operatorname{det} V=$ $\operatorname{det} U / \nu^{2}$. Hence the result.
Q.E.D.

Note that

[^0](5)
\[

$$
\begin{aligned}
& \left\langle v_{0}, u_{j}\right\rangle=\frac{1}{3} \sum_{i}\left\langle u_{i}, u_{j}\right\rangle \\
& \quad=\frac{1}{3}\left(1+\frac{r}{d}\right)= \begin{cases}1 & (r=6) \\
\frac{3}{2} & (r=7) \\
3 & (r=8)\end{cases}
\end{aligned}
$$
\]

and

$$
\left\langle v_{0}, v_{0}\right\rangle=\frac{r}{3} \cdot \frac{1}{3}\left(1+\frac{r}{d}\right)=\left\{\begin{array}{cc}
2 & (r=6) \tag{6}\\
\frac{7}{2} & (r=7) \\
8 & (r=8)
\end{array}\right.
$$

Definition. We set
(8) $\quad \alpha_{i j}=u_{i}-u_{j}(i \neq j)$
(8) $\quad \beta_{i j k}=v_{0}-\left(u_{i}+u_{j}+u_{k}\right)(i, j, k$ distinct $)$ Let L_{r}^{0} denote the sublattice of \tilde{L}_{r} generated by the r elements:
(9) $\alpha_{i}=\alpha_{i+1}(i=1, \ldots, r-1), \beta=\beta_{123}$.

Lemma 4. (i) Each element $\alpha_{i j}$ or $\beta_{i j k}$ has norm 2 :
(10) $\left\langle\alpha_{i j}, \alpha_{i j}\right\rangle=2,\left\langle\beta_{i j k}, \beta_{i j k}\right\rangle=2$.
(ii) For the r elements in (9), we have for $i \neq j$

$$
\begin{gather*}
\left\langle\alpha_{i}, \alpha_{j}\right\rangle= \begin{cases}-1 & (|i-j|=1) \\
0 & \text { otherwise }\end{cases} \tag{11}\\
\left\langle\beta, \alpha_{i}\right\rangle= \begin{cases}-1 & (i=3) \\
0 & \text { otherwise }\end{cases}
\end{gather*}
$$

Proof. This is easily checked by using (1), (5), (6).
Q.E.D.

The above lemma shows that $\left\{\alpha_{i}, \beta\right\}$ forms a basis of the root system of type E_{r}, associated with the Dynkin diagram (cf. [1], [3]).

Theorem 5. For any $r=6,7,8$, the lattice L_{r}^{0} is isomorphic to the root lattice E_{r}, and \tilde{L}_{r} is isomorphic to the dual lattice E_{r}^{*} of E_{r}.

Proof. Since L_{r}^{0} is generated by $\left\{\alpha_{i}, \beta\right\}$ which forms a basis of the root system of type E_{r}, it is clearly isomorphic to the root lattice E_{r}. In particular, we have $\operatorname{det} L_{r}^{0}=\operatorname{det} E_{r}=d=$ 3,2 or 1 according as $r=6,7$ or 8 . This implies that the index of L_{r}^{0} in \tilde{L}_{r} is d.

On the other hand, we claim that \tilde{L}_{r} is contained in the dual lattice $\left(L_{r}^{0}\right)^{*}$ of L_{r}^{0}. It suffices to check this for generators $\left\{\dot{u}_{i}, v_{0}\right\}$ of \tilde{L}_{r}. By
(1)-(8), we have
(12) $\quad\left\langle u_{i}, \alpha_{j}\right\rangle=\delta_{i j}-\delta_{i j+1} \in \mathbf{Z}$
(13) $\left\langle u_{i}, \beta\right\rangle=-\left(\delta_{i 1}+\delta_{i 2}+\delta_{i 3}\right) \in \mathbf{Z}$.

Hence each u_{i} is contained in $\left(L_{r}^{0}\right)^{*}$. Similarly, we have
(14)

$$
\left\langle v_{0}, \alpha_{j}\right\rangle=0, \quad\left\langle v_{0}, \beta\right\rangle=-1
$$

This shows $v_{0} \in\left(L_{r}^{0}\right)^{*}$.
Thus we have proved that \tilde{L}_{r} is contained in $\left(L_{r}^{0}\right)^{*}$. By noting that the index $\left[L_{r}^{0}: \tilde{L}_{r}\right]=d$ is equal to $\left[E_{r}: E_{r}^{*}\right]$, we conclude that $\tilde{L}_{r}=\left(L_{r}^{0}\right)^{*}$ $\simeq E_{r}^{*}$.
Q.E.D.

