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We study stable properties of convolution semigroups of probability dis-
tributions over a Lie group. Stable distributions over a Heisenberg group or
more generally on a homogeneous group were studied by Hulanicki [3], Glo-
wacki [1] and others. Our stable distribution is motivated by these works.
However, our definition is more general than their’s, thereby including all
strictly operator-stable distributions in case where the underlying group is a
Euclidean space.

1. Convolution semigroup of probability distributions. Let G be a Lie
group of dimension d. Elements of G are denoted by (, etc. Let ( be its

left invariant Lie algebra, where an inner product and the associated
norm are defined, so that it can be identified with an Euclidean space /a.
Elements of ( are denoted by X, Y etc. We fix its basis {X1,..., Xa}. Let C
be the set of all continuous maps from the Lie group G into R (--oo,
oo) (such that lim_oof(a) exists if G is non compact, where oo is the infin-
ity). It is a Banach space by the supremum norm. We denote by C the total-
ity of f C such that it is twice continuously differentiable and Xf, YZf
belong to C for any X, Y, Z.

Let f be a probability distribution over G. Let (p" G--’ G (or G--, ( or-- G) be a continuous map. The transformation of / by q is defined by
p/z(A) =/z(p-(A)). For two distributions f and v, their convolution is

a distribution on G defined by v(A)= j/z(d()v(a-lA). The n-ple
n

convolution of the distribution f is denoted by/
A family of probability distributions {t}t>0 over the Lie group G is cal-

led a convolution semigroup (of probability distributions), if it satisfies (i)/z t
s+t for all s, t > 0, and (ii) /-h converges weakly to 6 as h-- 0, where 6

is the unit measure at the unit element e of G.
Suppose that we are given a convolution semigroup of probability

{/zt}t> over G. We set for f C, Tf(v)= fc.f(v(y)lt(da).distributions

Then {Tt}t>o defines a semigroup of strongly continuous linear operators on
the Banach space C. The infinitesimal generator L of {Tt}t>o is often called
the infinitesimal generator of {/t}>0. Hunt [4] has shown that the domain of
the infinitesimal generator L includes C and represented Lf, f C by
making use of the basis of the Lie algebra f and a Lvy measure on the Lie

group G. We shall obtain another representation of the infinitesimal gener-
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ator in the case where the Lie group G is simply connected and nilpotent. An
important fact on a simply connected nilpotent Lie group is that the exponen-
tial map exp :g}-- 15 is a diffeomorphism, See Hochschild [21.

Theorem 1.1. Let L be the infinitesimal generator of a convolution semi-
group of probability distributions {ft} t>o over a Lie group G. If G is simply con-
nected and nilpotent, there exists a symmetric nonnegative definite linear map

A= (aij) on , a measure M on -- {0} with f +lxl
M( X) < oo

and a vector B (b) on such that Lf is represented by
1

(1.1) Lf(r) -ff ajkXXkf(r) + bXf(r)

+ {f(r exp X) f(r)
1 Xf(r)}M(dX)-o 1 / xl

for any f C. Further, the triple (A, M B) is uniquely determined by the con-
volution semigroup {ft} t>o.

Conversely suppose we are given a triple (A, M, B) over a Lie algebra of
a Lie group G, satisfying the above condition. Then there exists a unique convolu-
tion semigroup of probability distributions over G, whose infinitesimal generator
is given by (1.1).

The triple (A, M, B) is called the characteristics of {ft}t>o.
Now let {fit}t>o be a convolution semigroup of probability distributions

over c. Then its characteristic function bt(Z)

given by the L6vy-Khinehine formula.

(1.2) (p,(Z) exp -ff (Z, AZ) + e

exp i(X Z) fi (dX) is

i(Z, X) )M(dX)
+ i(Z,B)] t.

The triple (A, M, B) is called the characteristics of {fit}t>o.
Theorem 1.2. Let {fit t} t>o be a convolution semigroup of probability dis-

tributions over a Lie algebra of a Lie group G with characteristics (A, M, B).
Then
(1.3) ft lim (exp fit/)*

exists for all t O, where lim is taken in the sense of the weak convergence.
Further {ft)t>o defines a convolution semigroup of probability distributions over
the Lie group G with the characteristics (A, M, B).

Conversely, let {ft}t>o be a convolution semigroup of probability distributions
over a Lie group G. If G is simply connected and nilpotent, there exists a unique
convolution semigroup {fi t)t>o over the Lie algebra satisfying (1.3) for all
t O. Its characteristics coinside with that of {pit} t>o.

The convolution semigroup {fit)t>o in Theorem 1.2 is called the generat-
ing semigroup of {/l t) t>o.