Corollary 6. The orthogonal complement $\left\langle v_{0}\right\rangle^{\perp}$ of v_{0} in $L_{r} \otimes \mathbf{Q}$ is generated by $\left\{\alpha_{i}\right\}$ in (9).

Proof. This is immediate from (14). Q.E.D.
Remark. In case $r=8$, we see directly that \tilde{L}_{8} is an even integral lattice. Indeed, its generators satisfy $\left\langle u_{i}, u_{i}\right\rangle=2$ and $\left\langle v_{0}, v_{0}\right\rangle=8$. Hence \tilde{L}_{8} is a positive-definite even unimodular lattice of rank 8. As is wellknown, such a lattice is unique up to isomorphism, and this givés another proof of the fact $\tilde{L}_{8}=L_{8}^{0} \simeq E_{8}$.
2. Minimal vectors. From now on, we make the identification:

$$
L_{r}^{0}=E_{r}, \quad L_{r}=E_{r}^{*}
$$

We keep the same notation as before: $u_{i}, v_{0}, \alpha_{i j}$, $\beta_{i j k}, \ldots$

Now we describe the minimal vectors of E_{r}^{*} in terms of $\boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{v}_{0}$. Also we determine the positive roots of E_{r} with respect to the chosen basis $\left\{\alpha_{i}, \beta\right\}$.

Let us introduce some more elements of E_{r}^{*}. We set

$$
\begin{gather*}
u_{i}^{\prime}=u_{i}-v_{0}(i=1, \ldots, r) \tag{15}\\
\gamma_{i j}=v_{0}-u_{i}-u_{j}(i \neq j) \tag{16}
\end{gather*}
$$

The norm of these vectors can be easily computed. We have

$$
\begin{align*}
& \left\langle u_{i}^{\prime}, u_{i}^{\prime}\right\rangle= \begin{cases}\frac{4}{3} & (r=6) \\
2 & (r=7) \\
4 & (r=8)\end{cases} \tag{17}\\
& \left\langle\gamma_{i j}, \gamma_{i j}\right\rangle= \begin{cases}\frac{4}{3} & (r=6) \\
\frac{3}{2} & (r=7) \\
2 & (r=8)\end{cases} \tag{18}
\end{align*}
$$

Case $r=6$. For $r=6$, it is known that there are 72 roots (of norm 2) in E_{6} and that there are 54 minimal vectors of minimal norm $4 / 3$ in E_{6}^{*}.

Theorem 7. For $r=6$, consider the following set:

$$
\begin{gather*}
\Omega=\left\{u_{i}, u_{i}^{\prime}=u_{i}-v_{0}(i=1, \ldots, 6),\right. \tag{19}\\
\left.\gamma_{i j}=v_{0}-u_{i}-u_{j}(i<j)\right\}
\end{gather*}
$$

Then (i) it consists of $6+6+15=27$ minimal vectors of E_{6}^{*}, and the union of Ω and $-\Omega$ gives all the 54 minimal vectors of E_{6}^{*}.
(ii) The Weyl group $W\left(E_{6}\right)$ acts transitively on the set Ω, and Ω and $-\Omega$ are the two orbits of $W\left(E_{6}\right)$ in the set of minimal vectors.
(iii) The 72 roots of E_{6} are given by $\pm v_{0}, \alpha_{i j}(i \neq$ $j)$, and $\pm \beta_{i j k}(i<j<k)$.
(iv) The following elements
(20) $\quad-v_{0}, \alpha_{i j}(i<j), \beta_{i j k}(i<j<k)$
give $1+15+20=36$ positive roots with respect to the basis $\left\{\alpha_{i}, \beta\right\}$ in (9).

Proof. By (1), (17), (18), $u_{i}, u_{i}^{\prime}, \gamma_{i j}$ have norm $4 / 3$, i.e. they are minimal vectors in E_{6}^{*}. Next all the elements in Ω and $-\Omega$ are distinct; this is immediate if we look at their expression as \mathbf{Q}-linear combination of u_{1}, \ldots, u_{r}. Hence (i) follows.

Similarly (iii) follows from (6) and (10).
To show (iv), we check that each element in (20) is a linear combination of α_{i}, β with nonnegative (integer) coefficients. In fact, we have
(21) $-v_{0}=2 \beta+\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+\alpha_{5}$.
(22) $\alpha_{i j}=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j-1}(i<j)$

$$
\begin{equation*}
\beta_{i j k}=\beta+\cdots(i<j<k) \tag{23}
\end{equation*}
$$

Here \cdots stands for a linear combination of α_{l}. Of the above relations, (21) and (22) are obvious. For (23), note that $\beta_{i j k}-\beta$ is orthogonal to v_{0}, and hence it is a linear combination of α_{l} by Corollary 6. Further the coefficients must be necessarily nonnegative, since the coefficient of β is $1>0$. (Recall that any root in a root lattice is either positive or negative, i.e. the coefficients in terms of a basis are simultaneously nonnegative or nonpositive.)

For (ii), recall ([1]) that the Weyl group $W\left(E_{r}\right) \subset \operatorname{Aut}\left(E_{r}\right)$ is the subgroup generated by the reflections s_{α} which are defined as follows: for each root α, we let

$$
s_{\alpha}(x)=x-\langle x, \alpha\rangle \alpha\left(x \in E_{r}\right)
$$

To prove (ii), we show in the lemma below that $s_{\alpha}(\Omega) \subset \Omega$ for $\alpha=\alpha_{m}(m<r=6)$ or β in the basis. Since such s_{α} generate $W\left(E_{r}\right), \Omega$ is acted on by the Weyl group. Further, this action is transitive, as is clear from the lemma.

Lemma 8. (i) Suppose $\alpha=\alpha_{m}(m<6)$. Then
s_{α} permutes the elements in each set $\left\{u_{i}\right\},\left\{u_{i}^{\prime}\right\}$, $\left\{\gamma_{i j}\right\}$ among themselves. More explicitly, we have

$$
\begin{align*}
& s_{\alpha}\left(u_{i}\right)= \begin{cases}u_{i} \\
u_{i+1}, \\
u_{i-1}\end{cases} \tag{24}\\
& s_{\alpha}\left(u_{i}^{\prime}\right)= \begin{cases}u_{i}^{\prime} & (i \neq m, m+1) \\
u_{i+1}^{\prime} & (i=m) \\
u_{i-1}^{\prime} & (i=m+1)\end{cases}
\end{align*}
$$

Let $M=\{m, m+1\}$. Then, for $\gamma_{i j}(i<j)$, we have

$$
s_{\alpha}\left(\gamma_{i j}\right)= \begin{cases}\gamma_{i j} & \text { if }\{i j\}=M \text { or }\{i j\} \cap M=\emptyset \tag{25}\\ \gamma_{i \pm 1 j} & \text { if } i \in M, j \overline{\in M} \\ \gamma_{i j \pm 1} & \text { if } i \bar{\in} \bar{\in}, j \in M\end{cases}
$$

(ii) Next suppose $\alpha=\beta=\beta_{123}$, and set $J=$ $\{123\}, K=\{456\}$. Then

$$
\begin{align*}
& s_{\beta}\left(u_{i}\right)= \begin{cases}u_{i} & (i \in K) \\
\gamma_{j k} & (i \in J=\{i j k\}),\end{cases} \tag{26}\\
& s_{\beta}\left(u_{i}^{\prime}\right)= \begin{cases}u_{i}^{\prime} & (i \in J) \\
\gamma_{j k} & (i \in K=\{i j k\})\end{cases} \\
& s_{\beta}\left(\gamma_{i j}\right)= \begin{cases}u_{k} & (i, j \in J=\{i j k\}) \\
u_{k}^{\prime} & (i, j \in K=\{i j k\}) \\
\gamma_{i j} & \text { otherwise }\end{cases} \tag{27}
\end{align*}
$$

Proof. The verification is straightforward and is omitted.

This completes the proof of Theorem 7.
Remark. Theorem 7 is closely related to the theory of the 27 lines on a cubic surface. The set Ω can be put in a bijective correspondence with the set of 27 lines, and $\left\{u_{i}, u_{i}^{\prime}(i=1, \ldots\right.$, $6)$) plays the role of double six in Schläfli's sense. For this, we refer to [7]; cf. [3].

Case $\mathbf{r}=7$. It is known that there are 126 roots (of norm 2) in the root lattice E_{7} and 56 minimal vectors of minimal norm $3 / 2$ in the dual lattice E_{7}^{*}.