Now we shall introduce a convolution semigroup of stable distributions.
For this purpose we need some notations. Let {7",,),,>o be a one parameter
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group of automorphisms of the Lie group G, i.e., (i) For each r > 0, ’r is a

diffeomorphism G and satisfies 7r(’Ca) ’r(T)’r(Y) for any , G, (ii)
holds for any r, s > 0, (iii) is continuous in r (0, ). It is

called a dlaton if it satisfies (iv) () e uniformly on compact sets as

Let dr be the differential of the automorphism . Then dr defines an
automorphism of i.e., dTr is a one to one linear map of onto itself and
satisfies d[X, [d,d for any X, Y , where [, is the
Lie bracket. Therefore {dT}r>0 is a one parameter group of automorphisms
of . It satisfies drX 0 as r 0 for any X . The linear map dT is
represented by d = exp(log r)Q, where Q is a linear map of such that
all of its eigen values have positive real parts. Further it satisfies Q[X,

[QX, + [X, Q for all X, Y . The map d is often written as
r and the linear map Q is called the exponent of the dilation {r}r>0

Remark. A dilation can not be defined on an arbitrary Lie group. In-
deed if a dilation exists on the Lie group G, the Lie group is necessarily sim-
ply connected and nilpotent. See [7].

A convolution semigroup of probability distributions {t} is called stable
wth respect to a dtato {} r>o if and only if rt t holds for any r, t > 0.

In the case where G is a Euclidean space , a dilation {r}r>0 is no-
thing but a one parameter group of bijective linear transformations on
such that 0 as r 0 for any . If a convolution semigroup

{t}t>0 over is stable with respect to a dilation {}r>0, it is called strictly
operator-stable (w#h respect to the dlaHon {r}r>0) according to Sharpe [9].

A convolution semigroup over a Lie algebra can be identified with a
convolution semigroup over a Euclidean space. However, we emphasize that
an arbitrary operator-stable convolution semigroup over a Euclidean space
is not necessarily stable with respect to a certain dilation {7}r>o on the Lie
algebra, because the dilation on the Lie algebra must satisfies the property
7fiX, [7X, 7r for all X, Y . For example, a convolution semi-
group over is always operator-stable if the Lvy measure M of the con-
volution semigroup is 0. However, regarding it as a convolution semigroup
over a Lie algebra, it can be or can not be stable. It depends on the structure
of the Lie algebra. Further discussions are given in [6].

Theorem 1.3. Let {t}t>0 be a convolution semigroup of probability dis-
tributions over a simply connected nilpotent Lie group G equipped with a dilation

{Tr}r>o. Let {fit}t>o be the associated generating convolution semigroup over the
Lie algebra . Then {#t}t>0 is stable with respect to the dilation {7r}>o, if and
only if {fit}t>o is stable with respect to the dilation {dTr}r>o.

Proofs of Theorems 1.1, 1.2 and 1.3 are given in [6] in a different frame
work, investigating Lvy processes on the Lie group G and the associated
stochastic differential equations driven by Lvy processes with values in the
Lie algebra .

2. Characterization of the infinitesimal generator of stable distributions.
We shall characterize the stable property of the convolution semigroup by
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means of its infinitesimal generator. Somewhat different criteria for strictly
operator stable semigroup over a Euclidean space are given in Sato [8] and
Kunita [6].

Let G be a simply connected nilpotent Lie group equipped with a dila-
tion {Tr)r>o. We need some facts on its exponent Q. Let g be the minimal
polynomial of Q. It is factorized as g- g’ gp where gl gp are dis-
tinct irreducible monie polynomials and nj are positive integers. Set Wj
Ker(g()n0, j 1,...,p. These are Q-invariant subspaces of and admits
a direct sum decomposition Y ( W. Let / atj -+- v/- 1 fi(c, fi are
reals) be the roots of g (-- eigen values of Q). We set

I= {j ;a = 1/2},J= {j 1/2 < a< oo}, I= {j ;a= 1},
J= (j;1/2 <a< 1).

The subspaces of are defined by W ()yWj etc. and projectors to WI,
E  tc. by  tc. S {X e X 1,
> 1 for all r > 1}. Then every X (X 4 0) is represented uniquely by
X= rO, where r (0, oo) and 0 S. We denote r and 0 by r(X) and
o(x).

In later discussions, the linear map Q- I and its inverse plays an im-
portant role. If 1 is not an eigen value of Q, Q- I is a bijection so that the
inverse (Q-/)-1 is well defined. Suppose that 1 is an eigen value of Q. We
may assume that /l-- 1. Set /z {(Q- I)X;X W1} 1/1-- {X;OX

X} and V-" (>.W, we choose a basis {Zl,..., Zm, Y1,..., Yn} of W
such that W {Z Zm} and W {(Q-/) Y/;i 1,..., n}. Then
we can define a linear map (Q-/)-1. V@ {Y1,. Y,} such that
(Q_/)-I(Q_/) = Tvr, . Indeed, since (Q- I) {Y1, Ym}--*
W1 and (Q-/)" V---’ V.are bijections, the inverse (Q-/)-1. W1 @ V---*
{ Y1,..., Y,} V is well defined. For X I/rl we set (Q -/)-ix 0.