Theorem 9. (i) The minimal vectors of E_{7}^{*} are given by

$$
\begin{gather*}
\pm u_{i}(i=1, \ldots, 7) \tag{28}\\
\pm \gamma_{i j}= \pm\left(v_{0}-u_{i}-u_{j}\right)(i<j)
\end{gather*}
$$

(ii) The positive roots of E_{7} are given by the following $7+21+35=63$ elements:
(29) $\quad u_{i}^{\prime}=u_{i}-v_{0}, \alpha_{i j}(i<j), \beta_{i j k}(i<j<k)$.

Proof. First (i) follows from (1) and (17). In the same way as the proof of Th. 7 (iv), we have
(30) $\quad u_{i}^{\prime}=2 \beta+\cdots$
(31) $\quad \alpha_{i j}=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j-1}(i<j)$
(32) $\beta_{i j k}=\beta+\cdots(i<j<k)$
where \cdots indicates a linear combination of α_{i} with nonnegative integral coefficients. Q.E.D.

Remark. For the connection to algebraic geometry, we refer to [3] and [6].

Case $\mathbf{r}=8$. It is known that there are 240 roots (of norm 2) in E_{8}, which are at the same time the minimal vectors of $E_{8}^{*}=E_{8}$.

Theorem 10. The following $8+28+56+$ $28=120$ elements :

$$
\begin{gather*}
-u_{i}(i=1, \ldots, 8), \alpha_{i j}(i<j), \tag{33}\\
\beta_{i j k}(i<j<k),-\gamma_{i j}(i<j)
\end{gather*}
$$

are the positive roots of E_{8} with respect to the basis $\left\{\beta, \alpha_{i}(i<8)\right\}$.

Proof. All these elements have norm 2 by (1), (10) and (18), and they (and their minus) are distinct elements in E_{8}. Further, by the same arguments as the proof of Th. 7(iv), we have
(34) $-u_{i}=3 \beta+\cdots$
(35) $\quad \alpha_{i j}=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j-1}(i<j)$
(36) $\quad \beta_{i j k}=\beta+\cdots(i<j<k)$
(37) $-\gamma_{i j}=2 \beta+\cdots(i<j)$
with the unwritten part •• meaning as usual some linear combination of α_{i} with nonnegative integral coeffients. Q.E.D.

Remark. In [1], a root of the form $b \beta+\sum_{i} c_{i} \alpha_{i} \in E_{r}$ is denoted by the symbol

$$
\begin{array}{ccc}
c_{1} & c_{2} & c_{3} \\
b & c_{4} \cdots c_{r-1}
\end{array}
$$

which will be denoted here by $\left(b ; c_{1} c_{2} c_{3} \cdots\right.$ c_{r-1}) for the sake of easier printing. Then the above (34) can be written out as follows:
$-u_{1}=(3 ; 1354321),-u_{2}=(3 ; 2354321)$
$-u_{3}=(3 ; 2454321),-u_{4}=(3 ; 2464321)$
$-u_{5}=(3 ; 2465321),-u_{6}=(3 ; 2465421)$
$-u_{7}=(3 ; 2465431),-u_{8}=(3 ; 2465432)$.
These roots are listed at the last part in the table
of positive roots of E_{8} in [1], Planche VII (II), presumably because they have the most complicated coefficients. The corresponding facts hold for the cases $r=6,7$.

As it turns out, our uniform construction for $r=6,7,8$ may be said to go the other way around, since we start from u_{1}, \ldots, u_{r}.

References

[1] Bourbaki, N.: Groupes et Algèbres de Lie. Chap. 4,5 et 6 , Hermann, Paris (1968); Masson (1981).
[2] Conway, J. and Sloane, N.: Sphere Packings, Lattices and Groups. Springer-Verlag (1988); 2nd ed. (1993).
[3] Manin, Yu.: Cubic Forms. North-Holland (1974); 2nd ed. (1986).
[4] Shioda, T.: Construction of elliptic curves with high rank via the invariants of the Weyl groups. J. Math. Soc. Japan, 43, 673-719 (1991).
[5] Shioda, T.: Theory of Mordell-Weil lattices. Proc. ICM Kyoto, 1990, Springer, vol. I, pp. 473-489 (1991).
[6] Shioda, T.: Plane quartics and Mordell-Weil lattices of type E_{7}. Comment. Math. Univ. St. Pauli, 42, 61-79 (1993).
[7] Shioda, T.: Weierstrass transformations and cubic surfaces. Comment. Math. Univ. St. Pauli, 44, 109-128 (1995).

[^0]: *) To the memory of Akira Okada.