Theorem 2.1. Let {Pt}t>o be a convolution semigroup of probability dis-

tributions over a simply connected nilpotent Lie group G equipped with a dilation

{7}>o. It is stable with respect to the dilation if and only if its characteristics
(A, M, B) admits the following properties.
(i) The linear map A satisfies TwAT( A and QA 4- AQ’= A, where
Q" are the transposes of Two, Q.
(ii) The measure M is supported by Wy. There exists a finite measure over S
supported by Sy =- S f Wy such that for any Borel subset E of Wy, M is repre-
sented by

(2.1) M(E) fs, 2(dO)f(o,, zg(rO)r-dr"
(iii) (a) If 1 is not an eigen vl.e of Q, the vector B is determined by M and
ncl is given by the following

(2.2) B1- L 2(QX, X)
(Q_ I)_IXM(dX).

-o,- (1 + [Xl)
(b) If 1 is an eigeu value of Q, the measure M satisfies

(2.3) fv 2 (QX X}
Tw,XM(dX) ITV1

-,0 (1 / xl )
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Further the vector YB is given by B + Bo, where Bo is an element of WI.
Proof Suppose first that the convolution semigroup is stable with

respect to the dilation {7"r}r>0. Then its generating convolution semigroup

{fit}t>0 is strictly operator stable with .respect to the dilation {r}r>o Hence
fir r holds for all r > 0. Then the characteristic function r( of fir is
equal to (r’ and is represented by

1 i(Z,
(2.4) exp [-- (Z, rOArO’Z> + f(e <z’x> 1

1 ; i-;[)rM(d
+ i(Z, rOB)],

where fM is the measure defined by fM(E) M(f-E) for all Borel sets
E. Compare this with the characteristic function (1.2). Then we have fA
rAr’, rM rM and

X I+x]X)M(d.(2.5) (r r)B r f(
1 + r-X]

The first two equalities imply the assertions (i) and (ii) by Proposition 4.3.3
in [5] and Theorem 1.3 in [6]. We shall prove (iii). Divide both sides of the
above by r and then differentiate them with respect to r. Then we obtain

2 (Qr-Q-1x
(2.6) (Q- rQ-B f
Setting r 1, we obtain

(2.7) (Q- B f 2(QX, x
(1 + i M(d.

This implies (iii) immediately.
Conversely suppose that we are given an arbitrary triple (A, M, B)

satisfying (i)-(iii). Then there exists a convolution semigroup {fit}t>o of prob-
ability distributions over with characteristics (A, M, B). We will show
that it is strictly operator stable with respect to the dilation {r}>o The
linear map A satisfies rA rAr" for all r 0 in view of (i) and the mea-

sure M defined by (2.1) satisfies rM rM for all r > 0. See eg. [5]. Furth-
er, the vector B satisfies (2.7) in both cases (a), (b). We shall prove that (2.7)
imples (2.5). Note the relation r-M r-M. Then (2.7) implies

r
2 (QX X 2 (Qr-X r-X)r-X
i ; i r-M(d rf (1 + ;-i2;- M(d,(O- B

which is equivalen to (2.6). Integrating both sides of (2.6) with respect to r,
and multiplying both sides by r > 0, we obtain (2.5). Now these three prop-
erties of (A, M, B) implies that the characteristic function St( of t satis-
fies ( $l(r’ for all Z N and r > 0. Therefore we have
for all r > 0, proving that {fit}t>o is strictly operator stable with repect to
the dilation {r}>o Let {gt}t>o be the convolution semigroup generated by
{fit}t>o. It is stable with respect to the dilation {rr}>o with characteristics
(A, M, B) by Theorem 1.a. The proof is complete.

Corollary 2.2 (@ Kunita [6]). Let L be the infinitesimal generator of a con-
volution semigroup {Pt}t>o of probability distributions over a simply connected
nilpotent Lie group G equipped with a dilation {r}>o with the exponent Q.
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(a) Suppose that 1 is not an eigen value of the exponent Q. Then {tt} t>0 is stable
with respect to the dilation if and only if Lf, f C is represented by

(2.8t Lf(r) - . aXXf(r) + (0 /)-r%Of(r)2 (dO)

+ .’[" (7(r exp X) f(r) r%XT(r) X (r(X) < 1) TIXf(r) M(dX)
-{o)

where A (a) d M stisfy {i), {ii) of Theorem 2.1. I pticul, (a) 0
holds if I 0, and M 0 holds ifJ- 0 in (2.8). Further Tw,, 0 holds if
I O, and Tw 0 holds if] 0 in (2.8).

(b) Suppose that 1 is an eigen value of the exponent Q. Then Lf, f C
has an additional’drift term Bof in (2.8), where Bo W1. Further the measure
2 satisfies"

fs Tw’O (dO) ITVI.(2.9)

In particular fss Two02 (dO) 0 holds if W I;V.
Proof The representation (2.8) of the infinitesimal generator is immedi-

ate from Theorems 1.1 and 2.1, since the following, (2.10)-(2.12) are satis-
fied.

"J( 1
TwjXM(dX) if ay > 1(2.10) TwjB1

-o 1 /Ixl
xl(2.11)
+ i-.1, Tw,XM(dX)if 1/2 < c, < 1,

1

(2.12)
) >1 1 + X TwXM dX) TwXM dX)

+ as
[ (Q 1)-lTw,O’ (dO) if cry- 1.
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